diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp')
| -rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp | 6921 |
1 files changed, 6921 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp new file mode 100644 index 000000000000..b256a88c47ad --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp @@ -0,0 +1,6921 @@ +//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This provides a class for OpenMP runtime code generation. +// +//===----------------------------------------------------------------------===// + +#include "CGCXXABI.h" +#include "CGCleanup.h" +#include "CGOpenMPRuntime.h" +#include "CodeGenFunction.h" +#include "clang/CodeGen/ConstantInitBuilder.h" +#include "clang/AST/Decl.h" +#include "clang/AST/StmtOpenMP.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/Bitcode/BitcodeReader.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> + +using namespace clang; +using namespace CodeGen; + +namespace { +/// \brief Base class for handling code generation inside OpenMP regions. +class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo { +public: + /// \brief Kinds of OpenMP regions used in codegen. + enum CGOpenMPRegionKind { + /// \brief Region with outlined function for standalone 'parallel' + /// directive. + ParallelOutlinedRegion, + /// \brief Region with outlined function for standalone 'task' directive. + TaskOutlinedRegion, + /// \brief Region for constructs that do not require function outlining, + /// like 'for', 'sections', 'atomic' etc. directives. + InlinedRegion, + /// \brief Region with outlined function for standalone 'target' directive. + TargetRegion, + }; + + CGOpenMPRegionInfo(const CapturedStmt &CS, + const CGOpenMPRegionKind RegionKind, + const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, + bool HasCancel) + : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind), + CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} + + CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind, + const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, + bool HasCancel) + : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), + Kind(Kind), HasCancel(HasCancel) {} + + /// \brief Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + virtual const VarDecl *getThreadIDVariable() const = 0; + + /// \brief Emit the captured statement body. + void EmitBody(CodeGenFunction &CGF, const Stmt *S) override; + + /// \brief Get an LValue for the current ThreadID variable. + /// \return LValue for thread id variable. This LValue always has type int32*. + virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF); + + virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {} + + CGOpenMPRegionKind getRegionKind() const { return RegionKind; } + + OpenMPDirectiveKind getDirectiveKind() const { return Kind; } + + bool hasCancel() const { return HasCancel; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return Info->getKind() == CR_OpenMP; + } + + ~CGOpenMPRegionInfo() override = default; + +protected: + CGOpenMPRegionKind RegionKind; + RegionCodeGenTy CodeGen; + OpenMPDirectiveKind Kind; + bool HasCancel; +}; + +/// \brief API for captured statement code generation in OpenMP constructs. +class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo { +public: + CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, + const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel, + StringRef HelperName) + : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind, + HasCancel), + ThreadIDVar(ThreadIDVar), HelperName(HelperName) { + assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); + } + + /// \brief Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } + + /// \brief Get the name of the capture helper. + StringRef getHelperName() const override { return HelperName; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == + ParallelOutlinedRegion; + } + +private: + /// \brief A variable or parameter storing global thread id for OpenMP + /// constructs. + const VarDecl *ThreadIDVar; + StringRef HelperName; +}; + +/// \brief API for captured statement code generation in OpenMP constructs. +class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo { +public: + class UntiedTaskActionTy final : public PrePostActionTy { + bool Untied; + const VarDecl *PartIDVar; + const RegionCodeGenTy UntiedCodeGen; + llvm::SwitchInst *UntiedSwitch = nullptr; + + public: + UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar, + const RegionCodeGenTy &UntiedCodeGen) + : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {} + void Enter(CodeGenFunction &CGF) override { + if (Untied) { + // Emit task switching point. + auto PartIdLVal = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(PartIDVar), + PartIDVar->getType()->castAs<PointerType>()); + auto *Res = CGF.EmitLoadOfScalar(PartIdLVal, SourceLocation()); + auto *DoneBB = CGF.createBasicBlock(".untied.done."); + UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB); + CGF.EmitBlock(DoneBB); + CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); + CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); + UntiedSwitch->addCase(CGF.Builder.getInt32(0), + CGF.Builder.GetInsertBlock()); + emitUntiedSwitch(CGF); + } + } + void emitUntiedSwitch(CodeGenFunction &CGF) const { + if (Untied) { + auto PartIdLVal = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(PartIDVar), + PartIDVar->getType()->castAs<PointerType>()); + CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), + PartIdLVal); + UntiedCodeGen(CGF); + CodeGenFunction::JumpDest CurPoint = + CGF.getJumpDestInCurrentScope(".untied.next."); + CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); + CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); + UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), + CGF.Builder.GetInsertBlock()); + CGF.EmitBranchThroughCleanup(CurPoint); + CGF.EmitBlock(CurPoint.getBlock()); + } + } + unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); } + }; + CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS, + const VarDecl *ThreadIDVar, + const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel, + const UntiedTaskActionTy &Action) + : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel), + ThreadIDVar(ThreadIDVar), Action(Action) { + assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); + } + + /// \brief Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } + + /// \brief Get an LValue for the current ThreadID variable. + LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override; + + /// \brief Get the name of the capture helper. + StringRef getHelperName() const override { return ".omp_outlined."; } + + void emitUntiedSwitch(CodeGenFunction &CGF) override { + Action.emitUntiedSwitch(CGF); + } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == + TaskOutlinedRegion; + } + +private: + /// \brief A variable or parameter storing global thread id for OpenMP + /// constructs. + const VarDecl *ThreadIDVar; + /// Action for emitting code for untied tasks. + const UntiedTaskActionTy &Action; +}; + +/// \brief API for inlined captured statement code generation in OpenMP +/// constructs. +class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo { +public: + CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI, + const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel) + : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel), + OldCSI(OldCSI), + OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {} + + // \brief Retrieve the value of the context parameter. + llvm::Value *getContextValue() const override { + if (OuterRegionInfo) + return OuterRegionInfo->getContextValue(); + llvm_unreachable("No context value for inlined OpenMP region"); + } + + void setContextValue(llvm::Value *V) override { + if (OuterRegionInfo) { + OuterRegionInfo->setContextValue(V); + return; + } + llvm_unreachable("No context value for inlined OpenMP region"); + } + + /// \brief Lookup the captured field decl for a variable. + const FieldDecl *lookup(const VarDecl *VD) const override { + if (OuterRegionInfo) + return OuterRegionInfo->lookup(VD); + // If there is no outer outlined region,no need to lookup in a list of + // captured variables, we can use the original one. + return nullptr; + } + + FieldDecl *getThisFieldDecl() const override { + if (OuterRegionInfo) + return OuterRegionInfo->getThisFieldDecl(); + return nullptr; + } + + /// \brief Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { + if (OuterRegionInfo) + return OuterRegionInfo->getThreadIDVariable(); + return nullptr; + } + + /// \brief Get the name of the capture helper. + StringRef getHelperName() const override { + if (auto *OuterRegionInfo = getOldCSI()) + return OuterRegionInfo->getHelperName(); + llvm_unreachable("No helper name for inlined OpenMP construct"); + } + + void emitUntiedSwitch(CodeGenFunction &CGF) override { + if (OuterRegionInfo) + OuterRegionInfo->emitUntiedSwitch(CGF); + } + + CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion; + } + + ~CGOpenMPInlinedRegionInfo() override = default; + +private: + /// \brief CodeGen info about outer OpenMP region. + CodeGenFunction::CGCapturedStmtInfo *OldCSI; + CGOpenMPRegionInfo *OuterRegionInfo; +}; + +/// \brief API for captured statement code generation in OpenMP target +/// constructs. For this captures, implicit parameters are used instead of the +/// captured fields. The name of the target region has to be unique in a given +/// application so it is provided by the client, because only the client has +/// the information to generate that. +class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo { +public: + CGOpenMPTargetRegionInfo(const CapturedStmt &CS, + const RegionCodeGenTy &CodeGen, StringRef HelperName) + : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target, + /*HasCancel=*/false), + HelperName(HelperName) {} + + /// \brief This is unused for target regions because each starts executing + /// with a single thread. + const VarDecl *getThreadIDVariable() const override { return nullptr; } + + /// \brief Get the name of the capture helper. + StringRef getHelperName() const override { return HelperName; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion; + } + +private: + StringRef HelperName; +}; + +static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) { + llvm_unreachable("No codegen for expressions"); +} +/// \brief API for generation of expressions captured in a innermost OpenMP +/// region. +class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo { +public: + CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS) + : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen, + OMPD_unknown, + /*HasCancel=*/false), + PrivScope(CGF) { + // Make sure the globals captured in the provided statement are local by + // using the privatization logic. We assume the same variable is not + // captured more than once. + for (auto &C : CS.captures()) { + if (!C.capturesVariable() && !C.capturesVariableByCopy()) + continue; + + const VarDecl *VD = C.getCapturedVar(); + if (VD->isLocalVarDeclOrParm()) + continue; + + DeclRefExpr DRE(const_cast<VarDecl *>(VD), + /*RefersToEnclosingVariableOrCapture=*/false, + VD->getType().getNonReferenceType(), VK_LValue, + SourceLocation()); + PrivScope.addPrivate(VD, [&CGF, &DRE]() -> Address { + return CGF.EmitLValue(&DRE).getAddress(); + }); + } + (void)PrivScope.Privatize(); + } + + /// \brief Lookup the captured field decl for a variable. + const FieldDecl *lookup(const VarDecl *VD) const override { + if (auto *FD = CGOpenMPInlinedRegionInfo::lookup(VD)) + return FD; + return nullptr; + } + + /// \brief Emit the captured statement body. + void EmitBody(CodeGenFunction &CGF, const Stmt *S) override { + llvm_unreachable("No body for expressions"); + } + + /// \brief Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { + llvm_unreachable("No thread id for expressions"); + } + + /// \brief Get the name of the capture helper. + StringRef getHelperName() const override { + llvm_unreachable("No helper name for expressions"); + } + + static bool classof(const CGCapturedStmtInfo *Info) { return false; } + +private: + /// Private scope to capture global variables. + CodeGenFunction::OMPPrivateScope PrivScope; +}; + +/// \brief RAII for emitting code of OpenMP constructs. +class InlinedOpenMPRegionRAII { + CodeGenFunction &CGF; + llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; + FieldDecl *LambdaThisCaptureField = nullptr; + +public: + /// \brief Constructs region for combined constructs. + /// \param CodeGen Code generation sequence for combined directives. Includes + /// a list of functions used for code generation of implicitly inlined + /// regions. + InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel) + : CGF(CGF) { + // Start emission for the construct. + CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo( + CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel); + std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); + LambdaThisCaptureField = CGF.LambdaThisCaptureField; + CGF.LambdaThisCaptureField = nullptr; + } + + ~InlinedOpenMPRegionRAII() { + // Restore original CapturedStmtInfo only if we're done with code emission. + auto *OldCSI = + cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI(); + delete CGF.CapturedStmtInfo; + CGF.CapturedStmtInfo = OldCSI; + std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); + CGF.LambdaThisCaptureField = LambdaThisCaptureField; + } +}; + +/// \brief Values for bit flags used in the ident_t to describe the fields. +/// All enumeric elements are named and described in accordance with the code +/// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h +enum OpenMPLocationFlags { + /// \brief Use trampoline for internal microtask. + OMP_IDENT_IMD = 0x01, + /// \brief Use c-style ident structure. + OMP_IDENT_KMPC = 0x02, + /// \brief Atomic reduction option for kmpc_reduce. + OMP_ATOMIC_REDUCE = 0x10, + /// \brief Explicit 'barrier' directive. + OMP_IDENT_BARRIER_EXPL = 0x20, + /// \brief Implicit barrier in code. + OMP_IDENT_BARRIER_IMPL = 0x40, + /// \brief Implicit barrier in 'for' directive. + OMP_IDENT_BARRIER_IMPL_FOR = 0x40, + /// \brief Implicit barrier in 'sections' directive. + OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0, + /// \brief Implicit barrier in 'single' directive. + OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140 +}; + +/// \brief Describes ident structure that describes a source location. +/// All descriptions are taken from +/// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h +/// Original structure: +/// typedef struct ident { +/// kmp_int32 reserved_1; /**< might be used in Fortran; +/// see above */ +/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; +/// KMP_IDENT_KMPC identifies this union +/// member */ +/// kmp_int32 reserved_2; /**< not really used in Fortran any more; +/// see above */ +///#if USE_ITT_BUILD +/// /* but currently used for storing +/// region-specific ITT */ +/// /* contextual information. */ +///#endif /* USE_ITT_BUILD */ +/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for +/// C++ */ +/// char const *psource; /**< String describing the source location. +/// The string is composed of semi-colon separated +// fields which describe the source file, +/// the function and a pair of line numbers that +/// delimit the construct. +/// */ +/// } ident_t; +enum IdentFieldIndex { + /// \brief might be used in Fortran + IdentField_Reserved_1, + /// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member. + IdentField_Flags, + /// \brief Not really used in Fortran any more + IdentField_Reserved_2, + /// \brief Source[4] in Fortran, do not use for C++ + IdentField_Reserved_3, + /// \brief String describing the source location. The string is composed of + /// semi-colon separated fields which describe the source file, the function + /// and a pair of line numbers that delimit the construct. + IdentField_PSource +}; + +/// \brief Schedule types for 'omp for' loops (these enumerators are taken from +/// the enum sched_type in kmp.h). +enum OpenMPSchedType { + /// \brief Lower bound for default (unordered) versions. + OMP_sch_lower = 32, + OMP_sch_static_chunked = 33, + OMP_sch_static = 34, + OMP_sch_dynamic_chunked = 35, + OMP_sch_guided_chunked = 36, + OMP_sch_runtime = 37, + OMP_sch_auto = 38, + /// static with chunk adjustment (e.g., simd) + OMP_sch_static_balanced_chunked = 45, + /// \brief Lower bound for 'ordered' versions. + OMP_ord_lower = 64, + OMP_ord_static_chunked = 65, + OMP_ord_static = 66, + OMP_ord_dynamic_chunked = 67, + OMP_ord_guided_chunked = 68, + OMP_ord_runtime = 69, + OMP_ord_auto = 70, + OMP_sch_default = OMP_sch_static, + /// \brief dist_schedule types + OMP_dist_sch_static_chunked = 91, + OMP_dist_sch_static = 92, + /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. + /// Set if the monotonic schedule modifier was present. + OMP_sch_modifier_monotonic = (1 << 29), + /// Set if the nonmonotonic schedule modifier was present. + OMP_sch_modifier_nonmonotonic = (1 << 30), +}; + +enum OpenMPRTLFunction { + /// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, + /// kmpc_micro microtask, ...); + OMPRTL__kmpc_fork_call, + /// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc, + /// kmp_int32 global_tid, void *data, size_t size, void ***cache); + OMPRTL__kmpc_threadprivate_cached, + /// \brief Call to void __kmpc_threadprivate_register( ident_t *, + /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); + OMPRTL__kmpc_threadprivate_register, + // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc); + OMPRTL__kmpc_global_thread_num, + // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + OMPRTL__kmpc_critical, + // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 + // global_tid, kmp_critical_name *crit, uintptr_t hint); + OMPRTL__kmpc_critical_with_hint, + // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + OMPRTL__kmpc_end_critical, + // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_cancel_barrier, + // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_barrier, + // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_for_static_fini, + // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_serialized_parallel, + // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_end_serialized_parallel, + // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_threads); + OMPRTL__kmpc_push_num_threads, + // Call to void __kmpc_flush(ident_t *loc); + OMPRTL__kmpc_flush, + // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_master, + // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_end_master, + // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, + // int end_part); + OMPRTL__kmpc_omp_taskyield, + // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_single, + // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_end_single, + // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, + // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, + // kmp_routine_entry_t *task_entry); + OMPRTL__kmpc_omp_task_alloc, + // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t * + // new_task); + OMPRTL__kmpc_omp_task, + // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, + // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), + // kmp_int32 didit); + OMPRTL__kmpc_copyprivate, + // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void + // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); + OMPRTL__kmpc_reduce, + // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, + // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name + // *lck); + OMPRTL__kmpc_reduce_nowait, + // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + OMPRTL__kmpc_end_reduce, + // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + OMPRTL__kmpc_end_reduce_nowait, + // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t * new_task); + OMPRTL__kmpc_omp_task_begin_if0, + // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t * new_task); + OMPRTL__kmpc_omp_task_complete_if0, + // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_ordered, + // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_end_ordered, + // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_omp_taskwait, + // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_taskgroup, + // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_end_taskgroup, + // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, + // int proc_bind); + OMPRTL__kmpc_push_proc_bind, + // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 + // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t + // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); + OMPRTL__kmpc_omp_task_with_deps, + // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 + // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 + // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); + OMPRTL__kmpc_omp_wait_deps, + // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 cncl_kind); + OMPRTL__kmpc_cancellationpoint, + // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 cncl_kind); + OMPRTL__kmpc_cancel, + // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_teams, kmp_int32 thread_limit); + OMPRTL__kmpc_push_num_teams, + // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro + // microtask, ...); + OMPRTL__kmpc_fork_teams, + // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int + // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int + // sched, kmp_uint64 grainsize, void *task_dup); + OMPRTL__kmpc_taskloop, + // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 + // num_dims, struct kmp_dim *dims); + OMPRTL__kmpc_doacross_init, + // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); + OMPRTL__kmpc_doacross_fini, + // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + OMPRTL__kmpc_doacross_post, + // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + OMPRTL__kmpc_doacross_wait, + + // + // Offloading related calls + // + // Call to int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t + // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t + // *arg_types); + OMPRTL__tgt_target, + // Call to int32_t __tgt_target_teams(int32_t device_id, void *host_ptr, + // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, + // int32_t *arg_types, int32_t num_teams, int32_t thread_limit); + OMPRTL__tgt_target_teams, + // Call to void __tgt_register_lib(__tgt_bin_desc *desc); + OMPRTL__tgt_register_lib, + // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc); + OMPRTL__tgt_unregister_lib, + // Call to void __tgt_target_data_begin(int32_t device_id, int32_t arg_num, + // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); + OMPRTL__tgt_target_data_begin, + // Call to void __tgt_target_data_end(int32_t device_id, int32_t arg_num, + // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); + OMPRTL__tgt_target_data_end, + // Call to void __tgt_target_data_update(int32_t device_id, int32_t arg_num, + // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); + OMPRTL__tgt_target_data_update, +}; + +/// A basic class for pre|post-action for advanced codegen sequence for OpenMP +/// region. +class CleanupTy final : public EHScopeStack::Cleanup { + PrePostActionTy *Action; + +public: + explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {} + void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { + if (!CGF.HaveInsertPoint()) + return; + Action->Exit(CGF); + } +}; + +} // anonymous namespace + +void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const { + CodeGenFunction::RunCleanupsScope Scope(CGF); + if (PrePostAction) { + CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction); + Callback(CodeGen, CGF, *PrePostAction); + } else { + PrePostActionTy Action; + Callback(CodeGen, CGF, Action); + } +} + +LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) { + return CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(getThreadIDVariable()), + getThreadIDVariable()->getType()->castAs<PointerType>()); +} + +void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) { + if (!CGF.HaveInsertPoint()) + return; + // 1.2.2 OpenMP Language Terminology + // Structured block - An executable statement with a single entry at the + // top and a single exit at the bottom. + // The point of exit cannot be a branch out of the structured block. + // longjmp() and throw() must not violate the entry/exit criteria. + CGF.EHStack.pushTerminate(); + CodeGen(CGF); + CGF.EHStack.popTerminate(); +} + +LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue( + CodeGenFunction &CGF) { + return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()), + getThreadIDVariable()->getType(), + AlignmentSource::Decl); +} + +CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM) + : CGM(CGM), OffloadEntriesInfoManager(CGM) { + IdentTy = llvm::StructType::create( + "ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */, + CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */, + CGM.Int8PtrTy /* psource */); + KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8); + + loadOffloadInfoMetadata(); +} + +void CGOpenMPRuntime::clear() { + InternalVars.clear(); +} + +static llvm::Function * +emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty, + const Expr *CombinerInitializer, const VarDecl *In, + const VarDecl *Out, bool IsCombiner) { + // void .omp_combiner.