aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp6921
1 files changed, 6921 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp
new file mode 100644
index 000000000000..b256a88c47ad
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp
@@ -0,0 +1,6921 @@
+//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a class for OpenMP runtime code generation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGCleanup.h"
+#include "CGOpenMPRuntime.h"
+#include "CodeGenFunction.h"
+#include "clang/CodeGen/ConstantInitBuilder.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+/// \brief Base class for handling code generation inside OpenMP regions.
+class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
+public:
+ /// \brief Kinds of OpenMP regions used in codegen.
+ enum CGOpenMPRegionKind {
+ /// \brief Region with outlined function for standalone 'parallel'
+ /// directive.
+ ParallelOutlinedRegion,
+ /// \brief Region with outlined function for standalone 'task' directive.
+ TaskOutlinedRegion,
+ /// \brief Region for constructs that do not require function outlining,
+ /// like 'for', 'sections', 'atomic' etc. directives.
+ InlinedRegion,
+ /// \brief Region with outlined function for standalone 'target' directive.
+ TargetRegion,
+ };
+
+ CGOpenMPRegionInfo(const CapturedStmt &CS,
+ const CGOpenMPRegionKind RegionKind,
+ const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
+ bool HasCancel)
+ : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
+ CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
+
+ CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
+ const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
+ bool HasCancel)
+ : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
+ Kind(Kind), HasCancel(HasCancel) {}
+
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ virtual const VarDecl *getThreadIDVariable() const = 0;
+
+ /// \brief Emit the captured statement body.
+ void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
+
+ /// \brief Get an LValue for the current ThreadID variable.
+ /// \return LValue for thread id variable. This LValue always has type int32*.
+ virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
+
+ virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
+
+ CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
+
+ OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
+
+ bool hasCancel() const { return HasCancel; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return Info->getKind() == CR_OpenMP;
+ }
+
+ ~CGOpenMPRegionInfo() override = default;
+
+protected:
+ CGOpenMPRegionKind RegionKind;
+ RegionCodeGenTy CodeGen;
+ OpenMPDirectiveKind Kind;
+ bool HasCancel;
+};
+
+/// \brief API for captured statement code generation in OpenMP constructs.
+class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel,
+ StringRef HelperName)
+ : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
+ HasCancel),
+ ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
+ assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
+ }
+
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override { return HelperName; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
+ ParallelOutlinedRegion;
+ }
+
+private:
+ /// \brief A variable or parameter storing global thread id for OpenMP
+ /// constructs.
+ const VarDecl *ThreadIDVar;
+ StringRef HelperName;
+};
+
+/// \brief API for captured statement code generation in OpenMP constructs.
+class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
+public:
+ class UntiedTaskActionTy final : public PrePostActionTy {
+ bool Untied;
+ const VarDecl *PartIDVar;
+ const RegionCodeGenTy UntiedCodeGen;
+ llvm::SwitchInst *UntiedSwitch = nullptr;
+
+ public:
+ UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
+ const RegionCodeGenTy &UntiedCodeGen)
+ : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
+ void Enter(CodeGenFunction &CGF) override {
+ if (Untied) {
+ // Emit task switching point.
+ auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(PartIDVar),
+ PartIDVar->getType()->castAs<PointerType>());
+ auto *Res = CGF.EmitLoadOfScalar(PartIdLVal, SourceLocation());
+ auto *DoneBB = CGF.createBasicBlock(".untied.done.");
+ UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
+ CGF.EmitBlock(DoneBB);
+ CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
+ CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
+ UntiedSwitch->addCase(CGF.Builder.getInt32(0),
+ CGF.Builder.GetInsertBlock());
+ emitUntiedSwitch(CGF);
+ }
+ }
+ void emitUntiedSwitch(CodeGenFunction &CGF) const {
+ if (Untied) {
+ auto PartIdLVal = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(PartIDVar),
+ PartIDVar->getType()->castAs<PointerType>());
+ CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
+ PartIdLVal);
+ UntiedCodeGen(CGF);
+ CodeGenFunction::JumpDest CurPoint =
+ CGF.getJumpDestInCurrentScope(".untied.next.");
+ CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
+ CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
+ UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
+ CGF.Builder.GetInsertBlock());
+ CGF.EmitBranchThroughCleanup(CurPoint);
+ CGF.EmitBlock(CurPoint.getBlock());
+ }
+ }
+ unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
+ };
+ CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
+ const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel,
+ const UntiedTaskActionTy &Action)
+ : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
+ ThreadIDVar(ThreadIDVar), Action(Action) {
+ assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
+ }
+
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
+
+ /// \brief Get an LValue for the current ThreadID variable.
+ LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override { return ".omp_outlined."; }
+
+ void emitUntiedSwitch(CodeGenFunction &CGF) override {
+ Action.emitUntiedSwitch(CGF);
+ }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
+ TaskOutlinedRegion;
+ }
+
+private:
+ /// \brief A variable or parameter storing global thread id for OpenMP
+ /// constructs.
+ const VarDecl *ThreadIDVar;
+ /// Action for emitting code for untied tasks.
+ const UntiedTaskActionTy &Action;
+};
+
+/// \brief API for inlined captured statement code generation in OpenMP
+/// constructs.
+class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
+ const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel)
+ : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
+ OldCSI(OldCSI),
+ OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
+
+ // \brief Retrieve the value of the context parameter.
+ llvm::Value *getContextValue() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getContextValue();
+ llvm_unreachable("No context value for inlined OpenMP region");
+ }
+
+ void setContextValue(llvm::Value *V) override {
+ if (OuterRegionInfo) {
+ OuterRegionInfo->setContextValue(V);
+ return;
+ }
+ llvm_unreachable("No context value for inlined OpenMP region");
+ }
+
+ /// \brief Lookup the captured field decl for a variable.
+ const FieldDecl *lookup(const VarDecl *VD) const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->lookup(VD);
+ // If there is no outer outlined region,no need to lookup in a list of
+ // captured variables, we can use the original one.
+ return nullptr;
+ }
+
+ FieldDecl *getThisFieldDecl() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getThisFieldDecl();
+ return nullptr;
+ }
+
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getThreadIDVariable();
+ return nullptr;
+ }
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override {
+ if (auto *OuterRegionInfo = getOldCSI())
+ return OuterRegionInfo->getHelperName();
+ llvm_unreachable("No helper name for inlined OpenMP construct");
+ }
+
+ void emitUntiedSwitch(CodeGenFunction &CGF) override {
+ if (OuterRegionInfo)
+ OuterRegionInfo->emitUntiedSwitch(CGF);
+ }
+
+ CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
+ }
+
+ ~CGOpenMPInlinedRegionInfo() override = default;
+
+private:
+ /// \brief CodeGen info about outer OpenMP region.
+ CodeGenFunction::CGCapturedStmtInfo *OldCSI;
+ CGOpenMPRegionInfo *OuterRegionInfo;
+};
+
+/// \brief API for captured statement code generation in OpenMP target
+/// constructs. For this captures, implicit parameters are used instead of the
+/// captured fields. The name of the target region has to be unique in a given
+/// application so it is provided by the client, because only the client has
+/// the information to generate that.
+class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
+ const RegionCodeGenTy &CodeGen, StringRef HelperName)
+ : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
+ /*HasCancel=*/false),
+ HelperName(HelperName) {}
+
+ /// \brief This is unused for target regions because each starts executing
+ /// with a single thread.
+ const VarDecl *getThreadIDVariable() const override { return nullptr; }
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override { return HelperName; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
+ }
+
+private:
+ StringRef HelperName;
+};
+
+static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
+ llvm_unreachable("No codegen for expressions");
+}
+/// \brief API for generation of expressions captured in a innermost OpenMP
+/// region.
+class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
+public:
+ CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
+ : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
+ OMPD_unknown,
+ /*HasCancel=*/false),
+ PrivScope(CGF) {
+ // Make sure the globals captured in the provided statement are local by
+ // using the privatization logic. We assume the same variable is not
+ // captured more than once.
+ for (auto &C : CS.captures()) {
+ if (!C.capturesVariable() && !C.capturesVariableByCopy())
+ continue;
+
+ const VarDecl *VD = C.getCapturedVar();
+ if (VD->isLocalVarDeclOrParm())
+ continue;
+
+ DeclRefExpr DRE(const_cast<VarDecl *>(VD),
+ /*RefersToEnclosingVariableOrCapture=*/false,
+ VD->getType().getNonReferenceType(), VK_LValue,
+ SourceLocation());
+ PrivScope.addPrivate(VD, [&CGF, &DRE]() -> Address {
+ return CGF.EmitLValue(&DRE).getAddress();
+ });
+ }
+ (void)PrivScope.Privatize();
+ }
+
+ /// \brief Lookup the captured field decl for a variable.
+ const FieldDecl *lookup(const VarDecl *VD) const override {
+ if (auto *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
+ return FD;
+ return nullptr;
+ }
+
+ /// \brief Emit the captured statement body.
+ void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
+ llvm_unreachable("No body for expressions");
+ }
+
+ /// \brief Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override {
+ llvm_unreachable("No thread id for expressions");
+ }
+
+ /// \brief Get the name of the capture helper.
+ StringRef getHelperName() const override {
+ llvm_unreachable("No helper name for expressions");
+ }
+
+ static bool classof(const CGCapturedStmtInfo *Info) { return false; }
+
+private:
+ /// Private scope to capture global variables.
+ CodeGenFunction::OMPPrivateScope PrivScope;
+};
+
+/// \brief RAII for emitting code of OpenMP constructs.
+class InlinedOpenMPRegionRAII {
+ CodeGenFunction &CGF;
+ llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
+ FieldDecl *LambdaThisCaptureField = nullptr;
+
+public:
+ /// \brief Constructs region for combined constructs.
+ /// \param CodeGen Code generation sequence for combined directives. Includes
+ /// a list of functions used for code generation of implicitly inlined
+ /// regions.
+ InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel)
+ : CGF(CGF) {
+ // Start emission for the construct.
+ CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
+ CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
+ std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
+ LambdaThisCaptureField = CGF.LambdaThisCaptureField;
+ CGF.LambdaThisCaptureField = nullptr;
+ }
+
+ ~InlinedOpenMPRegionRAII() {
+ // Restore original CapturedStmtInfo only if we're done with code emission.
+ auto *OldCSI =
+ cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
+ delete CGF.CapturedStmtInfo;
+ CGF.CapturedStmtInfo = OldCSI;
+ std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
+ CGF.LambdaThisCaptureField = LambdaThisCaptureField;
+ }
+};
+
+/// \brief Values for bit flags used in the ident_t to describe the fields.
+/// All enumeric elements are named and described in accordance with the code
+/// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
+enum OpenMPLocationFlags {
+ /// \brief Use trampoline for internal microtask.
+ OMP_IDENT_IMD = 0x01,
+ /// \brief Use c-style ident structure.
+ OMP_IDENT_KMPC = 0x02,
+ /// \brief Atomic reduction option for kmpc_reduce.
+ OMP_ATOMIC_REDUCE = 0x10,
+ /// \brief Explicit 'barrier' directive.
+ OMP_IDENT_BARRIER_EXPL = 0x20,
+ /// \brief Implicit barrier in code.
+ OMP_IDENT_BARRIER_IMPL = 0x40,
+ /// \brief Implicit barrier in 'for' directive.
+ OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
+ /// \brief Implicit barrier in 'sections' directive.
+ OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
+ /// \brief Implicit barrier in 'single' directive.
+ OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140
+};
+
+/// \brief Describes ident structure that describes a source location.
+/// All descriptions are taken from
+/// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h
+/// Original structure:
+/// typedef struct ident {
+/// kmp_int32 reserved_1; /**< might be used in Fortran;
+/// see above */
+/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
+/// KMP_IDENT_KMPC identifies this union
+/// member */
+/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
+/// see above */
+///#if USE_ITT_BUILD
+/// /* but currently used for storing
+/// region-specific ITT */
+/// /* contextual information. */
+///#endif /* USE_ITT_BUILD */
+/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
+/// C++ */
+/// char const *psource; /**< String describing the source location.
+/// The string is composed of semi-colon separated
+// fields which describe the source file,
+/// the function and a pair of line numbers that
+/// delimit the construct.
+/// */
+/// } ident_t;
+enum IdentFieldIndex {
+ /// \brief might be used in Fortran
+ IdentField_Reserved_1,
+ /// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
+ IdentField_Flags,
+ /// \brief Not really used in Fortran any more
+ IdentField_Reserved_2,
+ /// \brief Source[4] in Fortran, do not use for C++
+ IdentField_Reserved_3,
+ /// \brief String describing the source location. The string is composed of
+ /// semi-colon separated fields which describe the source file, the function
+ /// and a pair of line numbers that delimit the construct.
+ IdentField_PSource
+};
+
+/// \brief Schedule types for 'omp for' loops (these enumerators are taken from
+/// the enum sched_type in kmp.h).
+enum OpenMPSchedType {
+ /// \brief Lower bound for default (unordered) versions.
+ OMP_sch_lower = 32,
+ OMP_sch_static_chunked = 33,
+ OMP_sch_static = 34,
+ OMP_sch_dynamic_chunked = 35,
+ OMP_sch_guided_chunked = 36,
+ OMP_sch_runtime = 37,
+ OMP_sch_auto = 38,
+ /// static with chunk adjustment (e.g., simd)
+ OMP_sch_static_balanced_chunked = 45,
+ /// \brief Lower bound for 'ordered' versions.
+ OMP_ord_lower = 64,
+ OMP_ord_static_chunked = 65,
+ OMP_ord_static = 66,
+ OMP_ord_dynamic_chunked = 67,
+ OMP_ord_guided_chunked = 68,
+ OMP_ord_runtime = 69,
+ OMP_ord_auto = 70,
+ OMP_sch_default = OMP_sch_static,
+ /// \brief dist_schedule types
+ OMP_dist_sch_static_chunked = 91,
+ OMP_dist_sch_static = 92,
+ /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
+ /// Set if the monotonic schedule modifier was present.
+ OMP_sch_modifier_monotonic = (1 << 29),
+ /// Set if the nonmonotonic schedule modifier was present.
+ OMP_sch_modifier_nonmonotonic = (1 << 30),
+};
+
+enum OpenMPRTLFunction {
+ /// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
+ /// kmpc_micro microtask, ...);
+ OMPRTL__kmpc_fork_call,
+ /// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc,
+ /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
+ OMPRTL__kmpc_threadprivate_cached,
+ /// \brief Call to void __kmpc_threadprivate_register( ident_t *,
+ /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
+ OMPRTL__kmpc_threadprivate_register,
+ // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
+ OMPRTL__kmpc_global_thread_num,
+ // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ OMPRTL__kmpc_critical,
+ // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
+ // global_tid, kmp_critical_name *crit, uintptr_t hint);
+ OMPRTL__kmpc_critical_with_hint,
+ // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ OMPRTL__kmpc_end_critical,
+ // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_cancel_barrier,
+ // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_barrier,
+ // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_for_static_fini,
+ // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_serialized_parallel,
+ // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_end_serialized_parallel,
+ // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_threads);
+ OMPRTL__kmpc_push_num_threads,
+ // Call to void __kmpc_flush(ident_t *loc);
+ OMPRTL__kmpc_flush,
+ // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_master,
+ // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_master,
+ // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
+ // int end_part);
+ OMPRTL__kmpc_omp_taskyield,
+ // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_single,
+ // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_single,
+ // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ OMPRTL__kmpc_omp_task_alloc,
+ // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
+ // new_task);
+ OMPRTL__kmpc_omp_task,
+ // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
+ // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
+ // kmp_int32 didit);
+ OMPRTL__kmpc_copyprivate,
+ // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
+ // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
+ OMPRTL__kmpc_reduce,
+ // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
+ // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
+ // *lck);
+ OMPRTL__kmpc_reduce_nowait,
+ // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ OMPRTL__kmpc_end_reduce,
+ // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ OMPRTL__kmpc_end_reduce_nowait,
+ // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t * new_task);
+ OMPRTL__kmpc_omp_task_begin_if0,
+ // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t * new_task);
+ OMPRTL__kmpc_omp_task_complete_if0,
+ // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_ordered,
+ // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_ordered,
+ // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_omp_taskwait,
+ // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_taskgroup,
+ // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_taskgroup,
+ // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
+ // int proc_bind);
+ OMPRTL__kmpc_push_proc_bind,
+ // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
+ // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
+ // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
+ OMPRTL__kmpc_omp_task_with_deps,
+ // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
+ // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
+ // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
+ OMPRTL__kmpc_omp_wait_deps,
+ // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 cncl_kind);
+ OMPRTL__kmpc_cancellationpoint,
+ // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 cncl_kind);
+ OMPRTL__kmpc_cancel,
+ // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_teams, kmp_int32 thread_limit);
+ OMPRTL__kmpc_push_num_teams,
+ // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
+ // microtask, ...);
+ OMPRTL__kmpc_fork_teams,
+ // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
+ // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
+ // sched, kmp_uint64 grainsize, void *task_dup);
+ OMPRTL__kmpc_taskloop,
+ // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
+ // num_dims, struct kmp_dim *dims);
+ OMPRTL__kmpc_doacross_init,
+ // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
+ OMPRTL__kmpc_doacross_fini,
+ // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ OMPRTL__kmpc_doacross_post,
+ // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ OMPRTL__kmpc_doacross_wait,
+
+ //
+ // Offloading related calls
+ //
+ // Call to int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
+ // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
+ // *arg_types);
+ OMPRTL__tgt_target,
+ // Call to int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
+ // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
+ // int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
+ OMPRTL__tgt_target_teams,
+ // Call to void __tgt_register_lib(__tgt_bin_desc *desc);
+ OMPRTL__tgt_register_lib,
+ // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
+ OMPRTL__tgt_unregister_lib,
+ // Call to void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
+ // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
+ OMPRTL__tgt_target_data_begin,
+ // Call to void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
+ // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
+ OMPRTL__tgt_target_data_end,
+ // Call to void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
+ // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
+ OMPRTL__tgt_target_data_update,
+};
+
+/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
+/// region.
