diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp')
| -rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp | 3468 | 
1 files changed, 3468 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp new file mode 100644 index 000000000000..f4fbab3c2b83 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CGObjC.cpp @@ -0,0 +1,3468 @@ +//===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Objective-C code as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CGDebugInfo.h" +#include "CGObjCRuntime.h" +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "TargetInfo.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/StmtObjC.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/InlineAsm.h" +using namespace clang; +using namespace CodeGen; + +typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; +static TryEmitResult +tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); +static RValue AdjustObjCObjectType(CodeGenFunction &CGF, +                                   QualType ET, +                                   RValue Result); + +/// Given the address of a variable of pointer type, find the correct +/// null to store into it. +static llvm::Constant *getNullForVariable(Address addr) { +  llvm::Type *type = addr.getElementType(); +  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); +} + +/// Emits an instance of NSConstantString representing the object. +llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) +{ +  llvm::Constant *C =  +      CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); +  // FIXME: This bitcast should just be made an invariant on the Runtime. +  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); +} + +/// EmitObjCBoxedExpr - This routine generates code to call +/// the appropriate expression boxing method. This will either be +/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], +/// or [NSValue valueWithBytes:objCType:]. +/// +llvm::Value * +CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { +  // Generate the correct selector for this literal's concrete type. +  // Get the method. +  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); +  const Expr *SubExpr = E->getSubExpr(); +  assert(BoxingMethod && "BoxingMethod is null"); +  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); +  Selector Sel = BoxingMethod->getSelector(); +   +  // Generate a reference to the class pointer, which will be the receiver. +  // Assumes that the method was introduced in the class that should be +  // messaged (avoids pulling it out of the result type). +  CGObjCRuntime &Runtime = CGM.getObjCRuntime(); +  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); +  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); + +  CallArgList Args; +  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); +  QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); +   +  // ObjCBoxedExpr supports boxing of structs and unions  +  // via [NSValue valueWithBytes:objCType:] +  const QualType ValueType(SubExpr->getType().getCanonicalType()); +  if (ValueType->isObjCBoxableRecordType()) { +    // Emit CodeGen for first parameter +    // and cast value to correct type +    Address Temporary = CreateMemTemp(SubExpr->getType()); +    EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); +    Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT)); +    Args.add(RValue::get(BitCast.getPointer()), ArgQT); + +    // Create char array to store type encoding +    std::string Str; +    getContext().getObjCEncodingForType(ValueType, Str); +    llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); +     +    // Cast type encoding to correct type +    const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; +    QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); +    llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); + +    Args.add(RValue::get(Cast), EncodingQT); +  } else { +    Args.add(EmitAnyExpr(SubExpr), ArgQT); +  } + +  RValue result = Runtime.GenerateMessageSend( +      *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, +      Args, ClassDecl, BoxingMethod); +  return Builder.CreateBitCast(result.getScalarVal(),  +                               ConvertType(E->getType())); +} + +llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, +                                    const ObjCMethodDecl *MethodWithObjects) { +  ASTContext &Context = CGM.getContext(); +  const ObjCDictionaryLiteral *DLE = nullptr; +  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); +  if (!ALE) +    DLE = cast<ObjCDictionaryLiteral>(E); + +  // Optimize empty collections by referencing constants, when available. +  uint64_t NumElements =  +    ALE ? ALE->getNumElements() : DLE->getNumElements(); +  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { +    StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; +    QualType IdTy(CGM.getContext().getObjCIdType()); +    llvm::Constant *Constant = +        CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); +    LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); +    llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getLocStart()); +    cast<llvm::LoadInst>(Ptr)->setMetadata( +        CGM.getModule().getMDKindID("invariant.load"), +        llvm::MDNode::get(getLLVMContext(), None)); +    return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); +  } + +  // Compute the type of the array we're initializing. +  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), +                            NumElements); +  QualType ElementType = Context.getObjCIdType().withConst(); +  QualType ElementArrayType  +    = Context.getConstantArrayType(ElementType, APNumElements,  +                                   ArrayType::Normal, /*IndexTypeQuals=*/0); + +  // Allocate the temporary array(s). +  Address Objects = CreateMemTemp(ElementArrayType, "objects"); +  Address Keys = Address::invalid(); +  if (DLE) +    Keys = CreateMemTemp(ElementArrayType, "keys"); +   +  // In ARC, we may need to do extra work to keep all the keys and +  // values alive until after the call. +  SmallVector<llvm::Value *, 16> NeededObjects; +  bool TrackNeededObjects = +    (getLangOpts().ObjCAutoRefCount && +    CGM.getCodeGenOpts().OptimizationLevel != 0); + +  // Perform the actual initialialization of the array(s). +  for (uint64_t i = 0; i < NumElements; i++) { +    if (ALE) { +      // Emit the element and store it to the appropriate array slot. +      const Expr *Rhs = ALE->getElement(i); +      LValue LV = MakeAddrLValue( +          Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), +          ElementType, AlignmentSource::Decl); + +      llvm::Value *value = EmitScalarExpr(Rhs); +      EmitStoreThroughLValue(RValue::get(value), LV, true); +      if (TrackNeededObjects) { +        NeededObjects.push_back(value); +      } +    } else {       +      // Emit the key and store it to the appropriate array slot. +      const Expr *Key = DLE->getKeyValueElement(i).Key; +      LValue KeyLV = MakeAddrLValue( +          Builder.CreateConstArrayGEP(Keys, i, getPointerSize()), +          ElementType, AlignmentSource::Decl); +      llvm::Value *keyValue = EmitScalarExpr(Key); +      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); + +      // Emit the value and store it to the appropriate array slot. +      const Expr *Value = DLE->getKeyValueElement(i).Value; +      LValue ValueLV = MakeAddrLValue( +          Builder.CreateConstArrayGEP(Objects, i, getPointerSize()), +          ElementType, AlignmentSource::Decl); +      llvm::Value *valueValue = EmitScalarExpr(Value); +      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); +      if (TrackNeededObjects) { +        NeededObjects.push_back(keyValue); +        NeededObjects.push_back(valueValue); +      } +    } +  } +   +  // Generate the argument list. +  CallArgList Args;   +  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); +  const ParmVarDecl *argDecl = *PI++; +  QualType ArgQT = argDecl->getType().getUnqualifiedType(); +  Args.add(RValue::get(Objects.getPointer()), ArgQT); +  if (DLE) { +    argDecl = *PI++; +    ArgQT = argDecl->getType().getUnqualifiedType(); +    Args.add(RValue::get(Keys.getPointer()), ArgQT); +  } +  argDecl = *PI; +  ArgQT = argDecl->getType().getUnqualifiedType(); +  llvm::Value *Count =  +    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); +  Args.add(RValue::get(Count), ArgQT); + +  // Generate a reference to the class pointer, which will be the receiver. +  Selector Sel = MethodWithObjects->getSelector(); +  QualType ResultType = E->getType(); +  const ObjCObjectPointerType *InterfacePointerType +    = ResultType->getAsObjCInterfacePointerType(); +  ObjCInterfaceDecl *Class  +    = InterfacePointerType->getObjectType()->getInterface(); +  CGObjCRuntime &Runtime = CGM.getObjCRuntime(); +  llvm::Value *Receiver = Runtime.GetClass(*this, Class); + +  // Generate the message send. +  RValue result = Runtime.GenerateMessageSend( +      *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, +      Receiver, Args, Class, MethodWithObjects); + +  // The above message send needs these objects, but in ARC they are +  // passed in a buffer that is essentially __unsafe_unretained. +  // Therefore we must prevent the optimizer from releasing them until +  // after the call. +  if (TrackNeededObjects) { +    EmitARCIntrinsicUse(NeededObjects); +  } + +  return Builder.CreateBitCast(result.getScalarVal(),  +                               ConvertType(E->getType())); +} + +llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { +  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); +} + +llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( +                                            const ObjCDictionaryLiteral *E) { +  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); +} + +/// Emit a selector. +llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { +  // Untyped selector. +  // Note that this implementation allows for non-constant strings to be passed +  // as arguments to @selector().  Currently, the only thing preventing this +  // behaviour is the type checking in the front end. +  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); +} + +llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { +  // FIXME: This should pass the Decl not the name. +  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); +} + +/// \brief Adjust the type of an Objective-C object that doesn't match up due +/// to type erasure at various points, e.g., related result types or the use +/// of parameterized classes. +static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, +                                   RValue Result) { +  if (!ExpT->isObjCRetainableType()) +    return Result; + +  // If the converted types are the same, we're done. +  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); +  if (ExpLLVMTy == Result.getScalarVal()->getType()) +    return Result; + +  // We have applied a substitution. Cast the rvalue appropriately. +  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), +                                               ExpLLVMTy)); +} + +/// Decide whether to extend the lifetime of the receiver of a +/// returns-inner-pointer message. +static bool +shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { +  switch (message->getReceiverKind()) { + +  // For a normal instance message, we should extend unless the +  // receiver is loaded from a variable with precise lifetime. +  case ObjCMessageExpr::Instance: { +    const Expr *receiver = message->getInstanceReceiver(); + +    // Look through OVEs. +    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { +      if (opaque->getSourceExpr()) +        receiver = opaque->getSourceExpr()->IgnoreParens(); +    } + +    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); +    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; +    receiver = ice->getSubExpr()->IgnoreParens(); + +    // Look through OVEs. +    if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { +      if (opaque->getSourceExpr()) +        receiver = opaque->getSourceExpr()->IgnoreParens(); +    } + +    // Only __strong variables. +    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) +      return true; + +    // All ivars and fields have precise lifetime. +    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) +      return false; + +    // Otherwise, check for variables. +    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); +    if (!declRef) return true; +    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); +    if (!var) return true; + +    // All variables have precise lifetime except local variables with +    // automatic storage duration that aren't specially marked. +    return (var->hasLocalStorage() && +            !var->hasAttr<ObjCPreciseLifetimeAttr>()); +  } + +  case ObjCMessageExpr::Class: +  case ObjCMessageExpr::SuperClass: +    // It's never necessary for class objects. +    return false; + +  case ObjCMessageExpr::SuperInstance: +    // We generally assume that 'self' lives throughout a method call. +    return false; +  } + +  llvm_unreachable("invalid receiver kind"); +} + +/// Given an expression of ObjC pointer type, check whether it was +/// immediately loaded from an ARC __weak l-value. +static const Expr *findWeakLValue(const Expr *E) { +  assert(E->getType()->isObjCRetainableType()); +  E = E->IgnoreParens(); +  if (auto CE = dyn_cast<CastExpr>(E)) { +    if (CE->getCastKind() == CK_LValueToRValue) { +      if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) +        return CE->getSubExpr(); +    } +  } + +  return nullptr; +} + +RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, +                                            ReturnValueSlot Return) { +  // Only the lookup mechanism and first two arguments of the method +  // implementation vary between runtimes.  We can get the receiver and +  // arguments in generic code. + +  bool isDelegateInit = E->isDelegateInitCall(); + +  const ObjCMethodDecl *method = E->getMethodDecl(); + +  // If the method is -retain, and the receiver's being loaded from +  // a __weak variable, peephole the entire operation to objc_loadWeakRetained. +  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && +      method->getMethodFamily() == OMF_retain) { +    if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { +      LValue lvalue = EmitLValue(lvalueExpr); +      llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress()); +      return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); +    } +  } + +  // We don't retain the receiver in delegate init calls, and this is +  // safe because the receiver value is always loaded from 'self', +  // which we zero out.  We don't want to Block_copy block receivers, +  // though. +  bool retainSelf = +    (!isDelegateInit && +     CGM.getLangOpts().ObjCAutoRefCount && +     method && +     method->hasAttr<NSConsumesSelfAttr>()); + +  CGObjCRuntime &Runtime = CGM.getObjCRuntime(); +  bool isSuperMessage = false; +  bool isClassMessage = false; +  ObjCInterfaceDecl *OID = nullptr; +  // Find the receiver +  QualType ReceiverType; +  llvm::Value *Receiver = nullptr; +  switch (E->getReceiverKind()) { +  case ObjCMessageExpr::Instance: +    ReceiverType = E->getInstanceReceiver()->getType(); +    if (retainSelf) { +      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, +                                                   E->getInstanceReceiver()); +      Receiver = ter.getPointer(); +      if (ter.getInt()) retainSelf = false; +    } else +      Receiver = EmitScalarExpr(E->getInstanceReceiver()); +    break; + +  case ObjCMessageExpr::Class: { +    ReceiverType = E->getClassReceiver(); +    const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>(); +    assert(ObjTy && "Invalid Objective-C class message send"); +    OID = ObjTy->getInterface(); +    assert(OID && "Invalid Objective-C class message send"); +    Receiver = Runtime.GetClass(*this, OID); +    isClassMessage = true; +    break; +  } + +  case ObjCMessageExpr::SuperInstance: +    ReceiverType = E->getSuperType(); +    Receiver = LoadObjCSelf(); +    isSuperMessage = true; +    break; + +  case ObjCMessageExpr::SuperClass: +    ReceiverType = E->getSuperType(); +    Receiver = LoadObjCSelf(); +    isSuperMessage = true; +    isClassMessage = true; +    break; +  } + +  if (retainSelf) +    Receiver = EmitARCRetainNonBlock(Receiver); + +  // In ARC, we sometimes want to "extend the lifetime" +  // (i.e. retain+autorelease) of receivers of returns-inner-pointer +  // messages. +  if (getLangOpts().ObjCAutoRefCount && method && +      method->hasAttr<ObjCReturnsInnerPointerAttr>() && +      shouldExtendReceiverForInnerPointerMessage(E)) +    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); + +  QualType ResultType = method ? method->getReturnType() : E->getType(); + +  CallArgList Args; +  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); + +  // For delegate init calls in ARC, do an unsafe store of null into +  // self.  