(Ty *in, Ty *out); + auto &C = CGM.getContext(); + QualType PtrTy = C.getPointerType(Ty).withRestrict(); + FunctionArgList Args; + ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(), + /*Id=*/nullptr, PtrTy); + ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(), + /*Id=*/nullptr, PtrTy); + Args.push_back(&OmpOutParm); + Args.push_back(&OmpInParm); + auto &FnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto *FnTy = CGM.getTypes().GetFunctionType(FnInfo); + auto *Fn = llvm::Function::Create( + FnTy, llvm::GlobalValue::InternalLinkage, + IsCombiner ? ".omp_combiner." : ".omp_initializer.", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, FnInfo); + Fn->removeFnAttr(llvm::Attribute::NoInline); + Fn->addFnAttr(llvm::Attribute::AlwaysInline); + CodeGenFunction CGF(CGM); + // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions. + // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions. + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args); + CodeGenFunction::OMPPrivateScope Scope(CGF); + Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm); + Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() -> Address { + return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>()) + .getAddress(); + }); + Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm); + Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() -> Address { + return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>()) + .getAddress(); + }); + (void)Scope.Privatize(); + CGF.EmitIgnoredExpr(CombinerInitializer); + Scope.ForceCleanup(); + CGF.FinishFunction(); + return Fn; +} + +void CGOpenMPRuntime::emitUserDefinedReduction( + CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) { + if (UDRMap.count(D) > 0) + return; + auto &C = CGM.getContext(); + if (!In || !Out) { + In = &C.Idents.get("omp_in"); + Out = &C.Idents.get("omp_out"); + } + llvm::Function *Combiner = emitCombinerOrInitializer( + CGM, D->getType(), D->getCombiner(), cast<VarDecl>(D->lookup(In).front()), + cast<VarDecl>(D->lookup(Out).front()), + /*IsCombiner=*/true); + llvm::Function *Initializer = nullptr; + if (auto *Init = D->getInitializer()) { + if (!Priv || !Orig) { + Priv = &C.Idents.get("omp_priv"); + Orig = &C.Idents.get("omp_orig"); + } + Initializer = emitCombinerOrInitializer( + CGM, D->getType(), Init, cast<VarDecl>(D->lookup(Orig).front()), + cast<VarDecl>(D->lookup(Priv).front()), + /*IsCombiner=*/false); + } + UDRMap.insert(std::make_pair(D, std::make_pair(Combiner, Initializer))); + if (CGF) { + auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn); + Decls.second.push_back(D); + } +} + +std::pair<llvm::Function *, llvm::Function *> +CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) { + auto I = UDRMap.find(D); + if (I != UDRMap.end()) + return I->second; + emitUserDefinedReduction(/*CGF=*/nullptr, D); + return UDRMap.lookup(D); +} + +// Layout information for ident_t. +static CharUnits getIdentAlign(CodeGenModule &CGM) { + return CGM.getPointerAlign(); +} +static CharUnits getIdentSize(CodeGenModule &CGM) { + assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign())); + return CharUnits::fromQuantity(16) + CGM.getPointerSize(); +} +static CharUnits getOffsetOfIdentField(IdentFieldIndex Field) { + // All the fields except the last are i32, so this works beautifully. + return unsigned(Field) * CharUnits::fromQuantity(4); +} +static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr, + IdentFieldIndex Field, + const llvm::Twine &Name = "") { + auto Offset = getOffsetOfIdentField(Field); + return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name); +} + +static llvm::Value *emitParallelOrTeamsOutlinedFunction( + CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS, + const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, + const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) { + assert(ThreadIDVar->getType()->isPointerType() && + "thread id variable must be of type kmp_int32 *"); + CodeGenFunction CGF(CGM, true); + bool HasCancel = false; + if (auto *OPD = dyn_cast<OMPParallelDirective>(&D)) + HasCancel = OPD->hasCancel(); + else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D)) + HasCancel = OPSD->hasCancel(); + else if (auto *OPFD = dyn_cast<OMPParallelForDirective>(&D)) + HasCancel = OPFD->hasCancel(); + CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, + HasCancel, OutlinedHelperName); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + return CGF.GenerateOpenMPCapturedStmtFunction(*CS); +} + +llvm::Value *CGOpenMPRuntime::emitParallelOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { + const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel); + return emitParallelOrTeamsOutlinedFunction( + CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); +} + +llvm::Value *CGOpenMPRuntime::emitTeamsOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { + const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams); + return emitParallelOrTeamsOutlinedFunction( + CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); +} + +llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + const VarDecl *PartIDVar, const VarDecl *TaskTVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, + bool Tied, unsigned &NumberOfParts) { + auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF, + PrePostActionTy &) { + auto *ThreadID = getThreadID(CGF, D.getLocStart()); + auto *UpLoc = emitUpdateLocation(CGF, D.getLocStart()); + llvm::Value *TaskArgs[] = { + UpLoc, ThreadID, + CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar), + TaskTVar->getType()->castAs<PointerType>()) + .getPointer()}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs); + }; + CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar, + UntiedCodeGen); + CodeGen.setAction(Action); + assert(!ThreadIDVar->getType()->isPointerType() && + "thread id variable must be of type kmp_int32 for tasks"); + auto *CS = cast<CapturedStmt>(D.getAssociatedStmt()); + auto *TD = dyn_cast<OMPTaskDirective>(&D); + CodeGenFunction CGF(CGM, true); + CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, + InnermostKind, + TD ? TD->hasCancel() : false, Action); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + auto *Res = CGF.GenerateCapturedStmtFunction(*CS); + if (!Tied) + NumberOfParts = Action.getNumberOfParts(); + return Res; +} + +Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) { + CharUnits Align = getIdentAlign(CGM); + llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags); + if (!Entry) { + if (!DefaultOpenMPPSource) { + // Initialize default location for psource field of ident_t structure of + // all ident_t objects. Format is ";file;function;line;column;;". + // Taken from + // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c + DefaultOpenMPPSource = + CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer(); + DefaultOpenMPPSource = + llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy); + } + + ConstantInitBuilder builder(CGM); + auto fields = builder.beginStruct(IdentTy); + fields.addInt(CGM.Int32Ty, 0); + fields.addInt(CGM.Int32Ty, Flags); + fields.addInt(CGM.Int32Ty, 0); + fields.addInt(CGM.Int32Ty, 0); + fields.add(DefaultOpenMPPSource); + auto DefaultOpenMPLocation = + fields.finishAndCreateGlobal("", Align, /*isConstant*/ true, + llvm::GlobalValue::PrivateLinkage); + DefaultOpenMPLocation->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + + OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation; + } + return Address(Entry, Align); +} + +llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF, + SourceLocation Loc, + unsigned Flags) { + Flags |= OMP_IDENT_KMPC; + // If no debug info is generated - return global default location. + if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo || + Loc.isInvalid()) + return getOrCreateDefaultLocation(Flags).getPointer(); + + assert(CGF.CurFn && "No function in current CodeGenFunction."); + + Address LocValue = Address::invalid(); + auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); + if (I != OpenMPLocThreadIDMap.end()) + LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM)); + + // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if + // GetOpenMPThreadID was called before this routine. + if (!LocValue.isValid()) { + // Generate "ident_t .kmpc_loc.addr;" + Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM), + ".kmpc_loc.addr"); + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + Elem.second.DebugLoc = AI.getPointer(); + LocValue = AI; + + CGBuilderTy::InsertPointGuard IPG(CGF.Builder); + CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt); + CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags), + CGM.getSize(getIdentSize(CGF.CGM))); + } + + // char **psource = &.kmpc_loc_<flags>.addr.psource; + Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource); + + auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding()); + if (OMPDebugLoc == nullptr) { + SmallString<128> Buffer2; + llvm::raw_svector_ostream OS2(Buffer2); + // Build debug location + PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); + OS2 << ";" << PLoc.getFilename() << ";"; + if (const FunctionDecl *FD = + dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) { + OS2 << FD->getQualifiedNameAsString(); + } + OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;"; + OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str()); + OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc; + } + // *psource = ";<File>;<Function>;<Line>;<Column>;;"; + CGF.Builder.CreateStore(OMPDebugLoc, PSource); + + // Our callers always pass this to a runtime function, so for + // convenience, go ahead and return a naked pointer. + return LocValue.getPointer(); +} + +llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF, + SourceLocation Loc) { + assert(CGF.CurFn && "No function in current CodeGenFunction."); + + llvm::Value *ThreadID = nullptr; + // Check whether we've already cached a load of the thread id in this + // function. + auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); + if (I != OpenMPLocThreadIDMap.end()) { + ThreadID = I->second.ThreadID; + if (ThreadID != nullptr) + return ThreadID; + } + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + if (OMPRegionInfo->getThreadIDVariable()) { + // Check if this an outlined function with thread id passed as argument. + auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF); + ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal(); + // If value loaded in entry block, cache it and use it everywhere in + // function. + if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) { + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + Elem.second.ThreadID = ThreadID; + } + return ThreadID; + } + } + + // This is not an outlined function region - need to call __kmpc_int32 + // kmpc_global_thread_num(ident_t *loc). + // Generate thread id value and cache this value for use across the + // function. + CGBuilderTy::InsertPointGuard IPG(CGF.Builder); + CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt); + ThreadID = + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), + emitUpdateLocation(CGF, Loc)); + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + Elem.second.ThreadID = ThreadID; + return ThreadID; +} + +void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) { + assert(CGF.CurFn && "No function in current CodeGenFunction."); + if (OpenMPLocThreadIDMap.count(CGF.CurFn)) + OpenMPLocThreadIDMap.erase(CGF.CurFn); + if (FunctionUDRMap.count(CGF.CurFn) > 0) { + for(auto *D : FunctionUDRMap[CGF.CurFn]) { + UDRMap.erase(D); + } + FunctionUDRMap.erase(CGF.CurFn); + } +} + +llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() { + if (!IdentTy) { + } + return llvm::PointerType::getUnqual(IdentTy); +} + +llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() { + if (!Kmpc_MicroTy) { + // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...) + llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty), + llvm::PointerType::getUnqual(CGM.Int32Ty)}; + Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true); + } + return llvm::PointerType::getUnqual(Kmpc_MicroTy); +} + +llvm::Constant * +CGOpenMPRuntime::createRuntimeFunction(unsigned Function) { + llvm::Constant *RTLFn = nullptr; + switch (static_cast<OpenMPRTLFunction>(Function)) { + case OMPRTL__kmpc_fork_call: { + // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro + // microtask, ...); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + getKmpc_MicroPointerTy()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call"); + break; + } + case OMPRTL__kmpc_global_thread_num: { + // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc); + llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num"); + break; + } + case OMPRTL__kmpc_threadprivate_cached: { + // Build void *__kmpc_threadprivate_cached(ident_t *loc, + // kmp_int32 global_tid, void *data, size_t size, void ***cache); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy, CGM.SizeTy, + CGM.VoidPtrTy->getPointerTo()->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached"); + break; + } + case OMPRTL__kmpc_critical: { + // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical"); + break; + } + case OMPRTL__kmpc_critical_with_hint: { + // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit, uintptr_t hint); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy), + CGM.IntPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint"); + break; + } + case OMPRTL__kmpc_threadprivate_register: { + // Build void __kmpc_threadprivate_register(ident_t *, void *data, + // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); + // typedef void *(*kmpc_ctor)(void *); + auto KmpcCtorTy = + llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, + /*isVarArg*/ false)->getPointerTo(); + // typedef void *(*kmpc_cctor)(void *, void *); + llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto KmpcCopyCtorTy = + llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs, + /*isVarArg*/ false)->getPointerTo(); + // typedef void (*kmpc_dtor)(void *); + auto KmpcDtorTy = + llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false) + ->getPointerTo(); + llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy, + KmpcCopyCtorTy, KmpcDtorTy}; + auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs, + /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register"); + break; + } + case OMPRTL__kmpc_end_critical: { + // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical"); + break; + } + case OMPRTL__kmpc_cancel_barrier: { + // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 + // global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier"); + break; + } + case OMPRTL__kmpc_barrier: { + // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier"); + break; + } + case OMPRTL__kmpc_for_static_fini: { + // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini"); + break; + } + case OMPRTL__kmpc_push_num_threads: { + // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_threads) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads"); + break; + } + case OMPRTL__kmpc_serialized_parallel: { + // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel"); + break; + } + case OMPRTL__kmpc_end_serialized_parallel: { + // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); + break; + } + case OMPRTL__kmpc_flush: { + // Build void __kmpc_flush(ident_t *loc); + llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush"); + break; + } + case OMPRTL__kmpc_master: { + // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master"); + break; + } + case OMPRTL__kmpc_end_master: { + // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master"); + break; + } + case OMPRTL__kmpc_omp_taskyield: { + // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, + // int end_part); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield"); + break; + } + case OMPRTL__kmpc_single: { + // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single"); + break; + } + case OMPRTL__kmpc_end_single: { + // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single"); + break; + } + case OMPRTL__kmpc_omp_task_alloc: { + // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, + // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, + // kmp_routine_entry_t *task_entry); + assert(KmpRoutineEntryPtrTy != nullptr && + "Type kmp_routine_entry_t must be created."); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, + CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy}; + // Return void * and then cast to particular kmp_task_t type. + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc"); + break; + } + case OMPRTL__kmpc_omp_task: { + // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t + // *new_task); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task"); + break; + } + case OMPRTL__kmpc_copyprivate: { + // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, + // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), + // kmp_int32 didit); + llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *CpyFnTy = + llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy, + CGM.VoidPtrTy, CpyFnTy->getPointerTo(), + CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate"); + break; + } + case OMPRTL__kmpc_reduce: { + // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void + // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); + llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, + /*isVarArg=*/false); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, + CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce"); + break; + } + case OMPRTL__kmpc_reduce_nowait: { + // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, + // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name + // *lck); + llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, + /*isVarArg=*/false); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, + CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait"); + break; + } + case OMPRTL__kmpc_end_reduce: { + // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce"); + break; + } + case OMPRTL__kmpc_end_reduce_nowait: { + // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = + CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait"); + break; + } + case OMPRTL__kmpc_omp_task_begin_if0: { + // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t + // *new_task); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = + CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0"); + break; + } + case OMPRTL__kmpc_omp_task_complete_if0: { + // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t + // *new_task); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, + /*Name=*/"__kmpc_omp_task_complete_if0"); + break; + } + case OMPRTL__kmpc_ordered: { + // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered"); + break; + } + case OMPRTL__kmpc_end_ordered: { + // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered"); + break; + } + case OMPRTL__kmpc_omp_taskwait: { + // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait"); + break; + } + case OMPRTL__kmpc_taskgroup: { + // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup"); + break; + } + case OMPRTL__kmpc_end_taskgroup: { + // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup"); + break; + } + case OMPRTL__kmpc_push_proc_bind: { + // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, + // int proc_bind) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind"); + break; + } + case OMPRTL__kmpc_omp_task_with_deps: { + // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, + // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, + CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = + CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps"); + break; + } + case OMPRTL__kmpc_omp_wait_deps: { + // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, + // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, + // kmp_depend_info_t *noalias_dep_list); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int32Ty, CGM.VoidPtrTy, + CGM.Int32Ty, CGM.VoidPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps"); + break; + } + case OMPRTL__kmpc_cancellationpoint: { + // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 cncl_kind) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint"); + break; + } + case OMPRTL__kmpc_cancel: { + // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 cncl_kind) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel"); + break; + } + case OMPRTL__kmpc_push_num_teams: { + // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid, + // kmp_int32 num_teams, kmp_int32 num_threads) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, + CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams"); + break; + } + case OMPRTL__kmpc_fork_teams: { + // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro + // microtask, ...); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + getKmpc_MicroPointerTy()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams"); + break; + } + case OMPRTL__kmpc_taskloop: { + // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int + // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int + // sched, kmp_uint64 grainsize, void *task_dup); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), + CGM.IntTy, + CGM.VoidPtrTy, + CGM.IntTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty, + CGM.IntTy, + CGM.IntTy, + CGM.Int64Ty, + CGM.VoidPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop"); + break; + } + case OMPRTL__kmpc_doacross_init: { + // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 + // num_dims, struct kmp_dim *dims); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), + CGM.Int32Ty, + CGM.Int32Ty, + CGM.VoidPtrTy}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init"); + break; + } + case OMPRTL__kmpc_doacross_fini: { + // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini"); + break; + } + case OMPRTL__kmpc_doacross_post: { + // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int64Ty->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post"); + break; + } + case OMPRTL__kmpc_doacross_wait: { + // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int64Ty->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait"); + break; + } + case OMPRTL__tgt_target: { + // Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t + // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t + // *arg_types); + llvm::Type *TypeParams[] = {CGM.Int32Ty, + CGM.VoidPtrTy, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.SizeTy->getPointerTo(), + CGM.Int32Ty->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target"); + break; + } + case OMPRTL__tgt_target_teams: { + // Build int32_t __tgt_target_teams(int32_t device_id, void *host_ptr, + // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, + // int32_t *arg_types, int32_t num_teams, int32_t thread_limit); + llvm::Type *TypeParams[] = {CGM.Int32Ty, + CGM.VoidPtrTy, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.SizeTy->getPointerTo(), + CGM.Int32Ty->getPointerTo(), + CGM.Int32Ty, + CGM.Int32Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams"); + break; + } + case OMPRTL__tgt_register_lib: { + // Build void __tgt_register_lib(__tgt_bin_desc *desc); + QualType ParamTy = + CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); + llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib"); + break; + } + case OMPRTL__tgt_unregister_lib: { + // Build void __tgt_unregister_lib(__tgt_bin_desc *desc); + QualType ParamTy = + CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); + llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib"); + break; + } + case OMPRTL__tgt_target_data_begin: { + // Build void __tgt_target_data_begin(int32_t device_id, int32_t arg_num, + // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); + llvm::Type *TypeParams[] = {CGM.Int32Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.SizeTy->getPointerTo(), + CGM.Int32Ty->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin"); + break; + } + case OMPRTL__tgt_target_data_end: { + // Build void __tgt_target_data_end(int32_t device_id, int32_t arg_num, + // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); + llvm::Type *TypeParams[] = {CGM.Int32Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.SizeTy->getPointerTo(), + CGM.Int32Ty->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end"); + break; + } + case OMPRTL__tgt_target_data_update: { + // Build void __tgt_target_data_update(int32_t device_id, int32_t arg_num, + // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); + llvm::Type *TypeParams[] = {CGM.Int32Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.SizeTy->getPointerTo(), + CGM.Int32Ty->getPointerTo()}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update"); + break; + } + } + assert(RTLFn && "Unable to find OpenMP runtime function"); + return RTLFn; +} + +llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, + bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4" + : "__kmpc_for_static_init_4u") + : (IVSigned ? "__kmpc_for_static_init_8" + : "__kmpc_for_static_init_8u"); + auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; + auto PtrTy = llvm::PointerType::getUnqual(ITy); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + CGM.Int32Ty, // schedtype + llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter + PtrTy, // p_lower + PtrTy, // p_upper + PtrTy, // p_stride + ITy, // incr + ITy // chunk + }; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, + bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + auto Name = + IVSize == 32 + ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u") + : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u"); + auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; + llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + CGM.Int32Ty, // schedtype + ITy, // lower + ITy, // upper + ITy, // stride + ITy // chunk + }; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, + bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + auto Name = + IVSize == 32 + ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u") + : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u"); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + }; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, + bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + auto Name = + IVSize == 32 + ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u") + : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u"); + auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; + auto PtrTy = llvm::PointerType::getUnqual(ITy); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter + PtrTy, // p_lower + PtrTy, // p_upper + PtrTy // p_stride + }; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant * +CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) { + assert(!CGM.getLangOpts().OpenMPUseTLS || + !CGM.getContext().getTargetInfo().isTLSSupported()); + // Lookup the entry, lazily creating it if necessary. + return getOrCreateInternalVariable(CGM.Int8PtrPtrTy, + Twine(CGM.getMangledName(VD)) + ".cache."); +} + +Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, + const VarDecl *VD, + Address VDAddr, + SourceLocation Loc) { + if (CGM.getLangOpts().OpenMPUseTLS && + CGM.getContext().getTargetInfo().isTLSSupported()) + return VDAddr; + + auto VarTy = VDAddr.getElementType(); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.CreatePointerCast(VDAddr.getPointer(), + CGM.Int8PtrTy), + CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)), + getOrCreateThreadPrivateCache(VD)}; + return Address(CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args), + VDAddr.getAlignment()); +} + +void CGOpenMPRuntime::emitThreadPrivateVarInit( + CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor, + llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) { + // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime + // library. + auto OMPLoc = emitUpdateLocation(CGF, Loc); + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), + OMPLoc); + // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor) + // to register constructor/destructor for variable. + llvm::Value *Args[] = {OMPLoc, + CGF.Builder.CreatePointerCast(VDAddr.getPointer(), + CGM.VoidPtrTy), + Ctor, CopyCtor, Dtor}; + CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args); +} + +llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition( + const VarDecl *VD, Address VDAddr, SourceLocation Loc, + bool PerformInit, CodeGenFunction *CGF) { + if (CGM.getLangOpts().OpenMPUseTLS && + CGM.getContext().getTargetInfo().isTLSSupported()) + return nullptr; + + VD = VD->getDefinition(CGM.getContext()); + if (VD && ThreadPrivateWithDefinition.count(VD) == 0) { + ThreadPrivateWithDefinition.insert(VD); + QualType ASTTy = VD->getType(); + + llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr; + auto Init = VD->getAnyInitializer(); + if (CGM.getLangOpts().CPlusPlus && PerformInit) { + // Generate function that re-emits the declaration's initializer into the + // threadprivate copy of the variable VD + CodeGenFunction CtorCGF(CGM); + FunctionArgList Args; + ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, CGM.getContext().VoidPtrTy); + Args.push_back(&Dst); + + auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( + CGM.getContext().VoidPtrTy, Args); + auto FTy = CGM.getTypes().GetFunctionType(FI); + auto Fn = CGM.CreateGlobalInitOrDestructFunction( + FTy, ".__kmpc_global_ctor_.", FI, Loc); + CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI, + Args, SourceLocation()); + auto ArgVal = CtorCGF.EmitLoadOfScalar( + CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, + CGM.getContext().VoidPtrTy, Dst.getLocation()); + Address Arg = Address(ArgVal, VDAddr.getAlignment()); + Arg = CtorCGF.Builder.CreateElementBitCast(Arg, + CtorCGF.ConvertTypeForMem(ASTTy)); + CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(), + /*IsInitializer=*/true); + ArgVal = CtorCGF.EmitLoadOfScalar( + CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, + CGM.getContext().VoidPtrTy, Dst.getLocation()); + CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue); + CtorCGF.FinishFunction(); + Ctor = Fn; + } + if (VD->getType().isDestructedType() != QualType::DK_none) { + // Generate function that emits destructor call for the threadprivate copy + // of the variable VD + CodeGenFunction DtorCGF(CGM); + FunctionArgList Args; + ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, CGM.getContext().VoidPtrTy); + Args.push_back(&Dst); + + auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( + CGM.getContext().VoidTy, Args); + auto FTy = CGM.getTypes().GetFunctionType(FI); + auto Fn = CGM.CreateGlobalInitOrDestructFunction( + FTy, ".__kmpc_global_dtor_.", FI, Loc); + auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); + DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args, + SourceLocation()); + // Create a scope with an artificial location for the body of this function. + auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); + auto ArgVal = DtorCGF.EmitLoadOfScalar( + DtorCGF.GetAddrOfLocalVar(&Dst), + /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); + DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy, + DtorCGF.getDestroyer(ASTTy.isDestructedType()), + DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); + DtorCGF.FinishFunction(); + Dtor = Fn; + } + // Do not emit init function if it is not required. + if (!Ctor && !Dtor) + return nullptr; + + llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto CopyCtorTy = + llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs, + /*isVarArg=*/false)->getPointerTo(); + // Copying constructor for the threadprivate variable. + // Must be NULL - reserved by runtime, but currently it requires that this + // parameter is always NULL. Otherwise it fires assertion. + CopyCtor = llvm::Constant::getNullValue(CopyCtorTy); + if (Ctor == nullptr) { + auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, + /*isVarArg=*/false)->getPointerTo(); + Ctor = llvm::Constant::getNullValue(CtorTy); + } + if (Dtor == nullptr) { + auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, + /*isVarArg=*/false)->getPointerTo(); + Dtor = llvm::Constant::getNullValue(DtorTy); + } + if (!CGF) { + auto InitFunctionTy = + llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false); + auto InitFunction = CGM.CreateGlobalInitOrDestructFunction( + InitFunctionTy, ".