+class CleanupTy final : public EHScopeStack::Cleanup {
+ PrePostActionTy *Action;
+
+public:
+ explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
+ void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
+ if (!CGF.HaveInsertPoint())
+ return;
+ Action->Exit(CGF);
+ }
+};
+
+} // anonymous namespace
+
+void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ if (PrePostAction) {
+ CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
+ Callback(CodeGen, CGF, *PrePostAction);
+ } else {
+ PrePostActionTy Action;
+ Callback(CodeGen, CGF, Action);
+ }
+}
+
+LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
+ return CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(getThreadIDVariable()),
+ getThreadIDVariable()->getType()->castAs<PointerType>());
+}
+
+void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CGF.EHStack.pushTerminate();
+ CodeGen(CGF);
+ CGF.EHStack.popTerminate();
+}
+
+LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
+ CodeGenFunction &CGF) {
+ return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
+ getThreadIDVariable()->getType(),
+ AlignmentSource::Decl);
+}
+
+CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
+ : CGM(CGM), OffloadEntriesInfoManager(CGM) {
+ IdentTy = llvm::StructType::create(
+ "ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */,
+ CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */,
+ CGM.Int8PtrTy /* psource */);
+ KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
+
+ loadOffloadInfoMetadata();
+}
+
+void CGOpenMPRuntime::clear() {
+ InternalVars.clear();
+}
+
+static llvm::Function *
+emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
+ const Expr *CombinerInitializer, const VarDecl *In,
+ const VarDecl *Out, bool IsCombiner) {
+ // void .omp_combiner.(Ty *in, Ty *out);
+ auto &C = CGM.getContext();
+ QualType PtrTy = C.getPointerType(Ty).withRestrict();
+ FunctionArgList Args;
+ ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
+ /*Id=*/nullptr, PtrTy);
+ ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
+ /*Id=*/nullptr, PtrTy);
+ Args.push_back(&OmpOutParm);
+ Args.push_back(&OmpInParm);
+ auto &FnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
+ auto *Fn = llvm::Function::Create(
+ FnTy, llvm::GlobalValue::InternalLinkage,
+ IsCombiner ? ".omp_combiner." : ".omp_initializer.", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, FnInfo);
+ Fn->removeFnAttr(llvm::Attribute::NoInline);
+ Fn->addFnAttr(llvm::Attribute::AlwaysInline);
+ CodeGenFunction CGF(CGM);
+ // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
+ // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args);
+ CodeGenFunction::OMPPrivateScope Scope(CGF);
+ Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
+ Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() -> Address {
+ return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
+ .getAddress();
+ });
+ Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
+ Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() -> Address {
+ return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
+ .getAddress();
+ });
+ (void)Scope.Privatize();
+ CGF.EmitIgnoredExpr(CombinerInitializer);
+ Scope.ForceCleanup();
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitUserDefinedReduction(
+ CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
+ if (UDRMap.count(D) > 0)
+ return;
+ auto &C = CGM.getContext();
+ if (!In || !Out) {
+ In = &C.Idents.get("omp_in");
+ Out = &C.Idents.get("omp_out");
+ }
+ llvm::Function *Combiner = emitCombinerOrInitializer(
+ CGM, D->getType(), D->getCombiner(), cast<VarDecl>(D->lookup(In).front()),
+ cast<VarDecl>(D->lookup(Out).front()),
+ /*IsCombiner=*/true);
+ llvm::Function *Initializer = nullptr;
+ if (auto *Init = D->getInitializer()) {
+ if (!Priv || !Orig) {
+ Priv = &C.Idents.get("omp_priv");
+ Orig = &C.Idents.get("omp_orig");
+ }
+ Initializer = emitCombinerOrInitializer(
+ CGM, D->getType(), Init, cast<VarDecl>(D->lookup(Orig).front()),
+ cast<VarDecl>(D->lookup(Priv).front()),
+ /*IsCombiner=*/false);
+ }
+ UDRMap.insert(std::make_pair(D, std::make_pair(Combiner, Initializer)));
+ if (CGF) {
+ auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
+ Decls.second.push_back(D);
+ }
+}
+
+std::pair<llvm::Function *, llvm::Function *>
+CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
+ auto I = UDRMap.find(D);
+ if (I != UDRMap.end())
+ return I->second;
+ emitUserDefinedReduction(/*CGF=*/nullptr, D);
+ return UDRMap.lookup(D);
+}
+
+// Layout information for ident_t.
+static CharUnits getIdentAlign(CodeGenModule &CGM) {
+ return CGM.getPointerAlign();
+}
+static CharUnits getIdentSize(CodeGenModule &CGM) {
+ assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign()));
+ return CharUnits::fromQuantity(16) + CGM.getPointerSize();
+}
+static CharUnits getOffsetOfIdentField(IdentFieldIndex Field) {
+ // All the fields except the last are i32, so this works beautifully.
+ return unsigned(Field) * CharUnits::fromQuantity(4);
+}
+static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr,
+ IdentFieldIndex Field,
+ const llvm::Twine &Name = "") {
+ auto Offset = getOffsetOfIdentField(Field);
+ return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name);
+}
+
+static llvm::Value *emitParallelOrTeamsOutlinedFunction(
+ CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
+ const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
+ const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
+ assert(ThreadIDVar->getType()->isPointerType() &&
+ "thread id variable must be of type kmp_int32 *");
+ CodeGenFunction CGF(CGM, true);
+ bool HasCancel = false;
+ if (auto *OPD = dyn_cast<OMPParallelDirective>(&D))
+ HasCancel = OPD->hasCancel();
+ else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
+ HasCancel = OPSD->hasCancel();
+ else if (auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
+ HasCancel = OPFD->hasCancel();
+ CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
+ HasCancel, OutlinedHelperName);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
+}
+
+llvm::Value *CGOpenMPRuntime::emitParallelOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
+ return emitParallelOrTeamsOutlinedFunction(
+ CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
+}
+
+llvm::Value *CGOpenMPRuntime::emitTeamsOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
+ return emitParallelOrTeamsOutlinedFunction(
+ CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
+}
+
+llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ const VarDecl *PartIDVar, const VarDecl *TaskTVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
+ bool Tied, unsigned &NumberOfParts) {
+ auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ auto *ThreadID = getThreadID(CGF, D.getLocStart());
+ auto *UpLoc = emitUpdateLocation(CGF, D.getLocStart());
+ llvm::Value *TaskArgs[] = {
+ UpLoc, ThreadID,
+ CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
+ TaskTVar->getType()->castAs<PointerType>())
+ .getPointer()};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
+ };
+ CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
+ UntiedCodeGen);
+ CodeGen.setAction(Action);
+ assert(!ThreadIDVar->getType()->isPointerType() &&
+ "thread id variable must be of type kmp_int32 for tasks");
+ auto *CS = cast<CapturedStmt>(D.getAssociatedStmt());
+ auto *TD = dyn_cast<OMPTaskDirective>(&D);
+ CodeGenFunction CGF(CGM, true);
+ CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
+ InnermostKind,
+ TD ? TD->hasCancel() : false, Action);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ auto *Res = CGF.GenerateCapturedStmtFunction(*CS);
+ if (!Tied)
+ NumberOfParts = Action.getNumberOfParts();
+ return Res;
+}
+
+Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
+ CharUnits Align = getIdentAlign(CGM);
+ llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags);
+ if (!Entry) {
+ if (!DefaultOpenMPPSource) {
+ // Initialize default location for psource field of ident_t structure of
+ // all ident_t objects. Format is ";file;function;line;column;;".
+ // Taken from
+ // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c
+ DefaultOpenMPPSource =
+ CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
+ DefaultOpenMPPSource =
+ llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
+ }
+
+ ConstantInitBuilder builder(CGM);
+ auto fields = builder.beginStruct(IdentTy);
+ fields.addInt(CGM.Int32Ty, 0);
+ fields.addInt(CGM.Int32Ty, Flags);
+ fields.addInt(CGM.Int32Ty, 0);
+ fields.addInt(CGM.Int32Ty, 0);
+ fields.add(DefaultOpenMPPSource);
+ auto DefaultOpenMPLocation =
+ fields.finishAndCreateGlobal("", Align, /*isConstant*/ true,
+ llvm::GlobalValue::PrivateLinkage);
+ DefaultOpenMPLocation->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation;
+ }
+ return Address(Entry, Align);
+}
+
+llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ unsigned Flags) {
+ Flags |= OMP_IDENT_KMPC;
+ // If no debug info is generated - return global default location.
+ if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
+ Loc.isInvalid())
+ return getOrCreateDefaultLocation(Flags).getPointer();
+
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+
+ Address LocValue = Address::invalid();
+ auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
+ if (I != OpenMPLocThreadIDMap.end())
+ LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM));
+
+ // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
+ // GetOpenMPThreadID was called before this routine.
+ if (!LocValue.isValid()) {
+ // Generate "ident_t .kmpc_loc.addr;"
+ Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM),
+ ".kmpc_loc.addr");
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.DebugLoc = AI.getPointer();
+ LocValue = AI;
+
+ CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
+ CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
+ CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
+ CGM.getSize(getIdentSize(CGF.CGM)));
+ }
+
+ // char **psource = &.kmpc_loc_<flags>.addr.psource;
+ Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource);
+
+ auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
+ if (OMPDebugLoc == nullptr) {
+ SmallString<128> Buffer2;
+ llvm::raw_svector_ostream OS2(Buffer2);
+ // Build debug location
+ PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
+ OS2 << ";" << PLoc.getFilename() << ";";
+ if (const FunctionDecl *FD =
+ dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) {
+ OS2 << FD->getQualifiedNameAsString();
+ }
+ OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
+ OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
+ OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
+ }
+ // *psource = ";<File>;<Function>;<Line>;<Column>;;";
+ CGF.Builder.CreateStore(OMPDebugLoc, PSource);
+
+ // Our callers always pass this to a runtime function, so for
+ // convenience, go ahead and return a naked pointer.
+ return LocValue.getPointer();
+}
+
+llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+
+ llvm::Value *ThreadID = nullptr;
+ // Check whether we've already cached a load of the thread id in this
+ // function.
+ auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
+ if (I != OpenMPLocThreadIDMap.end()) {
+ ThreadID = I->second.ThreadID;
+ if (ThreadID != nullptr)
+ return ThreadID;
+ }
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ if (OMPRegionInfo->getThreadIDVariable()) {
+ // Check if this an outlined function with thread id passed as argument.
+ auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
+ ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal();
+ // If value loaded in entry block, cache it and use it everywhere in
+ // function.
+ if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.ThreadID = ThreadID;
+ }
+ return ThreadID;
+ }
+ }
+
+ // This is not an outlined function region - need to call __kmpc_int32
+ // kmpc_global_thread_num(ident_t *loc).
+ // Generate thread id value and cache this value for use across the
+ // function.
+ CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
+ CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt);
+ ThreadID =
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
+ emitUpdateLocation(CGF, Loc));
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.ThreadID = ThreadID;
+ return ThreadID;
+}
+
+void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+ if (OpenMPLocThreadIDMap.count(CGF.CurFn))
+ OpenMPLocThreadIDMap.erase(CGF.CurFn);
+ if (FunctionUDRMap.count(CGF.CurFn) > 0) {
+ for(auto *D : FunctionUDRMap[CGF.CurFn]) {
+ UDRMap.erase(D);
+ }
+ FunctionUDRMap.erase(CGF.CurFn);
+ }
+}
+
+llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
+ if (!IdentTy) {
+ }
+ return llvm::PointerType::getUnqual(IdentTy);
+}
+
+llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
+ if (!Kmpc_MicroTy) {
+ // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
+ llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
+ llvm::PointerType::getUnqual(CGM.Int32Ty)};
+ Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
+ }
+ return llvm::PointerType::getUnqual(Kmpc_MicroTy);
+}
+
+llvm::Constant *
+CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
+ llvm::Constant *RTLFn = nullptr;
+ switch (static_cast<OpenMPRTLFunction>(Function)) {
+ case OMPRTL__kmpc_fork_call: {
+ // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
+ // microtask, ...);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ getKmpc_MicroPointerTy()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
+ break;
+ }
+ case OMPRTL__kmpc_global_thread_num: {
+ // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
+ break;
+ }
+ case OMPRTL__kmpc_threadprivate_cached: {
+ // Build void *__kmpc_threadprivate_cached(ident_t *loc,
+ // kmp_int32 global_tid, void *data, size_t size, void ***cache);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy, CGM.SizeTy,
+ CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
+ break;
+ }
+ case OMPRTL__kmpc_critical: {
+ // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
+ break;
+ }
+ case OMPRTL__kmpc_critical_with_hint: {
+ // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit, uintptr_t hint);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy),
+ CGM.IntPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
+ break;
+ }
+ case OMPRTL__kmpc_threadprivate_register: {
+ // Build void __kmpc_threadprivate_register(ident_t *, void *data,
+ // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
+ // typedef void *(*kmpc_ctor)(void *);
+ auto KmpcCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
+ /*isVarArg*/ false)->getPointerTo();
+ // typedef void *(*kmpc_cctor)(void *, void *);
+ llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto KmpcCopyCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
+ /*isVarArg*/ false)->getPointerTo();
+ // typedef void (*kmpc_dtor)(void *);
+ auto KmpcDtorTy =
+ llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
+ ->getPointerTo();
+ llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
+ KmpcCopyCtorTy, KmpcDtorTy};
+ auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
+ /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
+ break;
+ }
+ case OMPRTL__kmpc_end_critical: {
+ // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
+ break;
+ }
+ case OMPRTL__kmpc_cancel_barrier: {
+ // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
+ break;
+ }
+ case OMPRTL__kmpc_barrier: {
+ // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
+ break;
+ }
+ case OMPRTL__kmpc_for_static_fini: {
+ // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
+ break;
+ }
+ case OMPRTL__kmpc_push_num_threads: {
+ // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_threads)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
+ break;
+ }
+ case OMPRTL__kmpc_serialized_parallel: {
+ // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
+ break;
+ }
+ case OMPRTL__kmpc_end_serialized_parallel: {
+ // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
+ break;
+ }
+ case OMPRTL__kmpc_flush: {
+ // Build void __kmpc_flush(ident_t *loc);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
+ break;
+ }
+ case OMPRTL__kmpc_master: {
+ // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
+ break;
+ }
+ case OMPRTL__kmpc_end_master: {
+ // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
+ break;
+ }
+ case OMPRTL__kmpc_omp_taskyield: {
+ // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
+ // int end_part);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
+ break;
+ }
+ case OMPRTL__kmpc_single: {
+ // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
+ break;
+ }
+ case OMPRTL__kmpc_end_single: {
+ // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_alloc: {
+ // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ assert(KmpRoutineEntryPtrTy != nullptr &&
+ "Type kmp_routine_entry_t must be created.");
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
+ CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
+ // Return void * and then cast to particular kmp_task_t type.
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task: {
+ // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
+ break;
+ }
+ case OMPRTL__kmpc_copyprivate: {
+ // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
+ // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
+ // kmp_int32 didit);
+ llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *CpyFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
+ CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
+ break;
+ }
+ case OMPRTL__kmpc_reduce: {
+ // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
+ // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
+ llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
+ break;
+ }
+ case OMPRTL__kmpc_reduce_nowait: {
+ // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
+ // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
+ // *lck);
+ llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
+ break;
+ }
+ case OMPRTL__kmpc_end_reduce: {
+ // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
+ break;
+ }
+ case OMPRTL__kmpc_end_reduce_nowait: {
+ // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_begin_if0: {
+ // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_complete_if0: {
+ // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy,
+ /*Name=*/"__kmpc_omp_task_complete_if0");
+ break;
+ }
+ case OMPRTL__kmpc_ordered: {
+ // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
+ break;
+ }
+ case OMPRTL__kmpc_end_ordered: {
+ // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
+ break;
+ }
+ case OMPRTL__kmpc_omp_taskwait: {
+ // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
+ break;
+ }
+ case OMPRTL__kmpc_taskgroup: {
+ // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
+ break;
+ }
+ case OMPRTL__kmpc_end_taskgroup: {
+ // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
+ break;
+ }
+ case OMPRTL__kmpc_push_proc_bind: {
+ // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
+ // int proc_bind)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_with_deps: {
+ // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
+ // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
+ CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
+ break;
+ }
+ case OMPRTL__kmpc_omp_wait_deps: {
+ // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
+ // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
+ // kmp_depend_info_t *noalias_dep_list);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int32Ty, CGM.VoidPtrTy,
+ CGM.Int32Ty, CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
+ break;
+ }
+ case OMPRTL__kmpc_cancellationpoint: {
+ // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 cncl_kind)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
+ break;
+ }
+ case OMPRTL__kmpc_cancel: {
+ // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 cncl_kind)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
+ break;
+ }
+ case OMPRTL__kmpc_push_num_teams: {
+ // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
+ // kmp_int32 num_teams, kmp_int32 num_threads)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
+ CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
+ break;
+ }
+ case OMPRTL__kmpc_fork_teams: {
+ // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
+ // microtask, ...);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ getKmpc_MicroPointerTy()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
+ break;
+ }
+ case OMPRTL__kmpc_taskloop: {
+ // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
+ // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
+ // sched, kmp_uint64 grainsize, void *task_dup);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
+ CGM.IntTy,
+ CGM.VoidPtrTy,
+ CGM.IntTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty,
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.Int64Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_init: {
+ // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
+ // num_dims, struct kmp_dim *dims);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
+ CGM.Int32Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_fini: {
+ // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_post: {
+ // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int64Ty->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_wait: {
+ // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int64Ty->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
+ break;
+ }
+ case OMPRTL__tgt_target: {
+ // Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t
+ // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t
+ // *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty,
+ CGM.VoidPtrTy,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.SizeTy->getPointerTo(),
+ CGM.Int32Ty->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
+ break;
+ }
+ case OMPRTL__tgt_target_teams: {
+ // Build int32_t __tgt_target_teams(int32_t device_id, void *host_ptr,
+ // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes,
+ // int32_t *arg_types, int32_t num_teams, int32_t thread_limit);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty,
+ CGM.VoidPtrTy,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.SizeTy->getPointerTo(),
+ CGM.Int32Ty->getPointerTo(),
+ CGM.Int32Ty,
+ CGM.Int32Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
+ break;
+ }
+ case OMPRTL__tgt_register_lib: {
+ // Build void __tgt_register_lib(__tgt_bin_desc *desc);
+ QualType ParamTy =
+ CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
+ llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
+ break;
+ }
+ case OMPRTL__tgt_unregister_lib: {
+ // Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
+ QualType ParamTy =
+ CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
+ llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
+ break;
+ }
+ case OMPRTL__tgt_target_data_begin: {
+ // Build void __tgt_target_data_begin(int32_t device_id, int32_t arg_num,
+ // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.SizeTy->getPointerTo(),
+ CGM.Int32Ty->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
+ break;
+ }
+ case OMPRTL__tgt_target_data_end: {
+ // Build void __tgt_target_data_end(int32_t device_id, int32_t arg_num,
+ // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.SizeTy->getPointerTo(),
+ CGM.Int32Ty->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
+ break;
+ }
+ case OMPRTL__tgt_target_data_update: {
+ // Build void __tgt_target_data_update(int32_t device_id, int32_t arg_num,
+ // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.SizeTy->getPointerTo(),
+ CGM.Int32Ty->getPointerTo()};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
+ break;
+ }
+ }
+ assert(RTLFn && "Unable to find OpenMP runtime function");
+ return RTLFn;
+}
+
+llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
+ : "__kmpc_for_static_init_4u")
+ : (IVSigned ? "__kmpc_for_static_init_8"
+ : "__kmpc_for_static_init_8u");
+ auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ auto PtrTy = llvm::PointerType::getUnqual(ITy);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ CGM.Int32Ty, // schedtype
+ llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
+ PtrTy, // p_lower
+ PtrTy, // p_upper
+ PtrTy, // p_stride
+ ITy, // incr
+ ITy // chunk
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
+ : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
+ auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ CGM.Int32Ty, // schedtype
+ ITy, // lower
+ ITy, // upper
+ ITy, // stride
+ ITy // chunk
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
+ : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize,
+ bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ auto Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
+ : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
+ auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ auto PtrTy = llvm::PointerType::getUnqual(ITy);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
+ PtrTy, // p_lower
+ PtrTy, // p_upper
+ PtrTy // p_stride
+ };
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::Constant *
+CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
+ assert(!CGM.getLangOpts().OpenMPUseTLS ||
+ !CGM.getContext().getTargetInfo().isTLSSupported());
+ // Lookup the entry, lazily creating it if necessary.