This represents the call taking direct ownership of that +  // value.  We have to do this after emitting the other call +  // arguments because they might also reference self, but we don't +  // have to worry about any of them modifying self because that would +  // be an undefined read and write of an object in unordered +  // expressions. +  if (isDelegateInit) { +    assert(getLangOpts().ObjCAutoRefCount && +           "delegate init calls should only be marked in ARC"); + +    // Do an unsafe store of null into self. +    Address selfAddr = +      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); +    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); +  } + +  RValue result; +  if (isSuperMessage) { +    // super is only valid in an Objective-C method +    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); +    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); +    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, +                                              E->getSelector(), +                                              OMD->getClassInterface(), +                                              isCategoryImpl, +                                              Receiver, +                                              isClassMessage, +                                              Args, +                                              method); +  } else { +    result = Runtime.GenerateMessageSend(*this, Return, ResultType, +                                         E->getSelector(), +                                         Receiver, Args, OID, +                                         method); +  } + +  // For delegate init calls in ARC, implicitly store the result of +  // the call back into self.  This takes ownership of the value. +  if (isDelegateInit) { +    Address selfAddr = +      GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); +    llvm::Value *newSelf = result.getScalarVal(); + +    // The delegate return type isn't necessarily a matching type; in +    // fact, it's quite likely to be 'id'. +    llvm::Type *selfTy = selfAddr.getElementType(); +    newSelf = Builder.CreateBitCast(newSelf, selfTy); + +    Builder.CreateStore(newSelf, selfAddr); +  } + +  return AdjustObjCObjectType(*this, E->getType(), result); +} + +namespace { +struct FinishARCDealloc final : EHScopeStack::Cleanup { +  void Emit(CodeGenFunction &CGF, Flags flags) override { +    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); + +    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); +    const ObjCInterfaceDecl *iface = impl->getClassInterface(); +    if (!iface->getSuperClass()) return; + +    bool isCategory = isa<ObjCCategoryImplDecl>(impl); + +    // Call [super dealloc] if we have a superclass. +    llvm::Value *self = CGF.LoadObjCSelf(); + +    CallArgList args; +    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), +                                                      CGF.getContext().VoidTy, +                                                      method->getSelector(), +                                                      iface, +                                                      isCategory, +                                                      self, +                                                      /*is class msg*/ false, +                                                      args, +                                                      method); +  } +}; +} + +/// StartObjCMethod - Begin emission of an ObjCMethod. This generates +/// the LLVM function and sets the other context used by +/// CodeGenFunction. +void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, +                                      const ObjCContainerDecl *CD) { +  SourceLocation StartLoc = OMD->getLocStart(); +  FunctionArgList args; +  // Check if we should generate debug info for this method. +  if (OMD->hasAttr<NoDebugAttr>()) +    DebugInfo = nullptr; // disable debug info indefinitely for this function + +  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); + +  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); +  CGM.SetInternalFunctionAttributes(OMD, Fn, FI); + +  args.push_back(OMD->getSelfDecl()); +  args.push_back(OMD->getCmdDecl()); + +  args.append(OMD->param_begin(), OMD->param_end()); + +  CurGD = OMD; +  CurEHLocation = OMD->getLocEnd(); + +  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, +                OMD->getLocation(), StartLoc); + +  // In ARC, certain methods get an extra cleanup. +  if (CGM.getLangOpts().ObjCAutoRefCount && +      OMD->isInstanceMethod() && +      OMD->getSelector().isUnarySelector()) { +    const IdentifierInfo *ident =  +      OMD->getSelector().getIdentifierInfoForSlot(0); +    if (ident->isStr("dealloc")) +      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); +  } +} + +static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, +                                              LValue lvalue, QualType type); + +/// Generate an Objective-C method.  An Objective-C method is a C function with +/// its pointer, name, and types registered in the class struture. +void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { +  StartObjCMethod(OMD, OMD->getClassInterface()); +  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); +  assert(isa<CompoundStmt>(OMD->getBody())); +  incrementProfileCounter(OMD->getBody()); +  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); +  FinishFunction(OMD->getBodyRBrace()); +} + +/// emitStructGetterCall - Call the runtime function to load a property +/// into the return value slot. +static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,  +                                 bool isAtomic, bool hasStrong) { +  ASTContext &Context = CGF.getContext(); + +  Address src = +    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) +       .getAddress(); + +  // objc_copyStruct (ReturnValue, &structIvar,  +  //                  sizeof (Type of Ivar), isAtomic, false); +  CallArgList args; + +  Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy); +  args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy); + +  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); +  args.add(RValue::get(src.getPointer()), Context.VoidPtrTy); + +  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); +  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); +  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); +  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); + +  llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); +  CGCallee callee = CGCallee::forDirect(fn); +  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), +               callee, ReturnValueSlot(), args); +} + +/// Determine whether the given architecture supports unaligned atomic +/// accesses.  They don't have to be fast, just faster than a function +/// call and a mutex. +static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { +  // FIXME: Allow unaligned atomic load/store on x86.  (It is not +  // currently supported by the backend.) +  return 0; +} + +/// Return the maximum size that permits atomic accesses for the given +/// architecture. +static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, +                                        llvm::Triple::ArchType arch) { +  // ARM has 8-byte atomic accesses, but it's not clear whether we +  // want to rely on them here. + +  // In the default case, just assume that any size up to a pointer is +  // fine given adequate alignment. +  return CharUnits::fromQuantity(CGM.PointerSizeInBytes); +} + +namespace { +  class PropertyImplStrategy { +  public: +    enum StrategyKind { +      /// The 'native' strategy is to use the architecture's provided +      /// reads and writes. +      Native, + +      /// Use objc_setProperty and objc_getProperty. +      GetSetProperty, + +      /// Use objc_setProperty for the setter, but use expression +      /// evaluation for the getter. +      SetPropertyAndExpressionGet, + +      /// Use objc_copyStruct. +      CopyStruct, + +      /// The 'expression' strategy is to emit normal assignment or +      /// lvalue-to-rvalue expressions. +      Expression +    }; + +    StrategyKind getKind() const { return StrategyKind(Kind); } + +    bool hasStrongMember() const { return HasStrong; } +    bool isAtomic() const { return IsAtomic; } +    bool isCopy() const { return IsCopy; } + +    CharUnits getIvarSize() const { return IvarSize; } +    CharUnits getIvarAlignment() const { return IvarAlignment; } + +    PropertyImplStrategy(CodeGenModule &CGM, +                         const ObjCPropertyImplDecl *propImpl); + +  private: +    unsigned Kind : 8; +    unsigned IsAtomic : 1; +    unsigned IsCopy : 1; +    unsigned HasStrong : 1; + +    CharUnits IvarSize; +    CharUnits IvarAlignment; +  }; +} + +/// Pick an implementation strategy for the given property synthesis. +PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, +                                     const ObjCPropertyImplDecl *propImpl) { +  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); +  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); + +  IsCopy = (setterKind == ObjCPropertyDecl::Copy); +  IsAtomic = prop->isAtomic(); +  HasStrong = false; // doesn't matter here. + +  // Evaluate the ivar's size and alignment. +  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); +  QualType ivarType = ivar->getType(); +  std::tie(IvarSize, IvarAlignment) = +      CGM.getContext().getTypeInfoInChars(ivarType); + +  // If we have a copy property, we always have to use getProperty/setProperty. +  // TODO: we could actually use setProperty and an expression for non-atomics. +  if (IsCopy) { +    Kind = GetSetProperty; +    return; +  } + +  // Handle retain. +  if (setterKind == ObjCPropertyDecl::Retain) { +    // In GC-only, there's nothing special that needs to be done. +    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { +      // fallthrough + +    // In ARC, if the property is non-atomic, use expression emission, +    // which translates to objc_storeStrong.  This isn't required, but +    // it's slightly nicer. +    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { +      // Using standard expression emission for the setter is only +      // acceptable if the ivar is __strong, which won't be true if +      // the property is annotated with __attribute__((NSObject)). +      // TODO: falling all the way back to objc_setProperty here is +      // just laziness, though;  we could still use objc_storeStrong +      // if we hacked it right. +      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) +        Kind = Expression; +      else +        Kind = SetPropertyAndExpressionGet; +      return; + +    // Otherwise, we need to at least use setProperty.  However, if +    // the property isn't atomic, we can use normal expression +    // emission for the getter. +    } else if (!IsAtomic) { +      Kind = SetPropertyAndExpressionGet; +      return; + +    // Otherwise, we have to use both setProperty and getProperty. +    } else { +      Kind = GetSetProperty; +      return; +    } +  } + +  // If we're not atomic, just use expression accesses. +  if (!IsAtomic) { +    Kind = Expression; +    return; +  } + +  // Properties on bitfield ivars need to be emitted using expression +  // accesses even if they're nominally atomic. +  if (ivar->isBitField()) { +    Kind = Expression; +    return; +  } + +  // GC-qualified or ARC-qualified ivars need to be emitted as +  // expressions.  This actually works out to being atomic anyway, +  // except for ARC __strong, but that should trigger the above code. +  if (ivarType.hasNonTrivialObjCLifetime() || +      (CGM.getLangOpts().getGC() && +       CGM.getContext().getObjCGCAttrKind(ivarType))) { +    Kind = Expression; +    return; +  } + +  // Compute whether the ivar has strong members. +  if (CGM.getLangOpts().getGC()) +    if (const RecordType *recordType = ivarType->getAs<RecordType>()) +      HasStrong = recordType->getDecl()->hasObjectMember(); + +  // We can never access structs with object members with a native +  // access, because we need to use write barriers.  This is what +  // objc_copyStruct is for. +  if (HasStrong) { +    Kind = CopyStruct; +    return; +  } + +  // Otherwise, this is target-dependent and based on the size and +  // alignment of the ivar. + +  // If the size of the ivar is not a power of two, give up.  We don't +  // want to get into the business of doing compare-and-swaps. +  if (!IvarSize.isPowerOfTwo()) { +    Kind = CopyStruct; +    return; +  } + +  llvm::Triple::ArchType arch = +    CGM.getTarget().getTriple().getArch(); + +  // Most architectures require memory to fit within a single cache +  // line, so the alignment has to be at least the size of the access. +  // Otherwise we have to grab a lock. +  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { +    Kind = CopyStruct; +    return; +  } + +  // If the ivar's size exceeds the architecture's maximum atomic +  // access size, we have to use CopyStruct. +  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { +    Kind = CopyStruct; +    return; +  } + +  // Otherwise, we can use native loads and stores. +  Kind = Native; +} + +/// \brief Generate an Objective-C property getter function. +/// +/// The given Decl must be an ObjCImplementationDecl. \@synthesize +/// is illegal within a category. +void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, +                                         const ObjCPropertyImplDecl *PID) { +  llvm::Constant *AtomicHelperFn = +      CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); +  const ObjCPropertyDecl *PD = PID->getPropertyDecl(); +  ObjCMethodDecl *OMD = PD->getGetterMethodDecl(); +  assert(OMD && "Invalid call to generate getter (empty method)"); +  StartObjCMethod(OMD, IMP->getClassInterface()); + +  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); + +  FinishFunction(); +} + +static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { +  const Expr *getter = propImpl->getGetterCXXConstructor(); +  if (!getter) return true; + +  // Sema only makes only of these when the ivar has a C++ class type, +  // so the form is pretty constrained. + +  // If the property has a reference type, we might just be binding a +  // reference, in which case the result will be a gl-value.  