__omp_threadprivate_init_.", + CGM.getTypes().arrangeNullaryFunction()); + CodeGenFunction InitCGF(CGM); + FunctionArgList ArgList; + InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction, + CGM.getTypes().arrangeNullaryFunction(), ArgList, + Loc); + emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); + InitCGF.FinishFunction(); + return InitFunction; + } + emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); + } + return nullptr; +} + +/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen +/// function. Here is the logic: +/// if (Cond) { +/// ThenGen(); +/// } else { +/// ElseGen(); +/// } +void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond, + const RegionCodeGenTy &ThenGen, + const RegionCodeGenTy &ElseGen) { + CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange()); + + // If the condition constant folds and can be elided, try to avoid emitting + // the condition and the dead arm of the if/else. + bool CondConstant; + if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) { + if (CondConstant) + ThenGen(CGF); + else + ElseGen(CGF); + return; + } + + // Otherwise, the condition did not fold, or we couldn't elide it. Just + // emit the conditional branch. + auto ThenBlock = CGF.createBasicBlock("omp_if.then"); + auto ElseBlock = CGF.createBasicBlock("omp_if.else"); + auto ContBlock = CGF.createBasicBlock("omp_if.end"); + CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0); + + // Emit the 'then' code. + CGF.EmitBlock(ThenBlock); + ThenGen(CGF); + CGF.EmitBranch(ContBlock); + // Emit the 'else' code if present. + // There is no need to emit line number for unconditional branch. + (void)ApplyDebugLocation::CreateEmpty(CGF); + CGF.EmitBlock(ElseBlock); + ElseGen(CGF); + // There is no need to emit line number for unconditional branch. + (void)ApplyDebugLocation::CreateEmpty(CGF); + CGF.EmitBranch(ContBlock); + // Emit the continuation block for code after the if. + CGF.EmitBlock(ContBlock, /*IsFinished=*/true); +} + +void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, + llvm::Value *OutlinedFn, + ArrayRef<llvm::Value *> CapturedVars, + const Expr *IfCond) { + if (!CGF.HaveInsertPoint()) + return; + auto *RTLoc = emitUpdateLocation(CGF, Loc); + auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF, + PrePostActionTy &) { + // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn); + auto &RT = CGF.CGM.getOpenMPRuntime(); + llvm::Value *Args[] = { + RTLoc, + CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars + CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())}; + llvm::SmallVector<llvm::Value *, 16> RealArgs; + RealArgs.append(std::begin(Args), std::end(Args)); + RealArgs.append(CapturedVars.begin(), CapturedVars.end()); + + auto RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call); + CGF.EmitRuntimeCall(RTLFn, RealArgs); + }; + auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF, + PrePostActionTy &) { + auto &RT = CGF.CGM.getOpenMPRuntime(); + auto ThreadID = RT.getThreadID(CGF, Loc); + // Build calls: + // __kmpc_serialized_parallel(&Loc, GTid); + llvm::Value *Args[] = {RTLoc, ThreadID}; + CGF.EmitRuntimeCall( + RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args); + + // OutlinedFn(>id, &zero, CapturedStruct); + auto ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc); + Address ZeroAddr = + CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4), + /*Name*/ ".zero.addr"); + CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); + llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; + OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); + OutlinedFnArgs.push_back(ZeroAddr.getPointer()); + OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); + CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs); + + // __kmpc_end_serialized_parallel(&Loc, GTid); + llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID}; + CGF.EmitRuntimeCall( + RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel), + EndArgs); + }; + if (IfCond) + emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); + else { + RegionCodeGenTy ThenRCG(ThenGen); + ThenRCG(CGF); + } +} + +// If we're inside an (outlined) parallel region, use the region info's +// thread-ID variable (it is passed in a first argument of the outlined function +// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in +// regular serial code region, get thread ID by calling kmp_int32 +// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and +// return the address of that temp. +Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF, + SourceLocation Loc) { + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + if (OMPRegionInfo->getThreadIDVariable()) + return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(); + + auto ThreadID = getThreadID(CGF, Loc); + auto Int32Ty = + CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true); + auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp."); + CGF.EmitStoreOfScalar(ThreadID, + CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty)); + + return ThreadIDTemp; +} + +llvm::Constant * +CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty, + const llvm::Twine &Name) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + Out << Name; + auto RuntimeName = Out.str(); + auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first; + if (Elem.second) { + assert(Elem.second->getType()->getPointerElementType() == Ty && + "OMP internal variable has different type than requested"); + return &*Elem.second; + } + + return Elem.second = new llvm::GlobalVariable( + CGM.getModule(), Ty, /*IsConstant*/ false, + llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), + Elem.first()); +} + +llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) { + llvm::Twine Name(".gomp_critical_user_", CriticalName); + return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var")); +} + +namespace { +/// Common pre(post)-action for different OpenMP constructs. +class CommonActionTy final : public PrePostActionTy { + llvm::Value *EnterCallee; + ArrayRef<llvm::Value *> EnterArgs; + llvm::Value *ExitCallee; + ArrayRef<llvm::Value *> ExitArgs; + bool Conditional; + llvm::BasicBlock *ContBlock = nullptr; + +public: + CommonActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs, + llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs, + bool Conditional = false) + : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), + ExitArgs(ExitArgs), Conditional(Conditional) {} + void Enter(CodeGenFunction &CGF) override { + llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); + if (Conditional) { + llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); + auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); + ContBlock = CGF.createBasicBlock("omp_if.end"); + // Generate the branch (If-stmt) + CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); + CGF.EmitBlock(ThenBlock); + } + } + void Done(CodeGenFunction &CGF) { + // Emit the rest of blocks/branches + CGF.EmitBranch(ContBlock); + CGF.EmitBlock(ContBlock, true); + } + void Exit(CodeGenFunction &CGF) override { + CGF.EmitRuntimeCall(ExitCallee, ExitArgs); + } +}; +} // anonymous namespace + +void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF, + StringRef CriticalName, + const RegionCodeGenTy &CriticalOpGen, + SourceLocation Loc, const Expr *Hint) { + // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]); + // CriticalOpGen(); + // __kmpc_end_critical(ident_t *, gtid, Lock); + // Prepare arguments and build a call to __kmpc_critical + if (!CGF.HaveInsertPoint()) + return; + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + getCriticalRegionLock(CriticalName)}; + llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), + std::end(Args)); + if (Hint) { + EnterArgs.push_back(CGF.Builder.CreateIntCast( + CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false)); + } + CommonActionTy Action( + createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint + : OMPRTL__kmpc_critical), + EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args); + CriticalOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen); +} + +void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &MasterOpGen, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // if(__kmpc_master(ident_t *, gtid)) { + // MasterOpGen(); + // __kmpc_end_master(ident_t *, gtid); + // } + // Prepare arguments and build a call to __kmpc_master + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args, + createRuntimeFunction(OMPRTL__kmpc_end_master), Args, + /*Conditional=*/true); + MasterOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_master, MasterOpGen); + Action.Done(CGF); +} + +void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call __kmpc_omp_taskyield(loc, thread_id, 0); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args); + if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + Region->emitUntiedSwitch(CGF); +} + +void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &TaskgroupOpGen, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // __kmpc_taskgroup(ident_t *, gtid); + // TaskgroupOpGen(); + // __kmpc_end_taskgroup(ident_t *, gtid); + // Prepare arguments and build a call to __kmpc_taskgroup + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args, + createRuntimeFunction(OMPRTL__kmpc_end_taskgroup), + Args); + TaskgroupOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen); +} + +/// Given an array of pointers to variables, project the address of a +/// given variable. +static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array, + unsigned Index, const VarDecl *Var) { + // Pull out the pointer to the variable. + Address PtrAddr = + CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize()); + llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr); + + Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var)); + Addr = CGF.Builder.CreateElementBitCast( + Addr, CGF.ConvertTypeForMem(Var->getType())); + return Addr; +} + +static llvm::Value *emitCopyprivateCopyFunction( + CodeGenModule &CGM, llvm::Type *ArgsType, + ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs, + ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) { + auto &C = CGM.getContext(); + // void copy_func(void *LHSArg, void *RHSArg); + FunctionArgList Args; + ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, + C.VoidPtrTy); + ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, + C.VoidPtrTy); + Args.push_back(&LHSArg); + Args.push_back(&RHSArg); + auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto *Fn = llvm::Function::Create( + CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, + ".omp.copyprivate.copy_func", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); + // Dest = (void*[n])(LHSArg); + // Src = (void*[n])(RHSArg); + Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), + ArgsType), CGF.getPointerAlign()); + Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), + ArgsType), CGF.getPointerAlign()); + // *(Type0*)Dst[0] = *(Type0*)Src[0]; + // *(Type1*)Dst[1] = *(Type1*)Src[1]; + // ... + // *(Typen*)Dst[n] = *(Typen*)Src[n]; + for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) { + auto DestVar = cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl()); + Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar); + + auto SrcVar = cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl()); + Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar); + + auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl(); + QualType Type = VD->getType(); + CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]); + } + CGF.FinishFunction(); + return Fn; +} + +void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &SingleOpGen, + SourceLocation Loc, + ArrayRef<const Expr *> CopyprivateVars, + ArrayRef<const Expr *> SrcExprs, + ArrayRef<const Expr *> DstExprs, + ArrayRef<const Expr *> AssignmentOps) { + if (!CGF.HaveInsertPoint()) + return; + assert(CopyprivateVars.size() == SrcExprs.size() && + CopyprivateVars.size() == DstExprs.size() && + CopyprivateVars.size() == AssignmentOps.size()); + auto &C = CGM.getContext(); + // int32 did_it = 0; + // if(__kmpc_single(ident_t *, gtid)) { + // SingleOpGen(); + // __kmpc_end_single(ident_t *, gtid); + // did_it = 1; + // } + // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, + // <copy_func>, did_it); + + Address DidIt = Address::invalid(); + if (!CopyprivateVars.empty()) { + // int32 did_it = 0; + auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); + DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it"); + CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt); + } + // Prepare arguments and build a call to __kmpc_single + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args, + createRuntimeFunction(OMPRTL__kmpc_end_single), Args, + /*Conditional=*/true); + SingleOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_single, SingleOpGen); + if (DidIt.isValid()) { + // did_it = 1; + CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt); + } + Action.Done(CGF); + // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, + // <copy_func>, did_it); + if (DidIt.isValid()) { + llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size()); + auto CopyprivateArrayTy = + C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, + /*IndexTypeQuals=*/0); + // Create a list of all private variables for copyprivate. + Address CopyprivateList = + CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list"); + for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) { + Address Elem = CGF.Builder.CreateConstArrayGEP( + CopyprivateList, I, CGF.getPointerSize()); + CGF.Builder.CreateStore( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy), + Elem); + } + // Build function that copies private values from single region to all other + // threads in the corresponding parallel region. + auto *CpyFn = emitCopyprivateCopyFunction( + CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(), + CopyprivateVars, SrcExprs, DstExprs, AssignmentOps); + auto *BufSize = CGF.getTypeSize(CopyprivateArrayTy); + Address CL = + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList, + CGF.VoidPtrTy); + auto *DidItVal = CGF.Builder.CreateLoad(DidIt); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), // ident_t *<loc> + getThreadID(CGF, Loc), // i32 <gtid> + BufSize, // size_t <buf_size> + CL.getPointer(), // void *<copyprivate list> + CpyFn, // void (*) (void *, void *) <copy_func> + DidItVal // i32 did_it + }; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args); + } +} + +void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &OrderedOpGen, + SourceLocation Loc, bool IsThreads) { + if (!CGF.HaveInsertPoint()) + return; + // __kmpc_ordered(ident_t *, gtid); + // OrderedOpGen(); + // __kmpc_end_ordered(ident_t *, gtid); + // Prepare arguments and build a call to __kmpc_ordered + if (IsThreads) { + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args, + createRuntimeFunction(OMPRTL__kmpc_end_ordered), + Args); + OrderedOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); + return; + } + emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); +} + +void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDirectiveKind Kind, bool EmitChecks, + bool ForceSimpleCall) { + if (!CGF.HaveInsertPoint()) + return; + // Build call __kmpc_cancel_barrier(loc, thread_id); + // Build call __kmpc_barrier(loc, thread_id); + unsigned Flags; + if (Kind == OMPD_for) + Flags = OMP_IDENT_BARRIER_IMPL_FOR; + else if (Kind == OMPD_sections) + Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS; + else if (Kind == OMPD_single) + Flags = OMP_IDENT_BARRIER_IMPL_SINGLE; + else if (Kind == OMPD_barrier) + Flags = OMP_IDENT_BARRIER_EXPL; + else + Flags = OMP_IDENT_BARRIER_IMPL; + // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc, + // thread_id); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), + getThreadID(CGF, Loc)}; + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) { + auto *Result = CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args); + if (EmitChecks) { + // if (__kmpc_cancel_barrier()) { + // exit from construct; + // } + auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); + auto *ContBB = CGF.createBasicBlock(".cancel.continue"); + auto *Cmp = CGF.Builder.CreateIsNotNull(Result); + CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); + CGF.EmitBlock(ExitBB); + // exit from construct; + auto CancelDestination = + CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); + CGF.EmitBranchThroughCleanup(CancelDestination); + CGF.EmitBlock(ContBB, /*IsFinished=*/true); + } + return; + } + } + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args); +} + +/// \brief Map the OpenMP loop schedule to the runtime enumeration. +static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind, + bool Chunked, bool Ordered) { + switch (ScheduleKind) { + case OMPC_SCHEDULE_static: + return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked) + : (Ordered ? OMP_ord_static : OMP_sch_static); + case OMPC_SCHEDULE_dynamic: + return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked; + case OMPC_SCHEDULE_guided: + return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked; + case OMPC_SCHEDULE_runtime: + return Ordered ? OMP_ord_runtime : OMP_sch_runtime; + case OMPC_SCHEDULE_auto: + return Ordered ? OMP_ord_auto : OMP_sch_auto; + case OMPC_SCHEDULE_unknown: + assert(!Chunked && "chunk was specified but schedule kind not known"); + return Ordered ? OMP_ord_static : OMP_sch_static; + } + llvm_unreachable("Unexpected runtime schedule"); +} + +/// \brief Map the OpenMP distribute schedule to the runtime enumeration. +static OpenMPSchedType +getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) { + // only static is allowed for dist_schedule + return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static; +} + +bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind, + bool Chunked) const { + auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); + return Schedule == OMP_sch_static; +} + +bool CGOpenMPRuntime::isStaticNonchunked( + OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { + auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked); + return Schedule == OMP_dist_sch_static; +} + + +bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const { + auto Schedule = + getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false); + assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here"); + return Schedule != OMP_sch_static; +} + +static int addMonoNonMonoModifier(OpenMPSchedType Schedule, + OpenMPScheduleClauseModifier M1, + OpenMPScheduleClauseModifier M2) { + int Modifier = 0; + switch (M1) { + case OMPC_SCHEDULE_MODIFIER_monotonic: + Modifier = OMP_sch_modifier_monotonic; + break; + case OMPC_SCHEDULE_MODIFIER_nonmonotonic: + Modifier = OMP_sch_modifier_nonmonotonic; + break; + case OMPC_SCHEDULE_MODIFIER_simd: + if (Schedule == OMP_sch_static_chunked) + Schedule = OMP_sch_static_balanced_chunked; + break; + case OMPC_SCHEDULE_MODIFIER_last: + case OMPC_SCHEDULE_MODIFIER_unknown: + break; + } + switch (M2) { + case OMPC_SCHEDULE_MODIFIER_monotonic: + Modifier = OMP_sch_modifier_monotonic; + break; + case OMPC_SCHEDULE_MODIFIER_nonmonotonic: + Modifier = OMP_sch_modifier_nonmonotonic; + break; + case OMPC_SCHEDULE_MODIFIER_simd: + if (Schedule == OMP_sch_static_chunked) + Schedule = OMP_sch_static_balanced_chunked; + break; + case OMPC_SCHEDULE_MODIFIER_last: + case OMPC_SCHEDULE_MODIFIER_unknown: + break; + } + return Schedule | Modifier; +} + +void CGOpenMPRuntime::emitForDispatchInit( + CodeGenFunction &CGF, SourceLocation Loc, + const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, + bool Ordered, const DispatchRTInput &DispatchValues) { + if (!CGF.HaveInsertPoint()) + return; + OpenMPSchedType Schedule = getRuntimeSchedule( + ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered); + assert(Ordered || + (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && + Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && + Schedule != OMP_sch_static_balanced_chunked)); + // Call __kmpc_dispatch_init( + // ident_t *loc, kmp_int32 tid, kmp_int32 schedule, + // kmp_int[32|64] lower, kmp_int[32|64] upper, + // kmp_int[32|64] stride, kmp_int[32|64] chunk); + + // If the Chunk was not specified in the clause - use default value 1. + llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk + : CGF.Builder.getIntN(IVSize, 1); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.getInt32(addMonoNonMonoModifier( + Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type + DispatchValues.LB, // Lower + DispatchValues.UB, // Upper + CGF.Builder.getIntN(IVSize, 1), // Stride + Chunk // Chunk + }; + CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args); +} + +static void emitForStaticInitCall( + CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId, + llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule, + OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, + unsigned IVSize, bool Ordered, Address IL, Address LB, Address UB, + Address ST, llvm::Value *Chunk) { + if (!CGF.HaveInsertPoint()) + return; + + assert(!Ordered); + assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || + Schedule == OMP_sch_static_balanced_chunked || + Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || + Schedule == OMP_dist_sch_static || + Schedule == OMP_dist_sch_static_chunked); + + // Call __kmpc_for_static_init( + // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype, + // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower, + // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride, + // kmp_int[32|64] incr, kmp_int[32|64] chunk); + if (Chunk == nullptr) { + assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static || + Schedule == OMP_dist_sch_static) && + "expected static non-chunked schedule"); + // If the Chunk was not specified in the clause - use default value 1. + Chunk = CGF.Builder.getIntN(IVSize, 1); + } else { + assert((Schedule == OMP_sch_static_chunked || + Schedule == OMP_sch_static_balanced_chunked || + Schedule == OMP_ord_static_chunked || + Schedule == OMP_dist_sch_static_chunked) && + "expected static chunked schedule"); + } + llvm::Value *Args[] = { + UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier( + Schedule, M1, M2)), // Schedule type + IL.getPointer(), // &isLastIter + LB.getPointer(), // &LB + UB.getPointer(), // &UB + ST.getPointer(), // &Stride + CGF.Builder.getIntN(IVSize, 1), // Incr + Chunk // Chunk + }; + CGF.EmitRuntimeCall(ForStaticInitFunction, Args); +} + +void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF, + SourceLocation Loc, + const OpenMPScheduleTy &ScheduleKind, + unsigned IVSize, bool IVSigned, + bool Ordered, Address IL, Address LB, + Address UB, Address ST, + llvm::Value *Chunk) { + OpenMPSchedType ScheduleNum = + getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered); + auto *UpdatedLocation = emitUpdateLocation(CGF, Loc); + auto *ThreadId = getThreadID(CGF, Loc); + auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned); + emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, + ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, IVSize, + Ordered, IL, LB, UB, ST, Chunk); +} + +void CGOpenMPRuntime::emitDistributeStaticInit( + CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDistScheduleClauseKind SchedKind, unsigned IVSize, bool IVSigned, + bool Ordered, Address IL, Address LB, Address UB, Address ST, + llvm::Value *Chunk) { + OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Chunk != nullptr); + auto *UpdatedLocation = emitUpdateLocation(CGF, Loc); + auto *ThreadId = getThreadID(CGF, Loc); + auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned); + emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, + ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown, + OMPC_SCHEDULE_MODIFIER_unknown, IVSize, Ordered, IL, LB, + UB, ST, Chunk); +} + +void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini), + Args); +} + +void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, + SourceLocation Loc, + unsigned IVSize, + bool IVSigned) { + if (!CGF.HaveInsertPoint()) + return; + // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args); +} + +llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF, + SourceLocation Loc, unsigned IVSize, + bool IVSigned, Address IL, + Address LB, Address UB, + Address ST) { + // Call __kmpc_dispatch_next( + // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter, + // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper, + // kmp_int[32|64] *p_stride); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), + getThreadID(CGF, Loc), + IL.getPointer(), // &isLastIter + LB.getPointer(), // &Lower + UB.getPointer(), // &Upper + ST.getPointer() // &Stride + }; + llvm::Value *Call = + CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args); + return CGF.EmitScalarConversion( + Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true), + CGF.getContext().BoolTy, Loc); +} + +void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF, + llvm::Value *NumThreads, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads) + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads), + Args); +} + +void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF, + OpenMPProcBindClauseKind ProcBind, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Constants for proc bind value accepted by the runtime. + enum ProcBindTy { + ProcBindFalse = 0, + ProcBindTrue, + ProcBindMaster, + ProcBindClose, + ProcBindSpread, + ProcBindIntel, + ProcBindDefault + } RuntimeProcBind; + switch (ProcBind) { + case OMPC_PROC_BIND_master: + RuntimeProcBind = ProcBindMaster; + break; + case OMPC_PROC_BIND_close: + RuntimeProcBind = ProcBindClose; + break; + case OMPC_PROC_BIND_spread: + RuntimeProcBind = ProcBindSpread; + break; + case OMPC_PROC_BIND_unknown: + llvm_unreachable("Unsupported proc_bind value."); + } + // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind) + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args); +} + +void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call void __kmpc_flush(ident_t *loc) + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush), + emitUpdateLocation(CGF, Loc)); +} + +namespace { +/// \brief Indexes of fields for type kmp_task_t. +enum KmpTaskTFields { + /// \brief List of shared variables. + KmpTaskTShareds, + /// \brief Task routine. + KmpTaskTRoutine, + /// \brief Partition id for the untied tasks. + KmpTaskTPartId, + /// Function with call of destructors for private variables. + Data1, + /// Task priority. + Data2, + /// (Taskloops only) Lower bound. + KmpTaskTLowerBound, + /// (Taskloops only) Upper bound. + KmpTaskTUpperBound, + /// (Taskloops only) Stride. + KmpTaskTStride, + /// (Taskloops only) Is last iteration flag. + KmpTaskTLastIter, +}; +} // anonymous namespace + +bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const { + // FIXME: Add other entries type when they become supported. + return OffloadEntriesTargetRegion.empty(); +} + +/// \brief Initialize target region entry. +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: + initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, + StringRef ParentName, unsigned LineNum, + unsigned Order) { + assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " + "only required for the device " + "code generation."); + OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = + OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, + /*Flags=*/0); + ++OffloadingEntriesNum; +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: + registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, + StringRef ParentName, unsigned LineNum, + llvm::Constant *Addr, llvm::Constant *ID, + int32_t Flags) { + // If we are emitting code for a target, the entry is already initialized, + // only has to be registered. + if (CGM.getLangOpts().OpenMPIsDevice) { + assert(hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) && + "Entry must exist."); + auto &Entry = + OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum]; + assert(Entry.isValid() && "Entry not initialized!"); + Entry.setAddress(Addr); + Entry.setID(ID); + Entry.setFlags(Flags); + return; + } else { + OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum++, Addr, ID, Flags); + OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry; + } +} + +bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo( + unsigned DeviceID, unsigned FileID, StringRef ParentName, + unsigned LineNum) const { + auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID); + if (PerDevice == OffloadEntriesTargetRegion.end()) + return false; + auto PerFile = PerDevice->second.find(FileID); + if (PerFile == PerDevice->second.end()) + return false; + auto PerParentName = PerFile->second.find(ParentName); + if (PerParentName == PerFile->second.end()) + return false; + auto PerLine = PerParentName->second.find(LineNum); + if (PerLine == PerParentName->second.end()) + return false; + // Fail if this entry is already registered. + if (PerLine->second.getAddress() || PerLine->second.getID()) + return false; + return true; +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo( + const OffloadTargetRegionEntryInfoActTy &Action) { + // Scan all target region entries and perform the provided action. + for (auto &D : OffloadEntriesTargetRegion) + for (auto &F : D.second) + for (auto &P : F.second) + for (auto &L : P.second) + Action(D.first, F.first, P.first(), L.first, L.second); +} + +/// \brief Create a Ctor/Dtor-like function whose body is emitted through +/// \a Codegen. This is used to emit the two functions that register and +/// unregister the descriptor of the current compilation unit. +static llvm::Function * +createOffloadingBinaryDescriptorFunction(CodeGenModule &CGM, StringRef Name, + const RegionCodeGenTy &Codegen) { + auto &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl DummyPtr(C, /*DC=*/nullptr, SourceLocation(), + /*Id=*/nullptr, C.VoidPtrTy); + Args.push_back(&DummyPtr); + + CodeGenFunction