+ return getOrCreateInternalVariable(CGM.Int8PtrPtrTy,
+ Twine(CGM.getMangledName(VD)) + ".cache.");
+}
+
+Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ Address VDAddr,
+ SourceLocation Loc) {
+ if (CGM.getLangOpts().OpenMPUseTLS &&
+ CGM.getContext().getTargetInfo().isTLSSupported())
+ return VDAddr;
+
+ auto VarTy = VDAddr.getElementType();
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
+ CGM.Int8PtrTy),
+ CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
+ getOrCreateThreadPrivateCache(VD)};
+ return Address(CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
+ VDAddr.getAlignment());
+}
+
+void CGOpenMPRuntime::emitThreadPrivateVarInit(
+ CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
+ llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
+ // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
+ // library.
+ auto OMPLoc = emitUpdateLocation(CGF, Loc);
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
+ OMPLoc);
+ // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
+ // to register constructor/destructor for variable.
+ llvm::Value *Args[] = {OMPLoc,
+ CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
+ CGM.VoidPtrTy),
+ Ctor, CopyCtor, Dtor};
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
+}
+
+llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
+ const VarDecl *VD, Address VDAddr, SourceLocation Loc,
+ bool PerformInit, CodeGenFunction *CGF) {
+ if (CGM.getLangOpts().OpenMPUseTLS &&
+ CGM.getContext().getTargetInfo().isTLSSupported())
+ return nullptr;
+
+ VD = VD->getDefinition(CGM.getContext());
+ if (VD && ThreadPrivateWithDefinition.count(VD) == 0) {
+ ThreadPrivateWithDefinition.insert(VD);
+ QualType ASTTy = VD->getType();
+
+ llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
+ auto Init = VD->getAnyInitializer();
+ if (CGM.getLangOpts().CPlusPlus && PerformInit) {
+ // Generate function that re-emits the declaration's initializer into the
+ // threadprivate copy of the variable VD
+ CodeGenFunction CtorCGF(CGM);
+ FunctionArgList Args;
+ ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
+ Args.push_back(&Dst);
+
+ auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
+ CGM.getContext().VoidPtrTy, Args);
+ auto FTy = CGM.getTypes().GetFunctionType(FI);
+ auto Fn = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, ".__kmpc_global_ctor_.", FI, Loc);
+ CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
+ Args, SourceLocation());
+ auto ArgVal = CtorCGF.EmitLoadOfScalar(
+ CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
+ CGM.getContext().VoidPtrTy, Dst.getLocation());
+ Address Arg = Address(ArgVal, VDAddr.getAlignment());
+ Arg = CtorCGF.Builder.CreateElementBitCast(Arg,
+ CtorCGF.ConvertTypeForMem(ASTTy));
+ CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
+ /*IsInitializer=*/true);
+ ArgVal = CtorCGF.EmitLoadOfScalar(
+ CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
+ CGM.getContext().VoidPtrTy, Dst.getLocation());
+ CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
+ CtorCGF.FinishFunction();
+ Ctor = Fn;
+ }
+ if (VD->getType().isDestructedType() != QualType::DK_none) {
+ // Generate function that emits destructor call for the threadprivate copy
+ // of the variable VD
+ CodeGenFunction DtorCGF(CGM);
+ FunctionArgList Args;
+ ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, CGM.getContext().VoidPtrTy);
+ Args.push_back(&Dst);
+
+ auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
+ CGM.getContext().VoidTy, Args);
+ auto FTy = CGM.getTypes().GetFunctionType(FI);
+ auto Fn = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, ".__kmpc_global_dtor_.", FI, Loc);
+ auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
+ DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
+ SourceLocation());
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
+ auto ArgVal = DtorCGF.EmitLoadOfScalar(
+ DtorCGF.GetAddrOfLocalVar(&Dst),
+ /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
+ DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
+ DtorCGF.getDestroyer(ASTTy.isDestructedType()),
+ DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
+ DtorCGF.FinishFunction();
+ Dtor = Fn;
+ }
+ // Do not emit init function if it is not required.
+ if (!Ctor && !Dtor)
+ return nullptr;
+
+ llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto CopyCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
+ /*isVarArg=*/false)->getPointerTo();
+ // Copying constructor for the threadprivate variable.
+ // Must be NULL - reserved by runtime, but currently it requires that this
+ // parameter is always NULL. Otherwise it fires assertion.
+ CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
+ if (Ctor == nullptr) {
+ auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
+ /*isVarArg=*/false)->getPointerTo();
+ Ctor = llvm::Constant::getNullValue(CtorTy);
+ }
+ if (Dtor == nullptr) {
+ auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
+ /*isVarArg=*/false)->getPointerTo();
+ Dtor = llvm::Constant::getNullValue(DtorTy);
+ }
+ if (!CGF) {
+ auto InitFunctionTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
+ auto InitFunction = CGM.CreateGlobalInitOrDestructFunction(
+ InitFunctionTy, ".__omp_threadprivate_init_.",
+ CGM.getTypes().arrangeNullaryFunction());
+ CodeGenFunction InitCGF(CGM);
+ FunctionArgList ArgList;
+ InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
+ CGM.getTypes().arrangeNullaryFunction(), ArgList,
+ Loc);
+ emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
+ InitCGF.FinishFunction();
+ return InitFunction;
+ }
+ emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
+ }
+ return nullptr;
+}
+
+/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
+/// function. Here is the logic:
+/// if (Cond) {
+/// ThenGen();
+/// } else {
+/// ElseGen();
+/// }
+void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
+ const RegionCodeGenTy &ThenGen,
+ const RegionCodeGenTy &ElseGen) {
+ CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
+
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm of the if/else.
+ bool CondConstant;
+ if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
+ if (CondConstant)
+ ThenGen(CGF);
+ else
+ ElseGen(CGF);
+ return;
+ }
+
+ // Otherwise, the condition did not fold, or we couldn't elide it. Just
+ // emit the conditional branch.
+ auto ThenBlock = CGF.createBasicBlock("omp_if.then");
+ auto ElseBlock = CGF.createBasicBlock("omp_if.else");
+ auto ContBlock = CGF.createBasicBlock("omp_if.end");
+ CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
+
+ // Emit the 'then' code.
+ CGF.EmitBlock(ThenBlock);
+ ThenGen(CGF);
+ CGF.EmitBranch(ContBlock);
+ // Emit the 'else' code if present.
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ElseBlock);
+ ElseGen(CGF);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBranch(ContBlock);
+ // Emit the continuation block for code after the if.
+ CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
+}
+
+void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
+ llvm::Value *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars,
+ const Expr *IfCond) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ auto *RTLoc = emitUpdateLocation(CGF, Loc);
+ auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ llvm::Value *Args[] = {
+ RTLoc,
+ CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
+ CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
+ llvm::SmallVector<llvm::Value *, 16> RealArgs;
+ RealArgs.append(std::begin(Args), std::end(Args));
+ RealArgs.append(CapturedVars.begin(), CapturedVars.end());
+
+ auto RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
+ CGF.EmitRuntimeCall(RTLFn, RealArgs);
+ };
+ auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ auto ThreadID = RT.getThreadID(CGF, Loc);
+ // Build calls:
+ // __kmpc_serialized_parallel(&Loc, GTid);
+ llvm::Value *Args[] = {RTLoc, ThreadID};
+ CGF.EmitRuntimeCall(
+ RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
+
+ // OutlinedFn(&GTid, &zero, CapturedStruct);
+ auto ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
+ Address ZeroAddr =
+ CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4),
+ /*Name*/ ".zero.addr");
+ CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+ llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+ OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
+ OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+ OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+ CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs);
+
+ // __kmpc_end_serialized_parallel(&Loc, GTid);
+ llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
+ CGF.EmitRuntimeCall(
+ RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
+ EndArgs);
+ };
+ if (IfCond)
+ emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
+ else {
+ RegionCodeGenTy ThenRCG(ThenGen);
+ ThenRCG(CGF);
+ }
+}
+
+// If we're inside an (outlined) parallel region, use the region info's
+// thread-ID variable (it is passed in a first argument of the outlined function
+// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
+// regular serial code region, get thread ID by calling kmp_int32
+// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
+// return the address of that temp.
+Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ if (OMPRegionInfo->getThreadIDVariable())
+ return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
+
+ auto ThreadID = getThreadID(CGF, Loc);
+ auto Int32Ty =
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
+ auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
+ CGF.EmitStoreOfScalar(ThreadID,
+ CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
+
+ return ThreadIDTemp;
+}
+
+llvm::Constant *
+CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty,
+ const llvm::Twine &Name) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << Name;
+ auto RuntimeName = Out.str();
+ auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first;
+ if (Elem.second) {
+ assert(Elem.second->getType()->getPointerElementType() == Ty &&
+ "OMP internal variable has different type than requested");
+ return &*Elem.second;
+ }
+
+ return Elem.second = new llvm::GlobalVariable(
+ CGM.getModule(), Ty, /*IsConstant*/ false,
+ llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
+ Elem.first());
+}
+
+llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
+ llvm::Twine Name(".gomp_critical_user_", CriticalName);
+ return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var"));
+}
+
+namespace {
+/// Common pre(post)-action for different OpenMP constructs.
+class CommonActionTy final : public PrePostActionTy {
+ llvm::Value *EnterCallee;
+ ArrayRef<llvm::Value *> EnterArgs;
+ llvm::Value *ExitCallee;
+ ArrayRef<llvm::Value *> ExitArgs;
+ bool Conditional;
+ llvm::BasicBlock *ContBlock = nullptr;
+
+public:
+ CommonActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
+ llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
+ bool Conditional = false)
+ : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
+ ExitArgs(ExitArgs), Conditional(Conditional) {}
+ void Enter(CodeGenFunction &CGF) override {
+ llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
+ if (Conditional) {
+ llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
+ auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
+ ContBlock = CGF.createBasicBlock("omp_if.end");
+ // Generate the branch (If-stmt)
+ CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
+ CGF.EmitBlock(ThenBlock);
+ }
+ }
+ void Done(CodeGenFunction &CGF) {
+ // Emit the rest of blocks/branches
+ CGF.EmitBranch(ContBlock);
+ CGF.EmitBlock(ContBlock, true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
+ }
+};
+} // anonymous namespace
+
+void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
+ StringRef CriticalName,
+ const RegionCodeGenTy &CriticalOpGen,
+ SourceLocation Loc, const Expr *Hint) {
+ // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
+ // CriticalOpGen();
+ // __kmpc_end_critical(ident_t *, gtid, Lock);
+ // Prepare arguments and build a call to __kmpc_critical
+ if (!CGF.HaveInsertPoint())
+ return;
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ getCriticalRegionLock(CriticalName)};
+ llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
+ std::end(Args));
+ if (Hint) {
+ EnterArgs.push_back(CGF.Builder.CreateIntCast(
+ CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
+ }
+ CommonActionTy Action(
+ createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
+ : OMPRTL__kmpc_critical),
+ EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
+ CriticalOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
+}
+
+void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &MasterOpGen,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // if(__kmpc_master(ident_t *, gtid)) {
+ // MasterOpGen();
+ // __kmpc_end_master(ident_t *, gtid);
+ // }
+ // Prepare arguments and build a call to __kmpc_master
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
+ /*Conditional=*/true);
+ MasterOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
+ Action.Done(CGF);
+}
+
+void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
+ if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ Region->emitUntiedSwitch(CGF);
+}
+
+void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &TaskgroupOpGen,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // __kmpc_taskgroup(ident_t *, gtid);
+ // TaskgroupOpGen();
+ // __kmpc_end_taskgroup(ident_t *, gtid);
+ // Prepare arguments and build a call to __kmpc_taskgroup
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
+ Args);
+ TaskgroupOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
+}
+
+/// Given an array of pointers to variables, project the address of a
+/// given variable.
+static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
+ unsigned Index, const VarDecl *Var) {
+ // Pull out the pointer to the variable.
+ Address PtrAddr =
+ CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize());
+ llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
+
+ Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
+ Addr = CGF.Builder.CreateElementBitCast(
+ Addr, CGF.ConvertTypeForMem(Var->getType()));
+ return Addr;
+}
+
+static llvm::Value *emitCopyprivateCopyFunction(
+ CodeGenModule &CGM, llvm::Type *ArgsType,
+ ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
+ ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) {
+ auto &C = CGM.getContext();
+ // void copy_func(void *LHSArg, void *RHSArg);
+ FunctionArgList Args;
+ ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ Args.push_back(&LHSArg);
+ Args.push_back(&RHSArg);
+ auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ ".omp.copyprivate.copy_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+ // Dest = (void*[n])(LHSArg);
+ // Src = (void*[n])(RHSArg);
+ Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
+ ArgsType), CGF.getPointerAlign());
+ Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
+ ArgsType), CGF.getPointerAlign());
+ // *(Type0*)Dst[0] = *(Type0*)Src[0];
+ // *(Type1*)Dst[1] = *(Type1*)Src[1];
+ // ...
+ // *(Typen*)Dst[n] = *(Typen*)Src[n];
+ for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
+ auto DestVar = cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
+ Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
+
+ auto SrcVar = cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
+ Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
+
+ auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
+ QualType Type = VD->getType();
+ CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
+ }
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &SingleOpGen,
+ SourceLocation Loc,
+ ArrayRef<const Expr *> CopyprivateVars,
+ ArrayRef<const Expr *> SrcExprs,
+ ArrayRef<const Expr *> DstExprs,
+ ArrayRef<const Expr *> AssignmentOps) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ assert(CopyprivateVars.size() == SrcExprs.size() &&
+ CopyprivateVars.size() == DstExprs.size() &&
+ CopyprivateVars.size() == AssignmentOps.size());
+ auto &C = CGM.getContext();
+ // int32 did_it = 0;
+ // if(__kmpc_single(ident_t *, gtid)) {
+ // SingleOpGen();
+ // __kmpc_end_single(ident_t *, gtid);
+ // did_it = 1;
+ // }
+ // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
+ // <copy_func>, did_it);
+
+ Address DidIt = Address::invalid();
+ if (!CopyprivateVars.empty()) {
+ // int32 did_it = 0;
+ auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
+ CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
+ }
+ // Prepare arguments and build a call to __kmpc_single
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
+ /*Conditional=*/true);
+ SingleOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
+ if (DidIt.isValid()) {
+ // did_it = 1;
+ CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
+ }
+ Action.Done(CGF);
+ // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
+ // <copy_func>, did_it);
+ if (DidIt.isValid()) {
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
+ auto CopyprivateArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ // Create a list of all private variables for copyprivate.
+ Address CopyprivateList =
+ CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
+ for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(
+ CopyprivateList, I, CGF.getPointerSize());
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
+ Elem);
+ }
+ // Build function that copies private values from single region to all other
+ // threads in the corresponding parallel region.
+ auto *CpyFn = emitCopyprivateCopyFunction(
+ CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
+ CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
+ auto *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
+ Address CL =
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
+ CGF.VoidPtrTy);
+ auto *DidItVal = CGF.Builder.CreateLoad(DidIt);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), // ident_t *<loc>
+ getThreadID(CGF, Loc), // i32 <gtid>
+ BufSize, // size_t <buf_size>
+ CL.getPointer(), // void *<copyprivate list>
+ CpyFn, // void (*) (void *, void *) <copy_func>
+ DidItVal // i32 did_it
+ };
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
+ }
+}
+
+void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &OrderedOpGen,
+ SourceLocation Loc, bool IsThreads) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // __kmpc_ordered(ident_t *, gtid);
+ // OrderedOpGen();
+ // __kmpc_end_ordered(ident_t *, gtid);
+ // Prepare arguments and build a call to __kmpc_ordered
+ if (IsThreads) {
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_ordered),
+ Args);
+ OrderedOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
+ return;
+ }
+ emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
+}
+
+void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDirectiveKind Kind, bool EmitChecks,
+ bool ForceSimpleCall) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_cancel_barrier(loc, thread_id);
+ // Build call __kmpc_barrier(loc, thread_id);
+ unsigned Flags;
+ if (Kind == OMPD_for)
+ Flags = OMP_IDENT_BARRIER_IMPL_FOR;
+ else if (Kind == OMPD_sections)
+ Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
+ else if (Kind == OMPD_single)
+ Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
+ else if (Kind == OMPD_barrier)
+ Flags = OMP_IDENT_BARRIER_EXPL;
+ else
+ Flags = OMP_IDENT_BARRIER_IMPL;
+ // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
+ // thread_id);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
+ getThreadID(CGF, Loc)};
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
+ auto *Result = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
+ if (EmitChecks) {
+ // if (__kmpc_cancel_barrier()) {
+ // exit from construct;
+ // }
+ auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
+ auto *ContBB = CGF.createBasicBlock(".cancel.continue");
+ auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
+ CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB);
+ // exit from construct;
+ auto CancelDestination =
+ CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
+ CGF.EmitBranchThroughCleanup(CancelDestination);
+ CGF.EmitBlock(ContBB, /*IsFinished=*/true);
+ }
+ return;
+ }
+ }
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
+}
+
+/// \brief Map the OpenMP loop schedule to the runtime enumeration.
+static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked, bool Ordered) {
+ switch (ScheduleKind) {
+ case OMPC_SCHEDULE_static:
+ return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
+ : (Ordered ? OMP_ord_static : OMP_sch_static);
+ case OMPC_SCHEDULE_dynamic:
+ return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
+ case OMPC_SCHEDULE_guided:
+ return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
+ case OMPC_SCHEDULE_runtime:
+ return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
+ case OMPC_SCHEDULE_auto:
+ return Ordered ? OMP_ord_auto : OMP_sch_auto;
+ case OMPC_SCHEDULE_unknown:
+ assert(!Chunked && "chunk was specified but schedule kind not known");
+ return Ordered ? OMP_ord_static : OMP_sch_static;
+ }
+ llvm_unreachable("Unexpected runtime schedule");
+}
+
+/// \brief Map the OpenMP distribute schedule to the runtime enumeration.