We should +  // treat this as a non-trivial operation. +  if (getter->isGLValue()) +    return false; + +  // If we selected a trivial copy-constructor, we're okay. +  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) +    return (construct->getConstructor()->isTrivial()); + +  // The constructor might require cleanups (in which case it's never +  // trivial). +  assert(isa<ExprWithCleanups>(getter)); +  return false; +} + +/// emitCPPObjectAtomicGetterCall - Call the runtime function to  +/// copy the ivar into the resturn slot. +static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,  +                                          llvm::Value *returnAddr, +                                          ObjCIvarDecl *ivar, +                                          llvm::Constant *AtomicHelperFn) { +  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, +  //                           AtomicHelperFn); +  CallArgList args; +   +  // The 1st argument is the return Slot. +  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); +   +  // The 2nd argument is the address of the ivar. +  llvm::Value *ivarAddr =  +    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),  +                          CGF.LoadObjCSelf(), ivar, 0).getPointer(); +  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); +  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); +   +  // Third argument is the helper function. +  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); +   +  llvm::Constant *copyCppAtomicObjectFn =  +    CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); +  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); +  CGF.EmitCall( +      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), +               callee, ReturnValueSlot(), args); +} + +void +CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, +                                        const ObjCPropertyImplDecl *propImpl, +                                        const ObjCMethodDecl *GetterMethodDecl, +                                        llvm::Constant *AtomicHelperFn) { +  // If there's a non-trivial 'get' expression, we just have to emit that. +  if (!hasTrivialGetExpr(propImpl)) { +    if (!AtomicHelperFn) { +      ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(), +                     /*nrvo*/ nullptr); +      EmitReturnStmt(ret); +    } +    else { +      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); +      emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(),  +                                    ivar, AtomicHelperFn); +    } +    return; +  } + +  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); +  QualType propType = prop->getType(); +  ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl(); + +  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();   + +  // Pick an implementation strategy. +  PropertyImplStrategy strategy(CGM, propImpl); +  switch (strategy.getKind()) { +  case PropertyImplStrategy::Native: { +    // We don't need to do anything for a zero-size struct. +    if (strategy.getIvarSize().isZero()) +      return; + +    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); + +    // Currently, all atomic accesses have to be through integer +    // types, so there's no point in trying to pick a prettier type. +    uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); +    llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); +    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay + +    // Perform an atomic load.  This does not impose ordering constraints. +    Address ivarAddr = LV.getAddress(); +    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType); +    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); +    load->setAtomic(llvm::AtomicOrdering::Unordered); + +    // Store that value into the return address.  Doing this with a +    // bitcast is likely to produce some pretty ugly IR, but it's not +    // the *most* terrible thing in the world. +    llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); +    uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); +    llvm::Value *ivarVal = load; +    if (ivarSize > retTySize) { +      llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize); +      ivarVal = Builder.CreateTrunc(load, newTy); +      bitcastType = newTy->getPointerTo(); +    } +    Builder.CreateStore(ivarVal, +                        Builder.CreateBitCast(ReturnValue, bitcastType)); + +    // Make sure we don't do an autorelease. +    AutoreleaseResult = false; +    return; +  } + +  case PropertyImplStrategy::GetSetProperty: { +    llvm::Constant *getPropertyFn = +      CGM.getObjCRuntime().GetPropertyGetFunction(); +    if (!getPropertyFn) { +      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); +      return; +    } +    CGCallee callee = CGCallee::forDirect(getPropertyFn); + +    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). +    // FIXME: Can't this be simpler? This might even be worse than the +    // corresponding gcc code. +    llvm::Value *cmd = +      Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd"); +    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); +    llvm::Value *ivarOffset = +      EmitIvarOffset(classImpl->getClassInterface(), ivar); + +    CallArgList args; +    args.add(RValue::get(self), getContext().getObjCIdType()); +    args.add(RValue::get(cmd), getContext().getObjCSelType()); +    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); +    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), +             getContext().BoolTy); + +    // FIXME: We shouldn't need to get the function info here, the +    // runtime already should have computed it to build the function. +    llvm::Instruction *CallInstruction; +    RValue RV = EmitCall( +        getTypes().arrangeBuiltinFunctionCall(propType, args), +        callee, ReturnValueSlot(), args, &CallInstruction); +    if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) +      call->setTailCall(); + +    // We need to fix the type here. Ivars with copy & retain are +    // always objects so we don't need to worry about complex or +    // aggregates. +    RV = RValue::get(Builder.CreateBitCast( +        RV.getScalarVal(), +        getTypes().ConvertType(getterMethod->getReturnType()))); + +    EmitReturnOfRValue(RV, propType); + +    // objc_getProperty does an autorelease, so we should suppress ours. +    AutoreleaseResult = false; + +    return; +  } + +  case PropertyImplStrategy::CopyStruct: +    emitStructGetterCall(*this, ivar, strategy.isAtomic(), +                         strategy.hasStrongMember()); +    return; + +  case PropertyImplStrategy::Expression: +  case PropertyImplStrategy::SetPropertyAndExpressionGet: { +    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); + +    QualType ivarType = ivar->getType(); +    switch (getEvaluationKind(ivarType)) { +    case TEK_Complex: { +      ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); +      EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), +                         /*init*/ true); +      return; +    } +    case TEK_Aggregate: +      // The return value slot is guaranteed to not be aliased, but +      // that's not necessarily the same as "on the stack", so +      // we still potentially need objc_memmove_collectable. +      EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType); +      return; +    case TEK_Scalar: { +      llvm::Value *value; +      if (propType->isReferenceType()) { +        value = LV.getAddress().getPointer(); +      } else { +        // We want to load and autoreleaseReturnValue ARC __weak ivars. +        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { +          if (getLangOpts().ObjCAutoRefCount) { +            value = emitARCRetainLoadOfScalar(*this, LV, ivarType); +          } else { +            value = EmitARCLoadWeak(LV.getAddress()); +          } + +        // Otherwise we want to do a simple load, suppressing the +        // final autorelease. +        } else { +          value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); +          AutoreleaseResult = false; +        } + +        value = Builder.CreateBitCast( +            value, ConvertType(GetterMethodDecl->getReturnType())); +      } +       +      EmitReturnOfRValue(RValue::get(value), propType); +      return; +    } +    } +    llvm_unreachable("bad evaluation kind"); +  } + +  } +  llvm_unreachable("bad @property implementation strategy!"); +} + +/// emitStructSetterCall - Call the runtime function to store the value +/// from the first formal parameter into the given ivar. +static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, +                                 ObjCIvarDecl *ivar) { +  // objc_copyStruct (&structIvar, &Arg,  +  //                  sizeof (struct something), true, false); +  CallArgList args; + +  // The first argument is the address of the ivar. +  llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), +                                                CGF.LoadObjCSelf(), ivar, 0) +    .getPointer(); +  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); +  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); + +  // The second argument is the address of the parameter variable. +  ParmVarDecl *argVar = *OMD->param_begin(); +  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),  +                     VK_LValue, SourceLocation()); +  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); +  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); +  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); + +  // The third argument is the sizeof the type. +  llvm::Value *size = +    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); +  args.add(RValue::get(size), CGF.getContext().getSizeType()); + +  // The fourth argument is the 'isAtomic' flag. +  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); + +  // The fifth argument is the 'hasStrong' flag. +  // FIXME: should this really always be false? +  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); + +  llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); +  CGCallee callee = CGCallee::forDirect(fn); +  CGF.EmitCall( +      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), +               callee, ReturnValueSlot(), args); +} + +/// emitCPPObjectAtomicSetterCall - Call the runtime function to store  +/// the value from the first formal parameter into the given ivar, using  +/// the Cpp API for atomic Cpp objects with non-trivial copy assignment. +static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,  +                                          ObjCMethodDecl *OMD, +                                          ObjCIvarDecl *ivar, +                                          llvm::Constant *AtomicHelperFn) { +  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,  +  //                           AtomicHelperFn); +  CallArgList args; +   +  // The first argument is the address of the ivar. +  llvm::Value *ivarAddr =  +    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),  +                          CGF.LoadObjCSelf(), ivar, 0).getPointer(); +  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); +  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); +   +  // The second argument is the address of the parameter variable. +  ParmVarDecl *argVar = *OMD->param_begin(); +  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),  +                     VK_LValue, SourceLocation()); +  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(); +  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); +  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); +   +  // Third argument is the helper function. +  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); +   +  llvm::Constant *fn =  +    CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); +  CGCallee callee = CGCallee::forDirect(fn); +  CGF.EmitCall( +      CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), +               callee, ReturnValueSlot(), args); +} + + +static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { +  Expr *setter = PID->getSetterCXXAssignment(); +  if (!setter) return true; + +  // Sema only makes only of these when the ivar has a C++ class type, +  // so the form is pretty constrained. + +  // An operator call is trivial if the function it calls is trivial. +  // This also implies that there's nothing non-trivial going on with +  // the arguments, because operator= can only be trivial if it's a +  // synthesized assignment operator and therefore both parameters are +  // references. +  if (CallExpr *call = dyn_cast<CallExpr>(setter)) { +    if (const FunctionDecl *callee +          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) +      if (callee->isTrivial()) +        return true; +    return false; +  } + +  assert(isa<ExprWithCleanups>(setter)); +  return false; +} + +static bool UseOptimizedSetter(CodeGenModule &CGM) { +  if (CGM.getLangOpts().getGC() != LangOptions::NonGC) +    return false; +  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); +} + +void +CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, +                                        const ObjCPropertyImplDecl *propImpl, +                                        llvm::Constant *AtomicHelperFn) { +  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); +  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); +  ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl(); +   +  // Just use the setter expression if Sema gave us one and it's +  // non-trivial. +  if (!hasTrivialSetExpr(propImpl)) { +    if (!AtomicHelperFn) +      // If non-atomic, assignment is called directly. +      EmitStmt(propImpl->getSetterCXXAssignment()); +    else +      // If atomic, assignment is called via a locking api. +      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, +                                    AtomicHelperFn); +    return; +  } + +  PropertyImplStrategy strategy(CGM, propImpl); +  switch (strategy.getKind()) { +  case PropertyImplStrategy::Native: { +    // We don't need to do anything for a zero-size struct. +    if (strategy.getIvarSize().isZero()) +      return; + +    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); + +    LValue ivarLValue = +      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); +    Address ivarAddr = ivarLValue.getAddress(); + +    // Currently, all atomic accesses have to be through integer +    // types, so there's no point in trying to pick a prettier type. +    llvm::Type *bitcastType = +      llvm::Type::getIntNTy(getLLVMContext(), +                            getContext().toBits(strategy.getIvarSize())); + +    // Cast both arguments to the chosen operation type. +    argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); +    ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); + +    // This bitcast load is likely to cause some nasty IR. +    llvm::Value *load = Builder.CreateLoad(argAddr); + +    // Perform an atomic store.  There are no memory ordering requirements. +    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); +    store->setAtomic(llvm::AtomicOrdering::Unordered); +    return; +  } + +  case PropertyImplStrategy::GetSetProperty: +  case PropertyImplStrategy::SetPropertyAndExpressionGet: { + +    llvm::Constant *setOptimizedPropertyFn = nullptr; +    llvm::Constant *setPropertyFn = nullptr; +    if (UseOptimizedSetter(CGM)) { +      // 10.8 and iOS 6.0 code and GC is off +      setOptimizedPropertyFn =  +        CGM.getObjCRuntime() +           .GetOptimizedPropertySetFunction(strategy.isAtomic(), +                                            strategy.isCopy()); +      if (!setOptimizedPropertyFn) { +        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); +        return; +      } +    } +    else { +      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); +      if (!setPropertyFn) { +        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); +        return; +      } +    } +    +    // Emit objc_setProperty((id) self, _cmd, offset, arg, +    //                       <is-atomic>, <is-copy>). +    llvm::Value *cmd = +      Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl())); +    llvm::Value *self = +      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); +    llvm::Value *ivarOffset = +      EmitIvarOffset(classImpl->getClassInterface(), ivar); +    Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); +    llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); +    arg = Builder.CreateBitCast(arg, VoidPtrTy); + +    CallArgList args; +    args.add(RValue::get(self), getContext().getObjCIdType()); +    args.add(RValue::get(cmd), getContext().getObjCSelType()); +    if (setOptimizedPropertyFn) { +      args.add(RValue::get(arg), getContext().getObjCIdType()); +      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); +      CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); +      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), +               callee, ReturnValueSlot(), args); +    } else { +      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); +      args.add(RValue::get(arg), getContext().getObjCIdType()); +      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), +               getContext().BoolTy); +      args.add(RValue::get(Builder.getInt1(strategy.isCopy())), +               getContext().BoolTy); +      // FIXME: We shouldn't need to get the function info here, the runtime +      // already should have computed it to build the function. +      CGCallee callee = CGCallee::forDirect(setPropertyFn); +      EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), +               