CGF(CGM); + auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto FTy = CGM.getTypes().GetFunctionType(FI); + auto *Fn = + CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, SourceLocation()); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FI, Args, SourceLocation()); + Codegen(CGF); + CGF.FinishFunction(); + return Fn; +} + +llvm::Function * +CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() { + + // If we don't have entries or if we are emitting code for the device, we + // don't need to do anything. + if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty()) + return nullptr; + + auto &M = CGM.getModule(); + auto &C = CGM.getContext(); + + // Get list of devices we care about + auto &Devices = CGM.getLangOpts().OMPTargetTriples; + + // We should be creating an offloading descriptor only if there are devices + // specified. + assert(!Devices.empty() && "No OpenMP offloading devices??"); + + // Create the external variables that will point to the begin and end of the + // host entries section. These will be defined by the linker. + auto *OffloadEntryTy = + CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()); + llvm::GlobalVariable *HostEntriesBegin = new llvm::GlobalVariable( + M, OffloadEntryTy, /*isConstant=*/true, + llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, + ".omp_offloading.entries_begin"); + llvm::GlobalVariable *HostEntriesEnd = new llvm::GlobalVariable( + M, OffloadEntryTy, /*isConstant=*/true, + llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, + ".omp_offloading.entries_end"); + + // Create all device images + auto *DeviceImageTy = cast<llvm::StructType>( + CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy())); + ConstantInitBuilder DeviceImagesBuilder(CGM); + auto DeviceImagesEntries = DeviceImagesBuilder.beginArray(DeviceImageTy); + + for (unsigned i = 0; i < Devices.size(); ++i) { + StringRef T = Devices[i].getTriple(); + auto *ImgBegin = new llvm::GlobalVariable( + M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, + /*Initializer=*/nullptr, + Twine(".omp_offloading.img_start.") + Twine(T)); + auto *ImgEnd = new llvm::GlobalVariable( + M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, + /*Initializer=*/nullptr, Twine(".omp_offloading.img_end.") + Twine(T)); + + auto Dev = DeviceImagesEntries.beginStruct(DeviceImageTy); + Dev.add(ImgBegin); + Dev.add(ImgEnd); + Dev.add(HostEntriesBegin); + Dev.add(HostEntriesEnd); + Dev.finishAndAddTo(DeviceImagesEntries); + } + + // Create device images global array. + llvm::GlobalVariable *DeviceImages = + DeviceImagesEntries.finishAndCreateGlobal(".omp_offloading.device_images", + CGM.getPointerAlign(), + /*isConstant=*/true); + DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + + // This is a Zero array to be used in the creation of the constant expressions + llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty), + llvm::Constant::getNullValue(CGM.Int32Ty)}; + + // Create the target region descriptor. + auto *BinaryDescriptorTy = cast<llvm::StructType>( + CGM.getTypes().ConvertTypeForMem(getTgtBinaryDescriptorQTy())); + ConstantInitBuilder DescBuilder(CGM); + auto DescInit = DescBuilder.beginStruct(BinaryDescriptorTy); + DescInit.addInt(CGM.Int32Ty, Devices.size()); + DescInit.add(llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(), + DeviceImages, + Index)); + DescInit.add(HostEntriesBegin); + DescInit.add(HostEntriesEnd); + + auto *Desc = DescInit.finishAndCreateGlobal(".omp_offloading.descriptor", + CGM.getPointerAlign(), + /*isConstant=*/true); + + // Emit code to register or unregister the descriptor at execution + // startup or closing, respectively. + + // Create a variable to drive the registration and unregistration of the + // descriptor, so we can reuse the logic that emits Ctors and Dtors. + auto *IdentInfo = &C.Idents.get(".omp_offloading.reg_unreg_var"); + ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), SourceLocation(), + IdentInfo, C.CharTy); + + auto *UnRegFn = createOffloadingBinaryDescriptorFunction( + CGM, ".omp_offloading.descriptor_unreg", + [&](CodeGenFunction &CGF, PrePostActionTy &) { + CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_unregister_lib), + Desc); + }); + auto *RegFn = createOffloadingBinaryDescriptorFunction( + CGM, ".omp_offloading.descriptor_reg", + [&](CodeGenFunction &CGF, PrePostActionTy &) { + CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_register_lib), + Desc); + CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc); + }); + return RegFn; +} + +void CGOpenMPRuntime::createOffloadEntry(llvm::Constant *ID, + llvm::Constant *Addr, uint64_t Size, + int32_t Flags) { + StringRef Name = Addr->getName(); + auto *TgtOffloadEntryType = cast<llvm::StructType>( + CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy())); + llvm::LLVMContext &C = CGM.getModule().getContext(); + llvm::Module &M = CGM.getModule(); + + // Make sure the address has the right type. + llvm::Constant *AddrPtr = llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy); + + // Create constant string with the name. + llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name); + + llvm::GlobalVariable *Str = + new llvm::GlobalVariable(M, StrPtrInit->getType(), /*isConstant=*/true, + llvm::GlobalValue::InternalLinkage, StrPtrInit, + ".omp_offloading.entry_name"); + Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + llvm::Constant *StrPtr = llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy); + + // We can't have any padding between symbols, so we need to have 1-byte + // alignment. + auto Align = CharUnits::fromQuantity(1); + + // Create the entry struct. + ConstantInitBuilder EntryBuilder(CGM); + auto EntryInit = EntryBuilder.beginStruct(TgtOffloadEntryType); + EntryInit.add(AddrPtr); + EntryInit.add(StrPtr); + EntryInit.addInt(CGM.SizeTy, Size); + EntryInit.addInt(CGM.Int32Ty, Flags); + EntryInit.addInt(CGM.Int32Ty, 0); + llvm::GlobalVariable *Entry = + EntryInit.finishAndCreateGlobal(".omp_offloading.entry", + Align, + /*constant*/ true, + llvm::GlobalValue::ExternalLinkage); + + // The entry has to be created in the section the linker expects it to be. + Entry->setSection(".omp_offloading.entries"); +} + +void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() { + // Emit the offloading entries and metadata so that the device codegen side + // can easily figure out what to emit. The produced metadata looks like + // this: + // + // !omp_offload.info = !{!1, ...} + // + // Right now we only generate metadata for function that contain target + // regions. + + // If we do not have entries, we dont need to do anything. + if (OffloadEntriesInfoManager.empty()) + return; + + llvm::Module &M = CGM.getModule(); + llvm::LLVMContext &C = M.getContext(); + SmallVector<OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16> + OrderedEntries(OffloadEntriesInfoManager.size()); + + // Create the offloading info metadata node. + llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); + + // Auxiliary methods to create metadata values and strings. + auto getMDInt = [&](unsigned v) { + return llvm::ConstantAsMetadata::get( + llvm::ConstantInt::get(llvm::Type::getInt32Ty(C), v)); + }; + + auto getMDString = [&](StringRef v) { return llvm::MDString::get(C, v); }; + + // Create function that emits metadata for each target region entry; + auto &&TargetRegionMetadataEmitter = [&]( + unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line, + OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) { + llvm::SmallVector<llvm::Metadata *, 32> Ops; + // Generate metadata for target regions. Each entry of this metadata + // contains: + // - Entry 0 -> Kind of this type of metadata (0). + // - Entry 1 -> Device ID of the file where the entry was identified. + // - Entry 2 -> File ID of the file where the entry was identified. + // - Entry 3 -> Mangled name of the function where the entry was identified. + // - Entry 4 -> Line in the file where the entry was identified. + // - Entry 5 -> Order the entry was created. + // The first element of the metadata node is the kind. + Ops.push_back(getMDInt(E.getKind())); + Ops.push_back(getMDInt(DeviceID)); + Ops.push_back(getMDInt(FileID)); + Ops.push_back(getMDString(ParentName)); + Ops.push_back(getMDInt(Line)); + Ops.push_back(getMDInt(E.getOrder())); + + // Save this entry in the right position of the ordered entries array. + OrderedEntries[E.getOrder()] = &E; + + // Add metadata to the named metadata node. + MD->addOperand(llvm::MDNode::get(C, Ops)); + }; + + OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( + TargetRegionMetadataEmitter); + + for (auto *E : OrderedEntries) { + assert(E && "All ordered entries must exist!"); + if (auto *CE = + dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>( + E)) { + assert(CE->getID() && CE->getAddress() && + "Entry ID and Addr are invalid!"); + createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0); + } else + llvm_unreachable("Unsupported entry kind."); + } +} + +/// \brief Loads all the offload entries information from the host IR +/// metadata. +void CGOpenMPRuntime::loadOffloadInfoMetadata() { + // If we are in target mode, load the metadata from the host IR. This code has + // to match the metadaata creation in createOffloadEntriesAndInfoMetadata(). + + if (!CGM.getLangOpts().OpenMPIsDevice) + return; + + if (CGM.getLangOpts().OMPHostIRFile.empty()) + return; + + auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile); + if (Buf.getError()) + return; + + llvm::LLVMContext C; + auto ME = expectedToErrorOrAndEmitErrors( + C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C)); + + if (ME.getError()) + return; + + llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info"); + if (!MD) + return; + + for (auto I : MD->operands()) { + llvm::MDNode *MN = cast<llvm::MDNode>(I); + + auto getMDInt = [&](unsigned Idx) { + llvm::ConstantAsMetadata *V = + cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx)); + return cast<llvm::ConstantInt>(V->getValue())->getZExtValue(); + }; + + auto getMDString = [&](unsigned Idx) { + llvm::MDString *V = cast<llvm::MDString>(MN->getOperand(Idx)); + return V->getString(); + }; + + switch (getMDInt(0)) { + default: + llvm_unreachable("Unexpected metadata!"); + break; + case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: + OFFLOAD_ENTRY_INFO_TARGET_REGION: + OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( + /*DeviceID=*/getMDInt(1), /*FileID=*/getMDInt(2), + /*ParentName=*/getMDString(3), /*Line=*/getMDInt(4), + /*Order=*/getMDInt(5)); + break; + } + } +} + +void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) { + if (!KmpRoutineEntryPtrTy) { + // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type. + auto &C = CGM.getContext(); + QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy}; + FunctionProtoType::ExtProtoInfo EPI; + KmpRoutineEntryPtrQTy = C.getPointerType( + C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI)); + KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy); + } +} + +static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC, + QualType FieldTy) { + auto *Field = FieldDecl::Create( + C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy, + C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()), + /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); + Field->setAccess(AS_public); + DC->addDecl(Field); + return Field; +} + +QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() { + + // Make sure the type of the entry is already created. This is the type we + // have to create: + // struct __tgt_offload_entry{ + // void *addr; // Pointer to the offload entry info. + // // (function or global) + // char *name; // Name of the function or global. + // size_t size; // Size of the entry info (0 if it a function). + // int32_t flags; // Flags associated with the entry, e.g. 'link'. + // int32_t reserved; // Reserved, to use by the runtime library. + // }; + if (TgtOffloadEntryQTy.isNull()) { + ASTContext &C = CGM.getContext(); + auto *RD = C.buildImplicitRecord("__tgt_offload_entry"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy)); + addFieldToRecordDecl(C, RD, C.getSizeType()); + addFieldToRecordDecl( + C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); + addFieldToRecordDecl( + C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); + RD->completeDefinition(); + TgtOffloadEntryQTy = C.getRecordType(RD); + } + return TgtOffloadEntryQTy; +} + +QualType CGOpenMPRuntime::getTgtDeviceImageQTy() { + // These are the types we need to build: + // struct __tgt_device_image{ + // void *ImageStart; // Pointer to the target code start. + // void *ImageEnd; // Pointer to the target code end. + // // We also add the host entries to the device image, as it may be useful + // // for the target runtime to have access to that information. + // __tgt_offload_entry *EntriesBegin; // Begin of the table with all + // // the entries. + // __tgt_offload_entry *EntriesEnd; // End of the table with all the + // // entries (non inclusive). + // }; + if (TgtDeviceImageQTy.isNull()) { + ASTContext &C = CGM.getContext(); + auto *RD = C.buildImplicitRecord("__tgt_device_image"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + RD->completeDefinition(); + TgtDeviceImageQTy = C.getRecordType(RD); + } + return TgtDeviceImageQTy; +} + +QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() { + // struct __tgt_bin_desc{ + // int32_t NumDevices; // Number of devices supported. + // __tgt_device_image *DeviceImages; // Arrays of device images + // // (one per device). + // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the + // // entries. + // __tgt_offload_entry *EntriesEnd; // End of the table with all the + // // entries (non inclusive). + // }; + if (TgtBinaryDescriptorQTy.isNull()) { + ASTContext &C = CGM.getContext(); + auto *RD = C.buildImplicitRecord("__tgt_bin_desc"); + RD->startDefinition(); + addFieldToRecordDecl( + C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy())); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + RD->completeDefinition(); + TgtBinaryDescriptorQTy = C.getRecordType(RD); + } + return TgtBinaryDescriptorQTy; +} + +namespace { +struct PrivateHelpersTy { + PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy, + const VarDecl *PrivateElemInit) + : Original(Original), PrivateCopy(PrivateCopy), + PrivateElemInit(PrivateElemInit) {} + const VarDecl *Original; + const VarDecl *PrivateCopy; + const VarDecl *PrivateElemInit; +}; +typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy; +} // anonymous namespace + +static RecordDecl * +createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) { + if (!Privates.empty()) { + auto &C = CGM.getContext(); + // Build struct .kmp_privates_t. { + // /* private vars */ + // }; + auto *RD = C.buildImplicitRecord(".kmp_privates.t"); + RD->startDefinition(); + for (auto &&Pair : Privates) { + auto *VD = Pair.second.Original; + auto Type = VD->getType(); + Type = Type.getNonReferenceType(); + auto *FD = addFieldToRecordDecl(C, RD, Type); + if (VD->hasAttrs()) { + for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), + E(VD->getAttrs().end()); + I != E; ++I) + FD->addAttr(*I); + } + } + RD->completeDefinition(); + return RD; + } + return nullptr; +} + +static RecordDecl * +createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind, + QualType KmpInt32Ty, + QualType KmpRoutineEntryPointerQTy) { + auto &C = CGM.getContext(); + // Build struct kmp_task_t { + // void * shareds; + // kmp_routine_entry_t routine; + // kmp_int32 part_id; + // kmp_cmplrdata_t data1; + // kmp_cmplrdata_t data2; + // For taskloops additional fields: + // kmp_uint64 lb; + // kmp_uint64 ub; + // kmp_int64 st; + // kmp_int32 liter; + // }; + auto *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union); + UD->startDefinition(); + addFieldToRecordDecl(C, UD, KmpInt32Ty); + addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy); + UD->completeDefinition(); + QualType KmpCmplrdataTy = C.getRecordType(UD); + auto *RD = C.buildImplicitRecord("kmp_task_t"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy); + addFieldToRecordDecl(C, RD, KmpInt32Ty); + addFieldToRecordDecl(C, RD, KmpCmplrdataTy); + addFieldToRecordDecl(C, RD, KmpCmplrdataTy); + if (isOpenMPTaskLoopDirective(Kind)) { + QualType KmpUInt64Ty = + CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); + QualType KmpInt64Ty = + CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); + addFieldToRecordDecl(C, RD, KmpUInt64Ty); + addFieldToRecordDecl(C, RD, KmpUInt64Ty); + addFieldToRecordDecl(C, RD, KmpInt64Ty); + addFieldToRecordDecl(C, RD, KmpInt32Ty); + } + RD->completeDefinition(); + return RD; +} + +static RecordDecl * +createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy, + ArrayRef<PrivateDataTy> Privates) { + auto &C = CGM.getContext(); + // Build struct kmp_task_t_with_privates { + // kmp_task_t task_data; + // .kmp_privates_t. privates; + // }; + auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, KmpTaskTQTy); + if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) { + addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD)); + } + RD->completeDefinition(); + return RD; +} + +/// \brief Emit a proxy function which accepts kmp_task_t as the second +/// argument. +/// \code +/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) { +/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt, +/// For taskloops: +/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, +/// tt->shareds); +/// return 0; +/// } +/// \endcode +static llvm::Value * +emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc, + OpenMPDirectiveKind Kind, QualType KmpInt32Ty, + QualType KmpTaskTWithPrivatesPtrQTy, + QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy, + QualType SharedsPtrTy, llvm::Value *TaskFunction, + llvm::Value *TaskPrivatesMap) { + auto &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty); + ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, + KmpTaskTWithPrivatesPtrQTy.withRestrict()); + Args.push_back(&GtidArg); + Args.push_back(&TaskTypeArg); + auto &TaskEntryFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); + auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo); + auto *TaskEntry = + llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage, + ".omp_task_entry.", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo); + CodeGenFunction CGF(CGM); + CGF.disableDebugInfo(); + CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args); + + // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map, + // tt, + // For taskloops: + // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, + // tt->task_data.shareds); + auto *GtidParam = CGF.EmitLoadOfScalar( + CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc); + LValue TDBase = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&TaskTypeArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + auto *KmpTaskTWithPrivatesQTyRD = + cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); + LValue Base = + CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); + auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); + auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); + auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI); + auto *PartidParam = PartIdLVal.getPointer(); + + auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds); + auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI); + auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(), + CGF.ConvertTypeForMem(SharedsPtrTy)); + + auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); + llvm::Value *PrivatesParam; + if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) { + auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI); + PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + PrivatesLVal.getPointer(), CGF.VoidPtrTy); + } else + PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); + + llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam, + TaskPrivatesMap, + CGF.Builder + .CreatePointerBitCastOrAddrSpaceCast( + TDBase.getAddress(), CGF.VoidPtrTy) + .getPointer()}; + SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs), + std::end(CommonArgs)); + if (isOpenMPTaskLoopDirective(Kind)) { + auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound); + auto LBLVal = CGF.EmitLValueForField(Base, *LBFI); + auto *LBParam = CGF.EmitLoadOfLValue(LBLVal, Loc).getScalarVal(); + auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound); + auto UBLVal = CGF.EmitLValueForField(Base, *UBFI); + auto *UBParam = CGF.EmitLoadOfLValue(UBLVal, Loc).getScalarVal(); + auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride); + auto StLVal = CGF.EmitLValueForField(Base, *StFI); + auto *StParam = CGF.EmitLoadOfLValue(StLVal, Loc).getScalarVal(); + auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); + auto LILVal = CGF.EmitLValueForField(Base, *LIFI); + auto *LIParam = CGF.EmitLoadOfLValue(LILVal, Loc).getScalarVal(); + CallArgs.push_back(LBParam); + CallArgs.push_back(UBParam); + CallArgs.push_back(StParam); + CallArgs.push_back(LIParam); + } + CallArgs.push_back(SharedsParam); + + CGF.EmitCallOrInvoke(TaskFunction, CallArgs); + CGF.EmitStoreThroughLValue( + RValue::get(CGF.Builder.getInt32(/*C=*/0)), + CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty)); + CGF.FinishFunction(); + return TaskEntry; +} + +static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM, + SourceLocation Loc, + QualType KmpInt32Ty, + QualType KmpTaskTWithPrivatesPtrQTy, + QualType KmpTaskTWithPrivatesQTy) { + auto &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty); + ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, + KmpTaskTWithPrivatesPtrQTy.withRestrict()); + Args.push_back(&GtidArg); + Args.push_back(&TaskTypeArg); + FunctionType::ExtInfo Info; + auto &DestructorFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); + auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo); + auto *DestructorFn = + llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage, + ".omp_task_destructor.", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn, + DestructorFnInfo); + CodeGenFunction CGF(CGM); + CGF.disableDebugInfo(); + CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo, + Args); + + LValue Base = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&TaskTypeArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + auto *KmpTaskTWithPrivatesQTyRD = + cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); + Base = CGF.EmitLValueForField(Base, *FI); + for (auto *Field : + cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) { + if (auto DtorKind = Field->getType().isDestructedType()) { + auto FieldLValue = CGF.EmitLValueForField(Base, Field); + CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType()); + } + } + CGF.FinishFunction(); + return DestructorFn; +} + +/// \brief Emit a privates mapping function for correct handling of private and +/// firstprivate variables. +/// \code +/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1> +/// **noalias priv1,..., <tyn> **noalias privn) { +/// *priv1 = &.privates.priv1; +/// ...; +/// *privn = &.privates.privn; +/// } +/// \endcode +static llvm::Value * +emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc, + ArrayRef<const Expr *> PrivateVars, + ArrayRef<const Expr *> FirstprivateVars, + ArrayRef<const Expr *> LastprivateVars, + QualType PrivatesQTy, + ArrayRef<PrivateDataTy> Privates) { + auto &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl TaskPrivatesArg( + C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + C.getPointerType(PrivatesQTy).withConst().withRestrict()); + Args.push_back(&TaskPrivatesArg); + llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos; + unsigned Counter = 1; + for (auto *E: PrivateVars) { + Args.push_back(ImplicitParamDecl::Create( + C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) + .withConst() + .withRestrict())); + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + PrivateVarsPos[VD] = Counter; + ++Counter; + } + for (auto *E : FirstprivateVars) { + Args.push_back(ImplicitParamDecl::Create( + C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) + .withConst() + .withRestrict())); + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + PrivateVarsPos[VD] = Counter; + ++Counter; + } + for (auto *E: LastprivateVars) { + Args.push_back(ImplicitParamDecl::Create( + C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType())) + .withConst() + .withRestrict())); + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + PrivateVarsPos[VD] = Counter; + ++Counter; + } + auto &TaskPrivatesMapFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto *TaskPrivatesMapTy = + CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo); + auto *TaskPrivatesMap = llvm::Function::Create( + TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, + ".omp_task_privates_map.", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap, + TaskPrivatesMapFnInfo); + TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline); + TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline); + CodeGenFunction CGF(CGM); + CGF.disableDebugInfo(); + CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap, + TaskPrivatesMapFnInfo, Args); + + // *privi = &.privates.privi; + LValue Base = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&TaskPrivatesArg), + TaskPrivatesArg.getType()->castAs<PointerType>()); + auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl()); + Counter = 0; + for (auto *Field : PrivatesQTyRD->fields()) { + auto FieldLVal = CGF.EmitLValueForField(Base, Field); + auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]]; + auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); + auto RefLoadLVal = CGF.EmitLoadOfPointerLValue( + RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>()); + CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal); + ++Counter; + } + CGF.FinishFunction(); + return TaskPrivatesMap; +} + +static int array_pod_sort_comparator(const PrivateDataTy *P1, + const PrivateDataTy *P2) { + return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0); +} + +/// Emit initialization for private variables in task-based directives. +static void emitPrivatesInit(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + Address KmpTaskSharedsPtr, LValue TDBase, + const RecordDecl *KmpTaskTWithPrivatesQTyRD, + QualType SharedsTy, QualType SharedsPtrTy, + const OMPTaskDataTy &Data, + ArrayRef<PrivateDataTy> Privates, bool ForDup) { + auto &C = CGF.getContext(); + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); + LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI); + LValue SrcBase; + if (!Data.FirstprivateVars.empty()) { + SrcBase = CGF.MakeAddrLValue( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)), + SharedsTy); + } + CodeGenFunction::CGCapturedStmtInfo CapturesInfo( + cast<CapturedStmt>(*D.getAssociatedStmt())); + FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin(); + for (auto &&Pair : Privates) { + auto *VD = Pair.second.PrivateCopy; + auto *Init = VD->getAnyInitializer(); + if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) && + !CGF.isTrivialInitializer(Init)))) { + LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI); + if (auto *Elem = Pair.second.PrivateElemInit) { + auto *OriginalVD = Pair.second.Original; + auto *SharedField = CapturesInfo.lookup(OriginalVD); + auto SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField); + SharedRefLValue = CGF.MakeAddrLValue( + Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)), + SharedRefLValue.getType(), AlignmentSource::Decl); + QualType Type = OriginalVD->getType(); + if (Type->isArrayType()) { + // Initialize firstprivate array. + if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) { + // Perform simple memcpy. + CGF.EmitAggregateAssign(PrivateLValue.getAddress(), + SharedRefLValue.getAddress(), Type); + } else { + // Initialize firstprivate array using element-by-element + // initialization. + CGF.EmitOMPAggregateAssign( + PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type, + [&CGF, Elem, Init, &CapturesInfo](Address DestElement, + Address SrcElement) { + // Clean up any temporaries needed by the initialization. + CodeGenFunction::OMPPrivateScope InitScope(CGF); + InitScope.addPrivate( + Elem, [SrcElement]() -> Address { return SrcElement; }); + (void)InitScope.Privatize(); + // Emit initialization for single element. + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII( + CGF, &CapturesInfo); + CGF.EmitAnyExprToMem(Init, DestElement, + Init->getType().getQualifiers(), + /*IsInitializer=*/false); + }); + } + } else { + CodeGenFunction::OMPPrivateScope InitScope(CGF); + InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address { + return SharedRefLValue.getAddress(); + }); + (void)InitScope.Privatize(); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo); + CGF.EmitExprAsInit(Init, VD, PrivateLValue, + /*capturedByInit=*/false); + } + } else + CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); + } + ++FI; + } +} + +/// Check if duplication function is required for taskloops. +static bool checkInitIsRequired(CodeGenFunction &CGF, + ArrayRef<PrivateDataTy> Privates) { + bool InitRequired = false; + for (auto &&Pair : Privates) { + auto *VD = Pair.second.PrivateCopy; + auto *Init = VD->getAnyInitializer(); + InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) && + !CGF.isTrivialInitializer(Init)); + } + return InitRequired; +} + + +/// Emit task_dup function (for initialization of +/// private/firstprivate/lastprivate vars and last_iter flag) +/// \code +/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int +/// lastpriv) { +/// // setup lastprivate flag +/// task_dst->last = lastpriv; +/// // could be constructor calls here... +/// } +/// \endcode +static llvm::Value * +emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc, + const OMPExecutableDirective &D, + QualType KmpTaskTWithPrivatesPtrQTy, + const RecordDecl *KmpTaskTWithPrivatesQTyRD, + const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy, + QualType SharedsPtrTy, const OMPTaskDataTy &Data, + ArrayRef<PrivateDataTy> Privates, bool WithLastIter) { + auto &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy); + ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy); + ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, + /*Id=*/nullptr, C.IntTy); + Args.push_back(&DstArg); + Args.push_back(&SrcArg); + Args.push_back(&LastprivArg); + auto &TaskDupFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo); + auto *TaskDup = + llvm::Function::Create(TaskDupTy, llvm::GlobalValue::InternalLinkage, + ".omp_task_dup.", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskDup, TaskDupFnInfo); + CodeGenFunction CGF(CGM); + CGF.disableDebugInfo(); + CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args); + + LValue TDBase = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&DstArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + // task_dst->liter = lastpriv; + if (WithLastIter) { + auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); + LValue Base = CGF.EmitLValueForField( + TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); + LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); + llvm::Value *Lastpriv = CGF.EmitLoadOfScalar( + CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc); + CGF.EmitStoreOfScalar(Lastpriv, LILVal); + } + + // Emit initial values for private copies (if any). + assert(!Privates.empty()); + Address KmpTaskSharedsPtr = Address::invalid(); + if (!Data.FirstprivateVars.empty()) { + LValue TDBase = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&SrcArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + LValue Base = CGF.EmitLValueForField( + TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); + KmpTaskSharedsPtr = Address( + CGF.EmitLoadOfScalar(CGF.EmitLValueForField( + Base, *std::next(KmpTaskTQTyRD->field_begin(), + KmpTaskTShareds)), + Loc), + CGF.getNaturalTypeAlignment(SharedsTy)); + } + emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD, + SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true); + CGF.FinishFunction(); + return TaskDup; +} + +/// Checks if destructor function is required to be generated. +/// \return true if cleanups are required, false otherwise. +static bool +checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) { + bool NeedsCleanup = false; + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); + auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl()); + for (auto *FD : PrivateRD->fields()) { + NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType(); + if (NeedsCleanup) + break; + } + return NeedsCleanup; +} + +CGOpenMPRuntime::TaskResultTy +CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc, + const OMPExecutableDirective &D, + llvm::Value *TaskFunction, QualType SharedsTy, + Address Shareds, const OMPTaskDataTy &Data) { + auto &C = CGM.getContext(); + llvm::SmallVector<PrivateDataTy, 4> Privates; + // Aggregate privates and sort them by the alignment. + auto I = Data.PrivateCopies.begin(); + for (auto *E : Data.PrivateVars) { + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + Privates.push_back(std::make_pair( + C.getDeclAlign(VD), + PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), + /*PrivateElemInit=*/nullptr))); + ++I; + } + I = Data.FirstprivateCopies.begin(); + auto IElemInitRef = Data.FirstprivateInits.begin(); + for (auto *E : Data.FirstprivateVars) { + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + Privates.push_back(std::make_pair( + C.getDeclAlign(VD), + PrivateHelpersTy( + VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), + cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())))); + ++I; + ++IElemInitRef; + } + I = Data.LastprivateCopies.begin(); + for (auto *E : Data.LastprivateVars) { + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + Privates.push_back(std::make_pair( + C.getDeclAlign(VD), + PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), + /*PrivateElemInit=*/nullptr))); + ++I; + } + llvm::array_pod_sort(Privates.begin(), Privates.end(), + array_pod_sort_comparator); + auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); + // Build type kmp_routine_entry_t (if not built yet). + emitKmpRoutineEntryT(KmpInt32Ty); + // Build type kmp_task_t (if not built yet). + if (KmpTaskTQTy.isNull()) { + KmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl( + CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); + } + auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); + // Build particular struct kmp_task_t for the given task. + auto *KmpTaskTWithPrivatesQTyRD = + createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates); + auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD); + QualType KmpTaskTWithPrivatesPtrQTy = + C.getPointerType(KmpTaskTWithPrivatesQTy); + auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy); + auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo(); + auto *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy); + QualType SharedsPtrTy = C.getPointerType(SharedsTy); + + // Emit initial values for private copies (if any). + llvm::Value *TaskPrivatesMap = nullptr; + auto *TaskPrivatesMapTy = + std::next(cast<llvm::Function>(TaskFunction)->arg_begin(), 3)->getType(); + if (!Privates.empty()) { + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); + TaskPrivatesMap = emitTaskPrivateMappingFunction( + CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars, + FI->getType(), Privates); + TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + TaskPrivatesMap, TaskPrivatesMapTy); + } else { + TaskPrivatesMap = llvm::ConstantPointerNull::get( + cast<llvm::PointerType>(TaskPrivatesMapTy)); + } + // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid, + // kmp_task_t *tt); + auto *TaskEntry = emitProxyTaskFunction( + CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, + KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction, + TaskPrivatesMap); + + // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, + // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, + // kmp_routine_entry_t *task_entry); + // Task flags. Format is taken from + // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h, + // description of kmp_tasking_flags struct. + enum { + TiedFlag = 0x1, + FinalFlag = 0x2, + DestructorsFlag = 0x8, + PriorityFlag = 0x20 + }; + unsigned Flags = Data.Tied ? TiedFlag : 0; + bool NeedsCleanup = false; + if (!Privates.empty()) { + NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD); + if (NeedsCleanup) + Flags = Flags | DestructorsFlag; + } + if (Data.Priority.getInt()) + Flags = Flags | PriorityFlag; + auto *TaskFlags = + Data.Final.getPointer() + ? CGF.Builder.CreateSelect(Data.Final.getPointer(), + CGF.Builder.getInt32(FinalFlag), + CGF.Builder.getInt32(/*C=*/0)) + : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0); + TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags)); + auto *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy)); + llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc), + getThreadID(CGF, Loc), TaskFlags, + KmpTaskTWithPrivatesTySize, SharedsSize, + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + TaskEntry, KmpRoutineEntryPtrTy)}; + auto *NewTask = CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs); + auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + NewTask, KmpTaskTWithPrivatesPtrTy); + LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy, + KmpTaskTWithPrivatesQTy); + LValue TDBase = + CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin()); + // Fill the data in the resulting kmp_task_t record. + // Copy shareds if there are any. + Address KmpTaskSharedsPtr = Address::invalid(); + if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) { + KmpTaskSharedsPtr = + Address(CGF.EmitLoadOfScalar( + CGF.EmitLValueForField( + TDBase, *std::next(KmpTaskTQTyRD->field_begin(), + KmpTaskTShareds)), + Loc), + CGF.getNaturalTypeAlignment(SharedsTy)); + CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy); + } + // Emit initial values for private copies (if any). + TaskResultTy Result; + if (!Privates.empty()) { + emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD, + SharedsTy, SharedsPtrTy, Data, Privates, + /*ForDup=*/false); + if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && + (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) { + Result.TaskDupFn = emitTaskDupFunction( + CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD, + KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, + /*WithLastIter=*/!Data.LastprivateVars.empty()); + } + } + // Fields of union "kmp_cmplrdata_t" for destructors and priority. + enum { Priority = 0, Destructors = 1 }; + // Provide pointer to function with destructors for privates. + auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1); + auto *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl(); + if (NeedsCleanup) { + llvm::Value *DestructorFn = emitDestructorsFunction( + CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, + KmpTaskTWithPrivatesQTy); + LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI); + LValue DestructorsLV = CGF.EmitLValueForField( + Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors)); + CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + DestructorFn, KmpRoutineEntryPtrTy), + DestructorsLV); + } + // Set priority. + if (Data.Priority.getInt()) { + LValue Data2LV = CGF.EmitLValueForField( + TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2)); + LValue PriorityLV = CGF.EmitLValueForField( + Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority)); + CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV); + } + Result.NewTask = NewTask; + Result.TaskEntry = TaskEntry; + Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy; + Result.TDBase = TDBase; + Result.KmpTaskTQTyRD = KmpTaskTQTyRD; + return Result; +} + +void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, + const OMPExecutableDirective &D, + llvm::Value *TaskFunction, + QualType SharedsTy, Address Shareds, + const Expr *IfCond, + const OMPTaskDataTy &Data) { + if (!CGF.HaveInsertPoint()) + return; + + TaskResultTy Result = + emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); + llvm::Value *NewTask = Result.NewTask; + llvm::Value *TaskEntry = Result.TaskEntry; + llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy; + LValue TDBase = Result.TDBase; + RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD; + auto &C = CGM.getContext(); + // Process list of dependences. + Address DependenciesArray = Address::invalid(); + unsigned NumDependencies = Data.Dependences.size(); + if (NumDependencies) { + // Dependence kind for RTL. + enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 }; + enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags }; + RecordDecl *KmpDependInfoRD; + QualType FlagsTy = + C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false); + llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); + if (KmpDependInfoTy.isNull()) { + KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info"); + KmpDependInfoRD->startDefinition(); + addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType()); + addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType()); + addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy); + KmpDependInfoRD->completeDefinition(); + KmpDependInfoTy = C.getRecordType(KmpDependInfoRD); + } else + KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); + CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy); + // Define type kmp_depend_info[<Dependences.size()>]; + QualType KmpDependInfoArrayTy = C.getConstantArrayType( + KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), + ArrayType::Normal, /*IndexTypeQuals=*/0); + // kmp_depend_info[<Dependences.size()>] deps; + DependenciesArray = + CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr"); + for (unsigned i = 0; i < NumDependencies; ++i) { + const Expr *E = Data.Dependences[i].second; + auto Addr = CGF.EmitLValue(E); + llvm::Value *Size; + QualType Ty = E->getType(); + if (auto *ASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) { + LValue UpAddrLVal = + CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false); + llvm::Value *UpAddr = + CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1); + llvm::Value *LowIntPtr = + CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy); + llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy); + Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr); + } else + Size = CGF.getTypeSize(Ty); + auto Base = CGF.MakeAddrLValue( + CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize), + KmpDependInfoTy); + // deps[i].base_addr = &<Dependences[i].second>; + auto BaseAddrLVal = CGF.EmitLValueForField( + Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); + CGF.EmitStoreOfScalar( + CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy), + BaseAddrLVal); + // deps[i].len = sizeof(<Dependences[i].second>); + auto LenLVal = CGF.EmitLValueForField( + Base, *std::next(KmpDependInfoRD->field_begin(), Len)); + CGF.EmitStoreOfScalar(Size, LenLVal); + // deps[i].flags = <Dependences[i].first>; + RTLDependenceKindTy DepKind; + switch (Data.Dependences[i].first) { + case OMPC_DEPEND_in: + DepKind = DepIn; + break; + // Out and InOut dependencies must use the same code. + case OMPC_DEPEND_out: + case OMPC_DEPEND_inout: + DepKind = DepInOut; + break; + case OMPC_DEPEND_source: + case OMPC_DEPEND_sink: + case OMPC_DEPEND_unknown: + llvm_unreachable("Unknown task dependence type"); + } + auto FlagsLVal = CGF.EmitLValueForField( + Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); + CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), + FlagsLVal); + } + DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()), + CGF.VoidPtrTy); + } + + // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc() + // libcall. + // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, + // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence + // list is not empty + auto *ThreadID = getThreadID(CGF, Loc); + auto *UpLoc = emitUpdateLocation(CGF, Loc); + llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask }; + llvm::Value *DepTaskArgs[7]; + if (NumDependencies) { + DepTaskArgs[0] = UpLoc; + DepTaskArgs[1] = ThreadID; + DepTaskArgs[2] = NewTask; + DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies); + DepTaskArgs[4] = DependenciesArray.getPointer(); + DepTaskArgs[5] = CGF.Builder.getInt32(0); + DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); + } + auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies, + &TaskArgs, + &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { + if (!Data.Tied) { + auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); + auto PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI); + CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal); + } + if (NumDependencies) { + CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs); + } else { + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), + TaskArgs); + } + // Check if parent region is untied and build return for untied task; + if (auto *Region = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + Region->emitUntiedSwitch(CGF); + }; + + llvm::Value *DepWaitTaskArgs[6]; + if (NumDependencies) { + DepWaitTaskArgs[0] = UpLoc; + DepWaitTaskArgs[1] = ThreadID; + DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies); + DepWaitTaskArgs[3] = DependenciesArray.getPointer(); + DepWaitTaskArgs[4] = CGF.Builder.getInt32(0); + DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); + } + auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry, + NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF, + PrePostActionTy &) { + auto &RT = CGF.CGM.getOpenMPRuntime(); + CodeGenFunction::RunCleanupsScope LocalScope(CGF); + // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, + // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 + // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info + // is specified. + if (NumDependencies) + CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps), + DepWaitTaskArgs); + // Call proxy_task_entry(gtid, new_task); + auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy]( + CodeGenFunction &CGF, PrePostActionTy &Action) { + Action.Enter(CGF); + llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy}; + CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs); + }; + + // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task); + // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task); + RegionCodeGenTy RCG(CodeGen); + CommonActionTy Action( + RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs, + RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs); + RCG.setAction(Action); + RCG(CGF); + }; + + if (IfCond) + emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen); + else { + RegionCodeGenTy ThenRCG(ThenCodeGen); + ThenRCG(CGF); + } +} + +void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc, + const OMPLoopDirective &D, + llvm::Value *TaskFunction, + QualType SharedsTy, Address Shareds, + const Expr *IfCond, + const OMPTaskDataTy &Data) { + if (!CGF.HaveInsertPoint()) + return; + TaskResultTy Result = + emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); + // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc() + // libcall. + // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int + // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int + // sched, kmp_uint64 grainsize, void *task_dup); + llvm::Value *ThreadID = getThreadID(CGF, Loc); + llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); + llvm::Value *IfVal; + if (IfCond) { + IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy, + /*isSigned=*/true); + } else + IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1); + + LValue LBLVal = CGF.EmitLValueForField( + Result.TDBase, + *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound)); + auto *LBVar = + cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl()); + CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(), + /*IsInitializer=*/true); + LValue UBLVal = CGF.EmitLValueForField( + Result.TDBase, + *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound)); + auto *UBVar = + cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl()); + CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(), + /*IsInitializer=*/true); + LValue StLVal = CGF.EmitLValueForField( + Result.TDBase, + *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride)); + auto *StVar = + cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl()); + CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(), + /*IsInitializer=*/true); + enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 }; + llvm::Value *TaskArgs[] = { + UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(), + UBLVal.getPointer(), CGF.EmitLoadOfScalar(StLVal, SourceLocation()), + llvm::ConstantInt::getSigned(CGF.IntTy, Data.Nogroup ? 1 : 0), + llvm::ConstantInt::getSigned( + CGF.IntTy, Data.Schedule.getPointer() + ? Data.Schedule.getInt() ? NumTasks : Grainsize + : NoSchedule), + Data.Schedule.getPointer() + ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty, + /*isSigned=*/false) + : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0), + Result.TaskDupFn + ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Result.TaskDupFn, + CGF.VoidPtrTy) + : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs); +} + +/// \brief Emit reduction operation for each element of array (required for +/// array sections) LHS op = RHS. +/// \param Type Type of array. +/// \param LHSVar Variable on the left side of the reduction operation +/// (references element of array in original variable). +/// \param RHSVar Variable on the right side of the reduction operation +/// (references element of array in original variable). +/// \param RedOpGen Generator of reduction operation with use of LHSVar and +/// RHSVar. +static void EmitOMPAggregateReduction( + CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar, + const VarDecl *RHSVar, + const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *, + const Expr *, const Expr *)> &RedOpGen, + const Expr *XExpr = nullptr, const Expr *EExpr = nullptr, + const Expr *UpExpr = nullptr) { + // Perform element-by-element initialization. + QualType ElementTy; + Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar); + Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar); + + // Drill down to the base element type on both arrays. + auto ArrayTy = Type->getAsArrayTypeUnsafe(); + auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr); + + auto RHSBegin = RHSAddr.getPointer(); + auto LHSBegin = LHSAddr.getPointer(); + // Cast from pointer to array type to pointer to single element. + auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements); + // The basic structure here is a while-do loop. + auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body"); + auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done"); + auto IsEmpty = + CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty"); + CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); + + // Enter the loop body, making that address the current address. + auto EntryBB = CGF.Builder.GetInsertBlock(); + CGF.EmitBlock(BodyBB); + + CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); + + llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI( + RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast"); + RHSElementPHI->addIncoming(RHSBegin, EntryBB); + Address RHSElementCurrent = + Address(RHSElementPHI, + RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + + llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI( + LHSBegin->getType(), 2, "omp.arraycpy.destElementPast"); + LHSElementPHI->addIncoming(LHSBegin, EntryBB); + Address LHSElementCurrent = + Address(LHSElementPHI, + LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + + // Emit copy. + CodeGenFunction::OMPPrivateScope Scope(CGF); + Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; }); + Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; }); + Scope.Privatize(); + RedOpGen(CGF, XExpr, EExpr, UpExpr); + Scope.ForceCleanup(); + + // Shift the address forward by one element. + auto LHSElementNext = CGF.Builder.CreateConstGEP1_32( + LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); + auto RHSElementNext = CGF.Builder.CreateConstGEP1_32( + RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); + // Check whether we've reached the end. + auto Done = + CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done"); + CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); + LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock()); + RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock()); + + // Done. + CGF.EmitBlock(DoneBB, /*IsFinished=*/true); +} + +/// Emit reduction combiner. If the combiner is a simple expression emit it as +/// is, otherwise consider it as combiner of UDR decl and emit it as a call of +/// UDR combiner function. +static void emitReductionCombiner(CodeGenFunction &CGF, + const Expr *ReductionOp) { + if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) + if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) + if (auto *DRE = + dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) + if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) { + std::pair<llvm::Function *, llvm::Function *> Reduction = + CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); + RValue Func = RValue::get(Reduction.first); + CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); + CGF.EmitIgnoredExpr(ReductionOp); + return; + } + CGF.EmitIgnoredExpr(ReductionOp); +} + +llvm::Value *CGOpenMPRuntime::emitReductionFunction( + CodeGenModule &CGM, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates, + ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, + ArrayRef<const Expr *> ReductionOps) { + auto &C = CGM.getContext(); + + // void reduction_func(void *LHSArg, void *RHSArg); + FunctionArgList Args; + ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, + C.VoidPtrTy); + ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr, + C.VoidPtrTy); + Args.push_back(&LHSArg); + Args.push_back(&RHSArg); + auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + auto *Fn = llvm::Function::Create( + CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, + ".omp.reduction.reduction_func", &CGM.getModule()); + CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); + + // Dst = (void*[n])(LHSArg); + // Src = (void*[n])(RHSArg); + Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), + ArgsType), CGF.getPointerAlign()); + Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), + ArgsType), CGF.getPointerAlign()); + + // ... + // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]); + // ... + CodeGenFunction::OMPPrivateScope Scope(CGF); + auto IPriv = Privates.begin(); + unsigned Idx = 0; + for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) { + auto RHSVar = cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl()); + Scope.addPrivate(RHSVar, [&]() -> Address { + return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar); + }); + auto LHSVar = cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl()); + Scope.addPrivate(LHSVar, [&]() -> Address { + return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar); + }); + QualType PrivTy = (*IPriv)->getType(); + if (PrivTy->isVariablyModifiedType()) { + // Get array size and emit VLA type. + ++Idx; + Address Elem = + CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize()); + llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem); + auto *VLA = CGF.getContext().getAsVariableArrayType(PrivTy); + auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr()); + CodeGenFunction::OpaqueValueMapping OpaqueMap( + CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy))); + CGF.EmitVariablyModifiedType(PrivTy); + } + } + Scope.Privatize(); + IPriv = Privates.begin(); + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + for (auto *E : ReductionOps) { + if ((*IPriv)->getType()->isArrayType()) { + // Emit reduction for array section. + auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); + auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); + EmitOMPAggregateReduction( + CGF, (*IPriv)->getType(), LHSVar, RHSVar, + [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { + emitReductionCombiner(CGF, E); + }); + } else + // Emit reduction for array subscript or single variable. + emitReductionCombiner(CGF, E); + ++IPriv; + ++ILHS; + ++IRHS; + } + Scope.ForceCleanup(); + CGF.FinishFunction(); + return Fn; +} + +void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF, + const Expr *ReductionOp, + const Expr *PrivateRef, + const DeclRefExpr *LHS, + const DeclRefExpr *RHS) { + if (PrivateRef->getType()->isArrayType()) { + // Emit reduction for array section. + auto *LHSVar = cast<VarDecl>(LHS->getDecl()); + auto *RHSVar = cast<VarDecl>(RHS->getDecl()); + EmitOMPAggregateReduction( + CGF, PrivateRef->getType(), LHSVar, RHSVar, + [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { + emitReductionCombiner(CGF, ReductionOp); + }); + } else + // Emit reduction for array subscript or single variable. + emitReductionCombiner(CGF, ReductionOp); +} + +void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc, + ArrayRef<const Expr *> Privates, + ArrayRef<const Expr *> LHSExprs, + ArrayRef<const Expr *> RHSExprs, + ArrayRef<const Expr *> ReductionOps, + ReductionOptionsTy Options) { + if (!CGF.HaveInsertPoint()) + return; + + bool WithNowait = Options.WithNowait; + bool SimpleReduction = Options.SimpleReduction; + + // Next code should be emitted for reduction: + // + // static kmp_critical_name lock = { 0 }; + // + // void reduce_func(void *lhs[<n>], void *rhs[<n>]) { + // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]); + // ... + // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1], + // *(Type<n>-1*)rhs[<n>-1]); + // } + // + // ... + // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]}; + // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), + // RedList, reduce_func, &<lock>)) { + // case 1: + // ... + // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); + // ... + // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); + // break; + // case 2: + // ... + // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); + // ... + // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);] + // break; + // default:; + // } + // + // if SimpleReduction is true, only the next code is generated: + // ... + // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); + // ... + + auto &C = CGM.getContext(); + + if (SimpleReduction) { + CodeGenFunction::RunCleanupsScope Scope(CGF); + auto IPriv = Privates.begin(); + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + for (auto *E : ReductionOps) { + emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), + cast<DeclRefExpr>(*IRHS)); + ++IPriv; + ++ILHS; + ++IRHS; + } + return; + } + + // 1. Build a list of reduction variables. + // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; + auto Size = RHSExprs.size(); + for (auto *E : Privates) { + if (E->getType()->isVariablyModifiedType()) + // Reserve place for array size. + ++Size; + } + llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); + QualType ReductionArrayTy = + C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, + /*IndexTypeQuals=*/0); + Address ReductionList = + CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); + auto IPriv = Privates.begin(); + unsigned Idx = 0; + for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { + Address Elem = + CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize()); + CGF.Builder.CreateStore( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), + Elem); + if ((*IPriv)->getType()->isVariablyModifiedType()) { + // Store array size. + ++Idx; + Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, + CGF.getPointerSize()); + llvm::Value *Size = CGF.Builder.CreateIntCast( + CGF.getVLASize( + CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) + .first, + CGF.SizeTy, /*isSigned=*/false); + CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), + Elem); + } + } + + // 2. Emit reduce_func(). + auto *ReductionFn = emitReductionFunction( + CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, + LHSExprs, RHSExprs, ReductionOps); + + // 3. Create static kmp_critical_name lock = { 0 }; + auto *Lock = getCriticalRegionLock(".reduction"); + + // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), + // RedList, reduce_func, &<lock>); + auto *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE); + auto *ThreadId = getThreadID(CGF, Loc); + auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); + auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + ReductionList.getPointer(), CGF.VoidPtrTy); + llvm::Value *Args[] = { + IdentTLoc, // ident_t *<loc> + ThreadId, // i32 <gtid> + CGF.Builder.getInt32(RHSExprs.size()), // i32 <n> + ReductionArrayTySize, // size_type sizeof(RedList) + RL, // void *RedList + ReductionFn, // void (*) (void *, void *) <reduce_func> + Lock // kmp_critical_name *&<lock> + }; + auto Res = CGF.EmitRuntimeCall( + createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait + : OMPRTL__kmpc_reduce), + Args); + + // 5. Build switch(res) + auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); + auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2); + + // 6. Build case 1: + // ... + // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); + // ... + // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); + // break; + auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); + SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); + CGF.EmitBlock(Case1BB); + + // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); + llvm::Value *EndArgs[] = { + IdentTLoc, // ident_t *<loc> + ThreadId, // i32 <gtid> + Lock // kmp_critical_name *&<lock> + }; + auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps]( + CodeGenFunction &CGF, PrePostActionTy &Action) { + auto &RT = CGF.CGM.getOpenMPRuntime(); + auto IPriv = Privates.begin(); + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + for (auto *E : ReductionOps) { + RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), + cast<DeclRefExpr>(*IRHS)); + ++IPriv; + ++ILHS; + ++IRHS; + } + }; + RegionCodeGenTy RCG(CodeGen); + CommonActionTy Action( + nullptr, llvm::None, + createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait + : OMPRTL__kmpc_end_reduce), + EndArgs); + RCG.setAction(Action); + RCG(CGF); + + CGF.EmitBranch(DefaultBB); + + // 7. Build case 2: + // ... + // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); + // ... + // break; + auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2"); + SwInst->addCase(CGF.Builder.getInt32(2), Case2BB); + CGF.EmitBlock(Case2BB); + + auto &&AtomicCodeGen = [Loc, &Privates, &LHSExprs, &RHSExprs, &ReductionOps]( + CodeGenFunction &CGF, PrePostActionTy &Action) { + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + auto IPriv = Privates.begin(); + for (auto *E : ReductionOps) { + const Expr *XExpr = nullptr; + const Expr *EExpr = nullptr; + const Expr *UpExpr = nullptr; + BinaryOperatorKind BO = BO_Comma; + if (auto *BO = dyn_cast<BinaryOperator>(E)) { + if (BO->getOpcode() == BO_Assign) { + XExpr = BO->getLHS(); + UpExpr = BO->getRHS(); + } + } + // Try to emit update expression as a simple atomic. + auto *RHSExpr = UpExpr; + if (RHSExpr) { + // Analyze RHS part of the whole expression. + if (auto *ACO = dyn_cast<AbstractConditionalOperator>( + RHSExpr->IgnoreParenImpCasts())) { + // If this is a conditional operator, analyze its condition for + // min/max reduction operator. + RHSExpr = ACO->getCond(); + } + if (auto *BORHS = + dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) { + EExpr = BORHS->getRHS(); + BO = BORHS->getOpcode(); + } + } + if (XExpr) { + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); + auto &&AtomicRedGen = [BO, VD, + Loc](CodeGenFunction &CGF, const Expr *XExpr, + const Expr *EExpr, const Expr *UpExpr) { + LValue X = CGF.EmitLValue(XExpr); + RValue E; + if (EExpr) + E = CGF.EmitAnyExpr(EExpr); + CGF.EmitOMPAtomicSimpleUpdateExpr( + X, E, BO, /*IsXLHSInRHSPart=*/true, + llvm::AtomicOrdering::Monotonic, Loc, + [&CGF, UpExpr, VD, Loc](RValue XRValue) { + CodeGenFunction::OMPPrivateScope PrivateScope(CGF); + PrivateScope.addPrivate( + VD, [&CGF, VD, XRValue, Loc]() -> Address { + Address LHSTemp = CGF.CreateMemTemp(VD->getType()); + CGF.emitOMPSimpleStore( + CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue, + VD->getType().getNonReferenceType(), Loc); + return LHSTemp; + }); + (void)PrivateScope.Privatize(); + return CGF.EmitAnyExpr(UpExpr); + }); + }; + if ((*IPriv)->getType()->isArrayType()) { + // Emit atomic reduction for array section. + auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); + EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar, + AtomicRedGen, XExpr, EExpr, UpExpr); + } else + // Emit atomic reduction for array subscript or single variable. + AtomicRedGen(CGF, XExpr, EExpr, UpExpr); + } else { + // Emit as a critical region. + auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *, + const Expr *, const Expr *) { + auto &RT = CGF.CGM.getOpenMPRuntime(); + RT.emitCriticalRegion( + CGF, ".atomic_reduction", + [=](CodeGenFunction &CGF, PrePostActionTy &Action) { + Action.Enter(CGF); + emitReductionCombiner(CGF, E); + }, + Loc); + }; + if ((*IPriv)->getType()->isArrayType()) { + auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); + auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); + EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar, + CritRedGen); + } else + CritRedGen(CGF, nullptr, nullptr, nullptr); + } + ++ILHS; + ++IRHS; + ++IPriv; + } + }; + RegionCodeGenTy AtomicRCG(AtomicCodeGen); + if (!WithNowait) { + // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>); + llvm::Value *EndArgs[] = { + IdentTLoc, // ident_t *<loc> + ThreadId, // i32 <gtid> + Lock // kmp_critical_name *&<lock> + }; + CommonActionTy Action(nullptr, llvm::None, + createRuntimeFunction(OMPRTL__kmpc_end_reduce), + EndArgs); + AtomicRCG.setAction(Action); + AtomicRCG(CGF); + } else + AtomicRCG(CGF); + + CGF.EmitBranch(DefaultBB); + CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); +} + +void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 + // global_tid); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + // Ignore return result until untied tasks are supported. + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args); + if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + Region->emitUntiedSwitch(CGF); +} + +void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF, + OpenMPDirectiveKind InnerKind, + const RegionCodeGenTy &CodeGen, + bool HasCancel) { + if (!CGF.HaveInsertPoint()) + return; + InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel); + CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr); +} + +namespace { +enum RTCancelKind { + CancelNoreq = 0, + CancelParallel = 1, + CancelLoop = 2, + CancelSections = 3, + CancelTaskgroup = 4 +}; +} // anonymous namespace + +static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) { + RTCancelKind CancelKind = CancelNoreq; + if (CancelRegion == OMPD_parallel) + CancelKind = CancelParallel; + else if (CancelRegion == OMPD_for) + CancelKind = CancelLoop; + else if (CancelRegion == OMPD_sections) + CancelKind = CancelSections; + else { + assert(CancelRegion == OMPD_taskgroup); + CancelKind = CancelTaskgroup; + } + return CancelKind; +} + +void CGOpenMPRuntime::emitCancellationPointCall( + CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDirectiveKind CancelRegion) { + if (!CGF.HaveInsertPoint()) + return; + // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 cncl_kind); + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + // For 'cancellation point taskgroup', the task region info may not have a + // cancel. This may instead happen in another adjacent task. + if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) { + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; + // Ignore return result until untied tasks are supported. + auto *Result = CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args); + // if (__kmpc_cancellationpoint()) { + // exit from construct; + // } + auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); + auto *ContBB = CGF.createBasicBlock(".cancel.continue"); + auto *Cmp = CGF.Builder.CreateIsNotNull(Result); + CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); + CGF.EmitBlock(ExitBB); + // exit from construct; + auto CancelDest = + CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); + CGF.EmitBranchThroughCleanup(CancelDest); + CGF.EmitBlock(ContBB, /*IsFinished=*/true); + } + } +} + +void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, + const Expr *IfCond, + OpenMPDirectiveKind CancelRegion) { + if (!CGF.HaveInsertPoint()) + return; + // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 cncl_kind); + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF, + PrePostActionTy &) { + auto &RT = CGF.CGM.getOpenMPRuntime(); + llvm::Value *Args[] = { + RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc), + CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; + // Ignore return result until untied tasks are supported. + auto *Result = CGF.EmitRuntimeCall( + RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args); + // if (__kmpc_cancel()) { + // exit from construct; + // } + auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); + auto *ContBB = CGF.createBasicBlock(".cancel.continue"); + auto *Cmp = CGF.Builder.CreateIsNotNull(Result); + CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); + CGF.EmitBlock(ExitBB); + // exit from construct; + auto CancelDest = + CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); + CGF.EmitBranchThroughCleanup(CancelDest); + CGF.EmitBlock(ContBB, /*IsFinished=*/true); + }; + if (IfCond) + emitOMPIfClause(CGF, IfCond, ThenGen, + [](CodeGenFunction &, PrePostActionTy &) {}); + else { + RegionCodeGenTy ThenRCG(ThenGen); + ThenRCG(CGF); + } + } +} + +/// \brief Obtain information that uniquely identifies a target entry. This +/// consists of the file and device IDs as well as line number associated with +/// the relevant entry source location. +static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc, + unsigned &DeviceID, unsigned &FileID, + unsigned &LineNum) { + + auto &SM = C.getSourceManager(); + + // The loc should be always valid and have a file ID (the user cannot use + // #pragma directives in macros) + + assert(Loc.isValid() && "Source location is expected to be always valid."); + assert(Loc.isFileID() && "Source location is expected to refer to a file."); + + PresumedLoc PLoc = SM.getPresumedLoc(Loc); + assert(PLoc.isValid() && "Source location is expected to be always valid."); + + llvm::sys::fs::UniqueID ID; + if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) + llvm_unreachable("Source file with target region no longer exists!"); + + DeviceID = ID.getDevice(); + FileID = ID.getFile(); + LineNum = PLoc.getLine(); +} + +void CGOpenMPRuntime::emitTargetOutlinedFunction( + const OMPExecutableDirective &D, StringRef ParentName, + llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, + bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { + assert(!ParentName.empty() && "Invalid target region parent name!"); + + emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, + IsOffloadEntry, CodeGen); +} + +void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper( + const OMPExecutableDirective &D, StringRef ParentName, + llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, + bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { + // Create a unique name for the entry function using the source location + // information of the current target region. The name will be something like: + // + // __omp_offloading_DD_FFFF_PP_lBB + // + // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the + // mangled name of the function that encloses the target region and BB is the + // line number of the target region. + + unsigned DeviceID; + unsigned FileID; + unsigned Line; + getTargetEntryUniqueInfo(CGM.getContext(), D.getLocStart(), DeviceID, FileID, + Line); + SmallString<64> EntryFnName; + { + llvm::raw_svector_ostream OS(EntryFnName); + OS << "__omp_offloading" << llvm::format("_%x", DeviceID) + << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; + } + + const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); + + CodeGenFunction CGF(CGM, true); + CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + + OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS); + + // If this target outline function is not an offload entry, we don't need to + // register it. + if (!IsOffloadEntry) + return; + + // The target region ID is used by the runtime library to identify the current + // target region, so it only has to be unique and not necessarily point to + // anything. It could be the pointer to the outlined function that implements + // the target region, but we aren't using that so that the compiler doesn't + // need to keep that, and could therefore inline the host function if proven + // worthwhile during optimization. In the other hand, if emitting code for the + // device, the ID has to be the function address so that it can retrieved from + // the offloading entry and launched by the runtime library. We also mark the + // outlined function to have external linkage in case we are emitting code for + // the device, because these functions will be entry points to the device. + + if (CGM.getLangOpts().OpenMPIsDevice) { + OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy); + OutlinedFn->setLinkage(llvm::GlobalValue::ExternalLinkage); + } else + OutlinedFnID = new llvm::GlobalVariable( + CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, + llvm::GlobalValue::PrivateLinkage, + llvm::Constant::getNullValue(CGM.Int8Ty), ".omp_offload.region_id"); + + // Register the information for the entry associated with this target region. + OffloadEntriesInfoManager.registerTargetRegionEntryInfo( + DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID, + /*Flags=*/0); +} + +/// discard all CompoundStmts intervening between two constructs +static const Stmt *ignoreCompoundStmts(const Stmt *Body) { + while (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) + Body = CS->body_front(); + + return Body; +} + +/// Emit the number of teams for a target directive. Inspect the num_teams +/// clause associated with a teams construct combined or closely nested +/// with the target directive. +/// +/// Emit a team of size one for directives such as 'target parallel' that +/// have no associated teams construct. +/// +/// Otherwise, return nullptr. +static llvm::Value * +emitNumTeamsForTargetDirective(CGOpenMPRuntime &OMPRuntime, + CodeGenFunction &CGF, + const OMPExecutableDirective &D) { + + assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the " + "teams directive expected to be " + "emitted only for the host!"); + + auto &Bld = CGF.Builder; + + // If the target directive is combined with a teams directive: + // Return the value in the num_teams clause, if any. + // Otherwise, return 0 to denote the runtime default. + if (isOpenMPTeamsDirective(D.getDirectiveKind())) { + if (const auto *NumTeamsClause = D.getSingleClause<OMPNumTeamsClause>()) { + CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF); + auto NumTeams = CGF.EmitScalarExpr(NumTeamsClause->getNumTeams(), + /*IgnoreResultAssign*/ true); + return Bld.CreateIntCast(NumTeams, CGF.Int32Ty, + /*IsSigned=*/true); + } + + // The default value is 0. + return Bld.getInt32(0); + } + + // If the target directive is combined with a parallel directive but not a + // teams directive, start one team. + if (isOpenMPParallelDirective(D.getDirectiveKind())) + return Bld.getInt32(1); + + // If the current target region has a teams region enclosed, we need to get + // the number of teams to pass to the runtime function call. This is done + // by generating the expression in a inlined region. This is required because + // the expression is captured in the enclosing target environment when the + // teams directive is not combined with target. + + const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); + + // FIXME: Accommodate other combined directives with teams when they become + // available. + if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>( + ignoreCompoundStmts(CS.getCapturedStmt()))) { + if (auto *NTE = TeamsDir->getSingleClause<OMPNumTeamsClause>()) { + CGOpenMPInnerExprInfo CGInfo(CGF, CS); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams()); + return Bld.CreateIntCast(NumTeams, CGF.Int32Ty, + /*IsSigned=*/true); + } + + // If we have an enclosed teams directive but no num_teams clause we use + // the default value 0. + return Bld.getInt32(0); + } + + // No teams associated with the directive. + return nullptr; +} + +/// Emit the number of threads for a target directive. Inspect the +/// thread_limit clause associated with a teams construct combined or closely +/// nested with the target directive. +/// +/// Emit the num_threads clause for directives such as 'target parallel' that +/// have no associated teams construct. +/// +/// Otherwise, return nullptr. +static llvm::Value * +emitNumThreadsForTargetDirective(CGOpenMPRuntime &OMPRuntime, + CodeGenFunction &CGF, + const OMPExecutableDirective &D) { + + assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the " + "teams directive expected to be " + "emitted only for the host!"); + + auto &Bld = CGF.Builder; + + // + // If the target directive is combined with a teams directive: + // Return the value in the thread_limit clause, if any. + // + // If the target directive is combined with a parallel directive: + // Return the value in the num_threads clause, if any. + // + // If both clauses are set, select the minimum of the two. + // + // If neither teams or parallel combined directives set the number of threads + // in a team, return 0 to denote the runtime default. + // + // If this is not a teams directive return nullptr. + + if (isOpenMPTeamsDirective(D.getDirectiveKind()) || + isOpenMPParallelDirective(D.getDirectiveKind())) { + llvm::Value *DefaultThreadLimitVal = Bld.getInt32(0); + llvm::Value *NumThreadsVal = nullptr; + llvm::Value *ThreadLimitVal = nullptr; + + if (const auto *ThreadLimitClause = + D.getSingleClause<OMPThreadLimitClause>()) { + CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); + auto ThreadLimit = CGF.EmitScalarExpr(ThreadLimitClause->getThreadLimit(), + /*IgnoreResultAssign*/ true); + ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, + /*IsSigned=*/true); + } + + if (const auto *NumThreadsClause = + D.getSingleClause<OMPNumThreadsClause>()) { + CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); + llvm::Value *NumThreads = + CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), + /*IgnoreResultAssign*/ true); + NumThreadsVal = + Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*IsSigned=*/true); + } + + // Select the lesser of thread_limit and num_threads. + if (NumThreadsVal) + ThreadLimitVal = ThreadLimitVal + ? Bld.CreateSelect(Bld.CreateICmpSLT(NumThreadsVal, + ThreadLimitVal), + NumThreadsVal, ThreadLimitVal) + : NumThreadsVal; + + // Set default value passed to the runtime if either teams or a target + // parallel type directive is found but no clause is specified. + if (!ThreadLimitVal) + ThreadLimitVal = DefaultThreadLimitVal; + + return ThreadLimitVal; + } + + // If the current target region has a teams region enclosed, we need to get + // the thread limit to pass to the runtime function call. This is done + // by generating the expression in a inlined region. This is required because + // the expression is captured in the enclosing target environment when the + // teams directive is not combined with target. + + const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); + + // FIXME: Accommodate other combined directives with teams when they become + // available. + if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>( + ignoreCompoundStmts(CS.getCapturedStmt()))) { + if (auto *TLE = TeamsDir->getSingleClause<OMPThreadLimitClause>()) { + CGOpenMPInnerExprInfo CGInfo(CGF, CS); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit()); + return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty, + /*IsSigned=*/true); + } + + // If we have an enclosed teams directive but no thread_limit clause we use + // the default value 0. + return CGF.Builder.getInt32(0); + } + + // No teams associated with the directive. + return nullptr; +} + +namespace { +// \brief Utility to handle information from clauses associated with a given +// construct that use mappable expressions (e.g. 'map' clause, 'to' clause). +// It provides a convenient interface to obtain the information and generate +// code for that information. +class MappableExprsHandler { +public: + /// \brief Values for bit flags used to specify the mapping type for + /// offloading. + enum OpenMPOffloadMappingFlags { + /// \brief Allocate memory on the device and move data from host to device. + OMP_MAP_TO = 0x01, + /// \brief Allocate memory on the device and move data from device to host. + OMP_MAP_FROM = 0x02, + /// \brief Always perform the requested mapping action on the element, even + /// if it was already mapped before. + OMP_MAP_ALWAYS = 0x04, + /// \brief Delete the element from the device environment, ignoring the + /// current reference count associated with the element. + OMP_MAP_DELETE = 0x08, + /// \brief The element being mapped is a pointer, therefore the pointee + /// should be mapped as well. + OMP_MAP_IS_PTR = 0x10, + /// \brief This flags signals that an argument is the first one relating to + /// a map/private clause expression. For some cases a single + /// map/privatization results in multiple arguments passed to the runtime + /// library. + OMP_MAP_FIRST_REF = 0x20, + /// \brief Signal that the runtime library has to return the device pointer + /// in the current position for the data being mapped. + OMP_MAP_RETURN_PTR = 0x40, + /// \brief This flag signals that the reference being passed is a pointer to + /// private data. + OMP_MAP_PRIVATE_PTR = 0x80, + /// \brief Pass the element to the device by value. + OMP_MAP_PRIVATE_VAL = 0x100, + }; + + /// Class that associates information with a base pointer to be passed to the + /// runtime library. + class BasePointerInfo { + /// The base pointer. + llvm::Value *Ptr = nullptr; + /// The base declaration that refers to this device pointer, or null if + /// there is none. + const ValueDecl *DevPtrDecl = nullptr; + + public: + BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr) + : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {} + llvm::Value *operator*() const { return Ptr; } + const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; } + void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; } + }; + + typedef SmallVector<BasePointerInfo, 16> MapBaseValuesArrayTy; + typedef SmallVector<llvm::Value *, 16> MapValuesArrayTy; + typedef SmallVector<unsigned, 16> MapFlagsArrayTy; + +private: + /// \brief Directive from where the map clauses were extracted. + const OMPExecutableDirective &CurDir; + + /// \brief Function the directive is being generated for. + CodeGenFunction &CGF; + + /// \brief Set of all first private variables in the current directive. + llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls; + + /// Map between device pointer declarations and their expression components. + /// The key value for declarations in 'this' is null. + llvm::DenseMap< + const ValueDecl *, + SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>> + DevPointersMap; + + llvm::Value *getExprTypeSize(const Expr *E) const { + auto ExprTy = E->getType().getCanonicalType(); + + // Reference types are ignored for mapping purposes. + if (auto *RefTy = ExprTy->getAs<ReferenceType>()) + ExprTy = RefTy->getPointeeType().getCanonicalType(); + + // Given that an array section is considered a built-in type, we need to + // do the calculation based on the length of the section instead of relying + // on CGF.getTypeSize(E->getType()). + if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) { + QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType( + OAE->getBase()->IgnoreParenImpCasts()) + .getCanonicalType(); + + // If there is no length associated with the expression, that means we + // are using the whole length of the base. + if (!OAE->getLength() && OAE->getColonLoc().isValid()) + return CGF.getTypeSize(BaseTy); + + llvm::Value *ElemSize; + if (auto *PTy = BaseTy->getAs<PointerType>()) + ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType()); + else { + auto *ATy = cast<ArrayType>(BaseTy.getTypePtr()); + assert(ATy && "Expecting array type if not a pointer type."); + ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType()); + } + + // If we don't have a length at this point, that is because we have an + // array section with a single element. + if (!OAE->getLength()) + return ElemSize; + + auto *LengthVal = CGF.EmitScalarExpr(OAE->getLength()); + LengthVal = + CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false); + return CGF.Builder.CreateNUWMul(LengthVal, ElemSize); + } + return CGF.getTypeSize(ExprTy); + } + + /// \brief Return the corresponding bits for a given map clause modifier. Add + /// a flag marking the map as a pointer if requested. Add a flag marking the + /// map as the first one of a series of maps that relate to the same map + /// expression. + unsigned getMapTypeBits(OpenMPMapClauseKind MapType, + OpenMPMapClauseKind MapTypeModifier, bool AddPtrFlag, + bool AddIsFirstFlag) const { + unsigned Bits = 0u; + switch (MapType) { + case OMPC_MAP_alloc: + case OMPC_MAP_release: + // alloc and release is the default behavior in the runtime library, i.e. + // if we don't pass any bits alloc/release that is what the runtime is + // going to do. Therefore, we don't need to signal anything for these two + // type modifiers. + break; + case OMPC_MAP_to: + Bits = OMP_MAP_TO; + break; + case OMPC_MAP_from: + Bits = OMP_MAP_FROM; + break; + case OMPC_MAP_tofrom: + Bits = OMP_MAP_TO | OMP_MAP_FROM; + break; + case OMPC_MAP_delete: + Bits = OMP_MAP_DELETE; + break; + default: + llvm_unreachable("Unexpected map type!"); + break; + } + if (AddPtrFlag) + Bits |= OMP_MAP_IS_PTR; + if (AddIsFirstFlag) + Bits |= OMP_MAP_FIRST_REF; + if (MapTypeModifier == OMPC_MAP_always) + Bits |= OMP_MAP_ALWAYS; + return Bits; + } + + /// \brief Return true if the provided expression is a final array section. A + /// final array section, is one whose length can't be proved to be one. + bool isFinalArraySectionExpression(const Expr *E) const { + auto *OASE = dyn_cast<OMPArraySectionExpr>(E); + + // It is not an array section and therefore not a unity-size one. + if (!OASE) + return false; + + // An array section with no colon always refer to a single element. + if (OASE->getColonLoc().isInvalid()) + return false; + + auto *Length = OASE->getLength(); + + // If we don't have a length we have to check if the array has size 1 + // for this dimension. Also, we should always expect a length if the + // base type is pointer. + if (!Length) { + auto BaseQTy = OMPArraySectionExpr::getBaseOriginalType( + OASE->getBase()->IgnoreParenImpCasts()) + .getCanonicalType(); + if (auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr())) + return ATy->getSize().getSExtValue() != 1; + // If we don't have a constant dimension length, we have to consider + // the current section as having any size, so it is not necessarily + // unitary. If it happen to be unity size, that's user fault. + return true; + } + + // Check if the length evaluates to 1. + llvm::APSInt ConstLength; + if (!Length->EvaluateAsInt(ConstLength, CGF.getContext())) + return true; // Can have more that size 1. + + return ConstLength.getSExtValue() != 1; + } + + /// \brief Generate the base pointers, section pointers, sizes and map type + /// bits for the provided map type, map modifier, and expression components. + /// \a IsFirstComponent should be set to true if the provided set of + /// components is the first associated with a capture. + void generateInfoForComponentList( + OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier, + OMPClauseMappableExprCommon::MappableExprComponentListRef Components, + MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, + MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types, + bool IsFirstComponentList) const { + + // The following summarizes what has to be generated for each map and the + // types bellow. The generated information is expressed in this order: + // base pointer, section pointer, size, flags + // (to add to the ones that come from the map type and modifier). + // + // double d; + // int i[100]; + // float *p; + // + // struct S1 { + // int i; + // float f[50]; + // } + // struct S2 { + // int i; + // float f[50]; + // S1 s; + // double *p; + // struct S2 *ps; + // } + // S2 s; + // S2 *ps; + // + // map(d) + // &d, &d, sizeof(double), noflags + // + // map(i) + // &i, &i, 100*sizeof(int), noflags + // + // map(i[1:23]) + // &i(=&i[0]), &i[1], 23*sizeof(int), noflags + // + // map(p) + // &p, &p, sizeof(float*), noflags + // + // map(p[1:24]) + // p, &p[1], 24*sizeof(float), noflags + // + // map(s) + // &s, &s, sizeof(S2), noflags + // + // map(s.i) + // &s, &(s.i), sizeof(int), noflags + // + // map(s.s.f) + // &s, &(s.i.f), 50*sizeof(int), noflags + // + // map(s.p) + // &s, &(s.p), sizeof(double*), noflags + // + // map(s.p[:22], s.a s.b) + // &s, &(s.p), sizeof(double*), noflags + // &(s.p), &(s.p[0]), 22*sizeof(double), ptr_flag + extra_flag + // + // map(s.ps) + // &s, &(s.ps), sizeof(S2*), noflags + // + // map(s.ps->s.i) + // &s, &(s.ps), sizeof(S2*), noflags + // &(s.ps), &(s.ps->s.i), sizeof(int), ptr_flag + extra_flag + // + // map(s.ps->ps) + // &s, &(s.ps), sizeof(S2*), noflags + // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag + // + // map(s.ps->ps->ps) + // &s, &(s.ps), sizeof(S2*), noflags + // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag + // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag + // + // map(s.ps->ps->s.f[:22]) + // &s, &(s.ps), sizeof(S2*), noflags + // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag + // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + extra_flag + // + // map(ps) + // &ps, &ps, sizeof(S2*), noflags + // + // map(ps->i) + // ps, &(ps->i), sizeof(int), noflags + // + // map(ps->s.f) + // ps, &(ps->s.f[0]), 50*sizeof(float), noflags + // + // map(ps->p) + // ps, &(ps->p), sizeof(double*), noflags + // + // map(ps->p[:22]) + // ps, &(ps->p), sizeof(double*), noflags + // &(ps->p), &(ps->p[0]), 22*sizeof(double), ptr_flag + extra_flag + // + // map(ps->ps) + // ps, &(ps->ps), sizeof(S2*), noflags + // + // map(ps->ps->s.i) + // ps, &(ps->ps), sizeof(S2*), noflags + // &(ps->ps), &(ps->ps->s.i), sizeof(int), ptr_flag + extra_flag + // + // map(ps->ps->ps) + // ps, &(ps->ps), sizeof(S2*), noflags + // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag + // + // map(ps->ps->ps->ps) + // ps, &(ps->ps), sizeof(S2*), noflags + // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag + // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag + // + // map(ps->ps->ps->s.f[:22]) + // ps, &(ps->ps), sizeof(S2*), noflags + // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag + // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + + // extra_flag + + // Track if the map information being generated is the first for a capture. + bool IsCaptureFirstInfo = IsFirstComponentList; + + // Scan the components from the base to the complete expression. + auto CI = Components.rbegin(); + auto CE = Components.rend(); + auto I = CI; + + // Track if the map information being generated is the first for a list of + // components. + bool IsExpressionFirstInfo = true; + llvm::Value *BP = nullptr; + + if (auto *ME = dyn_cast<MemberExpr>(I->getAssociatedExpression())) { + // The base is the 'this' pointer. The content of the pointer is going + // to be the base of the field being mapped. + BP = CGF.EmitScalarExpr(ME->getBase()); + } else { + // The base is the reference to the variable. + // BP = &Var. + BP = CGF.EmitLValue(cast<DeclRefExpr>(I->getAssociatedExpression())) + .getPointer(); + + // If the variable is a pointer and is being dereferenced (i.e. is not + // the last component), the base has to be the pointer itself, not its + // reference. References are ignored for mapping purposes. + QualType Ty = + I->getAssociatedDeclaration()->getType().getNonReferenceType(); + if (Ty->isAnyPointerType() && std::next(I) != CE) { + auto PtrAddr = CGF.MakeNaturalAlignAddrLValue(BP, Ty); + BP = CGF.EmitLoadOfPointerLValue(PtrAddr.getAddress(), + Ty->castAs<PointerType>()) + .getPointer(); + + // We do not need to generate individual map information for the + // pointer, it can be associated with the combined storage. + ++I; + } + } + + for (; I != CE; ++I) { + auto Next = std::next(I); + + // We need to generate the addresses and sizes if this is the last + // component, if the component is a pointer or if it is an array section + // whose length can't be proved to be one. If this is a pointer, it + // becomes the base address for the following components. + + // A final array section, is one whose length can't be proved to be one. + bool IsFinalArraySection = + isFinalArraySectionExpression(I->getAssociatedExpression()); + + // Get information on whether the element is a pointer. Have to do a + // special treatment for array sections given that they are built-in + // types. + const auto *OASE = + dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression()); + bool IsPointer = + (OASE && + OMPArraySectionExpr::getBaseOriginalType(OASE) + .getCanonicalType() + ->isAnyPointerType()) || + I->getAssociatedExpression()->getType()->isAnyPointerType(); + + if (Next == CE || IsPointer || IsFinalArraySection) { + + // If this is not the last component, we expect the pointer to be + // associated with an array expression or member expression. + assert((Next == CE || + isa<MemberExpr>(Next->getAssociatedExpression()) || + isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || + isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && + "Unexpected expression"); + + auto *LB = CGF.EmitLValue(I->getAssociatedExpression()).getPointer(); + auto *Size = getExprTypeSize(I->getAssociatedExpression()); + + // If we have a member expression and the current component is a + // reference, we have to map the reference too. Whenever we have a + // reference, the section that reference refers to is going to be a + // load instruction from the storage assigned to the reference. + if (isa<MemberExpr>(I->getAssociatedExpression()) && + I->getAssociatedDeclaration()->getType()->isReferenceType()) { + auto *LI = cast<llvm::LoadInst>(LB); + auto *RefAddr = LI->getPointerOperand(); + + BasePointers.push_back(BP); + Pointers.push_back(RefAddr); + Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy)); + Types.push_back(getMapTypeBits( + /*MapType*/ OMPC_MAP_alloc, /*MapTypeModifier=*/OMPC_MAP_unknown, + !IsExpressionFirstInfo, IsCaptureFirstInfo)); + IsExpressionFirstInfo = false; + IsCaptureFirstInfo = false; + // The reference will be the next base address. + BP = RefAddr; + } + + BasePointers.push_back(BP); + Pointers.push_back(LB); + Sizes.push_back(Size); + + // We need to add a pointer flag for each map that comes from the + // same expression except for the first one. We also need to signal + // this map is the first one that relates with the current capture + // (there is a set of entries for each capture). + Types.push_back(getMapTypeBits(MapType, MapTypeModifier, + !IsExpressionFirstInfo, + IsCaptureFirstInfo)); + + // If we have a final array section, we are done with this expression. + if (IsFinalArraySection) + break; + + // The pointer becomes the base for the next element. + if (Next != CE) + BP = LB; + + IsExpressionFirstInfo = false; + IsCaptureFirstInfo = false; + continue; + } + } + } + + /// \brief Return the adjusted map modifiers if the declaration a capture + /// refers to appears in a first-private clause. This is expected to be used + /// only with directives that start with 'target'. + unsigned adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap, + unsigned CurrentModifiers) { + assert(Cap.capturesVariable() && "Expected capture by reference only!"); + + // A first private variable captured by reference will use only the + // 'private ptr' and 'map to' flag. Return the right flags if the captured + // declaration is known as first-private in this handler. + if (FirstPrivateDecls.count(Cap.getCapturedVar())) + return MappableExprsHandler::OMP_MAP_PRIVATE_PTR | + MappableExprsHandler::OMP_MAP_TO; + + // We didn't modify anything. + return CurrentModifiers; + } + +public: + MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF) + : CurDir(Dir), CGF(CGF) { + // Extract firstprivate clause information. + for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>()) + for (const auto *D : C->varlists()) + FirstPrivateDecls.insert( + cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); + // Extract device pointer clause information. + for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>()) + for (auto L : C->component_lists()) + DevPointersMap[L.first].push_back(L.second); + } + + /// \brief Generate all the base pointers, section pointers, sizes and map + /// types for the extracted mappable expressions. Also, for each item that + /// relates with a device pointer, a pair of the relevant declaration and + /// index where it occurs is appended to the device pointers info array. + void generateAllInfo(MapBaseValuesArrayTy &BasePointers, + MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, + MapFlagsArrayTy &Types) const { + BasePointers.clear(); + Pointers.clear(); + Sizes.clear(); + Types.clear(); + + struct MapInfo { + /// Kind that defines how a device pointer has to be returned. + enum ReturnPointerKind { + // Don't have to return any pointer. + RPK_None, + // Pointer is the base of the declaration. + RPK_Base, + // Pointer is a member of the base declaration - 'this' + RPK_Member, + // Pointer is a reference and a member of the base declaration - 'this' + RPK_MemberReference, + }; + OMPClauseMappableExprCommon::MappableExprComponentListRef Components; + OpenMPMapClauseKind MapType; + OpenMPMapClauseKind MapTypeModifier; + ReturnPointerKind ReturnDevicePointer; + + MapInfo() + : MapType(OMPC_MAP_unknown), MapTypeModifier(OMPC_MAP_unknown), + ReturnDevicePointer(RPK_None) {} + MapInfo( + OMPClauseMappableExprCommon::MappableExprComponentListRef Components, + OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier, + ReturnPointerKind ReturnDevicePointer) + : Components(Components), MapType(MapType), + MapTypeModifier(MapTypeModifier), + ReturnDevicePointer(ReturnDevicePointer) {} + }; + + // We have to process the component lists that relate with the same + // declaration in a single chunk so that we can generate the map flags + // correctly. Therefore, we organize all lists in a map. + llvm::DenseMap<const ValueDecl *, SmallVector<MapInfo, 8>> Info; + + // Helper function to fill the information map for the different supported + // clauses. + auto &&InfoGen = [&Info]( + const ValueDecl *D, + OMPClauseMappableExprCommon::MappableExprComponentListRef L, + OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapModifier, + MapInfo::ReturnPointerKind ReturnDevicePointer) { + const ValueDecl *VD = + D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; + Info[VD].push_back({L, MapType, MapModifier, ReturnDevicePointer}); + }; + + // FIXME: MSVC 2013 seems to require this-> to find member CurDir. + for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) + for (auto L : C->component_lists()) + InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifier(), + MapInfo::RPK_None); + for (auto *C : this->CurDir.getClausesOfKind<OMPToClause>()) + for (auto L : C->component_lists()) + InfoGen(L.first, L.second, OMPC_MAP_to, OMPC_MAP_unknown, + MapInfo::RPK_None); + for (auto *C : this->CurDir.getClausesOfKind<OMPFromClause>()) + for (auto L : C->component_lists()) + InfoGen(L.first, L.second, OMPC_MAP_from, OMPC_MAP_unknown, + MapInfo::RPK_None); + + // Look at the use_device_ptr clause information and mark the existing map + // entries as such. If there is no map information for an entry in the + // use_device_ptr list, we create one with map type 'alloc' and zero size + // section. It is the user fault if that was not mapped before. + // FIXME: MSVC 2013 seems to require this-> to find member CurDir. + for (auto *C : this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) + for (auto L : C->component_lists()) { + assert(!L.second.empty() && "Not expecting empty list of components!"); + const ValueDecl *VD = L.second.back().getAssociatedDeclaration(); + VD = cast<ValueDecl>(VD->getCanonicalDecl()); + auto *IE = L.second.back().getAssociatedExpression(); + // If the first component is a member expression, we have to look into + // 'this', which maps to null in the map of map information. Otherwise + // look directly for the information. + auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD); + + // We potentially have map information for this declaration already. + // Look for the first set of components that refer to it. + if (It != Info.end()) { + auto CI = std::find_if( + It->second.begin(), It->second.end(), [VD](const MapInfo &MI) { + return MI.Components.back().getAssociatedDeclaration() == VD; + }); + // If we found a map entry, signal that the pointer has to be returned + // and move on to the next declaration. + if (CI != It->second.end()) { + CI->ReturnDevicePointer = isa<MemberExpr>(IE) + ? (VD->getType()->isReferenceType() + ? MapInfo::RPK_MemberReference + : MapInfo::RPK_Member) + : MapInfo::RPK_Base; + continue; + } + } + + // We didn't find any match in our map information - generate a zero + // size array section. + // FIXME: MSVC 2013 seems to require this-> to find member CGF. + llvm::Value *Ptr = + this->CGF + .EmitLoadOfLValue(this->CGF.EmitLValue(IE), SourceLocation()) + .getScalarVal(); + BasePointers.push_back({Ptr, VD}); + Pointers.push_back(Ptr); + Sizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy)); + Types.push_back(OMP_MAP_RETURN_PTR | OMP_MAP_FIRST_REF); + } + + for (auto &M : Info) { + // We need to know when we generate information for the first component + // associated with a capture, because the mapping flags depend on it. + bool IsFirstComponentList = true; + for (MapInfo &L : M.second) { + assert(!L.Components.empty() && + "Not expecting declaration with no component lists."); + + // Remember the current base pointer index. + unsigned CurrentBasePointersIdx = BasePointers.size(); + // FIXME: MSVC 2013 seems to require this-> to find the member method. + this->generateInfoForComponentList(L.MapType, L.MapTypeModifier, + L.Components, BasePointers, Pointers, + Sizes, Types, IsFirstComponentList); + + // If this entry relates with a device pointer, set the relevant + // declaration and add the 'return pointer' flag. + if (IsFirstComponentList && + L.ReturnDevicePointer != MapInfo::RPK_None) { + // If the pointer is not the base of the map, we need to skip the + // base. If it is a reference in a member field, we also need to skip + // the map of the reference. + if (L.ReturnDevicePointer != MapInfo::RPK_Base) { + ++CurrentBasePointersIdx; + if (L.ReturnDevicePointer == MapInfo::RPK_MemberReference) + ++CurrentBasePointersIdx; + } + assert(BasePointers.size() > CurrentBasePointersIdx && + "Unexpected number of mapped base pointers."); + + auto *RelevantVD = L.Components.back().getAssociatedDeclaration(); + assert(RelevantVD && + "No relevant declaration related with device pointer??"); + + BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD); + Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PTR; + } + IsFirstComponentList = false; + } + } + } + + /// \brief Generate the base pointers, section pointers, sizes and map types + /// associated to a given capture. + void generateInfoForCapture(const CapturedStmt::Capture *Cap, + llvm::Value *Arg, + MapBaseValuesArrayTy &BasePointers, + MapValuesArrayTy &Pointers, + MapValuesArrayTy &Sizes, + MapFlagsArrayTy &Types) const { + assert(!Cap->capturesVariableArrayType() && + "Not expecting to generate map info for a variable array type!"); + + BasePointers.clear(); + Pointers.clear(); + Sizes.clear(); + Types.clear(); + + // We need to know when we generating information for the first component + // associated with a capture, because the mapping flags depend on it. + bool IsFirstComponentList = true; + + const ValueDecl *VD = + Cap->capturesThis() + ? nullptr + : cast<ValueDecl>(Cap->getCapturedVar()->getCanonicalDecl()); + + // If this declaration appears in a is_device_ptr clause we just have to + // pass the pointer by value. If it is a reference to a declaration, we just + // pass its value, otherwise, if it is a member expression, we need to map + // 'to' the field. + if (!VD) { + auto It = DevPointersMap.find(VD); + if (It != DevPointersMap.end()) { + for (auto L : It->second) { + generateInfoForComponentList( + /*MapType=*/OMPC_MAP_to, /*MapTypeModifier=*/OMPC_MAP_unknown, L, + BasePointers, Pointers, Sizes, Types, IsFirstComponentList); + IsFirstComponentList = false; + } + return; + } + } else if (DevPointersMap.count(VD)) { + BasePointers.push_back({Arg, VD}); + Pointers.push_back(Arg); + Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy)); + Types.push_back(OMP_MAP_PRIVATE_VAL | OMP_MAP_FIRST_REF); + return; + } + + // FIXME: MSVC 2013 seems to require this-> to find member CurDir. + for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) + for (auto L : C->decl_component_lists(VD)) { + assert(L.first == VD && + "We got information for the wrong declaration??"); + assert(!L.second.empty() && + "Not expecting declaration with no component lists."); + generateInfoForComponentList(C->getMapType(), C->getMapTypeModifier(), + L.second, BasePointers, Pointers, Sizes, + Types, IsFirstComponentList); + IsFirstComponentList = false; + } + + return; + } + + /// \brief Generate the default map information for a given capture \a CI, + /// record field declaration \a RI and captured value \a CV. + void generateDefaultMapInfo(const CapturedStmt::Capture &CI, + const FieldDecl &RI, llvm::Value *CV, + MapBaseValuesArrayTy &CurBasePointers, + MapValuesArrayTy &CurPointers, + MapValuesArrayTy &CurSizes, + MapFlagsArrayTy &CurMapTypes) { + + // Do the default mapping. + if (CI.capturesThis()) { + CurBasePointers.push_back(CV); + CurPointers.push_back(CV); + const PointerType *PtrTy = cast<PointerType>(RI.getType().getTypePtr()); + CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType())); + // Default map type. + CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM); + } else if (CI.capturesVariableByCopy()) { + CurBasePointers.push_back(CV); + CurPointers.push_back(CV); + if (!RI.getType()->isAnyPointerType()) { + // We have to signal to the runtime captures passed by value that are + // not pointers. + CurMapTypes.push_back(OMP_MAP_PRIVATE_VAL); + CurSizes.push_back(CGF.getTypeSize(RI.getType())); + } else { + // Pointers are implicitly mapped with a zero size and no flags + // (other than first map that is added for all implicit maps). + CurMapTypes.push_back(0u); + CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy)); + } + } else { + assert(CI.capturesVariable() && "Expected captured reference."); + CurBasePointers.push_back(CV); + CurPointers.push_back(CV); + + const ReferenceType *PtrTy = + cast<ReferenceType>(RI.getType().getTypePtr()); + QualType ElementType = PtrTy->getPointeeType(); + CurSizes.push_back(CGF.getTypeSize(ElementType)); + // The default map type for a scalar/complex type is 'to' because by + // default the value doesn't have to be retrieved. For an aggregate + // type, the default is 'tofrom'. + CurMapTypes.push_back(ElementType->isAggregateType() + ? (OMP_MAP_TO | OMP_MAP_FROM) + : OMP_MAP_TO); + + // If we have a capture by reference we may need to add the private + // pointer flag if the base declaration shows in some first-private + // clause. + CurMapTypes.back() = + adjustMapModifiersForPrivateClauses(CI, CurMapTypes.back()); + } + // Every default map produces a single argument, so, it is always the + // first one. + CurMapTypes.back() |= OMP_MAP_FIRST_REF; + } +}; + +enum OpenMPOffloadingReservedDeviceIDs { + /// \brief Device ID if the device was not defined, runtime should get it + /// from environment variables in the spec. + OMP_DEVICEID_UNDEF = -1, +}; +} // anonymous namespace + +/// \brief Emit the arrays used to pass the captures and map information to the +/// offloading runtime library. If there is no map or capture information, +/// return nullptr by reference. +static void +emitOffloadingArrays(CodeGenFunction &CGF, + MappableExprsHandler::MapBaseValuesArrayTy &BasePointers, + MappableExprsHandler::MapValuesArrayTy &Pointers, + MappableExprsHandler::MapValuesArrayTy &Sizes, + MappableExprsHandler::MapFlagsArrayTy &MapTypes, + CGOpenMPRuntime::TargetDataInfo &Info) { + auto &CGM = CGF.CGM; + auto &Ctx = CGF.getContext(); + + // Reset the array information. + Info.clearArrayInfo(); + Info.NumberOfPtrs = BasePointers.size(); + + if (Info.NumberOfPtrs) { + // Detect if we have any capture size requiring runtime evaluation of the + // size so that a constant array could be eventually used. + bool hasRuntimeEvaluationCaptureSize = false; + for (auto *S : Sizes) + if (!isa<llvm::Constant>(S)) { + hasRuntimeEvaluationCaptureSize = true; + break; + } + + llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true); + QualType PointerArrayType = + Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal, + /*IndexTypeQuals=*/0); + + Info.BasePointersArray = + CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer(); + Info.PointersArray = + CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer(); + + // If we don't have any VLA types or other types that require runtime + // evaluation, we can use a constant array for the map sizes, otherwise we + // need to fill up the arrays as we do for the pointers. + if (hasRuntimeEvaluationCaptureSize) { + QualType SizeArrayType = Ctx.getConstantArrayType( + Ctx.getSizeType(), PointerNumAP, ArrayType::Normal, + /*IndexTypeQuals=*/0); + Info.SizesArray = + CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer(); + } else { + // We expect all the sizes to be constant, so we collect them to create + // a constant array. + SmallVector<llvm::Constant *, 16> ConstSizes; + for (auto S : Sizes) + ConstSizes.push_back(cast<llvm::Constant>(S)); + + auto *SizesArrayInit = llvm::ConstantArray::get( + llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes); + auto *SizesArrayGbl = new llvm::GlobalVariable( + CGM.getModule(), SizesArrayInit->getType(), + /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, + SizesArrayInit, ".offload_sizes"); + SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + Info.SizesArray = SizesArrayGbl; + } + + // The map types are always constant so we don't need to generate code to + // fill arrays. Instead, we create an array constant. + llvm::Constant *MapTypesArrayInit = + llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes); + auto *MapTypesArrayGbl = new llvm::GlobalVariable( + CGM.getModule(), MapTypesArrayInit->getType(), + /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, + MapTypesArrayInit, ".offload_maptypes"); + MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + Info.MapTypesArray = MapTypesArrayGbl; + + for (unsigned i = 0; i < Info.NumberOfPtrs; ++i) { + llvm::Value *BPVal = *BasePointers[i]; + if (BPVal->getType()->isPointerTy()) + BPVal = CGF.Builder.CreateBitCast(BPVal, CGM.VoidPtrTy); + else { + assert(BPVal->getType()->isIntegerTy() && + "If not a pointer, the value type must be an integer."); + BPVal = CGF.Builder.CreateIntToPtr(BPVal, CGM.VoidPtrTy); + } + llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.BasePointersArray, 0, i); + Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); + CGF.Builder.CreateStore(BPVal, BPAddr); + + if (Info.requiresDevicePointerInfo()) + if (auto *DevVD = BasePointers[i].getDevicePtrDecl()) + Info.CaptureDeviceAddrMap.insert(std::make_pair(DevVD, BPAddr)); + + llvm::Value *PVal = Pointers[i]; + if (PVal->getType()->isPointerTy()) + PVal = CGF.Builder.CreateBitCast(PVal, CGM.VoidPtrTy); + else { + assert(PVal->getType()->isIntegerTy() && + "If not a pointer, the value type must be an integer."); + PVal = CGF.Builder.CreateIntToPtr(PVal, CGM.VoidPtrTy); + } + llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.PointersArray, 0, i); + Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); + CGF.Builder.CreateStore(PVal, PAddr); + + if (hasRuntimeEvaluationCaptureSize) { + llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), + Info.SizesArray, + /*Idx0=*/0, + /*Idx1=*/i); + Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType())); + CGF.Builder.CreateStore( + CGF.Builder.CreateIntCast(Sizes[i], CGM.SizeTy, /*isSigned=*/true), + SAddr); + } + } + } +} +/// \brief Emit the arguments to be passed to the runtime library based on the +/// arrays of pointers, sizes and map types. +static void emitOffloadingArraysArgument( + CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg, + llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg, + llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) { + auto &CGM = CGF.CGM; + if (Info.NumberOfPtrs) { + BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.BasePointersArray, + /*Idx0=*/0, /*Idx1=*/0); + PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.PointersArray, + /*Idx0=*/0, + /*Idx1=*/0); + SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), Info.SizesArray, + /*Idx0=*/0, /*Idx1=*/0); + MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.Int32Ty, Info.NumberOfPtrs), + Info.MapTypesArray, + /*Idx0=*/0, + /*Idx1=*/0); + } else { + BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); + PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); + SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo()); + MapTypesArrayArg = + llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()); + } +} + +void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + llvm::Value *OutlinedFn, + llvm::Value *OutlinedFnID, + const Expr *IfCond, const Expr *Device, + ArrayRef<llvm::Value *> CapturedVars) { + if (!CGF.HaveInsertPoint()) + return; + + assert(OutlinedFn && "Invalid outlined function!"); + + auto &Ctx = CGF.getContext(); + + // Fill up the arrays with all the captured variables. + MappableExprsHandler::MapValuesArrayTy KernelArgs; + MappableExprsHandler::MapBaseValuesArrayTy BasePointers; + MappableExprsHandler::MapValuesArrayTy Pointers; + MappableExprsHandler::MapValuesArrayTy Sizes; + MappableExprsHandler::MapFlagsArrayTy MapTypes; + + MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers; + MappableExprsHandler::MapValuesArrayTy CurPointers; + MappableExprsHandler::MapValuesArrayTy CurSizes; + MappableExprsHandler::MapFlagsArrayTy CurMapTypes; + + // Get mappable expression information. + MappableExprsHandler MEHandler(D, CGF); + + const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); + auto RI = CS.getCapturedRecordDecl()->field_begin(); + auto CV = CapturedVars.begin(); + for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(), + CE = CS.capture_end(); + CI != CE; ++CI, ++RI, ++CV) { + StringRef Name; + QualType Ty; + + CurBasePointers.clear(); + CurPointers.clear(); + CurSizes.clear(); + CurMapTypes.clear(); + + // VLA sizes are passed to the outlined region by copy and do not have map + // information associated. + if (CI->capturesVariableArrayType()) { + CurBasePointers.push_back(*CV); + CurPointers.push_back(*CV); + CurSizes.push_back(CGF.getTypeSize(RI->getType())); + // Copy to the device as an argument. No need to retrieve it. + CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL | + MappableExprsHandler::OMP_MAP_FIRST_REF); + } else { + // If we have any information in the map clause, we use it, otherwise we + // just do a default mapping. + MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers, + CurSizes, CurMapTypes); + if (CurBasePointers.empty()) + MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers, + CurPointers, CurSizes, CurMapTypes); + } + // We expect to have at least an element of information for this capture. + assert(!CurBasePointers.empty() && "Non-existing map pointer for capture!"); + assert(CurBasePointers.size() == CurPointers.size() && + CurBasePointers.size() == CurSizes.size() && + CurBasePointers.size() == CurMapTypes.size() && + "Inconsistent map information sizes!"); + + // The kernel args are always the first elements of the base pointers + // associated with a capture. + KernelArgs.push_back(*CurBasePointers.front()); + // We need to append the results