+static OpenMPSchedType
+getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
+ // only static is allowed for dist_schedule
+ return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
+}
+
+bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked) const {
+ auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
+ return Schedule == OMP_sch_static;
+}
+
+bool CGOpenMPRuntime::isStaticNonchunked(
+ OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
+ auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
+ return Schedule == OMP_dist_sch_static;
+}
+
+
+bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
+ auto Schedule =
+ getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
+ assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
+ return Schedule != OMP_sch_static;
+}
+
+static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
+ OpenMPScheduleClauseModifier M1,
+ OpenMPScheduleClauseModifier M2) {
+ int Modifier = 0;
+ switch (M1) {
+ case OMPC_SCHEDULE_MODIFIER_monotonic:
+ Modifier = OMP_sch_modifier_monotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
+ Modifier = OMP_sch_modifier_nonmonotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_simd:
+ if (Schedule == OMP_sch_static_chunked)
+ Schedule = OMP_sch_static_balanced_chunked;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_last:
+ case OMPC_SCHEDULE_MODIFIER_unknown:
+ break;
+ }
+ switch (M2) {
+ case OMPC_SCHEDULE_MODIFIER_monotonic:
+ Modifier = OMP_sch_modifier_monotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
+ Modifier = OMP_sch_modifier_nonmonotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_simd:
+ if (Schedule == OMP_sch_static_chunked)
+ Schedule = OMP_sch_static_balanced_chunked;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_last:
+ case OMPC_SCHEDULE_MODIFIER_unknown:
+ break;
+ }
+ return Schedule | Modifier;
+}
+
+void CGOpenMPRuntime::emitForDispatchInit(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
+ bool Ordered, const DispatchRTInput &DispatchValues) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ OpenMPSchedType Schedule = getRuntimeSchedule(
+ ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
+ assert(Ordered ||
+ (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
+ Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
+ Schedule != OMP_sch_static_balanced_chunked));
+ // Call __kmpc_dispatch_init(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
+ // kmp_int[32|64] lower, kmp_int[32|64] upper,
+ // kmp_int[32|64] stride, kmp_int[32|64] chunk);
+
+ // If the Chunk was not specified in the clause - use default value 1.
+ llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
+ : CGF.Builder.getIntN(IVSize, 1);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(addMonoNonMonoModifier(
+ Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
+ DispatchValues.LB, // Lower
+ DispatchValues.UB, // Upper
+ CGF.Builder.getIntN(IVSize, 1), // Stride
+ Chunk // Chunk
+ };
+ CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
+}
+
+static void emitForStaticInitCall(
+ CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
+ llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule,
+ OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
+ unsigned IVSize, bool Ordered, Address IL, Address LB, Address UB,
+ Address ST, llvm::Value *Chunk) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ assert(!Ordered);
+ assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
+ Schedule == OMP_sch_static_balanced_chunked ||
+ Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
+ Schedule == OMP_dist_sch_static ||
+ Schedule == OMP_dist_sch_static_chunked);
+
+ // Call __kmpc_for_static_init(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
+ // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
+ // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
+ // kmp_int[32|64] incr, kmp_int[32|64] chunk);
+ if (Chunk == nullptr) {
+ assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
+ Schedule == OMP_dist_sch_static) &&
+ "expected static non-chunked schedule");
+ // If the Chunk was not specified in the clause - use default value 1.
+ Chunk = CGF.Builder.getIntN(IVSize, 1);
+ } else {
+ assert((Schedule == OMP_sch_static_chunked ||
+ Schedule == OMP_sch_static_balanced_chunked ||
+ Schedule == OMP_ord_static_chunked ||
+ Schedule == OMP_dist_sch_static_chunked) &&
+ "expected static chunked schedule");
+ }
+ llvm::Value *Args[] = {
+ UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier(
+ Schedule, M1, M2)), // Schedule type
+ IL.getPointer(), // &isLastIter
+ LB.getPointer(), // &LB
+ UB.getPointer(), // &UB
+ ST.getPointer(), // &Stride
+ CGF.Builder.getIntN(IVSize, 1), // Incr
+ Chunk // Chunk
+ };
+ CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
+}
+
+void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ const OpenMPScheduleTy &ScheduleKind,
+ unsigned IVSize, bool IVSigned,
+ bool Ordered, Address IL, Address LB,
+ Address UB, Address ST,
+ llvm::Value *Chunk) {
+ OpenMPSchedType ScheduleNum =
+ getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered);
+ auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
+ auto *ThreadId = getThreadID(CGF, Loc);
+ auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
+ emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
+ ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, IVSize,
+ Ordered, IL, LB, UB, ST, Chunk);
+}
+
+void CGOpenMPRuntime::emitDistributeStaticInit(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDistScheduleClauseKind SchedKind, unsigned IVSize, bool IVSigned,
+ bool Ordered, Address IL, Address LB, Address UB, Address ST,
+ llvm::Value *Chunk) {
+ OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Chunk != nullptr);
+ auto *UpdatedLocation = emitUpdateLocation(CGF, Loc);
+ auto *ThreadId = getThreadID(CGF, Loc);
+ auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned);
+ emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
+ ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
+ OMPC_SCHEDULE_MODIFIER_unknown, IVSize, Ordered, IL, LB,
+ UB, ST, Chunk);
+}
+
+void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
+ Args);
+}
+
+void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ unsigned IVSize,
+ bool IVSigned) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
+}
+
+llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
+ SourceLocation Loc, unsigned IVSize,
+ bool IVSigned, Address IL,
+ Address LB, Address UB,
+ Address ST) {
+ // Call __kmpc_dispatch_next(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
+ // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
+ // kmp_int[32|64] *p_stride);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc),
+ getThreadID(CGF, Loc),
+ IL.getPointer(), // &isLastIter
+ LB.getPointer(), // &Lower
+ UB.getPointer(), // &Upper
+ ST.getPointer() // &Stride
+ };
+ llvm::Value *Call =
+ CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
+ return CGF.EmitScalarConversion(
+ Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true),
+ CGF.getContext().BoolTy, Loc);
+}
+
+void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
+ llvm::Value *NumThreads,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
+ Args);
+}
+
+void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
+ OpenMPProcBindClauseKind ProcBind,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Constants for proc bind value accepted by the runtime.
+ enum ProcBindTy {
+ ProcBindFalse = 0,
+ ProcBindTrue,
+ ProcBindMaster,
+ ProcBindClose,
+ ProcBindSpread,
+ ProcBindIntel,
+ ProcBindDefault
+ } RuntimeProcBind;
+ switch (ProcBind) {
+ case OMPC_PROC_BIND_master:
+ RuntimeProcBind = ProcBindMaster;
+ break;
+ case OMPC_PROC_BIND_close:
+ RuntimeProcBind = ProcBindClose;
+ break;
+ case OMPC_PROC_BIND_spread:
+ RuntimeProcBind = ProcBindSpread;
+ break;
+ case OMPC_PROC_BIND_unknown:
+ llvm_unreachable("Unsupported proc_bind value.");
+ }
+ // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
+}
+
+void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call void __kmpc_flush(ident_t *loc)
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
+ emitUpdateLocation(CGF, Loc));
+}
+
+namespace {
+/// \brief Indexes of fields for type kmp_task_t.
+enum KmpTaskTFields {
+ /// \brief List of shared variables.
+ KmpTaskTShareds,
+ /// \brief Task routine.
+ KmpTaskTRoutine,
+ /// \brief Partition id for the untied tasks.
+ KmpTaskTPartId,
+ /// Function with call of destructors for private variables.
+ Data1,
+ /// Task priority.
+ Data2,
+ /// (Taskloops only) Lower bound.
+ KmpTaskTLowerBound,
+ /// (Taskloops only) Upper bound.
+ KmpTaskTUpperBound,
+ /// (Taskloops only) Stride.
+ KmpTaskTStride,
+ /// (Taskloops only) Is last iteration flag.
+ KmpTaskTLastIter,
+};
+} // anonymous namespace
+
+bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
+ // FIXME: Add other entries type when they become supported.
+ return OffloadEntriesTargetRegion.empty();
+}
+
+/// \brief Initialize target region entry.
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
+ initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
+ StringRef ParentName, unsigned LineNum,
+ unsigned Order) {
+ assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
+ "only required for the device "
+ "code generation.");
+ OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
+ OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
+ /*Flags=*/0);
+ ++OffloadingEntriesNum;
+}
+
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
+ registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
+ StringRef ParentName, unsigned LineNum,
+ llvm::Constant *Addr, llvm::Constant *ID,
+ int32_t Flags) {
+ // If we are emitting code for a target, the entry is already initialized,
+ // only has to be registered.
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ assert(hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
+ "Entry must exist.");
+ auto &Entry =
+ OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
+ assert(Entry.isValid() && "Entry not initialized!");
+ Entry.setAddress(Addr);
+ Entry.setID(ID);
+ Entry.setFlags(Flags);
+ return;
+ } else {
+ OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum++, Addr, ID, Flags);
+ OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
+ }
+}
+
+bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
+ unsigned DeviceID, unsigned FileID, StringRef ParentName,
+ unsigned LineNum) const {
+ auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
+ if (PerDevice == OffloadEntriesTargetRegion.end())
+ return false;
+ auto PerFile = PerDevice->second.find(FileID);
+ if (PerFile == PerDevice->second.end())
+ return false;
+ auto PerParentName = PerFile->second.find(ParentName);
+ if (PerParentName == PerFile->second.end())
+ return false;
+ auto PerLine = PerParentName->second.find(LineNum);
+ if (PerLine == PerParentName->second.end())
+ return false;
+ // Fail if this entry is already registered.
+ if (PerLine->second.getAddress() || PerLine->second.getID())
+ return false;
+ return true;
+}
+
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
+ const OffloadTargetRegionEntryInfoActTy &Action) {
+ // Scan all target region entries and perform the provided action.
+ for (auto &D : OffloadEntriesTargetRegion)
+ for (auto &F : D.second)
+ for (auto &P : F.second)
+ for (auto &L : P.second)
+ Action(D.first, F.first, P.first(), L.first, L.second);
+}
+
+/// \brief Create a Ctor/Dtor-like function whose body is emitted through
+/// \a Codegen. This is used to emit the two functions that register and
+/// unregister the descriptor of the current compilation unit.
+static llvm::Function *
+createOffloadingBinaryDescriptorFunction(CodeGenModule &CGM, StringRef Name,
+ const RegionCodeGenTy &Codegen) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl DummyPtr(C, /*DC=*/nullptr, SourceLocation(),
+ /*Id=*/nullptr, C.VoidPtrTy);
+ Args.push_back(&DummyPtr);
+
+ CodeGenFunction CGF(CGM);
+ auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto FTy = CGM.getTypes().GetFunctionType(FI);
+ auto *Fn =
+ CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, SourceLocation());
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FI, Args, SourceLocation());
+ Codegen(CGF);
+ CGF.FinishFunction();
+ return Fn;
+}
+
+llvm::Function *
+CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
+
+ // If we don't have entries or if we are emitting code for the device, we
+ // don't need to do anything.
+ if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
+ return nullptr;
+
+ auto &M = CGM.getModule();
+ auto &C = CGM.getContext();
+
+ // Get list of devices we care about
+ auto &Devices = CGM.getLangOpts().OMPTargetTriples;
+
+ // We should be creating an offloading descriptor only if there are devices
+ // specified.
+ assert(!Devices.empty() && "No OpenMP offloading devices??");
+
+ // Create the external variables that will point to the begin and end of the
+ // host entries section. These will be defined by the linker.
+ auto *OffloadEntryTy =
+ CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
+ llvm::GlobalVariable *HostEntriesBegin = new llvm::GlobalVariable(
+ M, OffloadEntryTy, /*isConstant=*/true,
+ llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
+ ".omp_offloading.entries_begin");
+ llvm::GlobalVariable *HostEntriesEnd = new llvm::GlobalVariable(
+ M, OffloadEntryTy, /*isConstant=*/true,
+ llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
+ ".omp_offloading.entries_end");
+
+ // Create all device images
+ auto *DeviceImageTy = cast<llvm::StructType>(
+ CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
+ ConstantInitBuilder DeviceImagesBuilder(CGM);
+ auto DeviceImagesEntries = DeviceImagesBuilder.beginArray(DeviceImageTy);
+
+ for (unsigned i = 0; i < Devices.size(); ++i) {
+ StringRef T = Devices[i].getTriple();
+ auto *ImgBegin = new llvm::GlobalVariable(
+ M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
+ /*Initializer=*/nullptr,
+ Twine(".omp_offloading.img_start.") + Twine(T));
+ auto *ImgEnd = new llvm::GlobalVariable(
+ M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage,
+ /*Initializer=*/nullptr, Twine(".omp_offloading.img_end.") + Twine(T));
+
+ auto Dev = DeviceImagesEntries.beginStruct(DeviceImageTy);
+ Dev.add(ImgBegin);
+ Dev.add(ImgEnd);
+ Dev.add(HostEntriesBegin);
+ Dev.add(HostEntriesEnd);
+ Dev.finishAndAddTo(DeviceImagesEntries);
+ }
+
+ // Create device images global array.
+ llvm::GlobalVariable *DeviceImages =
+ DeviceImagesEntries.finishAndCreateGlobal(".omp_offloading.device_images",
+ CGM.getPointerAlign(),
+ /*isConstant=*/true);
+ DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ // This is a Zero array to be used in the creation of the constant expressions
+ llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
+ llvm::Constant::getNullValue(CGM.Int32Ty)};
+
+ // Create the target region descriptor.
+ auto *BinaryDescriptorTy = cast<llvm::StructType>(
+ CGM.getTypes().ConvertTypeForMem(getTgtBinaryDescriptorQTy()));
+ ConstantInitBuilder DescBuilder(CGM);
+ auto DescInit = DescBuilder.beginStruct(BinaryDescriptorTy);
+ DescInit.addInt(CGM.Int32Ty, Devices.size());
+ DescInit.add(llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(),
+ DeviceImages,
+ Index));
+ DescInit.add(HostEntriesBegin);
+ DescInit.add(HostEntriesEnd);
+
+ auto *Desc = DescInit.finishAndCreateGlobal(".omp_offloading.descriptor",
+ CGM.getPointerAlign(),
+ /*isConstant=*/true);
+
+ // Emit code to register or unregister the descriptor at execution
+ // startup or closing, respectively.
+
+ // Create a variable to drive the registration and unregistration of the
+ // descriptor, so we can reuse the logic that emits Ctors and Dtors.
+ auto *IdentInfo = &C.Idents.get(".omp_offloading.reg_unreg_var");
+ ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), SourceLocation(),
+ IdentInfo, C.CharTy);
+
+ auto *UnRegFn = createOffloadingBinaryDescriptorFunction(
+ CGM, ".omp_offloading.descriptor_unreg",
+ [&](CodeGenFunction &CGF, PrePostActionTy &) {
+ CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
+ Desc);
+ });
+ auto *RegFn = createOffloadingBinaryDescriptorFunction(
+ CGM, ".omp_offloading.descriptor_reg",
+ [&](CodeGenFunction &CGF, PrePostActionTy &) {
+ CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_register_lib),
+ Desc);
+ CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
+ });
+ return RegFn;
+}
+
+void CGOpenMPRuntime::createOffloadEntry(llvm::Constant *ID,
+ llvm::Constant *Addr, uint64_t Size,
+ int32_t Flags) {
+ StringRef Name = Addr->getName();
+ auto *TgtOffloadEntryType = cast<llvm::StructType>(
+ CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()));
+ llvm::LLVMContext &C = CGM.getModule().getContext();
+ llvm::Module &M = CGM.getModule();
+
+ // Make sure the address has the right type.
+ llvm::Constant *AddrPtr = llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy);
+
+ // Create constant string with the name.
+ llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
+
+ llvm::GlobalVariable *Str =
+ new llvm::GlobalVariable(M, StrPtrInit->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::InternalLinkage, StrPtrInit,
+ ".omp_offloading.entry_name");
+ Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ llvm::Constant *StrPtr = llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy);
+
+ // We can't have any padding between symbols, so we need to have 1-byte
+ // alignment.
+ auto Align = CharUnits::fromQuantity(1);
+
+ // Create the entry struct.
+ ConstantInitBuilder EntryBuilder(CGM);
+ auto EntryInit = EntryBuilder.beginStruct(TgtOffloadEntryType);
+ EntryInit.add(AddrPtr);
+ EntryInit.add(StrPtr);
+ EntryInit.addInt(CGM.SizeTy, Size);
+ EntryInit.addInt(CGM.Int32Ty, Flags);
+ EntryInit.addInt(CGM.Int32Ty, 0);
+ llvm::GlobalVariable *Entry =
+ EntryInit.finishAndCreateGlobal(".omp_offloading.entry",
+ Align,
+ /*constant*/ true,
+ llvm::GlobalValue::ExternalLinkage);
+
+ // The entry has to be created in the section the linker expects it to be.
+ Entry->setSection(".omp_offloading.entries");
+}
+
+void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
+ // Emit the offloading entries and metadata so that the device codegen side
+ // can easily figure out what to emit. The produced metadata looks like
+ // this:
+ //
+ // !omp_offload.info = !{!1, ...}
+ //
+ // Right now we only generate metadata for function that contain target
+ // regions.
+
+ // If we do not have entries, we dont need to do anything.
+ if (OffloadEntriesInfoManager.empty())
+ return;
+
+ llvm::Module &M = CGM.getModule();
+ llvm::LLVMContext &C = M.getContext();
+ SmallVector<OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
+ OrderedEntries(OffloadEntriesInfoManager.size());
+
+ // Create the offloading info metadata node.
+ llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
+
+ // Auxiliary methods to create metadata values and strings.
+ auto getMDInt = [&](unsigned v) {
+ return llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(C), v));
+ };
+
+ auto getMDString = [&](StringRef v) { return llvm::MDString::get(C, v); };
+
+ // Create function that emits metadata for each target region entry;
+ auto &&TargetRegionMetadataEmitter = [&](
+ unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line,
+ OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
+ llvm::SmallVector<llvm::Metadata *, 32> Ops;
+ // Generate metadata for target regions. Each entry of this metadata
+ // contains:
+ // - Entry 0 -> Kind of this type of metadata (0).
+ // - Entry 1 -> Device ID of the file where the entry was identified.
+ // - Entry 2 -> File ID of the file where the entry was identified.
+ // - Entry 3 -> Mangled name of the function where the entry was identified.
+ // - Entry 4 -> Line in the file where the entry was identified.