callee, ReturnValueSlot(), args); +    } +     +    return; +  } + +  case PropertyImplStrategy::CopyStruct: +    emitStructSetterCall(*this, setterMethod, ivar); +    return; + +  case PropertyImplStrategy::Expression: +    break; +  } + +  // Otherwise, fake up some ASTs and emit a normal assignment. +  ValueDecl *selfDecl = setterMethod->getSelfDecl(); +  DeclRefExpr self(selfDecl, false, selfDecl->getType(), +                   VK_LValue, SourceLocation()); +  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, +                            selfDecl->getType(), CK_LValueToRValue, &self, +                            VK_RValue); +  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), +                          SourceLocation(), SourceLocation(), +                          &selfLoad, true, true); + +  ParmVarDecl *argDecl = *setterMethod->param_begin(); +  QualType argType = argDecl->getType().getNonReferenceType(); +  DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation()); +  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, +                           argType.getUnqualifiedType(), CK_LValueToRValue, +                           &arg, VK_RValue); +     +  // The property type can differ from the ivar type in some situations with +  // Objective-C pointer types, we can always bit cast the RHS in these cases. +  // The following absurdity is just to ensure well-formed IR. +  CastKind argCK = CK_NoOp; +  if (ivarRef.getType()->isObjCObjectPointerType()) { +    if (argLoad.getType()->isObjCObjectPointerType()) +      argCK = CK_BitCast; +    else if (argLoad.getType()->isBlockPointerType()) +      argCK = CK_BlockPointerToObjCPointerCast; +    else +      argCK = CK_CPointerToObjCPointerCast; +  } else if (ivarRef.getType()->isBlockPointerType()) { +     if (argLoad.getType()->isBlockPointerType()) +      argCK = CK_BitCast; +    else +      argCK = CK_AnyPointerToBlockPointerCast; +  } else if (ivarRef.getType()->isPointerType()) { +    argCK = CK_BitCast; +  } +  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, +                           ivarRef.getType(), argCK, &argLoad, +                           VK_RValue); +  Expr *finalArg = &argLoad; +  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), +                                           argLoad.getType())) +    finalArg = &argCast; + + +  BinaryOperator assign(&ivarRef, finalArg, BO_Assign, +                        ivarRef.getType(), VK_RValue, OK_Ordinary, +                        SourceLocation(), FPOptions()); +  EmitStmt(&assign); +} + +/// \brief Generate an Objective-C property setter function. +/// +/// The given Decl must be an ObjCImplementationDecl. \@synthesize +/// is illegal within a category. +void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, +                                         const ObjCPropertyImplDecl *PID) { +  llvm::Constant *AtomicHelperFn = +      CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); +  const ObjCPropertyDecl *PD = PID->getPropertyDecl(); +  ObjCMethodDecl *OMD = PD->getSetterMethodDecl(); +  assert(OMD && "Invalid call to generate setter (empty method)"); +  StartObjCMethod(OMD, IMP->getClassInterface()); + +  generateObjCSetterBody(IMP, PID, AtomicHelperFn); + +  FinishFunction(); +} + +namespace { +  struct DestroyIvar final : EHScopeStack::Cleanup { +  private: +    llvm::Value *addr; +    const ObjCIvarDecl *ivar; +    CodeGenFunction::Destroyer *destroyer; +    bool useEHCleanupForArray; +  public: +    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, +                CodeGenFunction::Destroyer *destroyer, +                bool useEHCleanupForArray) +      : addr(addr), ivar(ivar), destroyer(destroyer), +        useEHCleanupForArray(useEHCleanupForArray) {} + +    void Emit(CodeGenFunction &CGF, Flags flags) override { +      LValue lvalue +        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); +      CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer, +                      flags.isForNormalCleanup() && useEHCleanupForArray); +    } +  }; +} + +/// Like CodeGenFunction::destroyARCStrong, but do it with a call. +static void destroyARCStrongWithStore(CodeGenFunction &CGF, +                                      Address addr, +                                      QualType type) { +  llvm::Value *null = getNullForVariable(addr); +  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); +} + +static void emitCXXDestructMethod(CodeGenFunction &CGF, +                                  ObjCImplementationDecl *impl) { +  CodeGenFunction::RunCleanupsScope scope(CGF); + +  llvm::Value *self = CGF.LoadObjCSelf(); + +  const ObjCInterfaceDecl *iface = impl->getClassInterface(); +  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); +       ivar; ivar = ivar->getNextIvar()) { +    QualType type = ivar->getType(); + +    // Check whether the ivar is a destructible type. +    QualType::DestructionKind dtorKind = type.isDestructedType(); +    if (!dtorKind) continue; + +    CodeGenFunction::Destroyer *destroyer = nullptr; + +    // Use a call to objc_storeStrong to destroy strong ivars, for the +    // general benefit of the tools. +    if (dtorKind == QualType::DK_objc_strong_lifetime) { +      destroyer = destroyARCStrongWithStore; + +    // Otherwise use the default for the destruction kind. +    } else { +      destroyer = CGF.getDestroyer(dtorKind); +    } + +    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); + +    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, +                                         cleanupKind & EHCleanup); +  } + +  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); +} + +void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, +                                                 ObjCMethodDecl *MD, +                                                 bool ctor) { +  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); +  StartObjCMethod(MD, IMP->getClassInterface()); + +  // Emit .cxx_construct. +  if (ctor) { +    // Suppress the final autorelease in ARC. +    AutoreleaseResult = false; + +    for (const auto *IvarInit : IMP->inits()) { +      FieldDecl *Field = IvarInit->getAnyMember(); +      ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); +      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),  +                                    LoadObjCSelf(), Ivar, 0); +      EmitAggExpr(IvarInit->getInit(), +                  AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed, +                                          AggValueSlot::DoesNotNeedGCBarriers, +                                          AggValueSlot::IsNotAliased)); +    } +    // constructor returns 'self'. +    CodeGenTypes &Types = CGM.getTypes(); +    QualType IdTy(CGM.getContext().getObjCIdType()); +    llvm::Value *SelfAsId = +      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); +    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); + +  // Emit .cxx_destruct. +  } else { +    emitCXXDestructMethod(*this, IMP); +  } +  FinishFunction(); +} + +llvm::Value *CodeGenFunction::LoadObjCSelf() { +  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); +  DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), +                  Self->getType(), VK_LValue, SourceLocation()); +  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); +} + +QualType CodeGenFunction::TypeOfSelfObject() { +  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); +  ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); +  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( +    getContext().getCanonicalType(selfDecl->getType())); +  return PTy->getPointeeType(); +} + +void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ +  llvm::Constant *EnumerationMutationFnPtr = +    CGM.getObjCRuntime().EnumerationMutationFunction(); +  if (!EnumerationMutationFnPtr) { +    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); +    return; +  } +  CGCallee EnumerationMutationFn = +    CGCallee::forDirect(EnumerationMutationFnPtr); + +  CGDebugInfo *DI = getDebugInfo(); +  if (DI) +    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); + +  RunCleanupsScope ForScope(*this); + +  // The local variable comes into scope immediately. +  AutoVarEmission variable = AutoVarEmission::invalid(); +  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) +    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); + +  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); + +  // Fast enumeration state. +  QualType StateTy = CGM.getObjCFastEnumerationStateType(); +  Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); +  EmitNullInitialization(StatePtr, StateTy); + +  // Number of elements in the items array. +  static const unsigned NumItems = 16; + +  // Fetch the countByEnumeratingWithState:objects:count: selector. +  IdentifierInfo *II[] = { +    &CGM.getContext().Idents.get("countByEnumeratingWithState"), +    &CGM.getContext().Idents.get("objects"), +    &CGM.getContext().Idents.get("count") +  }; +  Selector FastEnumSel = +    CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]); + +  QualType ItemsTy = +    getContext().getConstantArrayType(getContext().getObjCIdType(), +                                      llvm::APInt(32, NumItems), +                                      ArrayType::Normal, 0); +  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); + +  // Emit the collection pointer.  In ARC, we do a retain. +  llvm::Value *Collection; +  if (getLangOpts().ObjCAutoRefCount) { +    Collection = EmitARCRetainScalarExpr(S.getCollection()); + +    // Enter a cleanup to do the release. +    EmitObjCConsumeObject(S.getCollection()->getType(), Collection); +  } else { +    Collection = EmitScalarExpr(S.getCollection()); +  } + +  // The 'continue' label needs to appear within the cleanup for the +  // collection object. +  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); + +  // Send it our message: +  CallArgList Args; + +  // The first argument is a temporary of the enumeration-state type. +  Args.add(RValue::get(StatePtr.getPointer()), +           getContext().getPointerType(StateTy)); + +  // The second argument is a temporary array with space for NumItems +  // pointers.  We'll actually be loading elements from the array +  // pointer written into the control state; this buffer is so that +  // collections that *aren't* backed by arrays can still queue up +  // batches of elements. +  Args.add(RValue::get(ItemsPtr.getPointer()), +           getContext().getPointerType(ItemsTy)); + +  // The third argument is the capacity of that temporary array. +  llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy); +  llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems); +  Args.add(RValue::get(Count), getContext().UnsignedLongTy); + +  // Start the enumeration. +  RValue CountRV = +    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), +                                             getContext().UnsignedLongTy, +                                             FastEnumSel, +                                             Collection, Args); + +  // The initial number of objects that were returned in the buffer. +  llvm::Value *initialBufferLimit = CountRV.getScalarVal(); + +  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); +  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); + +  llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy); + +  // If the limit pointer was zero to begin with, the collection is +  // empty; skip all this. Set the branch weight assuming this has the same +  // probability of exiting the loop as any other loop exit. +  uint64_t EntryCount = getCurrentProfileCount(); +  Builder.CreateCondBr( +      Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, +      LoopInitBB, +      createProfileWeights(EntryCount, getProfileCount(S.getBody()))); + +  // Otherwise, initialize the loop. +  EmitBlock(LoopInitBB); + +  // Save the initial mutations value.  This is the value at an +  // address that was written into the state object by +  // countByEnumeratingWithState:objects:count:. +  Address StateMutationsPtrPtr = Builder.CreateStructGEP( +      StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr"); +  llvm::Value *StateMutationsPtr +    = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); + +  llvm::Value *initialMutations = +    Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), +                              "forcoll.initial-mutations"); + +  // Start looping.  This is the point we return to whenever we have a +  // fresh, non-empty batch of objects. +  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); +  EmitBlock(LoopBodyBB); + +  // The current index into the buffer. +  llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index"); +  index->addIncoming(zero, LoopInitBB); + +  // The current buffer size. +  llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count"); +  count->addIncoming(initialBufferLimit, LoopInitBB); + +  incrementProfileCounter(&S); + +  // Check whether the mutations value has changed from where it was +  // at start.  StateMutationsPtr should actually be invariant between +  // refreshes. +  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); +  llvm::Value *currentMutations +    = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(), +                                "statemutations"); + +  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); +  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); + +  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), +                       WasNotMutatedBB, WasMutatedBB); + +  // If so, call the enumeration-mutation function. +  EmitBlock(WasMutatedBB); +  llvm::Value *V = +    Builder.CreateBitCast(Collection, +                          ConvertType(getContext().getObjCIdType())); +  CallArgList Args2; +  Args2.add(RValue::get(V), getContext().getObjCIdType()); +  // FIXME: We shouldn't need to get the function info here, the runtime already +  // should have computed it to build the function. +  EmitCall( +          CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), +           EnumerationMutationFn, ReturnValueSlot(), Args2); + +  // Otherwise, or if the mutation function returns, just continue. +  EmitBlock(WasNotMutatedBB); + +  // Initialize the element variable. +  RunCleanupsScope elementVariableScope(*this); +  bool elementIsVariable; +  LValue elementLValue; +  QualType elementType; +  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { +    // Initialize the variable, in case it's a __block variable or something. +    EmitAutoVarInit(variable); + +    const VarDecl* D = cast<VarDecl>(SD->getSingleDecl()); +    DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(), +                        VK_LValue, SourceLocation()); +    elementLValue = EmitLValue(&tempDRE); +    elementType = D->getType(); +    elementIsVariable = true; + +    if (D->isARCPseudoStrong()) +      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); +  } else { +    elementLValue = LValue(); // suppress warning +    elementType = cast<Expr>(S.getElement())->getType(); +    elementIsVariable = false; +  } +  llvm::Type *convertedElementType = ConvertType(elementType); + +  // Fetch the buffer out of the enumeration state. +  // TODO: this pointer should actually be invariant between +  // refreshes, which would help us do certain loop optimizations. +  Address StateItemsPtr = Builder.CreateStructGEP( +      StatePtr, 1, getPointerSize(), "stateitems.ptr"); +  llvm::Value *EnumStateItems = +    Builder.CreateLoad(StateItemsPtr, "stateitems"); + +  // Fetch the value at the current index from the buffer. +  llvm::Value *CurrentItemPtr = +    Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr"); +  llvm::Value *CurrentItem = +    Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign()); + +  // Cast that value to the right type. +  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, +                                      "currentitem"); + +  // Make sure we have an l-value.  