of this capture to what we already have. + BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); + Pointers.append(CurPointers.begin(), CurPointers.end()); + Sizes.append(CurSizes.begin(), CurSizes.end()); + MapTypes.append(CurMapTypes.begin(), CurMapTypes.end()); + } + + // Keep track on whether the host function has to be executed. + auto OffloadErrorQType = + Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true); + auto OffloadError = CGF.MakeAddrLValue( + CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"), + OffloadErrorQType); + CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), + OffloadError); + + // Fill up the pointer arrays and transfer execution to the device. + auto &&ThenGen = [&BasePointers, &Pointers, &Sizes, &MapTypes, Device, + OutlinedFnID, OffloadError, + &D](CodeGenFunction &CGF, PrePostActionTy &) { + auto &RT = CGF.CGM.getOpenMPRuntime(); + // Emit the offloading arrays. + TargetDataInfo Info; + emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); + emitOffloadingArraysArgument(CGF, Info.BasePointersArray, + Info.PointersArray, Info.SizesArray, + Info.MapTypesArray, Info); + + // On top of the arrays that were filled up, the target offloading call + // takes as arguments the device id as well as the host pointer. The host + // pointer is used by the runtime library to identify the current target + // region, so it only has to be unique and not necessarily point to + // anything. It could be the pointer to the outlined function that + // implements the target region, but we aren't using that so that the + // compiler doesn't need to keep that, and could therefore inline the host + // function if proven worthwhile during optimization. + + // From this point on, we need to have an ID of the target region defined. + assert(OutlinedFnID && "Invalid outlined function ID!"); + + // Emit device ID if any. + llvm::Value *DeviceID; + if (Device) + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int32Ty, /*isSigned=*/true); + else + DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + + // Emit the number of elements in the offloading arrays. + llvm::Value *PointerNum = CGF.Builder.getInt32(BasePointers.size()); + + // Return value of the runtime offloading call. + llvm::Value *Return; + + auto *NumTeams = emitNumTeamsForTargetDirective(RT, CGF, D); + auto *NumThreads = emitNumThreadsForTargetDirective(RT, CGF, D); + + // The target region is an outlined function launched by the runtime + // via calls __tgt_target() or __tgt_target_teams(). + // + // __tgt_target() launches a target region with one team and one thread, + // executing a serial region. This master thread may in turn launch + // more threads within its team upon encountering a parallel region, + // however, no additional teams can be launched on the device. + // + // __tgt_target_teams() launches a target region with one or more teams, + // each with one or more threads. This call is required for target + // constructs such as: + // 'target teams' + // 'target' / 'teams' + // 'target teams distribute parallel for' + // 'target parallel' + // and so on. + // + // Note that on the host and CPU targets, the runtime implementation of + // these calls simply call the outlined function without forking threads. + // The outlined functions themselves have runtime calls to + // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by + // the compiler in emitTeamsCall() and emitParallelCall(). + // + // In contrast, on the NVPTX target, the implementation of + // __tgt_target_teams() launches a GPU kernel with the requested number + // of teams and threads so no additional calls to the runtime are required. + if (NumTeams) { + // If we have NumTeams defined this means that we have an enclosed teams + // region. Therefore we also expect to have NumThreads defined. These two + // values should be defined in the presence of a teams directive, + // regardless of having any clauses associated. If the user is using teams + // but no clauses, these two values will be the default that should be + // passed to the runtime library - a 32-bit integer with the value zero. + assert(NumThreads && "Thread limit expression should be available along " + "with number of teams."); + llvm::Value *OffloadingArgs[] = { + DeviceID, OutlinedFnID, + PointerNum, Info.BasePointersArray, + Info.PointersArray, Info.SizesArray, + Info.MapTypesArray, NumTeams, + NumThreads}; + Return = CGF.EmitRuntimeCall( + RT.createRuntimeFunction(OMPRTL__tgt_target_teams), OffloadingArgs); + } else { + llvm::Value *OffloadingArgs[] = { + DeviceID, OutlinedFnID, + PointerNum, Info.BasePointersArray, + Info.PointersArray, Info.SizesArray, + Info.MapTypesArray}; + Return = CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target), + OffloadingArgs); + } + + CGF.EmitStoreOfScalar(Return, OffloadError); + }; + + // Notify that the host version must be executed. + auto &&ElseGen = [OffloadError](CodeGenFunction &CGF, PrePostActionTy &) { + CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/-1u), + OffloadError); + }; + + // If we have a target function ID it means that we need to support + // offloading, otherwise, just execute on the host. We need to execute on host + // regardless of the conditional in the if clause if, e.g., the user do not + // specify target triples. + if (OutlinedFnID) { + if (IfCond) + emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); + else { + RegionCodeGenTy ThenRCG(ThenGen); + ThenRCG(CGF); + } + } else { + RegionCodeGenTy ElseRCG(ElseGen); + ElseRCG(CGF); + } + + // Check the error code and execute the host version if required. + auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed"); + auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont"); + auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation()); + auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal); + CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); + + CGF.EmitBlock(OffloadFailedBlock); + CGF.Builder.CreateCall(OutlinedFn, KernelArgs); + CGF.EmitBranch(OffloadContBlock); + + CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true); +} + +void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S, + StringRef ParentName) { + if (!S) + return; + + // Codegen OMP target directives that offload compute to the device. + bool requiresDeviceCodegen = + isa<OMPExecutableDirective>(S) && + isOpenMPTargetExecutionDirective( + cast<OMPExecutableDirective>(S)->getDirectiveKind()); + + if (requiresDeviceCodegen) { + auto &E = *cast<OMPExecutableDirective>(S); + unsigned DeviceID; + unsigned FileID; + unsigned Line; + getTargetEntryUniqueInfo(CGM.getContext(), E.getLocStart(), DeviceID, + FileID, Line); + + // Is this a target region that should not be emitted as an entry point? If + // so just signal we are done with this target region. + if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID, + ParentName, Line)) + return; + + switch (S->getStmtClass()) { + case Stmt::OMPTargetDirectiveClass: + CodeGenFunction::EmitOMPTargetDeviceFunction( + CGM, ParentName, cast<OMPTargetDirective>(*S)); + break; + case Stmt::OMPTargetParallelDirectiveClass: + CodeGenFunction::EmitOMPTargetParallelDeviceFunction( + CGM, ParentName, cast<OMPTargetParallelDirective>(*S)); + break; + case Stmt::OMPTargetTeamsDirectiveClass: + CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( + CGM, ParentName, cast<OMPTargetTeamsDirective>(*S)); + break; + default: + llvm_unreachable("Unknown target directive for OpenMP device codegen."); + } + return; + } + + if (const OMPExecutableDirective *E = dyn_cast<OMPExecutableDirective>(S)) { + if (!E->hasAssociatedStmt()) + return; + + scanForTargetRegionsFunctions( + cast<CapturedStmt>(E->getAssociatedStmt())->getCapturedStmt(), + ParentName); + return; + } + + // If this is a lambda function, look into its body. + if (auto *L = dyn_cast<LambdaExpr>(S)) + S = L->getBody(); + + // Keep looking for target regions recursively. + for (auto *II : S->children()) + scanForTargetRegionsFunctions(II, ParentName); +} + +bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) { + auto &FD = *cast<FunctionDecl>(GD.getDecl()); + + // If emitting code for the host, we do not process FD here. Instead we do + // the normal code generation. + if (!CGM.getLangOpts().OpenMPIsDevice) + return false; + + // Try to detect target regions in the function. + scanForTargetRegionsFunctions(FD.getBody(), CGM.getMangledName(GD)); + + // We should not emit any function other that the ones created during the + // scanning. Therefore, we signal that this function is completely dealt + // with. + return true; +} + +bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) { + if (!CGM.getLangOpts().OpenMPIsDevice) + return false; + + // Check if there are Ctors/Dtors in this declaration and look for target + // regions in it. We use the complete variant to produce the kernel name + // mangling. + QualType RDTy = cast<VarDecl>(GD.getDecl())->getType(); + if (auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { + for (auto *Ctor : RD->ctors()) { + StringRef ParentName = + CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete)); + scanForTargetRegionsFunctions(Ctor->getBody(), ParentName); + } + auto *Dtor = RD->getDestructor(); + if (Dtor) { + StringRef ParentName = + CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete)); + scanForTargetRegionsFunctions(Dtor->getBody(), ParentName); + } + } + + // If we are in target mode we do not emit any global (declare target is not + // implemented yet). Therefore we signal that GD was processed in this case. + return true; +} + +bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) { + auto *VD = GD.getDecl(); + if (isa<FunctionDecl>(VD)) + return emitTargetFunctions(GD); + + return emitTargetGlobalVariable(GD); +} + +llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() { + // If we have offloading in the current module, we need to emit the entries + // now and register the offloading descriptor. + createOffloadEntriesAndInfoMetadata(); + + // Create and register the offloading binary descriptors. This is the main + // entity that captures all the information about offloading in the current + // compilation unit. + return createOffloadingBinaryDescriptorRegistration(); +} + +void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + SourceLocation Loc, + llvm::Value *OutlinedFn, + ArrayRef<llvm::Value *> CapturedVars) { + if (!CGF.HaveInsertPoint()) + return; + + auto *RTLoc = emitUpdateLocation(CGF, Loc); + CodeGenFunction::RunCleanupsScope Scope(CGF); + + // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn); + llvm::Value *Args[] = { + RTLoc, + CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars + CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())}; + llvm::SmallVector<llvm::Value *, 16> RealArgs; + RealArgs.append(std::begin(Args), std::end(Args)); + RealArgs.append(CapturedVars.begin(), CapturedVars.end()); + + auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams); + CGF.EmitRuntimeCall(RTLFn, RealArgs); +} + +void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF, + const Expr *NumTeams, + const Expr *ThreadLimit, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + + auto *RTLoc = emitUpdateLocation(CGF, Loc); + + llvm::Value *NumTeamsVal = + (NumTeams) + ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams), + CGF.CGM.Int32Ty, /* isSigned = */ true) + : CGF.Builder.getInt32(0); + + llvm::Value *ThreadLimitVal = + (ThreadLimit) + ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit), + CGF.CGM.Int32Ty, /* isSigned = */ true) + : CGF.Builder.getInt32(0); + + // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit) + llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal, + ThreadLimitVal}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams), + PushNumTeamsArgs); +} + +void CGOpenMPRuntime::emitTargetDataCalls( + CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, + const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { + if (!CGF.HaveInsertPoint()) + return; + + // Action used to replace the default codegen action and turn privatization + // off. + PrePostActionTy NoPrivAction; + + // Generate the code for the opening of the data environment. Capture all the + // arguments of the runtime call by reference because they are used in the + // closing of the region. + auto &&BeginThenGen = [&D, Device, &Info, &CodeGen](CodeGenFunction &CGF, + PrePostActionTy &) { + // Fill up the arrays with all the mapped variables. + MappableExprsHandler::MapBaseValuesArrayTy BasePointers; + MappableExprsHandler::MapValuesArrayTy Pointers; + MappableExprsHandler::MapValuesArrayTy Sizes; + MappableExprsHandler::MapFlagsArrayTy MapTypes; + + // Get map clause information. + MappableExprsHandler MCHandler(D, CGF); + MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); + + // Fill up the arrays and create the arguments. + emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); + + llvm::Value *BasePointersArrayArg = nullptr; + llvm::Value *PointersArrayArg = nullptr; + llvm::Value *SizesArrayArg = nullptr; + llvm::Value *MapTypesArrayArg = nullptr; + emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, + SizesArrayArg, MapTypesArrayArg, Info); + + // Emit device ID if any. + llvm::Value *DeviceID = nullptr; + if (Device) + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int32Ty, /*isSigned=*/true); + else + DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + + // Emit the number of elements in the offloading arrays. + auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); + + llvm::Value *OffloadingArgs[] = { + DeviceID, PointerNum, BasePointersArrayArg, + PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; + auto &RT = CGF.CGM.getOpenMPRuntime(); + CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_begin), + OffloadingArgs); + + // If device pointer privatization is required, emit the body of the region + // here. It will have to be duplicated: with and without privatization. + if (!Info.CaptureDeviceAddrMap.empty()) + CodeGen(CGF); + }; + + // Generate code for the closing of the data region. + auto &&EndThenGen = [Device, &Info](CodeGenFunction &CGF, PrePostActionTy &) { + assert(Info.isValid() && "Invalid data environment closing arguments."); + + llvm::Value *BasePointersArrayArg = nullptr; + llvm::Value *PointersArrayArg = nullptr; + llvm::Value *SizesArrayArg = nullptr; + llvm::Value *MapTypesArrayArg = nullptr; + emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, + SizesArrayArg, MapTypesArrayArg, Info); + + // Emit device ID if any. + llvm::Value *DeviceID = nullptr; + if (Device) + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int32Ty, /*isSigned=*/true); + else + DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + + // Emit the number of elements in the offloading arrays. + auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); + + llvm::Value *OffloadingArgs[] = { + DeviceID, PointerNum, BasePointersArrayArg, + PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; + auto &RT = CGF.CGM.getOpenMPRuntime(); + CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_end), + OffloadingArgs); + }; + + // If we need device pointer privatization, we need to emit the body of the + // region with no privatization in the 'else' branch of the conditional. + // Otherwise, we don't have to do anything. + auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF, + PrePostActionTy &) { + if (!Info.CaptureDeviceAddrMap.empty()) { + CodeGen.setAction(NoPrivAction); + CodeGen(CGF); + } + }; + + // We don't have to do anything to close the region if the if clause evaluates + // to false. + auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; + + if (IfCond) { + emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen); + } else { + RegionCodeGenTy RCG(BeginThenGen); + RCG(CGF); + } + + // If we don't require privatization of device pointers, we emit the body in + // between the runtime calls. This avoids duplicating the body code. + if (Info.CaptureDeviceAddrMap.empty()) { + CodeGen.setAction(NoPrivAction); + CodeGen(CGF); + } + + if (IfCond) { + emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen); + } else { + RegionCodeGenTy RCG(EndThenGen); + RCG(CGF); + } +} + +void CGOpenMPRuntime::emitTargetDataStandAloneCall( + CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, + const Expr *Device) { + if (!CGF.HaveInsertPoint()) + return; + + assert((isa<OMPTargetEnterDataDirective>(D) || + isa<OMPTargetExitDataDirective>(D) || + isa<OMPTargetUpdateDirective>(D)) && + "Expecting either target enter, exit data, or update directives."); + + // Generate the code for the opening of the data environment. + auto &&ThenGen = [&D, Device](CodeGenFunction &CGF, PrePostActionTy &) { + // Fill up the arrays with all the mapped variables. + MappableExprsHandler::MapBaseValuesArrayTy BasePointers; + MappableExprsHandler::MapValuesArrayTy Pointers; + MappableExprsHandler::MapValuesArrayTy Sizes; + MappableExprsHandler::MapFlagsArrayTy MapTypes; + + // Get map clause information. + MappableExprsHandler MEHandler(D, CGF); + MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); + + // Fill up the arrays and create the arguments. + TargetDataInfo Info; + emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); + emitOffloadingArraysArgument(CGF, Info.BasePointersArray, + Info.PointersArray, Info.SizesArray, + Info.MapTypesArray, Info); + + // Emit device ID if any. + llvm::Value *DeviceID = nullptr; + if (Device) + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int32Ty, /*isSigned=*/true); + else + DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + + // Emit the number of elements in the offloading arrays. + auto *PointerNum = CGF.Builder.getInt32(BasePointers.size()); + + llvm::Value *OffloadingArgs[] = { + DeviceID, PointerNum, Info.BasePointersArray, + Info.PointersArray, Info.SizesArray, Info.MapTypesArray}; + + auto &RT = CGF.CGM.getOpenMPRuntime(); + // Select the right runtime function call for each expected standalone + // directive. + OpenMPRTLFunction RTLFn; + switch (D.getDirectiveKind()) { + default: + llvm_unreachable("Unexpected standalone target data directive."); + break; + case OMPD_target_enter_data: + RTLFn = OMPRTL__tgt_target_data_begin; + break; + case OMPD_target_exit_data: + RTLFn = OMPRTL__tgt_target_data_end; + break; + case OMPD_target_update: + RTLFn = OMPRTL__tgt_target_data_update; + break; + } + CGF.EmitRuntimeCall(RT.createRuntimeFunction(RTLFn), OffloadingArgs); + }; + + // In the event we get an if clause, we don't have to take any action on the + // else side. + auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; + + if (IfCond) { + emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); + } else { + RegionCodeGenTy ThenGenRCG(ThenGen); + ThenGenRCG(CGF); + } +} + +namespace { + /// Kind of parameter in a function with 'declare simd' directive. + enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector }; + /// Attribute set of the parameter. + struct ParamAttrTy { + ParamKindTy Kind = Vector; + llvm::APSInt StrideOrArg; + llvm::APSInt Alignment; + }; +} // namespace + +static unsigned evaluateCDTSize(const FunctionDecl *FD, + ArrayRef<ParamAttrTy> ParamAttrs) { + // Every vector variant of a SIMD-enabled function has a vector length (VLEN). + // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument + // of that clause. The VLEN value must be power of 2. + // In other case the notion of the function`s "characteristic data type" (CDT) + // is used to compute the vector length. + // CDT is defined in the following order: + // a) For non-void function, the CDT is the return type. + // b) If the function has any non-uniform, non-linear parameters, then the + // CDT is the type of the first such parameter. + // c) If the CDT determined by a) or b) above is struct, union, or class + // type which is pass-by-value (except for the type that maps to the + // built-in complex data type), the characteristic data type is int. + // d) If none of the above three cases is applicable, the CDT is int. + // The VLEN is then determined based on the CDT and the size of vector + // register of that ISA for which current vector version is generated. The + // VLEN is computed using the formula below: + // VLEN = sizeof(vector_register) / sizeof(CDT), + // where vector register size specified in section 3.2.1 Registers and the + // Stack Frame of original AMD64 ABI document. + QualType RetType = FD->getReturnType(); + if (RetType.isNull()) + return 0; + ASTContext &C = FD->getASTContext(); + QualType CDT; + if (!RetType.isNull() && !RetType->isVoidType()) + CDT = RetType; + else { + unsigned Offset = 0; + if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { + if (ParamAttrs[Offset].Kind == Vector) + CDT = C.getPointerType(C.getRecordType(MD->getParent())); + ++Offset; + } + if (CDT.isNull()) { + for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { + if (ParamAttrs[I + Offset].Kind == Vector) { + CDT = FD->getParamDecl(I)->getType(); + break; + } + } + } + } + if (CDT.isNull()) + CDT = C.IntTy; + CDT = CDT->getCanonicalTypeUnqualified(); + if (CDT->isRecordType() || CDT->isUnionType()) + CDT = C.IntTy; + return C.getTypeSize(CDT); +} + +static void +emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn, + const llvm::APSInt &VLENVal, + ArrayRef<ParamAttrTy> ParamAttrs, + OMPDeclareSimdDeclAttr::BranchStateTy State) { + struct ISADataTy { + char ISA; + unsigned VecRegSize; + }; + ISADataTy ISAData[] = { + { + 'b', 128 + }, // SSE + { + 'c', 256 + }, // AVX + { + 'd', 256 + }, // AVX2 + { + 'e', 512 + }, // AVX512 + }; + llvm::SmallVector<char, 2> Masked; + switch (State) { + case OMPDeclareSimdDeclAttr::BS_Undefined: + Masked.push_back('N'); + Masked.push_back('M'); + break; + case OMPDeclareSimdDeclAttr::BS_Notinbranch: + Masked.push_back('N'); + break; + case OMPDeclareSimdDeclAttr::BS_Inbranch: + Masked.push_back('M'); + break; + } + for (auto Mask : Masked) { + for (auto &Data : ISAData) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + Out << "_ZGV" << Data.ISA << Mask; + if (!VLENVal) { + Out << llvm::APSInt::getUnsigned(Data.VecRegSize / + evaluateCDTSize(FD, ParamAttrs)); + } else + Out << VLENVal; + for (auto &ParamAttr : ParamAttrs) { + switch (ParamAttr.Kind){ + case LinearWithVarStride: + Out << 's' << ParamAttr.StrideOrArg; + break; + case Linear: + Out << 'l'; + if (!!ParamAttr.StrideOrArg) + Out << ParamAttr.StrideOrArg; + break; + case Uniform: + Out << 'u'; + break; + case Vector: + Out << 'v'; + break; + } + if (!!ParamAttr.Alignment) + Out << 'a' << ParamAttr.Alignment; + } + Out << '_' << Fn->getName(); + Fn->addFnAttr(Out.str()); + } + } +} + +void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD, + llvm::Function *Fn) { + ASTContext &C = CGM.getContext(); + FD = FD->getCanonicalDecl(); + // Map params to their positions in function decl. + llvm::DenseMap<const Decl *, unsigned> ParamPositions; + if (isa<CXXMethodDecl>(FD)) + ParamPositions.insert({FD, 0}); + unsigned ParamPos = ParamPositions.size(); + for (auto *P : FD->parameters()) { + ParamPositions.insert({P->getCanonicalDecl(), ParamPos}); + ++ParamPos; + } + for (auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) { + llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size()); + // Mark uniform parameters. + for (auto *E : Attr->uniforms()) { + E = E->IgnoreParenImpCasts(); + unsigned Pos; + if (isa<CXXThisExpr>(E)) + Pos = ParamPositions[FD]; + else { + auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) + ->getCanonicalDecl(); + Pos = ParamPositions[PVD]; + } + ParamAttrs[Pos].Kind = Uniform; + } + // Get alignment info. + auto NI = Attr->alignments_begin(); + for (auto *E : Attr->aligneds()) { + E = E->IgnoreParenImpCasts(); + unsigned Pos; + QualType ParmTy; + if (isa<CXXThisExpr>(E)) { + Pos = ParamPositions[FD]; + ParmTy = E->getType(); + } else { + auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) + ->getCanonicalDecl(); + Pos = ParamPositions[PVD]; + ParmTy = PVD->getType(); + } + ParamAttrs[Pos].Alignment = + (*NI) ? (*NI)->EvaluateKnownConstInt(C) + : llvm::APSInt::getUnsigned( + C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy)) + .getQuantity()); + ++NI; + } + // Mark linear parameters. + auto SI = Attr->steps_begin(); + auto MI = Attr->modifiers_begin(); + for (auto *E : Attr->linears()) { + E = E->IgnoreParenImpCasts(); + unsigned Pos; + if (isa<CXXThisExpr>(E)) + Pos = ParamPositions[FD]; + else { + auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) + ->getCanonicalDecl(); + Pos = ParamPositions[PVD]; + } + auto &ParamAttr = ParamAttrs[Pos]; + ParamAttr.Kind = Linear; + if (*SI) { + if (!(*SI)->EvaluateAsInt(ParamAttr.StrideOrArg, C, + Expr::SE_AllowSideEffects)) { + if (auto *DRE = cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) { + if (auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) { + ParamAttr.Kind = LinearWithVarStride; + ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned( + ParamPositions[StridePVD->getCanonicalDecl()]); + } + } + } + } + ++SI; + ++MI; + } + llvm::APSInt VLENVal; + if (const Expr *VLEN = Attr->getSimdlen()) + VLENVal = VLEN->EvaluateKnownConstInt(C); + OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState(); + if (CGM.getTriple().getArch() == llvm::Triple::x86 || + CGM.getTriple().getArch() == llvm::Triple::x86_64) + emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State); + } +} + +namespace { +/// Cleanup action for doacross support. +class DoacrossCleanupTy final : public EHScopeStack::Cleanup { +public: + static const int DoacrossFinArgs = 2; + +private: + llvm::Value *RTLFn; + llvm::Value *Args[DoacrossFinArgs]; + +public: + DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef<llvm::Value *> CallArgs) + : RTLFn(RTLFn) { + assert(CallArgs.size() == DoacrossFinArgs); + std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); + } + void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { + if (!CGF.HaveInsertPoint()) + return; + CGF.EmitRuntimeCall(RTLFn, Args); + } +}; +} // namespace + +void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF, + const OMPLoopDirective &D) { + if (!CGF.HaveInsertPoint()) + return; + + ASTContext &C = CGM.getContext(); + QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); + RecordDecl *RD; + if (KmpDimTy.isNull()) { + // Build struct kmp_dim { // loop bounds info casted to kmp_int64 + // kmp_int64 lo; // lower + // kmp_int64 up; // upper + // kmp_int64 st; // stride + // }; + RD = C.buildImplicitRecord("kmp_dim"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, Int64Ty); + addFieldToRecordDecl(C, RD, Int64Ty); + addFieldToRecordDecl(C, RD, Int64Ty); + RD->completeDefinition(); + KmpDimTy = C.getRecordType(RD); + } else + RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl()); + + Address DimsAddr = CGF.CreateMemTemp(KmpDimTy, "dims"); + CGF.EmitNullInitialization(DimsAddr, KmpDimTy); + enum { LowerFD = 0, UpperFD, StrideFD }; + // Fill dims with data. + LValue DimsLVal = CGF.MakeAddrLValue(DimsAddr, KmpDimTy); + // dims.upper = num_iterations; + LValue UpperLVal = + CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), UpperFD)); + llvm::Value *NumIterVal = CGF.EmitScalarConversion( + CGF.EmitScalarExpr(D.getNumIterations()), D.getNumIterations()->getType(), + Int64Ty, D.getNumIterations()->getExprLoc()); + CGF.EmitStoreOfScalar(NumIterVal, UpperLVal); + // dims.stride = 1; + LValue StrideLVal = + CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), StrideFD)); + CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1), + StrideLVal); + + // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, + // kmp_int32 num_dims, struct kmp_dim * dims); + llvm::Value *Args[] = {emitUpdateLocation(CGF, D.getLocStart()), + getThreadID(CGF, D.getLocStart()), + llvm::ConstantInt::getSigned(CGM.Int32Ty, 1), + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + DimsAddr.getPointer(), CGM.VoidPtrTy)}; + + llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init); + CGF.EmitRuntimeCall(RTLFn, Args); + llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = { + emitUpdateLocation(CGF, D.getLocEnd()), getThreadID(CGF, D.getLocEnd())}; + llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini); + CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn, + llvm::makeArrayRef(FiniArgs)); +} + +void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, + const OMPDependClause *C) { + QualType Int64Ty = + CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); + const Expr *CounterVal = C->getCounterValue(); + assert(CounterVal); + llvm::Value *CntVal = CGF.EmitScalarConversion(CGF.EmitScalarExpr(CounterVal), + CounterVal->getType(), Int64Ty, + CounterVal->getExprLoc()); + Address CntAddr = CGF.CreateMemTemp(Int64Ty, ".cnt.addr"); + CGF.EmitStoreOfScalar(CntVal, CntAddr, /*Volatile=*/false, Int64Ty); + llvm::Value *Args[] = {emitUpdateLocation(CGF, C->getLocStart()), + getThreadID(CGF, C->getLocStart()), + CntAddr.getPointer()}; + llvm::Value *RTLFn; + if (C->getDependencyKind() == OMPC_DEPEND_source) + RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post); + else { + assert(C->getDependencyKind() == OMPC_DEPEND_sink); + RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait); + } + CGF.EmitRuntimeCall(RTLFn, Args); +} + |