+ // - Entry 5 -> Order the entry was created.
+ // The first element of the metadata node is the kind.
+ Ops.push_back(getMDInt(E.getKind()));
+ Ops.push_back(getMDInt(DeviceID));
+ Ops.push_back(getMDInt(FileID));
+ Ops.push_back(getMDString(ParentName));
+ Ops.push_back(getMDInt(Line));
+ Ops.push_back(getMDInt(E.getOrder()));
+
+ // Save this entry in the right position of the ordered entries array.
+ OrderedEntries[E.getOrder()] = &E;
+
+ // Add metadata to the named metadata node.
+ MD->addOperand(llvm::MDNode::get(C, Ops));
+ };
+
+ OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
+ TargetRegionMetadataEmitter);
+
+ for (auto *E : OrderedEntries) {
+ assert(E && "All ordered entries must exist!");
+ if (auto *CE =
+ dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
+ E)) {
+ assert(CE->getID() && CE->getAddress() &&
+ "Entry ID and Addr are invalid!");
+ createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0);
+ } else
+ llvm_unreachable("Unsupported entry kind.");
+ }
+}
+
+/// \brief Loads all the offload entries information from the host IR
+/// metadata.
+void CGOpenMPRuntime::loadOffloadInfoMetadata() {
+ // If we are in target mode, load the metadata from the host IR. This code has
+ // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
+
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ return;
+
+ if (CGM.getLangOpts().OMPHostIRFile.empty())
+ return;
+
+ auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
+ if (Buf.getError())
+ return;
+
+ llvm::LLVMContext C;
+ auto ME = expectedToErrorOrAndEmitErrors(
+ C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
+
+ if (ME.getError())
+ return;
+
+ llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
+ if (!MD)
+ return;
+
+ for (auto I : MD->operands()) {
+ llvm::MDNode *MN = cast<llvm::MDNode>(I);
+
+ auto getMDInt = [&](unsigned Idx) {
+ llvm::ConstantAsMetadata *V =
+ cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
+ return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
+ };
+
+ auto getMDString = [&](unsigned Idx) {
+ llvm::MDString *V = cast<llvm::MDString>(MN->getOperand(Idx));
+ return V->getString();
+ };
+
+ switch (getMDInt(0)) {
+ default:
+ llvm_unreachable("Unexpected metadata!");
+ break;
+ case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
+ OFFLOAD_ENTRY_INFO_TARGET_REGION:
+ OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
+ /*DeviceID=*/getMDInt(1), /*FileID=*/getMDInt(2),
+ /*ParentName=*/getMDString(3), /*Line=*/getMDInt(4),
+ /*Order=*/getMDInt(5));
+ break;
+ }
+ }
+}
+
+void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
+ if (!KmpRoutineEntryPtrTy) {
+ // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
+ auto &C = CGM.getContext();
+ QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
+ FunctionProtoType::ExtProtoInfo EPI;
+ KmpRoutineEntryPtrQTy = C.getPointerType(
+ C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
+ KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
+ }
+}
+
+static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
+ QualType FieldTy) {
+ auto *Field = FieldDecl::Create(
+ C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
+ C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ DC->addDecl(Field);
+ return Field;
+}
+
+QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
+
+ // Make sure the type of the entry is already created. This is the type we
+ // have to create:
+ // struct __tgt_offload_entry{
+ // void *addr; // Pointer to the offload entry info.
+ // // (function or global)
+ // char *name; // Name of the function or global.
+ // size_t size; // Size of the entry info (0 if it a function).
+ // int32_t flags; // Flags associated with the entry, e.g. 'link'.
+ // int32_t reserved; // Reserved, to use by the runtime library.
+ // };
+ if (TgtOffloadEntryQTy.isNull()) {
+ ASTContext &C = CGM.getContext();
+ auto *RD = C.buildImplicitRecord("__tgt_offload_entry");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
+ addFieldToRecordDecl(C, RD, C.getSizeType());
+ addFieldToRecordDecl(
+ C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
+ addFieldToRecordDecl(
+ C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
+ RD->completeDefinition();
+ TgtOffloadEntryQTy = C.getRecordType(RD);
+ }
+ return TgtOffloadEntryQTy;
+}
+
+QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
+ // These are the types we need to build:
+ // struct __tgt_device_image{
+ // void *ImageStart; // Pointer to the target code start.
+ // void *ImageEnd; // Pointer to the target code end.
+ // // We also add the host entries to the device image, as it may be useful
+ // // for the target runtime to have access to that information.
+ // __tgt_offload_entry *EntriesBegin; // Begin of the table with all
+ // // the entries.
+ // __tgt_offload_entry *EntriesEnd; // End of the table with all the
+ // // entries (non inclusive).
+ // };
+ if (TgtDeviceImageQTy.isNull()) {
+ ASTContext &C = CGM.getContext();
+ auto *RD = C.buildImplicitRecord("__tgt_device_image");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ RD->completeDefinition();
+ TgtDeviceImageQTy = C.getRecordType(RD);
+ }
+ return TgtDeviceImageQTy;
+}
+
+QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
+ // struct __tgt_bin_desc{
+ // int32_t NumDevices; // Number of devices supported.
+ // __tgt_device_image *DeviceImages; // Arrays of device images
+ // // (one per device).
+ // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the
+ // // entries.
+ // __tgt_offload_entry *EntriesEnd; // End of the table with all the
+ // // entries (non inclusive).
+ // };
+ if (TgtBinaryDescriptorQTy.isNull()) {
+ ASTContext &C = CGM.getContext();
+ auto *RD = C.buildImplicitRecord("__tgt_bin_desc");
+ RD->startDefinition();
+ addFieldToRecordDecl(
+ C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ RD->completeDefinition();
+ TgtBinaryDescriptorQTy = C.getRecordType(RD);
+ }
+ return TgtBinaryDescriptorQTy;
+}
+
+namespace {
+struct PrivateHelpersTy {
+ PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
+ const VarDecl *PrivateElemInit)
+ : Original(Original), PrivateCopy(PrivateCopy),
+ PrivateElemInit(PrivateElemInit) {}
+ const VarDecl *Original;
+ const VarDecl *PrivateCopy;
+ const VarDecl *PrivateElemInit;
+};
+typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
+} // anonymous namespace
+
+static RecordDecl *
+createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
+ if (!Privates.empty()) {
+ auto &C = CGM.getContext();
+ // Build struct .kmp_privates_t. {
+ // /* private vars */
+ // };
+ auto *RD = C.buildImplicitRecord(".kmp_privates.t");
+ RD->startDefinition();
+ for (auto &&Pair : Privates) {
+ auto *VD = Pair.second.Original;
+ auto Type = VD->getType();
+ Type = Type.getNonReferenceType();
+ auto *FD = addFieldToRecordDecl(C, RD, Type);
+ if (VD->hasAttrs()) {
+ for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
+ E(VD->getAttrs().end());
+ I != E; ++I)
+ FD->addAttr(*I);
+ }
+ }
+ RD->completeDefinition();
+ return RD;
+ }
+ return nullptr;
+}
+
+static RecordDecl *
+createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
+ QualType KmpInt32Ty,
+ QualType KmpRoutineEntryPointerQTy) {
+ auto &C = CGM.getContext();
+ // Build struct kmp_task_t {
+ // void * shareds;
+ // kmp_routine_entry_t routine;
+ // kmp_int32 part_id;
+ // kmp_cmplrdata_t data1;
+ // kmp_cmplrdata_t data2;
+ // For taskloops additional fields:
+ // kmp_uint64 lb;
+ // kmp_uint64 ub;
+ // kmp_int64 st;
+ // kmp_int32 liter;
+ // };
+ auto *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
+ UD->startDefinition();
+ addFieldToRecordDecl(C, UD, KmpInt32Ty);
+ addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
+ UD->completeDefinition();
+ QualType KmpCmplrdataTy = C.getRecordType(UD);
+ auto *RD = C.buildImplicitRecord("kmp_task_t");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
+ addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
+ if (isOpenMPTaskLoopDirective(Kind)) {
+ QualType KmpUInt64Ty =
+ CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
+ QualType KmpInt64Ty =
+ CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
+ addFieldToRecordDecl(C, RD, KmpUInt64Ty);
+ addFieldToRecordDecl(C, RD, KmpUInt64Ty);
+ addFieldToRecordDecl(C, RD, KmpInt64Ty);
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ }
+ RD->completeDefinition();
+ return RD;
+}
+
+static RecordDecl *
+createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
+ ArrayRef<PrivateDataTy> Privates) {
+ auto &C = CGM.getContext();
+ // Build struct kmp_task_t_with_privates {
+ // kmp_task_t task_data;
+ // .kmp_privates_t. privates;
+ // };
+ auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, KmpTaskTQTy);
+ if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) {
+ addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
+ }
+ RD->completeDefinition();
+ return RD;
+}
+
+/// \brief Emit a proxy function which accepts kmp_task_t as the second
+/// argument.
+/// \code
+/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
+/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
+/// For taskloops:
+/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
+/// tt->shareds);
+/// return 0;
+/// }
+/// \endcode
+static llvm::Value *
+emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
+ OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
+ QualType KmpTaskTWithPrivatesPtrQTy,
+ QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
+ QualType SharedsPtrTy, llvm::Value *TaskFunction,
+ llvm::Value *TaskPrivatesMap) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
+ ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr,
+ KmpTaskTWithPrivatesPtrQTy.withRestrict());
+ Args.push_back(&GtidArg);
+ Args.push_back(&TaskTypeArg);
+ auto &TaskEntryFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
+ auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
+ auto *TaskEntry =
+ llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage,
+ ".omp_task_entry.", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo);
+ CodeGenFunction CGF(CGM);
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args);
+
+ // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
+ // tt,
+ // For taskloops:
+ // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
+ // tt->task_data.shareds);
+ auto *GtidParam = CGF.EmitLoadOfScalar(
+ CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
+ LValue TDBase = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&TaskTypeArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ auto *KmpTaskTWithPrivatesQTyRD =
+ cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
+ LValue Base =
+ CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
+ auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
+ auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
+ auto *PartidParam = PartIdLVal.getPointer();
+
+ auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
+ auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
+ auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(),
+ CGF.ConvertTypeForMem(SharedsPtrTy));
+
+ auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
+ llvm::Value *PrivatesParam;
+ if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
+ auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
+ PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ PrivatesLVal.getPointer(), CGF.VoidPtrTy);
+ } else
+ PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
+
+ llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
+ TaskPrivatesMap,
+ CGF.Builder
+ .CreatePointerBitCastOrAddrSpaceCast(
+ TDBase.getAddress(), CGF.VoidPtrTy)
+ .getPointer()};
+ SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
+ std::end(CommonArgs));
+ if (isOpenMPTaskLoopDirective(Kind)) {
+ auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
+ auto LBLVal = CGF.EmitLValueForField(Base, *LBFI);
+ auto *LBParam = CGF.EmitLoadOfLValue(LBLVal, Loc).getScalarVal();
+ auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
+ auto UBLVal = CGF.EmitLValueForField(Base, *UBFI);
+ auto *UBParam = CGF.EmitLoadOfLValue(UBLVal, Loc).getScalarVal();
+ auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
+ auto StLVal = CGF.EmitLValueForField(Base, *StFI);
+ auto *StParam = CGF.EmitLoadOfLValue(StLVal, Loc).getScalarVal();
+ auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
+ auto LILVal = CGF.EmitLValueForField(Base, *LIFI);
+ auto *LIParam = CGF.EmitLoadOfLValue(LILVal, Loc).getScalarVal();
+ CallArgs.push_back(LBParam);
+ CallArgs.push_back(UBParam);
+ CallArgs.push_back(StParam);
+ CallArgs.push_back(LIParam);
+ }
+ CallArgs.push_back(SharedsParam);
+
+ CGF.EmitCallOrInvoke(TaskFunction, CallArgs);
+ CGF.EmitStoreThroughLValue(
+ RValue::get(CGF.Builder.getInt32(/*C=*/0)),
+ CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
+ CGF.FinishFunction();
+ return TaskEntry;
+}
+
+static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
+ SourceLocation Loc,
+ QualType KmpInt32Ty,
+ QualType KmpTaskTWithPrivatesPtrQTy,
+ QualType KmpTaskTWithPrivatesQTy) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty);
+ ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr,
+ KmpTaskTWithPrivatesPtrQTy.withRestrict());
+ Args.push_back(&GtidArg);
+ Args.push_back(&TaskTypeArg);
+ FunctionType::ExtInfo Info;
+ auto &DestructorFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
+ auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo);
+ auto *DestructorFn =
+ llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
+ ".omp_task_destructor.", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn,
+ DestructorFnInfo);
+ CodeGenFunction CGF(CGM);
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
+ Args);
+
+ LValue Base = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&TaskTypeArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ auto *KmpTaskTWithPrivatesQTyRD =
+ cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ Base = CGF.EmitLValueForField(Base, *FI);
+ for (auto *Field :
+ cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
+ if (auto DtorKind = Field->getType().isDestructedType()) {
+ auto FieldLValue = CGF.EmitLValueForField(Base, Field);
+ CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
+ }
+ }
+ CGF.FinishFunction();
+ return DestructorFn;
+}
+
+/// \brief Emit a privates mapping function for correct handling of private and
+/// firstprivate variables.
+/// \code
+/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
+/// **noalias priv1,..., <tyn> **noalias privn) {
+/// *priv1 = &.privates.priv1;
+/// ...;
+/// *privn = &.privates.privn;
+/// }
+/// \endcode
+static llvm::Value *
+emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
+ ArrayRef<const Expr *> PrivateVars,
+ ArrayRef<const Expr *> FirstprivateVars,
+ ArrayRef<const Expr *> LastprivateVars,
+ QualType PrivatesQTy,
+ ArrayRef<PrivateDataTy> Privates) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl TaskPrivatesArg(
+ C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getPointerType(PrivatesQTy).withConst().withRestrict());
+ Args.push_back(&TaskPrivatesArg);
+ llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
+ unsigned Counter = 1;
+ for (auto *E: PrivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict()));
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ for (auto *E : FirstprivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict()));
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ for (auto *E: LastprivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict()));
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ auto &TaskPrivatesMapFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *TaskPrivatesMapTy =
+ CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
+ auto *TaskPrivatesMap = llvm::Function::Create(
+ TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage,
+ ".omp_task_privates_map.", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap,
+ TaskPrivatesMapFnInfo);
+ TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
+ TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
+ CodeGenFunction CGF(CGM);
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
+ TaskPrivatesMapFnInfo, Args);
+
+ // *privi = &.privates.privi;
+ LValue Base = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
+ TaskPrivatesArg.getType()->castAs<PointerType>());
+ auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
+ Counter = 0;
+ for (auto *Field : PrivatesQTyRD->fields()) {
+ auto FieldLVal = CGF.EmitLValueForField(Base, Field);
+ auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
+ auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
+ auto RefLoadLVal = CGF.EmitLoadOfPointerLValue(
+ RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
+ CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
+ ++Counter;
+ }
+ CGF.FinishFunction();
+ return TaskPrivatesMap;
+}
+
+static int array_pod_sort_comparator(const PrivateDataTy *P1,
+ const PrivateDataTy *P2) {
+ return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0);
+}
+
+/// Emit initialization for private variables in task-based directives.
+static void emitPrivatesInit(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ Address KmpTaskSharedsPtr, LValue TDBase,
+ const RecordDecl *KmpTaskTWithPrivatesQTyRD,
+ QualType SharedsTy, QualType SharedsPtrTy,
+ const OMPTaskDataTy &Data,
+ ArrayRef<PrivateDataTy> Privates, bool ForDup) {
+ auto &C = CGF.getContext();
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
+ LValue SrcBase;
+ if (!Data.FirstprivateVars.empty()) {
+ SrcBase = CGF.MakeAddrLValue(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
+ SharedsTy);
+ }
+ CodeGenFunction::CGCapturedStmtInfo CapturesInfo(
+ cast<CapturedStmt>(*D.getAssociatedStmt()));
+ FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
+ for (auto &&Pair : Privates) {
+ auto *VD = Pair.second.PrivateCopy;
+ auto *Init = VD->getAnyInitializer();
+ if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
+ !CGF.isTrivialInitializer(Init)))) {
+ LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
+ if (auto *Elem = Pair.second.PrivateElemInit) {
+ auto *OriginalVD = Pair.second.Original;
+ auto *SharedField = CapturesInfo.lookup(OriginalVD);
+ auto SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
+ SharedRefLValue = CGF.MakeAddrLValue(
+ Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
+ SharedRefLValue.getType(), AlignmentSource::Decl);
+ QualType Type = OriginalVD->getType();
+ if (Type->isArrayType()) {
+ // Initialize firstprivate array.
+ if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
+ // Perform simple memcpy.
+ CGF.EmitAggregateAssign(PrivateLValue.getAddress(),
+ SharedRefLValue.getAddress(), Type);
+ } else {
+ // Initialize firstprivate array using element-by-element
+ // initialization.
+ CGF.EmitOMPAggregateAssign(
+ PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
+ [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
+ Address SrcElement) {
+ // Clean up any temporaries needed by the initialization.
+ CodeGenFunction::OMPPrivateScope InitScope(CGF);
+ InitScope.addPrivate(
+ Elem, [SrcElement]() -> Address { return SrcElement; });
+ (void)InitScope.Privatize();
+ // Emit initialization for single element.
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
+ CGF, &CapturesInfo);
+ CGF.EmitAnyExprToMem(Init, DestElement,
+ Init->getType().getQualifiers(),
+ /*IsInitializer=*/false);
+ });
+ }
+ } else {
+ CodeGenFunction::OMPPrivateScope InitScope(CGF);
+ InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
+ return SharedRefLValue.getAddress();
+ });
+ (void)InitScope.Privatize();
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
+ CGF.EmitExprAsInit(Init, VD, PrivateLValue,
+ /*capturedByInit=*/false);
+ }
+ } else
+ CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
+ }
+ ++FI;
+ }
+}
+
+/// Check if duplication function is required for taskloops.
+static bool checkInitIsRequired(CodeGenFunction &CGF,
+ ArrayRef<PrivateDataTy> Privates) {
+ bool InitRequired = false;
+ for (auto &&Pair : Privates) {
+ auto *VD = Pair.second.PrivateCopy;
+ auto *Init = VD->getAnyInitializer();
+ InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
+ !CGF.isTrivialInitializer(Init));
+ }
+ return InitRequired;
+}
+
+
+/// Emit task_dup function (for initialization of
+/// private/firstprivate/lastprivate vars and last_iter flag)
+/// \code
+/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
+/// lastpriv) {
+/// // setup lastprivate flag
+/// task_dst->last = lastpriv;
+/// // could be constructor calls here...