Yes, this gets evaluated every +  // time through the loop. +  if (!elementIsVariable) { +    elementLValue = EmitLValue(cast<Expr>(S.getElement())); +    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); +  } else { +    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, +                           /*isInit*/ true); +  } + +  // If we do have an element variable, this assignment is the end of +  // its initialization. +  if (elementIsVariable) +    EmitAutoVarCleanups(variable); + +  // Perform the loop body, setting up break and continue labels. +  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); +  { +    RunCleanupsScope Scope(*this); +    EmitStmt(S.getBody()); +  } +  BreakContinueStack.pop_back(); + +  // Destroy the element variable now. +  elementVariableScope.ForceCleanup(); + +  // Check whether there are more elements. +  EmitBlock(AfterBody.getBlock()); + +  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); + +  // First we check in the local buffer. +  llvm::Value *indexPlusOne +    = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1)); + +  // If we haven't overrun the buffer yet, we can continue. +  // Set the branch weights based on the simplifying assumption that this is +  // like a while-loop, i.e., ignoring that the false branch fetches more +  // elements and then returns to the loop. +  Builder.CreateCondBr( +      Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, +      createProfileWeights(getProfileCount(S.getBody()), EntryCount)); + +  index->addIncoming(indexPlusOne, AfterBody.getBlock()); +  count->addIncoming(count, AfterBody.getBlock()); + +  // Otherwise, we have to fetch more elements. +  EmitBlock(FetchMoreBB); + +  CountRV = +    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), +                                             getContext().UnsignedLongTy, +                                             FastEnumSel, +                                             Collection, Args); + +  // If we got a zero count, we're done. +  llvm::Value *refetchCount = CountRV.getScalarVal(); + +  // (note that the message send might split FetchMoreBB) +  index->addIncoming(zero, Builder.GetInsertBlock()); +  count->addIncoming(refetchCount, Builder.GetInsertBlock()); + +  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), +                       EmptyBB, LoopBodyBB); + +  // No more elements. +  EmitBlock(EmptyBB); + +  if (!elementIsVariable) { +    // If the element was not a declaration, set it to be null. + +    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); +    elementLValue = EmitLValue(cast<Expr>(S.getElement())); +    EmitStoreThroughLValue(RValue::get(null), elementLValue); +  } + +  if (DI) +    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); + +  ForScope.ForceCleanup(); +  EmitBlock(LoopEnd.getBlock()); +} + +void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { +  CGM.getObjCRuntime().EmitTryStmt(*this, S); +} + +void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { +  CGM.getObjCRuntime().EmitThrowStmt(*this, S); +} + +void CodeGenFunction::EmitObjCAtSynchronizedStmt( +                                              const ObjCAtSynchronizedStmt &S) { +  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); +} + +namespace { +  struct CallObjCRelease final : EHScopeStack::Cleanup { +    CallObjCRelease(llvm::Value *object) : object(object) {} +    llvm::Value *object; + +    void Emit(CodeGenFunction &CGF, Flags flags) override { +      // Releases at the end of the full-expression are imprecise. +      CGF.EmitARCRelease(object, ARCImpreciseLifetime); +    } +  }; +} + +/// Produce the code for a CK_ARCConsumeObject.  Does a primitive +/// release at the end of the full-expression. +llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, +                                                    llvm::Value *object) { +  // If we're in a conditional branch, we need to make the cleanup +  // conditional. +  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); +  return object; +} + +llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, +                                                           llvm::Value *value) { +  return EmitARCRetainAutorelease(type, value); +} + +/// Given a number of pointers, inform the optimizer that they're +/// being intrinsically used up until this point in the program. +void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { +  llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use; +  if (!fn) { +    llvm::FunctionType *fnType = +      llvm::FunctionType::get(CGM.VoidTy, None, true); +    fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use"); +  } + +  // This isn't really a "runtime" function, but as an intrinsic it +  // doesn't really matter as long as we align things up. +  EmitNounwindRuntimeCall(fn, values); +} + + +static bool IsForwarding(StringRef Name) { +  return llvm::StringSwitch<bool>(Name) +      .Cases("objc_autoreleaseReturnValue",             // ARCInstKind::AutoreleaseRV +             "objc_autorelease",                        // ARCInstKind::Autorelease +             "objc_retainAutoreleaseReturnValue",       // ARCInstKind::FusedRetainAutoreleaseRV +             "objc_retainAutoreleasedReturnValue",      // ARCInstKind::RetainRV +             "objc_retainAutorelease",                  // ARCInstKind::FusedRetainAutorelease +             "objc_retainedObject",                     // ARCInstKind::NoopCast +             "objc_retain",                             // ARCInstKind::Retain +             "objc_unretainedObject",                   // ARCInstKind::NoopCast +             "objc_unretainedPointer",                  // ARCInstKind::NoopCast +             "objc_unsafeClaimAutoreleasedReturnValue", // ARCInstKind::ClaimRV +             true) +      .Default(false); +} + +static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM, +                                                llvm::FunctionType *FTy, +                                                StringRef Name) { +  llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name); + +  if (auto *F = dyn_cast<llvm::Function>(RTF)) { +    // If the target runtime doesn't naturally support ARC, emit weak +    // references to the runtime support library.  We don't really +    // permit this to fail, but we need a particular relocation style. +    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && +        !CGM.getTriple().isOSBinFormatCOFF()) { +      F->setLinkage(llvm::Function::ExternalWeakLinkage); +    } else if (Name == "objc_retain" || Name  == "objc_release") { +      // If we have Native ARC, set nonlazybind attribute for these APIs for +      // performance. +      F->addFnAttr(llvm::Attribute::NonLazyBind); +    } + +    if (IsForwarding(Name)) +      F->arg_begin()->addAttr(llvm::Attribute::Returned); +  } + +  return RTF; +} + +/// Perform an operation having the signature +///   i8* (i8*) +/// where a null input causes a no-op and returns null. +static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF, +                                          llvm::Value *value, +                                          llvm::Constant *&fn, +                                          StringRef fnName, +                                          bool isTailCall = false) { +  if (isa<llvm::ConstantPointerNull>(value)) +    return value; + +  if (!fn) { +    llvm::FunctionType *fnType = +      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); +    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); +  } + +  // Cast the argument to 'id'. +  llvm::Type *origType = value->getType(); +  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); + +  // Call the function. +  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); +  if (isTailCall) +    call->setTailCall(); + +  // Cast the result back to the original type. +  return CGF.Builder.CreateBitCast(call, origType); +} + +/// Perform an operation having the following signature: +///   i8* (i8**) +static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, +                                         Address addr, +                                         llvm::Constant *&fn, +                                         StringRef fnName) { +  if (!fn) { +    llvm::FunctionType *fnType = +      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false); +    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); +  } + +  // Cast the argument to 'id*'. +  llvm::Type *origType = addr.getElementType(); +  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy); + +  // Call the function. +  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); + +  // Cast the result back to a dereference of the original type. +  if (origType != CGF.Int8PtrTy) +    result = CGF.Builder.CreateBitCast(result, origType); + +  return result; +} + +/// Perform an operation having the following signature: +///   i8* (i8**, i8*) +static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, +                                          Address addr, +                                          llvm::Value *value, +                                          llvm::Constant *&fn, +                                          StringRef fnName, +                                          bool ignored) { +  assert(addr.getElementType() == value->getType()); + +  if (!fn) { +    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy }; + +    llvm::FunctionType *fnType +      = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false); +    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); +  } + +  llvm::Type *origType = value->getType(); + +  llvm::Value *args[] = { +    CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), +    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) +  }; +  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); + +  if (ignored) return nullptr; + +  return CGF.Builder.CreateBitCast(result, origType); +} + +/// Perform an operation having the following signature: +///   void (i8**, i8**) +static void emitARCCopyOperation(CodeGenFunction &CGF, +                                 Address dst, +                                 Address src, +                                 llvm::Constant *&fn, +                                 StringRef fnName) { +  assert(dst.getType() == src.getType()); + +  if (!fn) { +    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy }; + +    llvm::FunctionType *fnType +      = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false); +    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName); +  } + +  llvm::Value *args[] = { +    CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), +    CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) +  }; +  CGF.EmitNounwindRuntimeCall(fn, args); +} + +/// Produce the code to do a retain.  Based on the type, calls one of: +///   call i8* \@objc_retain(i8* %value) +///   call i8* \@objc_retainBlock(i8* %value) +llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { +  if (type->isBlockPointerType()) +    return EmitARCRetainBlock(value, /*mandatory*/ false); +  else +    return EmitARCRetainNonBlock(value); +} + +/// Retain the given object, with normal retain semantics. +///   call i8* \@objc_retain(i8* %value) +llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { +  return emitARCValueOperation(*this, value, +                               CGM.getObjCEntrypoints().objc_retain, +                               "objc_retain"); +} + +/// Retain the given block, with _Block_copy semantics. +///   call i8* \@objc_retainBlock(i8* %value) +/// +/// \param mandatory - If false, emit the call with metadata +/// indicating that it's okay for the optimizer to eliminate this call +/// if it can prove that the block never escapes except down the stack. +llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, +                                                 bool mandatory) { +  llvm::Value *result +    = emitARCValueOperation(*this, value, +                            CGM.getObjCEntrypoints().objc_retainBlock, +                            "objc_retainBlock"); + +  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to +  // tell the optimizer that it doesn't need to do this copy if the +  // block doesn't escape, where being passed as an argument doesn't +  // count as escaping. +  if (!mandatory && isa<llvm::Instruction>(result)) { +    llvm::CallInst *call +      = cast<llvm::CallInst>(result->stripPointerCasts()); +    assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock); + +    call->setMetadata("clang.arc.copy_on_escape", +                      llvm::MDNode::get(Builder.getContext(), None)); +  } + +  return result; +} + +static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { +  // Fetch the void(void) inline asm which marks that we're going to +  // do something with the autoreleased return value. +  llvm::InlineAsm *&marker +    = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; +  if (!marker) { +    StringRef assembly +      = CGF.CGM.getTargetCodeGenInfo() +           .getARCRetainAutoreleasedReturnValueMarker(); + +    // If we have an empty assembly string, there's nothing to do. +    if (assembly.empty()) { + +    // Otherwise, at -O0, build an inline asm that we're going to call +    // in a moment. +    } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { +      llvm::FunctionType *type = +        llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); +       +      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); + +    // If we're at -O1 and above, we don't want to litter the code +    // with this marker yet, so leave a breadcrumb for the ARC +    // optimizer to pick up. +    } else { +      llvm::NamedMDNode *metadata = +        CGF.CGM.getModule().getOrInsertNamedMetadata( +                            "clang.arc.retainAutoreleasedReturnValueMarker"); +      assert(metadata->getNumOperands() <= 1); +      if (metadata->getNumOperands() == 0) { +        auto &ctx = CGF.getLLVMContext(); +        metadata->addOperand(llvm::MDNode::get(ctx, +                                     llvm::MDString::get(ctx, assembly))); +      } +    } +  } + +  // Call the marker asm if we made one, which we do only at -O0. +  if (marker) +    CGF.Builder.CreateCall(marker); +} + +/// Retain the given object which is the result of a function call. +///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) +/// +/// Yes, this function name is one character away from a different +/// call with completely different semantics. +llvm::Value * +CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { +  emitAutoreleasedReturnValueMarker(*this); +  return emitARCValueOperation(*this, value, +              CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue, +                               "objc_retainAutoreleasedReturnValue"); +} + +/// Claim a possibly-autoreleased return value at +0.  This is only +/// valid to do in contexts which do not rely on the retain to keep +/// the object valid for for all of its uses; for example, when +/// the value is ignored, or when it is being assigned to an +/// __unsafe_unretained variable. +/// +///   call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) +llvm::Value * +CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { +  emitAutoreleasedReturnValueMarker(*this); +  return emitARCValueOperation(*this, value, +              CGM.getObjCEntrypoints().objc_unsafeClaimAutoreleasedReturnValue, +                               "objc_unsafeClaimAutoreleasedReturnValue"); +} + +/// Release the given object. +///   call void \@objc_release(i8* %value) +void CodeGenFunction::EmitARCRelease(llvm::Value *value, +                                     ARCPreciseLifetime_t precise) { +  if (isa<llvm::ConstantPointerNull>(value)) return; + +  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release; +  if (!fn) { +    llvm::FunctionType *fnType = +      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); +    fn = createARCRuntimeFunction(CGM, fnType, "objc_release"); +  } + +  // Cast the argument to 'id'. +  value = Builder.CreateBitCast(value, Int8PtrTy); + +  // Call objc_release. +  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); + +  if (precise == ARCImpreciseLifetime) { +    call->setMetadata("clang.imprecise_release", +                      llvm::MDNode::get(Builder.getContext(), None)); +  } +} + +/// Destroy a __strong variable. +/// +/// At -O0, emit a call to store 'null' into the address; +/// instrumenting tools prefer this because the address is exposed, +/// but it's relatively cumbersome to optimize. +/// +/// At -O1 and above, just load and call objc_release. +/// +///   call void \@objc_storeStrong(i8** %addr, i8* null) +void CodeGenFunction::EmitARCDestroyStrong(Address addr, +                                           ARCPreciseLifetime_t precise) { +  if (CGM.getCodeGenOpts().OptimizationLevel == 0) { +    llvm::Value *null = getNullForVariable(addr); +    EmitARCStoreStrongCall(addr, null, /*ignored*/ true); +    return; +  } + +  llvm::Value *value = Builder.CreateLoad(addr); +  EmitARCRelease(value, precise); +} + +/// Store into a strong object.  Always calls this: +///   call void \@objc_storeStrong(i8** %addr, i8* %value) +llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, +                                                     llvm::Value *value, +                                                     bool ignored) { +  assert(addr.getElementType() == value->getType()); + +  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong; +  if (!fn) { +    llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy }; +    llvm::FunctionType *fnType +      = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false); +    fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong"); +  } + +  llvm::Value *args[] = { +    Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), +    Builder.CreateBitCast(value, Int8PtrTy) +  }; +  EmitNounwindRuntimeCall(fn, args); + +  if (ignored) return nullptr; +  return value; +} + +/// Store into a strong object.  Sometimes calls this: +///   call void \@objc_storeStrong(i8** %addr, i8* %value) +/// Other times, breaks it down into components. +llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, +                                                 llvm::Value *newValue, +                                                 bool ignored) { +  QualType type = dst.getType(); +  bool isBlock = type->isBlockPointerType(); + +  // Use a store barrier at -O0 unless this is a block type or the +  // lvalue is inadequately aligned. +  if (shouldUseFusedARCCalls() && +      !isBlock && +      (dst.getAlignment().isZero() || +       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { +    return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored); +  } + +  // Otherwise, split it out. + +  // Retain the new value. +  newValue = EmitARCRetain(type, newValue); + +  // Read the old value. +  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); + +  // Store.  We do this before the release so that any deallocs won't +  // see the old value. +  EmitStoreOfScalar(newValue, dst); + +  // Finally, release the old value. +  EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); + +  return newValue; +} + +/// Autorelease the given object. +///   call i8* \@objc_autorelease(i8* %value) +llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { +  return emitARCValueOperation(*this, value, +                               CGM.getObjCEntrypoints().objc_autorelease, +                               "objc_autorelease"); +} + +/// Autorelease the given object. +///   call i8* \@objc_autoreleaseReturnValue(i8* %value) +llvm::Value * +CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { +  return emitARCValueOperation(*this, value, +                            CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, +                               "objc_autoreleaseReturnValue", +                               /*isTailCall*/ true); +} + +/// Do a fused retain/autorelease of the given object. +///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) +llvm::Value * +CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { +  return emitARCValueOperation(*this, value, +                     CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, +                               "objc_retainAutoreleaseReturnValue", +                               /*isTailCall*/ true); +} + +/// Do a fused retain/autorelease of the given object. +///   call i8* \@objc_retainAutorelease(i8* %value) +/// or +///   %retain = call i8* \@objc_retainBlock(i8* %value) +///   call i8* \@objc_autorelease(i8* %retain) +llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, +                                                       llvm::Value *value) { +  if (!type->isBlockPointerType()) +    return EmitARCRetainAutoreleaseNonBlock(value); + +  if (isa<llvm::ConstantPointerNull>(value)) return value; + +  llvm::Type *origType = value->getType(); +  value = Builder.CreateBitCast(value, Int8PtrTy); +  value = EmitARCRetainBlock(value, /*mandatory*/ true); +  value = EmitARCAutorelease(value); +  return Builder.CreateBitCast(value, origType); +} + +/// Do a fused retain/autorelease of the given object. +///   call i8* \@objc_retainAutorelease(i8* %value) +llvm::Value * +CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { +  return emitARCValueOperation(*this, value, +                               CGM.getObjCEntrypoints().objc_retainAutorelease, +                               "objc_retainAutorelease"); +} + +/// i8* \@objc_loadWeak(i8** %addr) +/// Essentially objc_autorelease(objc_loadWeakRetained(addr)). +llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { +  return emitARCLoadOperation(*this, addr, +                              CGM.getObjCEntrypoints().objc_loadWeak, +                              "objc_loadWeak"); +} + +/// i8* \@objc_loadWeakRetained(i8** %addr) +llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { +  return emitARCLoadOperation(*this, addr, +                              CGM.getObjCEntrypoints().objc_loadWeakRetained, +                              "objc_loadWeakRetained"); +} + +/// i8* \@objc_storeWeak(i8** %addr, i8* %value) +/// Returns %value. +llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, +                                               llvm::Value *value, +                                               bool ignored) { +  return emitARCStoreOperation(*this, addr, value, +                               CGM.getObjCEntrypoints().objc_storeWeak, +                               "objc_storeWeak", ignored); +} + +/// i8* \@objc_initWeak(i8** %addr, i8* %value) +/// Returns %value.  %addr is known to not have a current weak entry. +/// Essentially equivalent to: +///   *addr = nil; objc_storeWeak(addr, value); +void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { +  // If we're initializing to null, just write null to memory; no need +  // to get the runtime involved.  But don't do this if optimization +  // is enabled, because accounting for this would make the optimizer +  // much more complicated. +  if (isa<llvm::ConstantPointerNull>(value) && +      CGM.getCodeGenOpts().OptimizationLevel == 0) { +    Builder.CreateStore(value, addr); +    return; +  } + +  emitARCStoreOperation(*this, addr, value, +                        CGM.getObjCEntrypoints().objc_initWeak, +                        "objc_initWeak", /*ignored*/ true); +} + +/// void \@objc_destroyWeak(i8** %addr) +/// Essentially objc_storeWeak(addr, nil). +void CodeGenFunction::EmitARCDestroyWeak(Address addr) { +  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; +  if (!fn) { +    llvm::FunctionType *fnType = +      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false); +    fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak"); +  } + +  // Cast the argument to 'id*'. +  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy); + +  EmitNounwindRuntimeCall(fn, addr.getPointer()); +} + +/// void \@objc_moveWeak(i8** %dest, i8** %src) +/// Disregards the current value in %dest.  Leaves %src pointing to nothing. +/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). +void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { +  emitARCCopyOperation(*this, dst, src, +                       CGM.getObjCEntrypoints().objc_moveWeak, +                       "objc_moveWeak"); +} + +/// void \@objc_copyWeak(i8** %dest, i8** %src) +/// Disregards the current value in %dest.  Essentially +///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) +void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { +  emitARCCopyOperation(*this, dst, src, +                       CGM.getObjCEntrypoints().objc_copyWeak, +                       "objc_copyWeak"); +} + +/// Produce the code to do a objc_autoreleasepool_push. +///   call i8* \@objc_autoreleasePoolPush(void) +llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { +  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; +  if (!fn) { +    llvm::FunctionType *fnType = +      llvm::FunctionType::get(Int8PtrTy, false); +    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush"); +  } + +  return EmitNounwindRuntimeCall(fn); +} + +/// Produce the code to do a primitive release. +///   call void \@objc_autoreleasePoolPop(i8* %ptr) +void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { +  assert(value->getType() == Int8PtrTy); + +  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; +  if (!fn) { +    llvm::FunctionType *fnType = +      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); + +    // We don't want to use a weak import here; instead we should not +    // fall into this path. +    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop"); +  } + +  // objc_autoreleasePoolPop can throw. +  EmitRuntimeCallOrInvoke(fn, value); +} + +/// Produce the code to do an MRR version objc_autoreleasepool_push. +/// Which is: [[NSAutoreleasePool alloc] init]; +/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. +/// init is declared as: - (id) init; in its NSObject super class. +/// +llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { +  CGObjCRuntime &Runtime = CGM.getObjCRuntime(); +  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); +  // [NSAutoreleasePool alloc] +  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); +  Selector AllocSel = getContext().Selectors.getSelector(0, &II); +  CallArgList Args; +  RValue AllocRV =   +    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),  +                                getContext().getObjCIdType(), +                                AllocSel, Receiver, Args);  + +  // [Receiver init] +  Receiver = AllocRV.getScalarVal(); +  II = &CGM.getContext().Idents.get("init"); +  Selector InitSel = getContext().Selectors.getSelector(0, &II); +  RValue InitRV = +    Runtime.GenerateMessageSend(*this, ReturnValueSlot(), +                                getContext().getObjCIdType(), +                                InitSel, Receiver, Args);  +  return InitRV.getScalarVal(); +} + +/// Produce the code to do a primitive release. +/// [tmp drain]; +void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { +  IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); +  Selector DrainSel = getContext().Selectors.getSelector(0, &II); +  CallArgList Args; +  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), +                              getContext().VoidTy, DrainSel, Arg, Args);  +} + +void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, +                                              Address addr, +                                              QualType type) { +  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); +} + +void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, +                                                Address addr, +                                                QualType type) { +  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); +} + +void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, +                                     Address addr, +                                     QualType type) { +  CGF.EmitARCDestroyWeak(addr); +} + +void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, +                                          QualType type) { +  llvm::Value *value = CGF.Builder.CreateLoad(addr); +  CGF.EmitARCIntrinsicUse(value); +} + +namespace { +  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { +    llvm::Value *Token; + +    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} + +    void Emit(CodeGenFunction &CGF, Flags flags) override { +      CGF.EmitObjCAutoreleasePoolPop(Token); +    } +  }; +  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { +    llvm::Value *Token; + +    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} + +    void Emit(CodeGenFunction &CGF, Flags flags) override { +      CGF.EmitObjCMRRAutoreleasePoolPop(Token); +    } +  }; +} + +void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { +  if (CGM.getLangOpts().ObjCAutoRefCount) +    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); +  else +    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); +} + +static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, +                                                  LValue lvalue, +                                                  QualType type) { +  switch (type.getObjCLifetime()) { +  case Qualifiers::OCL_None: +  case Qualifiers::OCL_ExplicitNone: +  case Qualifiers::OCL_Strong: +  case Qualifiers::OCL_Autoreleasing: +    return TryEmitResult(CGF.EmitLoadOfLValue(lvalue, +                                              SourceLocation()).getScalarVal(), +                         false); + +  case Qualifiers::OCL_Weak: +    return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()), +                         true); +  } + +  llvm_unreachable("impossible lifetime!"); +} + +static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, +                                                  const Expr *e) { +  e = e->IgnoreParens(); +  QualType type = e->getType(); + +  // If we're loading retained from a __strong xvalue, we can avoid  +  // an extra retain/release pair by zeroing out the source of this +  // "move" operation. +  if (e->isXValue() && +      !type.isConstQualified() && +      type.getObjCLifetime() == Qualifiers::OCL_Strong) { +    // Emit the lvalue. +    LValue lv = CGF.EmitLValue(e); +     +    // Load the object pointer. +    llvm::Value *result = CGF.EmitLoadOfLValue(lv, +                                               SourceLocation()).getScalarVal(); +     +    // Set the source pointer to NULL. +    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv); +     +    return TryEmitResult(result, true); +  } + +  // As a very special optimization, in ARC++, if the l-value is the +  // result of a non-volatile assignment, do a simple retain of the +  // result of the call to objc_storeWeak instead of reloading. +  if (CGF.getLangOpts().CPlusPlus && +      !type.isVolatileQualified() && +      type.getObjCLifetime() == Qualifiers::OCL_Weak && +      isa<BinaryOperator>(e) && +      cast<BinaryOperator>(e)->getOpcode() == BO_Assign) +    return TryEmitResult(CGF.EmitScalarExpr(e), false); + +  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); +} + +typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, +                                         llvm::Value *value)> +  ValueTransform; + +/// Insert code immediately after a call. +static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, +                                              llvm::Value *value, +                                              ValueTransform doAfterCall, +                                              ValueTransform doFallback) { +  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { +    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); + +    // Place the retain immediately following the call. +    CGF.Builder.SetInsertPoint(call->getParent(), +                               ++llvm::BasicBlock::iterator(call)); +    value = doAfterCall(CGF, value); + +    CGF.Builder.restoreIP(ip); +    return value; +  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { +    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); + +    // Place the retain at the beginning of the normal destination block. +    llvm::BasicBlock *BB = invoke->getNormalDest(); +    CGF.Builder.SetInsertPoint(BB, BB->begin()); +    value = doAfterCall(CGF, value); + +    CGF.Builder.restoreIP(ip); +    return value; + +  // Bitcasts can arise because of related-result returns.  