+/// }
+/// \endcode
+static llvm::Value *
+emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
+ const OMPExecutableDirective &D,
+ QualType KmpTaskTWithPrivatesPtrQTy,
+ const RecordDecl *KmpTaskTWithPrivatesQTyRD,
+ const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
+ QualType SharedsPtrTy, const OMPTaskDataTy &Data,
+ ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
+ auto &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
+ ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, KmpTaskTWithPrivatesPtrQTy);
+ ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, C.IntTy);
+ Args.push_back(&DstArg);
+ Args.push_back(&SrcArg);
+ Args.push_back(&LastprivArg);
+ auto &TaskDupFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
+ auto *TaskDup =
+ llvm::Function::Create(TaskDupTy, llvm::GlobalValue::InternalLinkage,
+ ".omp_task_dup.", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskDup, TaskDupFnInfo);
+ CodeGenFunction CGF(CGM);
+ CGF.disableDebugInfo();
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args);
+
+ LValue TDBase = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&DstArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ // task_dst->liter = lastpriv;
+ if (WithLastIter) {
+ auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
+ LValue Base = CGF.EmitLValueForField(
+ TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
+ llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
+ CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
+ CGF.EmitStoreOfScalar(Lastpriv, LILVal);
+ }
+
+ // Emit initial values for private copies (if any).
+ assert(!Privates.empty());
+ Address KmpTaskSharedsPtr = Address::invalid();
+ if (!Data.FirstprivateVars.empty()) {
+ LValue TDBase = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&SrcArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ LValue Base = CGF.EmitLValueForField(
+ TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ KmpTaskSharedsPtr = Address(
+ CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
+ Base, *std::next(KmpTaskTQTyRD->field_begin(),
+ KmpTaskTShareds)),
+ Loc),
+ CGF.getNaturalTypeAlignment(SharedsTy));
+ }
+ emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
+ SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
+ CGF.FinishFunction();
+ return TaskDup;
+}
+
+/// Checks if destructor function is required to be generated.
+/// \return true if cleanups are required, false otherwise.
+static bool
+checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
+ bool NeedsCleanup = false;
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
+ for (auto *FD : PrivateRD->fields()) {
+ NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
+ if (NeedsCleanup)
+ break;
+ }
+ return NeedsCleanup;
+}
+
+CGOpenMPRuntime::TaskResultTy
+CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPExecutableDirective &D,
+ llvm::Value *TaskFunction, QualType SharedsTy,
+ Address Shareds, const OMPTaskDataTy &Data) {
+ auto &C = CGM.getContext();
+ llvm::SmallVector<PrivateDataTy, 4> Privates;
+ // Aggregate privates and sort them by the alignment.
+ auto I = Data.PrivateCopies.begin();
+ for (auto *E : Data.PrivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.push_back(std::make_pair(
+ C.getDeclAlign(VD),
+ PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ /*PrivateElemInit=*/nullptr)));
+ ++I;
+ }
+ I = Data.FirstprivateCopies.begin();
+ auto IElemInitRef = Data.FirstprivateInits.begin();
+ for (auto *E : Data.FirstprivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.push_back(std::make_pair(
+ C.getDeclAlign(VD),
+ PrivateHelpersTy(
+ VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))));
+ ++I;
+ ++IElemInitRef;
+ }
+ I = Data.LastprivateCopies.begin();
+ for (auto *E : Data.LastprivateVars) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.push_back(std::make_pair(
+ C.getDeclAlign(VD),
+ PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ /*PrivateElemInit=*/nullptr)));
+ ++I;
+ }
+ llvm::array_pod_sort(Privates.begin(), Privates.end(),
+ array_pod_sort_comparator);
+ auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ // Build type kmp_routine_entry_t (if not built yet).
+ emitKmpRoutineEntryT(KmpInt32Ty);
+ // Build type kmp_task_t (if not built yet).
+ if (KmpTaskTQTy.isNull()) {
+ KmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
+ CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
+ }
+ auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
+ // Build particular struct kmp_task_t for the given task.
+ auto *KmpTaskTWithPrivatesQTyRD =
+ createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
+ auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
+ QualType KmpTaskTWithPrivatesPtrQTy =
+ C.getPointerType(KmpTaskTWithPrivatesQTy);
+ auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
+ auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo();
+ auto *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
+ QualType SharedsPtrTy = C.getPointerType(SharedsTy);
+
+ // Emit initial values for private copies (if any).
+ llvm::Value *TaskPrivatesMap = nullptr;
+ auto *TaskPrivatesMapTy =
+ std::next(cast<llvm::Function>(TaskFunction)->arg_begin(), 3)->getType();
+ if (!Privates.empty()) {
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ TaskPrivatesMap = emitTaskPrivateMappingFunction(
+ CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
+ FI->getType(), Privates);
+ TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TaskPrivatesMap, TaskPrivatesMapTy);
+ } else {
+ TaskPrivatesMap = llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(TaskPrivatesMapTy));
+ }
+ // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
+ // kmp_task_t *tt);
+ auto *TaskEntry = emitProxyTaskFunction(
+ CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
+ KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
+ TaskPrivatesMap);
+
+ // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ // Task flags. Format is taken from
+ // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h,
+ // description of kmp_tasking_flags struct.
+ enum {
+ TiedFlag = 0x1,
+ FinalFlag = 0x2,
+ DestructorsFlag = 0x8,
+ PriorityFlag = 0x20
+ };
+ unsigned Flags = Data.Tied ? TiedFlag : 0;
+ bool NeedsCleanup = false;
+ if (!Privates.empty()) {
+ NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
+ if (NeedsCleanup)
+ Flags = Flags | DestructorsFlag;
+ }
+ if (Data.Priority.getInt())
+ Flags = Flags | PriorityFlag;
+ auto *TaskFlags =
+ Data.Final.getPointer()
+ ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
+ CGF.Builder.getInt32(FinalFlag),
+ CGF.Builder.getInt32(/*C=*/0))
+ : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
+ TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
+ auto *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
+ llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc),
+ getThreadID(CGF, Loc), TaskFlags,
+ KmpTaskTWithPrivatesTySize, SharedsSize,
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TaskEntry, KmpRoutineEntryPtrTy)};
+ auto *NewTask = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
+ auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ NewTask, KmpTaskTWithPrivatesPtrTy);
+ LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
+ KmpTaskTWithPrivatesQTy);
+ LValue TDBase =
+ CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ // Fill the data in the resulting kmp_task_t record.
+ // Copy shareds if there are any.
+ Address KmpTaskSharedsPtr = Address::invalid();
+ if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
+ KmpTaskSharedsPtr =
+ Address(CGF.EmitLoadOfScalar(
+ CGF.EmitLValueForField(
+ TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
+ KmpTaskTShareds)),
+ Loc),
+ CGF.getNaturalTypeAlignment(SharedsTy));
+ CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy);
+ }
+ // Emit initial values for private copies (if any).
+ TaskResultTy Result;
+ if (!Privates.empty()) {
+ emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
+ SharedsTy, SharedsPtrTy, Data, Privates,
+ /*ForDup=*/false);
+ if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
+ (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
+ Result.TaskDupFn = emitTaskDupFunction(
+ CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
+ KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
+ /*WithLastIter=*/!Data.LastprivateVars.empty());
+ }
+ }
+ // Fields of union "kmp_cmplrdata_t" for destructors and priority.
+ enum { Priority = 0, Destructors = 1 };
+ // Provide pointer to function with destructors for privates.
+ auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
+ auto *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl();
+ if (NeedsCleanup) {
+ llvm::Value *DestructorFn = emitDestructorsFunction(
+ CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
+ KmpTaskTWithPrivatesQTy);
+ LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
+ LValue DestructorsLV = CGF.EmitLValueForField(
+ Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
+ CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ DestructorFn, KmpRoutineEntryPtrTy),
+ DestructorsLV);
+ }
+ // Set priority.
+ if (Data.Priority.getInt()) {
+ LValue Data2LV = CGF.EmitLValueForField(
+ TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
+ LValue PriorityLV = CGF.EmitLValueForField(
+ Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
+ CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
+ }
+ Result.NewTask = NewTask;
+ Result.TaskEntry = TaskEntry;
+ Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
+ Result.TDBase = TDBase;
+ Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
+ return Result;
+}
+
+void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPExecutableDirective &D,
+ llvm::Value *TaskFunction,
+ QualType SharedsTy, Address Shareds,
+ const Expr *IfCond,
+ const OMPTaskDataTy &Data) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ TaskResultTy Result =
+ emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
+ llvm::Value *NewTask = Result.NewTask;
+ llvm::Value *TaskEntry = Result.TaskEntry;
+ llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
+ LValue TDBase = Result.TDBase;
+ RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
+ auto &C = CGM.getContext();
+ // Process list of dependences.
+ Address DependenciesArray = Address::invalid();
+ unsigned NumDependencies = Data.Dependences.size();
+ if (NumDependencies) {
+ // Dependence kind for RTL.
+ enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 };
+ enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
+ RecordDecl *KmpDependInfoRD;
+ QualType FlagsTy =
+ C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
+ llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
+ if (KmpDependInfoTy.isNull()) {
+ KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
+ KmpDependInfoRD->startDefinition();
+ addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
+ addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
+ addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
+ KmpDependInfoRD->completeDefinition();
+ KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
+ } else
+ KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
+ CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy);
+ // Define type kmp_depend_info[<Dependences.size()>];
+ QualType KmpDependInfoArrayTy = C.getConstantArrayType(
+ KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
+ ArrayType::Normal, /*IndexTypeQuals=*/0);
+ // kmp_depend_info[<Dependences.size()>] deps;
+ DependenciesArray =
+ CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
+ for (unsigned i = 0; i < NumDependencies; ++i) {
+ const Expr *E = Data.Dependences[i].second;
+ auto Addr = CGF.EmitLValue(E);
+ llvm::Value *Size;
+ QualType Ty = E->getType();
+ if (auto *ASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
+ LValue UpAddrLVal =
+ CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false);
+ llvm::Value *UpAddr =
+ CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
+ llvm::Value *LowIntPtr =
+ CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
+ llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
+ Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
+ } else
+ Size = CGF.getTypeSize(Ty);
+ auto Base = CGF.MakeAddrLValue(
+ CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize),
+ KmpDependInfoTy);
+ // deps[i].base_addr = &<Dependences[i].second>;
+ auto BaseAddrLVal = CGF.EmitLValueForField(
+ Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
+ CGF.EmitStoreOfScalar(
+ CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
+ BaseAddrLVal);
+ // deps[i].len = sizeof(<Dependences[i].second>);
+ auto LenLVal = CGF.EmitLValueForField(
+ Base, *std::next(KmpDependInfoRD->field_begin(), Len));
+ CGF.EmitStoreOfScalar(Size, LenLVal);
+ // deps[i].flags = <Dependences[i].first>;
+ RTLDependenceKindTy DepKind;
+ switch (Data.Dependences[i].first) {
+ case OMPC_DEPEND_in:
+ DepKind = DepIn;
+ break;
+ // Out and InOut dependencies must use the same code.
+ case OMPC_DEPEND_out:
+ case OMPC_DEPEND_inout:
+ DepKind = DepInOut;
+ break;
+ case OMPC_DEPEND_source:
+ case OMPC_DEPEND_sink:
+ case OMPC_DEPEND_unknown:
+ llvm_unreachable("Unknown task dependence type");
+ }
+ auto FlagsLVal = CGF.EmitLValueForField(
+ Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
+ CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
+ FlagsLVal);
+ }
+ DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()),
+ CGF.VoidPtrTy);
+ }
+
+ // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
+ // libcall.
+ // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
+ // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
+ // list is not empty
+ auto *ThreadID = getThreadID(CGF, Loc);
+ auto *UpLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
+ llvm::Value *DepTaskArgs[7];
+ if (NumDependencies) {
+ DepTaskArgs[0] = UpLoc;
+ DepTaskArgs[1] = ThreadID;
+ DepTaskArgs[2] = NewTask;
+ DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
+ DepTaskArgs[4] = DependenciesArray.getPointer();
+ DepTaskArgs[5] = CGF.Builder.getInt32(0);
+ DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
+ }
+ auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
+ &TaskArgs,
+ &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
+ if (!Data.Tied) {
+ auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
+ auto PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
+ CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
+ }
+ if (NumDependencies) {
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
+ } else {
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
+ TaskArgs);
+ }
+ // Check if parent region is untied and build return for untied task;
+ if (auto *Region =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ Region->emitUntiedSwitch(CGF);
+ };
+
+ llvm::Value *DepWaitTaskArgs[6];
+ if (NumDependencies) {
+ DepWaitTaskArgs[0] = UpLoc;
+ DepWaitTaskArgs[1] = ThreadID;
+ DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
+ DepWaitTaskArgs[3] = DependenciesArray.getPointer();
+ DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
+ DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
+ }
+ auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
+ NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ CodeGenFunction::RunCleanupsScope LocalScope(CGF);
+ // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
+ // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
+ // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
+ // is specified.
+ if (NumDependencies)
+ CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
+ DepWaitTaskArgs);
+ // Call proxy_task_entry(gtid, new_task);
+ auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy](
+ CodeGenFunction &CGF, PrePostActionTy &Action) {
+ Action.Enter(CGF);
+ llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
+ CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs);
+ };
+
+ // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task);
+ // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task);
+ RegionCodeGenTy RCG(CodeGen);
+ CommonActionTy Action(
+ RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
+ RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+ };
+
+ if (IfCond)
+ emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
+ else {
+ RegionCodeGenTy ThenRCG(ThenCodeGen);
+ ThenRCG(CGF);
+ }
+}
+
+void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPLoopDirective &D,
+ llvm::Value *TaskFunction,
+ QualType SharedsTy, Address Shareds,
+ const Expr *IfCond,
+ const OMPTaskDataTy &Data) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ TaskResultTy Result =
+ emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
+ // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc()
+ // libcall.
+ // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
+ // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
+ // sched, kmp_uint64 grainsize, void *task_dup);
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *IfVal;
+ if (IfCond) {
+ IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
+ /*isSigned=*/true);
+ } else
+ IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
+
+ LValue LBLVal = CGF.EmitLValueForField(
+ Result.TDBase,
+ *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
+ auto *LBVar =
+ cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
+ CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
+ /*IsInitializer=*/true);
+ LValue UBLVal = CGF.EmitLValueForField(
+ Result.TDBase,
+ *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
+ auto *UBVar =
+ cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
+ CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
+ /*IsInitializer=*/true);
+ LValue StLVal = CGF.EmitLValueForField(
+ Result.TDBase,
+ *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
+ auto *StVar =
+ cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
+ CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
+ /*IsInitializer=*/true);
+ enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
+ llvm::Value *TaskArgs[] = {
+ UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(),
+ UBLVal.getPointer(), CGF.EmitLoadOfScalar(StLVal, SourceLocation()),
+ llvm::ConstantInt::getSigned(CGF.IntTy, Data.Nogroup ? 1 : 0),
+ llvm::ConstantInt::getSigned(
+ CGF.IntTy, Data.Schedule.getPointer()
+ ? Data.Schedule.getInt() ? NumTasks : Grainsize
+ : NoSchedule),
+ Data.Schedule.getPointer()
+ ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
+ /*isSigned=*/false)
+ : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
+ Result.TaskDupFn
+ ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Result.TaskDupFn,
+ CGF.VoidPtrTy)
+ : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
+}
+
+/// \brief Emit reduction operation for each element of array (required for
+/// array sections) LHS op = RHS.
+/// \param Type Type of array.
+/// \param LHSVar Variable on the left side of the reduction operation
+/// (references element of array in original variable).
+/// \param RHSVar Variable on the right side of the reduction operation
+/// (references element of array in original variable).
+/// \param RedOpGen Generator of reduction operation with use of LHSVar and
+/// RHSVar.
+static void EmitOMPAggregateReduction(
+ CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
+ const VarDecl *RHSVar,
+ const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
+ const Expr *, const Expr *)> &RedOpGen,
+ const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
+ const Expr *UpExpr = nullptr) {
+ // Perform element-by-element initialization.
+ QualType ElementTy;
+ Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
+ Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
+
+ // Drill down to the base element type on both arrays.
+ auto ArrayTy = Type->getAsArrayTypeUnsafe();
+ auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
+
+ auto RHSBegin = RHSAddr.getPointer();
+ auto LHSBegin = LHSAddr.getPointer();
+ // Cast from pointer to array type to pointer to single element.
+ auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
+ // The basic structure here is a while-do loop.
+ auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
+ auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
+ auto IsEmpty =
+ CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
+ CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
+
+ // Enter the loop body, making that address the current address.
+ auto EntryBB = CGF.Builder.GetInsertBlock();
+ CGF.EmitBlock(BodyBB);
+
+ CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
+
+ llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
+ RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
+ RHSElementPHI->addIncoming(RHSBegin, EntryBB);
+ Address RHSElementCurrent =
+ Address(RHSElementPHI,
+ RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
+ LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
+ LHSElementPHI->addIncoming(LHSBegin, EntryBB);
+ Address LHSElementCurrent =
+ Address(LHSElementPHI,
+ LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ // Emit copy.
+ CodeGenFunction::OMPPrivateScope Scope(CGF);
+ Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; });
+ Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; });
+ Scope.Privatize();
+ RedOpGen(CGF, XExpr, EExpr, UpExpr);
+ Scope.ForceCleanup();
+
+ // Shift the address forward by one element.
+ auto LHSElementNext = CGF.Builder.CreateConstGEP1_32(
+ LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
+ auto RHSElementNext = CGF.Builder.CreateConstGEP1_32(
+ RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
+ // Check whether we've reached the end.
+ auto Done =
+ CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
+ CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
+ LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
+ RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
+
+ // Done.
+ CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
+}
+
+/// Emit reduction combiner. If the combiner is a simple expression emit it as
+/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
+/// UDR combiner function.
+static void emitReductionCombiner(CodeGenFunction &CGF,
+ const Expr *ReductionOp) {
+ if (auto *CE = dyn_cast<CallExpr>(ReductionOp))
+ if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
+ if (auto *DRE =
+ dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
+ if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
+ std::pair<llvm::Function *, llvm::Function *> Reduction =
+ CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
+ RValue Func = RValue::get(Reduction.first);
+ CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
+ CGF.EmitIgnoredExpr(ReductionOp);
+ return;
+ }
+ CGF.EmitIgnoredExpr(ReductionOp);
+}
+
+llvm::Value *CGOpenMPRuntime::emitReductionFunction(
+ CodeGenModule &CGM, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps) {
+ auto &C = CGM.getContext();
+
+ // void reduction_func(void *LHSArg, void *RHSArg);
+ FunctionArgList Args;
+ ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, SourceLocation(), /*Id=*/nullptr,
+ C.VoidPtrTy);
+ Args.push_back(&LHSArg);
+ Args.push_back(&RHSArg);
+ auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ ".omp.reduction.reduction_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI);
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args);
+
+ // Dst = (void*[n])(LHSArg);
+ // Src = (void*[n])(RHSArg);
+ Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
+ ArgsType), CGF.getPointerAlign());
+ Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
+ ArgsType), CGF.getPointerAlign());
+
+ // ...
+ // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
+ // ...
+ CodeGenFunction::OMPPrivateScope Scope(CGF);
+ auto IPriv = Privates.begin();
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
+ auto RHSVar = cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
+ Scope.addPrivate(RHSVar, [&]() -> Address {
+ return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
+ });
+ auto LHSVar = cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
+ Scope.addPrivate(LHSVar, [&]() -> Address {
+ return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
+ });
+ QualType PrivTy = (*IPriv)->getType();
+ if (PrivTy->isVariablyModifiedType()) {
+ // Get array size and emit VLA type.
+ ++Idx;
+ Address Elem =
+ CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize());
+ llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
+ auto *VLA = CGF.getContext().getAsVariableArrayType(PrivTy);
+ auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
+ CodeGenFunction::OpaqueValueMapping OpaqueMap(
+ CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
+ CGF.EmitVariablyModifiedType(PrivTy);
+ }
+ }
+ Scope.Privatize();
+ IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (auto *E : ReductionOps) {
+ if ((*IPriv)->getType()->isArrayType()) {
+ // Emit reduction for array section.
+ auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ EmitOMPAggregateReduction(
+ CGF, (*IPriv)->getType(), LHSVar, RHSVar,
+ [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
+ emitReductionCombiner(CGF, E);
+ });
+ } else
+ // Emit reduction for array subscript or single variable.
+ emitReductionCombiner(CGF, E);
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ Scope.ForceCleanup();
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
+ const Expr *ReductionOp,
+ const Expr *PrivateRef,
+ const DeclRefExpr *LHS,
+ const DeclRefExpr *RHS) {
+ if (PrivateRef->getType()->isArrayType()) {
+ // Emit reduction for array section.
+ auto *LHSVar = cast<VarDecl>(LHS->getDecl());
+ auto *RHSVar = cast<VarDecl>(RHS->getDecl());
+ EmitOMPAggregateReduction(
+ CGF, PrivateRef->getType(), LHSVar, RHSVar,
+ [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
+ emitReductionCombiner(CGF, ReductionOp);
+ });
+ } else
+ // Emit reduction for array subscript or single variable.
+ emitReductionCombiner(CGF, ReductionOp);
+}
+
+void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
+ ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs,
+ ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps,
+ ReductionOptionsTy Options) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ bool WithNowait = Options.WithNowait;
+ bool SimpleReduction = Options.SimpleReduction;
+
+ // Next code should be emitted for reduction:
+ //
+ // static kmp_critical_name lock = { 0 };
+ //
+ // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
+ // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
+ // ...
+ // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
+ // *(Type<n>-1*)rhs[<n>-1]);
+ // }
+ //
+ // ...
+ // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
+ // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
+ // RedList, reduce_func, &<lock>)) {
+ // case 1:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+ // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ // break;
+ // case 2:
+ // ...
+ // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
+ // ...
+ // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
+ // break;
+ // default:;
+ // }
+ //
+ // if SimpleReduction is true, only the next code is generated:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+
+ auto &C = CGM.getContext();
+
+ if (SimpleReduction) {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ auto IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (auto *E : ReductionOps) {
+ emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+ cast<DeclRefExpr>(*IRHS));
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ return;
+ }
+
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ auto Size = RHSExprs.size();
+ for (auto *E : Privates) {
+ if (E->getType()->isVariablyModifiedType())
+ // Reserve place for array size.
+ ++Size;
+ }
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
+ QualType ReductionArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ Address ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ auto IPriv = Privates.begin();
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
+ Address Elem =
+ CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize());
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
+ Elem);
+ if ((*IPriv)->getType()->isVariablyModifiedType()) {
+ // Store array size.
+ ++Idx;
+ Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
+ CGF.getPointerSize());
+ llvm::Value *Size = CGF.Builder.CreateIntCast(
+ CGF.getVLASize(
+ CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+ .first,
+ CGF.SizeTy, /*isSigned=*/false);
+ CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+ Elem);
+ }
+ }
+
+ // 2. Emit reduce_func().
+ auto *ReductionFn = emitReductionFunction(
+ CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
+ LHSExprs, RHSExprs, ReductionOps);
+
+ // 3. Create static kmp_critical_name lock = { 0 };
+ auto *Lock = getCriticalRegionLock(".reduction");
+
+ // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
+ // RedList, reduce_func, &<lock>);
+ auto *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
+ auto *ThreadId = getThreadID(CGF, Loc);
+ auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
+ auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ ReductionList.getPointer(), CGF.VoidPtrTy);
+ llvm::Value *Args[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
+ ReductionArrayTySize, // size_type sizeof(RedList)
+ RL, // void *RedList
+ ReductionFn, // void (*) (void *, void *) <reduce_func>
+ Lock // kmp_critical_name *&<lock>
+ };
+ auto Res = CGF.EmitRuntimeCall(
+ createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
+ : OMPRTL__kmpc_reduce),
+ Args);
+
+ // 5. Build switch(res)
+ auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
+ auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
+
+ // 6. Build case 1:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+ // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ // break;
+ auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
+ SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
+ CGF.EmitBlock(Case1BB);
+
+ // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ llvm::Value *EndArgs[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ Lock // kmp_critical_name *&<lock>
+ };
+ auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps](
+ CodeGenFunction &CGF, PrePostActionTy &Action) {
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ auto IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (auto *E : ReductionOps) {
+ RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+ cast<DeclRefExpr>(*IRHS));
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ };
+ RegionCodeGenTy RCG(CodeGen);
+ CommonActionTy Action(
+ nullptr, llvm::None,
+ createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
+ : OMPRTL__kmpc_end_reduce),
+ EndArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+
+ CGF.EmitBranch(DefaultBB);
+
+ // 7. Build case 2:
+ // ...
+ // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
+ // ...
+ // break;
+ auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
+ SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
+ CGF.EmitBlock(Case2BB);
+
+ auto &&AtomicCodeGen = [Loc, &Privates, &LHSExprs, &RHSExprs, &ReductionOps](
+ CodeGenFunction &CGF, PrePostActionTy &Action) {
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ auto IPriv = Privates.begin();
+ for (auto *E : ReductionOps) {
+ const Expr *XExpr = nullptr;
+ const Expr *EExpr = nullptr;
+ const Expr *UpExpr = nullptr;
+ BinaryOperatorKind BO = BO_Comma;
+ if (auto *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Assign) {
+ XExpr = BO->getLHS();
+ UpExpr = BO->getRHS();
+ }
+ }
+ // Try to emit update expression as a simple atomic.
+ auto *RHSExpr = UpExpr;
+ if (RHSExpr) {
+ // Analyze RHS part of the whole expression.
+ if (auto *ACO = dyn_cast<AbstractConditionalOperator>(
+ RHSExpr->IgnoreParenImpCasts())) {
+ // If this is a conditional operator, analyze its condition for
+ // min/max reduction operator.
+ RHSExpr = ACO->getCond();
+ }
+ if (auto *BORHS =
+ dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
+ EExpr = BORHS->getRHS();
+ BO = BORHS->getOpcode();
+ }
+ }
+ if (XExpr) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ auto &&AtomicRedGen = [BO, VD,
+ Loc](CodeGenFunction &CGF, const Expr *XExpr,
+ const Expr *EExpr, const Expr *UpExpr) {
+ LValue X = CGF.EmitLValue(XExpr);
+ RValue E;
+ if (EExpr)
+ E = CGF.EmitAnyExpr(EExpr);
+ CGF.EmitOMPAtomicSimpleUpdateExpr(
+ X, E, BO, /*IsXLHSInRHSPart=*/true,
+ llvm::AtomicOrdering::Monotonic, Loc,
+ [&CGF, UpExpr, VD, Loc](RValue XRValue) {
+ CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
+ PrivateScope.addPrivate(
+ VD, [&CGF, VD, XRValue, Loc]() -> Address {
+ Address LHSTemp = CGF.CreateMemTemp(VD->getType());
+ CGF.emitOMPSimpleStore(
+ CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
+ VD->getType().getNonReferenceType(), Loc);
+ return LHSTemp;
+ });
+ (void)PrivateScope.Privatize();
+ return CGF.EmitAnyExpr(UpExpr);
+ });
+ };
+ if ((*IPriv)->getType()->isArrayType()) {
+ // Emit atomic reduction for array section.
+ auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
+ AtomicRedGen, XExpr, EExpr, UpExpr);
+ } else
+ // Emit atomic reduction for array subscript or single variable.
+ AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
+ } else {
+ // Emit as a critical region.
+ auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
+ const Expr *, const Expr *) {
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ RT.emitCriticalRegion(
+ CGF, ".atomic_reduction",
+ [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
+ Action.Enter(CGF);
+ emitReductionCombiner(CGF, E);
+ },
+ Loc);
+ };
+ if ((*IPriv)->getType()->isArrayType()) {
+ auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
+ CritRedGen);
+ } else
+ CritRedGen(CGF, nullptr, nullptr, nullptr);
+ }
+ ++ILHS;
+ ++IRHS;
+ ++IPriv;
+ }
+ };
+ RegionCodeGenTy AtomicRCG(AtomicCodeGen);
+ if (!WithNowait) {
+ // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
+ llvm::Value *EndArgs[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ Lock // kmp_critical_name *&<lock>
+ };
+ CommonActionTy Action(nullptr, llvm::None,
+ createRuntimeFunction(OMPRTL__kmpc_end_reduce),
+ EndArgs);
+ AtomicRCG.setAction(Action);
+ AtomicRCG(CGF);
+ } else
+ AtomicRCG(CGF);
+
+ CGF.EmitBranch(DefaultBB);
+ CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
+}
+
+void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ // Ignore return result until untied tasks are supported.
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
+ if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ Region->emitUntiedSwitch(CGF);
+}
+
+void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
+ OpenMPDirectiveKind InnerKind,
+ const RegionCodeGenTy &CodeGen,
+ bool HasCancel) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
+ CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
+}
+
+namespace {
+enum RTCancelKind {
+ CancelNoreq = 0,
+ CancelParallel = 1,
+ CancelLoop = 2,
+ CancelSections = 3,
+ CancelTaskgroup = 4
+};
+} // anonymous namespace
+
+static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
+ RTCancelKind CancelKind = CancelNoreq;
+ if (CancelRegion == OMPD_parallel)
+ CancelKind = CancelParallel;
+ else if (CancelRegion == OMPD_for)
+ CancelKind = CancelLoop;
+ else if (CancelRegion == OMPD_sections)
+ CancelKind = CancelSections;
+ else {
+ assert(CancelRegion == OMPD_taskgroup);
+ CancelKind = CancelTaskgroup;
+ }
+ return CancelKind;
+}
+
+void CGOpenMPRuntime::emitCancellationPointCall(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDirectiveKind CancelRegion) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 cncl_kind);
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ // For 'cancellation point taskgroup', the task region info may not have a
+ // cancel. This may instead happen in another adjacent task.
+ if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
+ // Ignore return result until untied tasks are supported.
+ auto *Result = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
+ // if (__kmpc_cancellationpoint()) {
+ // exit from construct;
+ // }
+ auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
+ auto *ContBB = CGF.createBasicBlock(".cancel.continue");
+ auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
+ CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB);
+ // exit from construct;
+ auto CancelDest =
+ CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
+ CGF.EmitBranchThroughCleanup(CancelDest);
+ CGF.EmitBlock(ContBB, /*IsFinished=*/true);
+ }
+ }
+}
+
+void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const Expr *IfCond,
+ OpenMPDirectiveKind CancelRegion) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 cncl_kind);
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ llvm::Value *Args[] = {
+ RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
+ // Ignore return result until untied tasks are supported.
+ auto *Result = CGF.EmitRuntimeCall(
+ RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
+ // if (__kmpc_cancel()) {
+ // exit from construct;
+ // }
+ auto *ExitBB = CGF.createBasicBlock(".cancel.exit");
+ auto *ContBB = CGF.createBasicBlock(".cancel.continue");
+ auto *Cmp = CGF.Builder.CreateIsNotNull(Result);
+ CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB);
+ // exit from construct;
+ auto CancelDest =
+ CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
+ CGF.EmitBranchThroughCleanup(CancelDest);
+ CGF.EmitBlock(ContBB, /*IsFinished=*/true);
+ };
+ if (IfCond)
+ emitOMPIfClause(CGF, IfCond, ThenGen,
+ [](CodeGenFunction &, PrePostActionTy &) {});
+ else {
+ RegionCodeGenTy ThenRCG(ThenGen);
+ ThenRCG(CGF);
+ }
+ }
+}
+
+/// \brief Obtain information that uniquely identifies a target entry. This
+/// consists of the file and device IDs as well as line number associated with
+/// the relevant entry source location.
+static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
+ unsigned &DeviceID, unsigned &FileID,
+ unsigned &LineNum) {
+
+ auto &SM = C.getSourceManager();
+
+ // The loc should be always valid and have a file ID (the user cannot use
+ // #pragma directives in macros)
+
+ assert(Loc.isValid() && "Source location is expected to be always valid.");
+ assert(Loc.isFileID() && "Source location is expected to refer to a file.");
+
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc);
+ assert(PLoc.isValid() && "Source location is expected to be always valid.");
+
+ llvm::sys::fs::UniqueID ID;
+ if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
+ llvm_unreachable("Source file with target region no longer exists!");
+
+ DeviceID = ID.getDevice();
+ FileID = ID.getFile();
+ LineNum = PLoc.getLine();
+}
+
+void CGOpenMPRuntime::emitTargetOutlinedFunction(
+ const OMPExecutableDirective &D, StringRef ParentName,
+ llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+ assert(!ParentName.empty() && "Invalid target region parent name!");
+
+ emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+ IsOffloadEntry, CodeGen);
+}
+
+void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
+ const OMPExecutableDirective &D, StringRef ParentName,
+ llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+ // Create a unique name for the entry function using the source location
+ // information of the current target region. The name will be something like:
+ //
+ // __omp_offloading_DD_FFFF_PP_lBB
+ //
+ // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
+ // mangled name of the function that encloses the target region and BB is the
+ // line number of the target region.
+
+ unsigned DeviceID;
+ unsigned FileID;
+ unsigned Line;
+ getTargetEntryUniqueInfo(CGM.getContext(), D.getLocStart(), DeviceID, FileID,
+ Line);
+ SmallString<64> EntryFnName;
+ {
+ llvm::raw_svector_ostream OS(EntryFnName);
+ OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
+ << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
+ }
+
+ const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
+
+ CodeGenFunction CGF(CGM, true);
+ CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+
+ OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
+
+ // If this target outline function is not an offload entry, we don't need to
+ // register it.
+ if (!IsOffloadEntry)
+ return;
+
+ // The target region ID is used by the runtime library to identify the current
+ // target region, so it only has to be unique and not necessarily point to
+ // anything. It could be the pointer to the outlined function that implements
+ // the target region, but we aren't using that so that the compiler doesn't
+ // need to keep that, and could therefore inline the host function if proven
+ // worthwhile during optimization. In the other hand, if emitting code for the
+ // device, the ID has to be the function address so that it can retrieved from
+ // the offloading entry and launched by the runtime library. We also mark the
+ // outlined function to have external linkage in case we are emitting code for
+ // the device, because these functions will be entry points to the device.
+
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
+ OutlinedFn->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ } else
+ OutlinedFnID = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage,
+ llvm::Constant::getNullValue(CGM.Int8Ty), ".omp_offload.region_id");
+
+ // Register the information for the entry associated with this target region.
+ OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
+ DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
+ /*Flags=*/0);
+}
+
+/// discard all CompoundStmts intervening between two constructs
+static const Stmt *ignoreCompoundStmts(const Stmt *Body) {
+ while (auto *CS = dyn_cast_or_null<CompoundStmt>(Body))
+ Body = CS->body_front();
+
+ return Body;
+}
+
+/// Emit the number of teams for a target directive. Inspect the num_teams
+/// clause associated with a teams construct combined or closely nested
+/// with the target directive.
+///
+/// Emit a team of size one for directives such as 'target parallel' that
+/// have no associated teams construct.
+///
+/// Otherwise, return nullptr.
+static llvm::Value *
+emitNumTeamsForTargetDirective(CGOpenMPRuntime &OMPRuntime,
+ CodeGenFunction &CGF,
+ const OMPExecutableDirective &D) {
+
+ assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
+ "teams directive expected to be "
+ "emitted only for the host!");
+
+ auto &Bld = CGF.Builder;
+
+ // If the target directive is combined with a teams directive:
+ // Return the value in the num_teams clause, if any.
+ // Otherwise, return 0 to denote the runtime default.
+ if (isOpenMPTeamsDirective(D.getDirectiveKind())) {
+ if (const auto *NumTeamsClause = D.getSingleClause<OMPNumTeamsClause>()) {
+ CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
+ auto NumTeams = CGF.EmitScalarExpr(NumTeamsClause->getNumTeams(),
+ /*IgnoreResultAssign*/ true);
+ return Bld.CreateIntCast(NumTeams, CGF.Int32Ty,
+ /*IsSigned=*/true);
+ }
+
+ // The default value is 0.
+ return Bld.getInt32(0);
+ }
+
+ // If the target directive is combined with a parallel directive but not a
+ // teams directive, start one team.
+ if (isOpenMPParallelDirective(D.getDirectiveKind()))
+ return Bld.getInt32(1);
+
+ // If the current target region has a teams region enclosed, we need to get
+ // the number of teams to pass to the runtime function call. This is done
+ // by generating the expression in a inlined region. This is required because
+ // the expression is captured in the enclosing target environment when the
+ // teams directive is not combined with target.
+
+ const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
+
+ // FIXME: Accommodate other combined directives with teams when they become
+ // available.
+ if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
+ ignoreCompoundStmts(CS.getCapturedStmt()))) {
+ if (auto *NTE = TeamsDir->getSingleClause<OMPNumTeamsClause>()) {
+ CGOpenMPInnerExprInfo CGInfo(CGF, CS);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams());
+ return Bld.CreateIntCast(NumTeams, CGF.Int32Ty,
+ /*IsSigned=*/true);
+ }
+
+ // If we have an enclosed teams directive but no num_teams clause we use
+ // the default value 0.
+ return Bld.getInt32(0);
+ }
+
+ // No teams associated with the directive.
+ return nullptr;
+}
+
+/// Emit the number of threads for a target directive. Inspect the
+/// thread_limit clause associated with a teams construct combined or closely
+/// nested with the target directive.
+///
+/// Emit the num_threads clause for directives such as 'target parallel' that
+/// have no associated teams construct.