Rewrite +  // the operand. +  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { +    llvm::Value *operand = bitcast->getOperand(0); +    operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); +    bitcast->setOperand(0, operand); +    return bitcast; + +  // Generic fall-back case. +  } else { +    // Retain using the non-block variant: we never need to do a copy +    // of a block that's been returned to us. +    return doFallback(CGF, value); +  } +} + +/// Given that the given expression is some sort of call (which does +/// not return retained), emit a retain following it. +static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, +                                            const Expr *e) { +  llvm::Value *value = CGF.EmitScalarExpr(e); +  return emitARCOperationAfterCall(CGF, value, +           [](CodeGenFunction &CGF, llvm::Value *value) { +             return CGF.EmitARCRetainAutoreleasedReturnValue(value); +           }, +           [](CodeGenFunction &CGF, llvm::Value *value) { +             return CGF.EmitARCRetainNonBlock(value); +           }); +} + +/// Given that the given expression is some sort of call (which does +/// not return retained), perform an unsafeClaim following it. +static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, +                                                 const Expr *e) { +  llvm::Value *value = CGF.EmitScalarExpr(e); +  return emitARCOperationAfterCall(CGF, value, +           [](CodeGenFunction &CGF, llvm::Value *value) { +             return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); +           }, +           [](CodeGenFunction &CGF, llvm::Value *value) { +             return value; +           }); +} + +llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, +                                                      bool allowUnsafeClaim) { +  if (allowUnsafeClaim && +      CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { +    return emitARCUnsafeClaimCallResult(*this, E); +  } else { +    llvm::Value *value = emitARCRetainCallResult(*this, E); +    return EmitObjCConsumeObject(E->getType(), value); +  } +} + +/// Determine whether it might be important to emit a separate +/// objc_retain_block on the result of the given expression, or +/// whether it's okay to just emit it in a +1 context. +static bool shouldEmitSeparateBlockRetain(const Expr *e) { +  assert(e->getType()->isBlockPointerType()); +  e = e->IgnoreParens(); + +  // For future goodness, emit block expressions directly in +1 +  // contexts if we can. +  if (isa<BlockExpr>(e)) +    return false; + +  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { +    switch (cast->getCastKind()) { +    // Emitting these operations in +1 contexts is goodness. +    case CK_LValueToRValue: +    case CK_ARCReclaimReturnedObject: +    case CK_ARCConsumeObject: +    case CK_ARCProduceObject: +      return false; + +    // These operations preserve a block type. +    case CK_NoOp: +    case CK_BitCast: +      return shouldEmitSeparateBlockRetain(cast->getSubExpr()); + +    // These operations are known to be bad (or haven't been considered). +    case CK_AnyPointerToBlockPointerCast: +    default: +      return true; +    } +  } + +  return true; +} + +namespace { +/// A CRTP base class for emitting expressions of retainable object +/// pointer type in ARC. +template <typename Impl, typename Result> class ARCExprEmitter { +protected: +  CodeGenFunction &CGF; +  Impl &asImpl() { return *static_cast<Impl*>(this); } + +  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} + +public: +  Result visit(const Expr *e); +  Result visitCastExpr(const CastExpr *e); +  Result visitPseudoObjectExpr(const PseudoObjectExpr *e); +  Result visitBinaryOperator(const BinaryOperator *e); +  Result visitBinAssign(const BinaryOperator *e); +  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); +  Result visitBinAssignAutoreleasing(const BinaryOperator *e); +  Result visitBinAssignWeak(const BinaryOperator *e); +  Result visitBinAssignStrong(const BinaryOperator *e); + +  // Minimal implementation: +  //   Result visitLValueToRValue(const Expr *e) +  //   Result visitConsumeObject(const Expr *e) +  //   Result visitExtendBlockObject(const Expr *e) +  //   Result visitReclaimReturnedObject(const Expr *e) +  //   Result visitCall(const Expr *e) +  //   Result visitExpr(const Expr *e) +  // +  //   Result emitBitCast(Result result, llvm::Type *resultType) +  //   llvm::Value *getValueOfResult(Result result) +}; +} + +/// Try to emit a PseudoObjectExpr under special ARC rules. +/// +/// This massively duplicates emitPseudoObjectRValue. +template <typename Impl, typename Result> +Result +ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { +  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; + +  // Find the result expression. +  const Expr *resultExpr = E->getResultExpr(); +  assert(resultExpr); +  Result result; + +  for (PseudoObjectExpr::const_semantics_iterator +         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { +    const Expr *semantic = *i; + +    // If this semantic expression is an opaque value, bind it +    // to the result of its source expression. +    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { +      typedef CodeGenFunction::OpaqueValueMappingData OVMA; +      OVMA opaqueData; + +      // If this semantic is the result of the pseudo-object +      // expression, try to evaluate the source as +1. +      if (ov == resultExpr) { +        assert(!OVMA::shouldBindAsLValue(ov)); +        result = asImpl().visit(ov->getSourceExpr()); +        opaqueData = OVMA::bind(CGF, ov, +                            RValue::get(asImpl().getValueOfResult(result))); + +      // Otherwise, just bind it. +      } else { +        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); +      } +      opaques.push_back(opaqueData); + +    // Otherwise, if the expression is the result, evaluate it +    // and remember the result. +    } else if (semantic == resultExpr) { +      result = asImpl().visit(semantic); + +    // Otherwise, evaluate the expression in an ignored context. +    } else { +      CGF.EmitIgnoredExpr(semantic); +    } +  } + +  // Unbind all the opaques now. +  for (unsigned i = 0, e = opaques.size(); i != e; ++i) +    opaques[i].unbind(CGF); + +  return result; +} + +template <typename Impl, typename Result> +Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { +  switch (e->getCastKind()) { + +  // No-op casts don't change the type, so we just ignore them. +  case CK_NoOp: +    return asImpl().visit(e->getSubExpr()); + +  // These casts can change the type. +  case CK_CPointerToObjCPointerCast: +  case CK_BlockPointerToObjCPointerCast: +  case CK_AnyPointerToBlockPointerCast: +  case CK_BitCast: { +    llvm::Type *resultType = CGF.ConvertType(e->getType()); +    assert(e->getSubExpr()->getType()->hasPointerRepresentation()); +    Result result = asImpl().visit(e->getSubExpr()); +    return asImpl().emitBitCast(result, resultType); +  } + +  // Handle some casts specially. +  case CK_LValueToRValue: +    return asImpl().visitLValueToRValue(e->getSubExpr()); +  case CK_ARCConsumeObject: +    return asImpl().visitConsumeObject(e->getSubExpr()); +  case CK_ARCExtendBlockObject: +    return asImpl().visitExtendBlockObject(e->getSubExpr()); +  case CK_ARCReclaimReturnedObject: +    return asImpl().visitReclaimReturnedObject(e->getSubExpr()); + +  // Otherwise, use the default logic. +  default: +    return asImpl().visitExpr(e); +  } +} + +template <typename Impl, typename Result> +Result +ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { +  switch (e->getOpcode()) { +  case BO_Comma: +    CGF.EmitIgnoredExpr(e->getLHS()); +    CGF.EnsureInsertPoint(); +    return asImpl().visit(e->getRHS()); + +  case BO_Assign: +    return asImpl().visitBinAssign(e); + +  default: +    return asImpl().visitExpr(e); +  } +} + +template <typename Impl, typename Result> +Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { +  switch (e->getLHS()->getType().getObjCLifetime()) { +  case Qualifiers::OCL_ExplicitNone: +    return asImpl().visitBinAssignUnsafeUnretained(e); + +  case Qualifiers::OCL_Weak: +    return asImpl().visitBinAssignWeak(e); + +  case Qualifiers::OCL_Autoreleasing: +    return asImpl().visitBinAssignAutoreleasing(e); + +  case Qualifiers::OCL_Strong: +    return asImpl().visitBinAssignStrong(e); + +  case Qualifiers::OCL_None: +    return asImpl().visitExpr(e); +  } +  llvm_unreachable("bad ObjC ownership qualifier"); +} + +/// The default rule for __unsafe_unretained emits the RHS recursively, +/// stores into the unsafe variable, and propagates the result outward. +template <typename Impl, typename Result> +Result ARCExprEmitter<Impl,Result>:: +                    visitBinAssignUnsafeUnretained(const BinaryOperator *e) { +  // Recursively emit the RHS. +  // For __block safety, do this before emitting the LHS. +  Result result = asImpl().visit(e->getRHS()); + +  // Perform the store. +  LValue lvalue = +    CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); +  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), +                             lvalue); + +  return result; +} + +template <typename Impl, typename Result> +Result +ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { +  return asImpl().visitExpr(e); +} + +template <typename Impl, typename Result> +Result +ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { +  return asImpl().visitExpr(e); +} + +template <typename Impl, typename Result> +Result +ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { +  return asImpl().visitExpr(e); +} + +/// The general expression-emission logic. +template <typename Impl, typename Result> +Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { +  // We should *never* see a nested full-expression here, because if +  // we fail to emit at +1, our caller must not retain after we close +  // out the full-expression.  This isn't as important in the unsafe +  // emitter. +  assert(!isa<ExprWithCleanups>(e)); + +  // Look through parens, __extension__, generic selection, etc. +  e = e->IgnoreParens(); + +  // Handle certain kinds of casts. +  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { +    return asImpl().visitCastExpr(ce); + +  // Handle the comma operator. +  } else if (auto op = dyn_cast<BinaryOperator>(e)) { +    return asImpl().visitBinaryOperator(op); + +  // TODO: handle conditional operators here + +  // For calls and message sends, use the retained-call logic. +  // Delegate inits are a special case in that they're the only +  // returns-retained expression that *isn't* surrounded by +  // a consume. +  } else if (isa<CallExpr>(e) || +             (isa<ObjCMessageExpr>(e) && +              !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { +    return asImpl().visitCall(e); + +  // Look through pseudo-object expressions. +  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { +    return asImpl().visitPseudoObjectExpr(pseudo); +  } + +  return asImpl().visitExpr(e); +} + +namespace { + +/// An emitter for +1 results. +struct ARCRetainExprEmitter : +  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { + +  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} + +  llvm::Value *getValueOfResult(TryEmitResult result) { +    return result.getPointer(); +  } + +  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { +    llvm::Value *value = result.getPointer(); +    value = CGF.Builder.CreateBitCast(value, resultType); +    result.setPointer(value); +    return result; +  } + +  TryEmitResult visitLValueToRValue(const Expr *e) { +    return tryEmitARCRetainLoadOfScalar(CGF, e); +  } + +  /// For consumptions, just emit the subexpression and thus elide +  /// the retain/release pair. +  TryEmitResult visitConsumeObject(const Expr *e) { +    llvm::Value *result = CGF.EmitScalarExpr(e); +    return TryEmitResult(result, true); +  } + +  /// Block extends are net +0.  Naively, we could just recurse on +  /// the subexpression, but actually we need to ensure that the +  /// value is copied as a block, so there's a little filter here. +  TryEmitResult visitExtendBlockObject(const Expr *e) { +    llvm::Value *result; // will be a +0 value + +    // If we can't safely assume the sub-expression will produce a +    // block-copied value, emit the sub-expression at +0. +    if (shouldEmitSeparateBlockRetain(e)) { +      result = CGF.EmitScalarExpr(e); + +    // Otherwise, try to emit the sub-expression at +1 recursively. +    } else { +      TryEmitResult subresult = asImpl().visit(e); + +      // If that produced a retained value, just use that. +      if (subresult.getInt()) { +        return subresult; +      } + +      // Otherwise it's +0. +      result = subresult.getPointer(); +    } + +    // Retain the object as a block. +    result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); +    return TryEmitResult(result, true); +  } + +  /// For reclaims, emit the subexpression as a retained call and +  /// skip the consumption. +  TryEmitResult visitReclaimReturnedObject(const Expr *e) { +    llvm::Value *result = emitARCRetainCallResult(CGF, e); +    return TryEmitResult(result, true); +  } + +  /// When we have an undecorated call, retroactively do a claim. +  TryEmitResult visitCall(const Expr *e) { +    llvm::Value *result = emitARCRetainCallResult(CGF, e); +    return TryEmitResult(result, true); +  } + +  // TODO: maybe special-case visitBinAssignWeak? + +  TryEmitResult visitExpr(const Expr *e) { +    // We didn't find an obvious production, so emit what we've got and +    // tell the caller that we didn't manage to retain. +    llvm::Value *result = CGF.EmitScalarExpr(e); +    return TryEmitResult(result, false); +  } +}; +} + +static TryEmitResult +tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { +  return ARCRetainExprEmitter(CGF).visit(e); +} + +static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, +                                                LValue lvalue, +                                                QualType type) { +  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); +  llvm::Value *value = result.getPointer(); +  if (!result.getInt()) +    value = CGF.EmitARCRetain(type, value); +  return value; +} + +/// EmitARCRetainScalarExpr - Semantically equivalent to +/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a +/// best-effort attempt to peephole expressions that naturally produce +/// retained objects. +llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { +  // The retain needs to happen within the full-expression. +  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { +    enterFullExpression(cleanups); +    RunCleanupsScope scope(*this); +    return EmitARCRetainScalarExpr(cleanups->getSubExpr()); +  } + +  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); +  llvm::Value *value = result.getPointer(); +  if (!result.getInt()) +    value = EmitARCRetain(e->getType(), value); +  return value; +} + +llvm::Value * +CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { +  // The retain needs to happen within the full-expression. +  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { +    enterFullExpression(cleanups); +    RunCleanupsScope scope(*this); +    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); +  } + +  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); +  llvm::Value *value = result.getPointer(); +  if (result.getInt()) +    value = EmitARCAutorelease(value); +  else +    value = EmitARCRetainAutorelease(e->getType(), value); +  return value; +} + +llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { +  llvm::Value *result; +  bool doRetain; + +  if (shouldEmitSeparateBlockRetain(e)) { +    result = EmitScalarExpr(e); +    doRetain = true; +  } else { +    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); +    result = subresult.getPointer(); +    doRetain = !subresult.getInt(); +  } + +  if (doRetain) +    result = EmitARCRetainBlock(result, /*mandatory*/ true); +  return EmitObjCConsumeObject(e->getType(), result); +} + +llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { +  // In ARC, retain and autorelease the expression. +  if (getLangOpts().ObjCAutoRefCount) { +    // Do so before running any cleanups for the full-expression. +    // EmitARCRetainAutoreleaseScalarExpr does this for us. +    return EmitARCRetainAutoreleaseScalarExpr(expr); +  } + +  // Otherwise, use the normal scalar-expression emission.  The +  // exception machinery doesn't do anything special with the +  // exception like retaining it, so there's no safety associated with +  // only running cleanups after the throw has started, and when it +  // matters it tends to be substantially inferior code. +  return EmitScalarExpr(expr); +} + +namespace { + +/// An emitter for assigning into an __unsafe_unretained context. +struct ARCUnsafeUnretainedExprEmitter : +  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { + +  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} + +  llvm::Value *getValueOfResult(llvm::Value *value) { +    return value; +  } + +  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { +    return CGF.Builder.CreateBitCast(value, resultType); +  } + +  llvm::Value *visitLValueToRValue(const Expr *e) { +    return CGF.EmitScalarExpr(e); +  } + +  /// For consumptions, just emit the subexpression and perform the +  /// consumption like normal. +  llvm::Value *visitConsumeObject(const Expr *e) { +    llvm::Value *value = CGF.EmitScalarExpr(e); +    return CGF.EmitObjCConsumeObject(e->getType(), value); +  } + +  /// No special logic for block extensions.  (This probably can't +  /// actually happen in this emitter, though.) +  llvm::Value *visitExtendBlockObject(const Expr *e) { +    return CGF.EmitARCExtendBlockObject(e); +  } + +  /// For reclaims, perform an unsafeClaim if that's enabled. +  llvm::Value *visitReclaimReturnedObject(const Expr *e) { +    return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); +  } + +  /// When we have an undecorated call, just emit it without adding +  /// the unsafeClaim. +  llvm::Value *visitCall(const Expr *e) { +    return CGF.EmitScalarExpr(e); +  } + +  /// Just do normal scalar emission in the default case. +  llvm::Value *visitExpr(const Expr *e) { +    return CGF.EmitScalarExpr(e); +  } +}; +} + +static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, +                                                      const Expr *e) { +  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); +} + +/// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to +/// immediately releasing the resut of EmitARCRetainScalarExpr, but +/// avoiding any spurious retains, including by performing reclaims +/// with objc_unsafeClaimAutoreleasedReturnValue. +llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { +  // Look through full-expressions. +  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { +    enterFullExpression(cleanups); +    RunCleanupsScope scope(*this); +    return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); +  } + +  return emitARCUnsafeUnretainedScalarExpr(*this, e); +} + +std::pair<LValue,llvm::Value*> +CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, +                                              bool ignored) { +  // Evaluate the RHS first.  If we're ignoring the result, assume +  // that we can emit at an unsafe +0. +  llvm::Value *value; +  if (ignored) { +    value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); +  } else { +    value = EmitScalarExpr(e->getRHS()); +  } + +  // Emit the LHS and perform the store. +  LValue lvalue = EmitLValue(e->getLHS()); +  EmitStoreOfScalar(value, lvalue); + +  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); +} + +std::pair<LValue,llvm::Value*> +CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, +                                    bool ignored) { +  // Evaluate the RHS first. +  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); +  llvm::Value *value = result.getPointer(); + +  bool hasImmediateRetain = result.getInt(); + +  // If we didn't emit a retained object, and the l-value is of block +  // type, then we need to emit the block-retain immediately in case +  // it invalidates the l-value. +  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { +    value = EmitARCRetainBlock(value, /*mandatory*/ false); +    hasImmediateRetain = true; +  } + +  LValue lvalue = EmitLValue(e->getLHS()); + +  // If the RHS was emitted retained, expand this. +  if (hasImmediateRetain) { +    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); +    EmitStoreOfScalar(value, lvalue); +    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); +  } else { +    value = EmitARCStoreStrong(lvalue, value, ignored); +  } + +  return std::pair<LValue,llvm::Value*>(lvalue, value); +} + +std::pair<LValue,llvm::Value*> +CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { +  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); +  LValue lvalue = EmitLValue(e->getLHS()); + +  EmitStoreOfScalar(value, lvalue); + +  return std::pair<LValue,llvm::Value*>(lvalue, value); +} + +void CodeGenFunction::EmitObjCAutoreleasePoolStmt( +                                          const ObjCAutoreleasePoolStmt &ARPS) { +  const Stmt *subStmt = ARPS.getSubStmt(); +  const CompoundStmt &S = cast<CompoundStmt>(*subStmt); + +  CGDebugInfo *DI = getDebugInfo(); +  if (DI) +    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); + +  // Keep track of the current cleanup stack depth. +  RunCleanupsScope Scope(*this); +  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { +    llvm::Value *token = EmitObjCAutoreleasePoolPush(); +    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); +  } else { +    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); +    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); +  } + +  for (const auto *I : S.body()) +    EmitStmt(I); + +  if (DI) +    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); +} + +/// EmitExtendGCLifetime - Given a pointer to an Objective-C object, +/// make sure it survives garbage collection until this point. +void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { +  // We just use an inline assembly. +  llvm::FunctionType *extenderType +    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); +  llvm::Value *extender +    = llvm::InlineAsm::get(extenderType, +                           /* assembly */ "", +                           /* constraints */ "r", +                           /* side effects */ true); + +  object = Builder.CreateBitCast(object, VoidPtrTy); +  EmitNounwindRuntimeCall(extender, object); +} + +/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with +/// non-trivial copy assignment function, produce following helper function. +/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } +/// +llvm::Constant * +CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( +                                        const ObjCPropertyImplDecl *PID) { +  if (!getLangOpts().CPlusPlus || +      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) +    return nullptr; +  QualType Ty = PID->getPropertyIvarDecl()->getType(); +  if (!Ty->isRecordType()) +    return nullptr; +  const ObjCPropertyDecl *PD = PID->getPropertyDecl(); +  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) +    return nullptr; +  llvm::Constant *HelperFn = nullptr; +  if (hasTrivialSetExpr(PID)) +    return nullptr; +  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); +  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) +    return HelperFn; +   +  ASTContext &C = getContext(); +  IdentifierInfo *II +    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); +  FunctionDecl *FD = FunctionDecl::Create(C, +                                          C.getTranslationUnitDecl(), +                                          SourceLocation(), +                                          SourceLocation(), II, C.VoidTy, +                                          nullptr, SC_Static, +                                          false, +                                          false); + +  QualType DestTy = C.getPointerType(Ty); +  QualType SrcTy = Ty; +  SrcTy.addConst(); +  SrcTy = C.getPointerType(SrcTy); +   +  FunctionArgList args; +  ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); +  args.push_back(&dstDecl); +  ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); +  args.push_back(&srcDecl); + +  const CGFunctionInfo &FI = +    CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); + +  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); +   +  llvm::Function *Fn = +    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, +                           "__assign_helper_atomic_property_", +                           &CGM.getModule()); + +  CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); + +  StartFunction(FD, C.VoidTy, Fn, FI, args); +   +  DeclRefExpr DstExpr(&dstDecl, false, DestTy, +                      VK_RValue, SourceLocation()); +  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(), +                    VK_LValue, OK_Ordinary, SourceLocation()); +   +  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, +                      VK_RValue, SourceLocation()); +  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), +                    VK_LValue, OK_Ordinary, SourceLocation()); +   +  Expr *Args[2] = { &DST, &SRC }; +  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); +  CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(), +                              Args, DestTy->getPointeeType(), +                              VK_LValue, SourceLocation(), FPOptions()); +   +  EmitStmt(&TheCall); + +  FinishFunction(); +  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); +  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); +  return HelperFn; +} + +llvm::Constant * +CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( +                                            const ObjCPropertyImplDecl *PID) { +  if (!getLangOpts().CPlusPlus || +      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) +    return nullptr; +  const ObjCPropertyDecl *PD = PID->getPropertyDecl(); +  QualType Ty = PD->getType(); +  if (!Ty->isRecordType()) +    return nullptr; +  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic))) +    return nullptr; +  llvm::Constant *HelperFn = nullptr; + +  if (hasTrivialGetExpr(PID)) +    return nullptr; +  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); +  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) +    return HelperFn; +   +   +  ASTContext &C = getContext(); +  IdentifierInfo *II +  = &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); +  FunctionDecl *FD = FunctionDecl::Create(C, +                                          C.getTranslationUnitDecl(), +                                          SourceLocation(), +                                          SourceLocation(), II, C.VoidTy, +                                          nullptr, SC_Static, +                                          false, +                                          false); + +  QualType DestTy = C.getPointerType(Ty); +  QualType SrcTy = Ty; +  SrcTy.addConst(); +  SrcTy = C.getPointerType(SrcTy); +   +  FunctionArgList args; +  ImplicitParamDecl dstDecl(getContext(), FD, SourceLocation(), nullptr,DestTy); +  args.push_back(&dstDecl); +  ImplicitParamDecl srcDecl(getContext(), FD, SourceLocation(), nullptr, SrcTy); +  args.push_back(&srcDecl); + +  const CGFunctionInfo &FI = +    CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, args); + +  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); +   +  llvm::Function *Fn = +  llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, +                         "__copy_helper_atomic_property_", &CGM.getModule()); +   +  CGM.SetInternalFunctionAttributes(nullptr, Fn, FI); + +  StartFunction(FD, C.VoidTy, Fn, FI, args); +   +  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy, +                      VK_RValue, SourceLocation()); +   +  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(), +                    VK_LValue, OK_Ordinary, SourceLocation()); +   +  CXXConstructExpr *CXXConstExpr =  +    cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); +   +  SmallVector<Expr*, 4> ConstructorArgs; +  ConstructorArgs.push_back(&SRC); +  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), +                         CXXConstExpr->arg_end()); + +  CXXConstructExpr *TheCXXConstructExpr = +    CXXConstructExpr::Create(C, Ty, SourceLocation(), +                             CXXConstExpr->getConstructor(), +                             CXXConstExpr->isElidable(), +                             ConstructorArgs, +                             CXXConstExpr->hadMultipleCandidates(), +                             CXXConstExpr->isListInitialization(), +                             CXXConstExpr->isStdInitListInitialization(), +                             CXXConstExpr->requiresZeroInitialization(), +                             CXXConstExpr->getConstructionKind(), +                             SourceRange()); +   +  DeclRefExpr DstExpr(&dstDecl, false, DestTy, +                      VK_RValue, SourceLocation()); +   +  RValue DV = EmitAnyExpr(&DstExpr); +  CharUnits Alignment +    = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); +  EmitAggExpr(TheCXXConstructExpr,  +              AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment), +                                    Qualifiers(), +                                    AggValueSlot::IsDestructed, +                                    AggValueSlot::DoesNotNeedGCBarriers, +                                    AggValueSlot::IsNotAliased)); +   +  FinishFunction(); +  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); +  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); +  return HelperFn; +} + +llvm::Value * +CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { +  // Get selectors for retain/autorelease. +  IdentifierInfo *CopyID = &getContext().Idents.get("copy"); +  Selector CopySelector = +      getContext().Selectors.getNullarySelector(CopyID); +  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); +  Selector AutoreleaseSelector = +      getContext().Selectors.getNullarySelector(AutoreleaseID); + +  // Emit calls to retain/autorelease. +  CGObjCRuntime &Runtime = CGM.getObjCRuntime(); +  llvm::Value *Val = Block; +  RValue Result; +  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), +                                       Ty, CopySelector, +                                       Val, CallArgList(), nullptr, nullptr); +  Val = Result.getScalarVal(); +  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), +                                       Ty, AutoreleaseSelector, +                                       Val, CallArgList(), nullptr, nullptr); +  Val = Result.getScalarVal(); +  return Val; +} + +llvm::Value * +CodeGenFunction::EmitBuiltinAvailable(ArrayRef<llvm::Value *> Args) { +  assert(Args.size() == 3 && "Expected 3 argument here!"); + +  if (!CGM.IsOSVersionAtLeastFn) { +    llvm::FunctionType *FTy = +        llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); +    CGM.IsOSVersionAtLeastFn = +        CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); +  } + +  llvm::Value *CallRes = +      EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); + +  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); +} + +void CodeGenModule::emitAtAvailableLinkGuard() { +  if (!IsOSVersionAtLeastFn) +    return; +  // @available requires CoreFoundation only on Darwin. +  if (!Target.getTriple().isOSDarwin()) +    return; +  // Add -framework CoreFoundation to the linker commands. We still want to +  // emit the core foundation reference down below because otherwise if +  // CoreFoundation is not used in the code, the linker won't link the +  // framework. +  auto &Context = getLLVMContext(); +  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), +                             llvm::MDString::get(Context, "CoreFoundation")}; +  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); +  // Emit a reference to a symbol from CoreFoundation to ensure that +  // CoreFoundation is linked into the final binary. +  llvm::FunctionType *FTy = +      llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); +  llvm::Constant *CFFunc = +      CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); + +  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); +  llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction( +      CheckFTy, "__clang_at_available_requires_core_foundation_framework")); +  CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); +  CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); +  CodeGenFunction CGF(*this); +  CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); +  CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy)); +  CGF.Builder.CreateUnreachable(); +  addCompilerUsedGlobal(CFLinkCheckFunc); +} + +CGObjCRuntime::~CGObjCRuntime() {}  | 