+///
+/// Otherwise, return nullptr.
+static llvm::Value *
+emitNumThreadsForTargetDirective(CGOpenMPRuntime &OMPRuntime,
+ CodeGenFunction &CGF,
+ const OMPExecutableDirective &D) {
+
+ assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the "
+ "teams directive expected to be "
+ "emitted only for the host!");
+
+ auto &Bld = CGF.Builder;
+
+ //
+ // If the target directive is combined with a teams directive:
+ // Return the value in the thread_limit clause, if any.
+ //
+ // If the target directive is combined with a parallel directive:
+ // Return the value in the num_threads clause, if any.
+ //
+ // If both clauses are set, select the minimum of the two.
+ //
+ // If neither teams or parallel combined directives set the number of threads
+ // in a team, return 0 to denote the runtime default.
+ //
+ // If this is not a teams directive return nullptr.
+
+ if (isOpenMPTeamsDirective(D.getDirectiveKind()) ||
+ isOpenMPParallelDirective(D.getDirectiveKind())) {
+ llvm::Value *DefaultThreadLimitVal = Bld.getInt32(0);
+ llvm::Value *NumThreadsVal = nullptr;
+ llvm::Value *ThreadLimitVal = nullptr;
+
+ if (const auto *ThreadLimitClause =
+ D.getSingleClause<OMPThreadLimitClause>()) {
+ CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
+ auto ThreadLimit = CGF.EmitScalarExpr(ThreadLimitClause->getThreadLimit(),
+ /*IgnoreResultAssign*/ true);
+ ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty,
+ /*IsSigned=*/true);
+ }
+
+ if (const auto *NumThreadsClause =
+ D.getSingleClause<OMPNumThreadsClause>()) {
+ CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
+ llvm::Value *NumThreads =
+ CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
+ /*IgnoreResultAssign*/ true);
+ NumThreadsVal =
+ Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*IsSigned=*/true);
+ }
+
+ // Select the lesser of thread_limit and num_threads.
+ if (NumThreadsVal)
+ ThreadLimitVal = ThreadLimitVal
+ ? Bld.CreateSelect(Bld.CreateICmpSLT(NumThreadsVal,
+ ThreadLimitVal),
+ NumThreadsVal, ThreadLimitVal)
+ : NumThreadsVal;
+
+ // Set default value passed to the runtime if either teams or a target
+ // parallel type directive is found but no clause is specified.
+ if (!ThreadLimitVal)
+ ThreadLimitVal = DefaultThreadLimitVal;
+
+ return ThreadLimitVal;
+ }
+
+ // If the current target region has a teams region enclosed, we need to get
+ // the thread limit to pass to the runtime function call. This is done
+ // by generating the expression in a inlined region. This is required because
+ // the expression is captured in the enclosing target environment when the
+ // teams directive is not combined with target.
+
+ const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
+
+ // FIXME: Accommodate other combined directives with teams when they become
+ // available.
+ if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>(
+ ignoreCompoundStmts(CS.getCapturedStmt()))) {
+ if (auto *TLE = TeamsDir->getSingleClause<OMPThreadLimitClause>()) {
+ CGOpenMPInnerExprInfo CGInfo(CGF, CS);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit());
+ return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty,
+ /*IsSigned=*/true);
+ }
+
+ // If we have an enclosed teams directive but no thread_limit clause we use
+ // the default value 0.
+ return CGF.Builder.getInt32(0);
+ }
+
+ // No teams associated with the directive.
+ return nullptr;
+}
+
+namespace {
+// \brief Utility to handle information from clauses associated with a given
+// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
+// It provides a convenient interface to obtain the information and generate
+// code for that information.
+class MappableExprsHandler {
+public:
+ /// \brief Values for bit flags used to specify the mapping type for
+ /// offloading.
+ enum OpenMPOffloadMappingFlags {
+ /// \brief Allocate memory on the device and move data from host to device.
+ OMP_MAP_TO = 0x01,
+ /// \brief Allocate memory on the device and move data from device to host.
+ OMP_MAP_FROM = 0x02,
+ /// \brief Always perform the requested mapping action on the element, even
+ /// if it was already mapped before.
+ OMP_MAP_ALWAYS = 0x04,
+ /// \brief Delete the element from the device environment, ignoring the
+ /// current reference count associated with the element.
+ OMP_MAP_DELETE = 0x08,
+ /// \brief The element being mapped is a pointer, therefore the pointee
+ /// should be mapped as well.
+ OMP_MAP_IS_PTR = 0x10,
+ /// \brief This flags signals that an argument is the first one relating to
+ /// a map/private clause expression. For some cases a single
+ /// map/privatization results in multiple arguments passed to the runtime
+ /// library.
+ OMP_MAP_FIRST_REF = 0x20,
+ /// \brief Signal that the runtime library has to return the device pointer
+ /// in the current position for the data being mapped.
+ OMP_MAP_RETURN_PTR = 0x40,
+ /// \brief This flag signals that the reference being passed is a pointer to
+ /// private data.
+ OMP_MAP_PRIVATE_PTR = 0x80,
+ /// \brief Pass the element to the device by value.
+ OMP_MAP_PRIVATE_VAL = 0x100,
+ };
+
+ /// Class that associates information with a base pointer to be passed to the
+ /// runtime library.
+ class BasePointerInfo {
+ /// The base pointer.
+ llvm::Value *Ptr = nullptr;
+ /// The base declaration that refers to this device pointer, or null if
+ /// there is none.
+ const ValueDecl *DevPtrDecl = nullptr;
+
+ public:
+ BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
+ : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
+ llvm::Value *operator*() const { return Ptr; }
+ const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
+ void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
+ };
+
+ typedef SmallVector<BasePointerInfo, 16> MapBaseValuesArrayTy;
+ typedef SmallVector<llvm::Value *, 16> MapValuesArrayTy;
+ typedef SmallVector<unsigned, 16> MapFlagsArrayTy;
+
+private:
+ /// \brief Directive from where the map clauses were extracted.
+ const OMPExecutableDirective &CurDir;
+
+ /// \brief Function the directive is being generated for.
+ CodeGenFunction &CGF;
+
+ /// \brief Set of all first private variables in the current directive.
+ llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls;
+
+ /// Map between device pointer declarations and their expression components.
+ /// The key value for declarations in 'this' is null.
+ llvm::DenseMap<
+ const ValueDecl *,
+ SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
+ DevPointersMap;
+
+ llvm::Value *getExprTypeSize(const Expr *E) const {
+ auto ExprTy = E->getType().getCanonicalType();
+
+ // Reference types are ignored for mapping purposes.
+ if (auto *RefTy = ExprTy->getAs<ReferenceType>())
+ ExprTy = RefTy->getPointeeType().getCanonicalType();
+
+ // Given that an array section is considered a built-in type, we need to
+ // do the calculation based on the length of the section instead of relying
+ // on CGF.getTypeSize(E->getType()).
+ if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
+ QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
+ OAE->getBase()->IgnoreParenImpCasts())
+ .getCanonicalType();
+
+ // If there is no length associated with the expression, that means we
+ // are using the whole length of the base.
+ if (!OAE->getLength() && OAE->getColonLoc().isValid())
+ return CGF.getTypeSize(BaseTy);
+
+ llvm::Value *ElemSize;
+ if (auto *PTy = BaseTy->getAs<PointerType>())
+ ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
+ else {
+ auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
+ assert(ATy && "Expecting array type if not a pointer type.");
+ ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
+ }
+
+ // If we don't have a length at this point, that is because we have an
+ // array section with a single element.
+ if (!OAE->getLength())
+ return ElemSize;
+
+ auto *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
+ LengthVal =
+ CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
+ return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
+ }
+ return CGF.getTypeSize(ExprTy);
+ }
+
+ /// \brief Return the corresponding bits for a given map clause modifier. Add
+ /// a flag marking the map as a pointer if requested. Add a flag marking the
+ /// map as the first one of a series of maps that relate to the same map
+ /// expression.
+ unsigned getMapTypeBits(OpenMPMapClauseKind MapType,
+ OpenMPMapClauseKind MapTypeModifier, bool AddPtrFlag,
+ bool AddIsFirstFlag) const {
+ unsigned Bits = 0u;
+ switch (MapType) {
+ case OMPC_MAP_alloc:
+ case OMPC_MAP_release:
+ // alloc and release is the default behavior in the runtime library, i.e.
+ // if we don't pass any bits alloc/release that is what the runtime is
+ // going to do. Therefore, we don't need to signal anything for these two
+ // type modifiers.
+ break;
+ case OMPC_MAP_to:
+ Bits = OMP_MAP_TO;
+ break;
+ case OMPC_MAP_from:
+ Bits = OMP_MAP_FROM;
+ break;
+ case OMPC_MAP_tofrom:
+ Bits = OMP_MAP_TO | OMP_MAP_FROM;
+ break;
+ case OMPC_MAP_delete:
+ Bits = OMP_MAP_DELETE;
+ break;
+ default:
+ llvm_unreachable("Unexpected map type!");
+ break;
+ }
+ if (AddPtrFlag)
+ Bits |= OMP_MAP_IS_PTR;
+ if (AddIsFirstFlag)
+ Bits |= OMP_MAP_FIRST_REF;
+ if (MapTypeModifier == OMPC_MAP_always)
+ Bits |= OMP_MAP_ALWAYS;
+ return Bits;
+ }
+
+ /// \brief Return true if the provided expression is a final array section. A
+ /// final array section, is one whose length can't be proved to be one.
+ bool isFinalArraySectionExpression(const Expr *E) const {
+ auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
+
+ // It is not an array section and therefore not a unity-size one.
+ if (!OASE)
+ return false;
+
+ // An array section with no colon always refer to a single element.
+ if (OASE->getColonLoc().isInvalid())
+ return false;
+
+ auto *Length = OASE->getLength();
+
+ // If we don't have a length we have to check if the array has size 1
+ // for this dimension. Also, we should always expect a length if the
+ // base type is pointer.
+ if (!Length) {
+ auto BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
+ OASE->getBase()->IgnoreParenImpCasts())
+ .getCanonicalType();
+ if (auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
+ return ATy->getSize().getSExtValue() != 1;
+ // If we don't have a constant dimension length, we have to consider
+ // the current section as having any size, so it is not necessarily
+ // unitary. If it happen to be unity size, that's user fault.
+ return true;
+ }
+
+ // Check if the length evaluates to 1.
+ llvm::APSInt ConstLength;
+ if (!Length->EvaluateAsInt(ConstLength, CGF.getContext()))
+ return true; // Can have more that size 1.
+
+ return ConstLength.getSExtValue() != 1;
+ }
+
+ /// \brief Generate the base pointers, section pointers, sizes and map type
+ /// bits for the provided map type, map modifier, and expression components.
+ /// \a IsFirstComponent should be set to true if the provided set of
+ /// components is the first associated with a capture.
+ void generateInfoForComponentList(
+ OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier,
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
+ MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
+ MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
+ bool IsFirstComponentList) const {
+
+ // The following summarizes what has to be generated for each map and the
+ // types bellow. The generated information is expressed in this order:
+ // base pointer, section pointer, size, flags
+ // (to add to the ones that come from the map type and modifier).
+ //
+ // double d;
+ // int i[100];
+ // float *p;
+ //
+ // struct S1 {
+ // int i;
+ // float f[50];
+ // }
+ // struct S2 {
+ // int i;
+ // float f[50];
+ // S1 s;
+ // double *p;
+ // struct S2 *ps;
+ // }
+ // S2 s;
+ // S2 *ps;
+ //
+ // map(d)
+ // &d, &d, sizeof(double), noflags
+ //
+ // map(i)
+ // &i, &i, 100*sizeof(int), noflags
+ //
+ // map(i[1:23])
+ // &i(=&i[0]), &i[1], 23*sizeof(int), noflags
+ //
+ // map(p)
+ // &p, &p, sizeof(float*), noflags
+ //
+ // map(p[1:24])
+ // p, &p[1], 24*sizeof(float), noflags
+ //
+ // map(s)
+ // &s, &s, sizeof(S2), noflags
+ //
+ // map(s.i)
+ // &s, &(s.i), sizeof(int), noflags
+ //
+ // map(s.s.f)
+ // &s, &(s.i.f), 50*sizeof(int), noflags
+ //
+ // map(s.p)
+ // &s, &(s.p), sizeof(double*), noflags
+ //
+ // map(s.p[:22], s.a s.b)
+ // &s, &(s.p), sizeof(double*), noflags
+ // &(s.p), &(s.p[0]), 22*sizeof(double), ptr_flag + extra_flag
+ //
+ // map(s.ps)
+ // &s, &(s.ps), sizeof(S2*), noflags
+ //
+ // map(s.ps->s.i)
+ // &s, &(s.ps), sizeof(S2*), noflags
+ // &(s.ps), &(s.ps->s.i), sizeof(int), ptr_flag + extra_flag
+ //
+ // map(s.ps->ps)
+ // &s, &(s.ps), sizeof(S2*), noflags
+ // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ //
+ // map(s.ps->ps->ps)
+ // &s, &(s.ps), sizeof(S2*), noflags
+ // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ //
+ // map(s.ps->ps->s.f[:22])
+ // &s, &(s.ps), sizeof(S2*), noflags
+ // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + extra_flag
+ //
+ // map(ps)
+ // &ps, &ps, sizeof(S2*), noflags
+ //
+ // map(ps->i)
+ // ps, &(ps->i), sizeof(int), noflags
+ //
+ // map(ps->s.f)
+ // ps, &(ps->s.f[0]), 50*sizeof(float), noflags
+ //
+ // map(ps->p)
+ // ps, &(ps->p), sizeof(double*), noflags
+ //
+ // map(ps->p[:22])
+ // ps, &(ps->p), sizeof(double*), noflags
+ // &(ps->p), &(ps->p[0]), 22*sizeof(double), ptr_flag + extra_flag
+ //
+ // map(ps->ps)
+ // ps, &(ps->ps), sizeof(S2*), noflags
+ //
+ // map(ps->ps->s.i)
+ // ps, &(ps->ps), sizeof(S2*), noflags
+ // &(ps->ps), &(ps->ps->s.i), sizeof(int), ptr_flag + extra_flag
+ //
+ // map(ps->ps->ps)
+ // ps, &(ps->ps), sizeof(S2*), noflags
+ // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ //
+ // map(ps->ps->ps->ps)
+ // ps, &(ps->ps), sizeof(S2*), noflags
+ // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ //
+ // map(ps->ps->ps->s.f[:22])
+ // ps, &(ps->ps), sizeof(S2*), noflags
+ // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag
+ // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), ptr_flag +
+ // extra_flag
+
+ // Track if the map information being generated is the first for a capture.
+ bool IsCaptureFirstInfo = IsFirstComponentList;
+
+ // Scan the components from the base to the complete expression.
+ auto CI = Components.rbegin();
+ auto CE = Components.rend();
+ auto I = CI;
+
+ // Track if the map information being generated is the first for a list of
+ // components.
+ bool IsExpressionFirstInfo = true;
+ llvm::Value *BP = nullptr;
+
+ if (auto *ME = dyn_cast<MemberExpr>(I->getAssociatedExpression())) {
+ // The base is the 'this' pointer. The content of the pointer is going
+ // to be the base of the field being mapped.
+ BP = CGF.EmitScalarExpr(ME->getBase());
+ } else {
+ // The base is the reference to the variable.
+ // BP = &Var.
+ BP = CGF.EmitLValue(cast<DeclRefExpr>(I->getAssociatedExpression()))
+ .getPointer();
+
+ // If the variable is a pointer and is being dereferenced (i.e. is not
+ // the last component), the base has to be the pointer itself, not its
+ // reference. References are ignored for mapping purposes.
+ QualType Ty =
+ I->getAssociatedDeclaration()->getType().getNonReferenceType();
+ if (Ty->isAnyPointerType() && std::next(I) != CE) {
+ auto PtrAddr = CGF.MakeNaturalAlignAddrLValue(BP, Ty);
+ BP = CGF.EmitLoadOfPointerLValue(PtrAddr.getAddress(),
+ Ty->castAs<PointerType>())
+ .getPointer();
+
+ // We do not need to generate individual map information for the
+ // pointer, it can be associated with the combined storage.
+ ++I;
+ }
+ }
+
+ for (; I != CE; ++I) {
+ auto Next = std::next(I);
+
+ // We need to generate the addresses and sizes if this is the last
+ // component, if the component is a pointer or if it is an array section
+ // whose length can't be proved to be one. If this is a pointer, it
+ // becomes the base address for the following components.
+
+ // A final array section, is one whose length can't be proved to be one.
+ bool IsFinalArraySection =
+ isFinalArraySectionExpression(I->getAssociatedExpression());
+
+ // Get information on whether the element is a pointer. Have to do a
+ // special treatment for array sections given that they are built-in
+ // types.
+ const auto *OASE =
+ dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
+ bool IsPointer =
+ (OASE &&
+ OMPArraySectionExpr::getBaseOriginalType(OASE)
+ .getCanonicalType()
+ ->isAnyPointerType()) ||
+ I->getAssociatedExpression()->getType()->isAnyPointerType();
+
+ if (Next == CE || IsPointer || IsFinalArraySection) {
+
+ // If this is not the last component, we expect the pointer to be
+ // associated with an array expression or member expression.
+ assert((Next == CE ||
+ isa<MemberExpr>(Next->getAssociatedExpression()) ||
+ isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
+ isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
+ "Unexpected expression");
+
+ auto *LB = CGF.EmitLValue(I->getAssociatedExpression()).getPointer();
+ auto *Size = getExprTypeSize(I->getAssociatedExpression());
+
+ // If we have a member expression and the current component is a
+ // reference, we have to map the reference too. Whenever we have a
+ // reference, the section that reference refers to is going to be a
+ // load instruction from the storage assigned to the reference.
+ if (isa<MemberExpr>(I->getAssociatedExpression()) &&
+ I->getAssociatedDeclaration()->getType()->isReferenceType()) {
+ auto *LI = cast<llvm::LoadInst>(LB);
+ auto *RefAddr = LI->getPointerOperand();
+
+ BasePointers.push_back(BP);
+ Pointers.push_back(RefAddr);
+ Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
+ Types.push_back(getMapTypeBits(
+ /*MapType*/ OMPC_MAP_alloc, /*MapTypeModifier=*/OMPC_MAP_unknown,
+ !IsExpressionFirstInfo, IsCaptureFirstInfo));
+ IsExpressionFirstInfo = false;
+ IsCaptureFirstInfo = false;
+ // The reference will be the next base address.
+ BP = RefAddr;
+ }
+
+ BasePointers.push_back(BP);
+ Pointers.push_back(LB);
+ Sizes.push_back(Size);
+
+ // We need to add a pointer flag for each map that comes from the
+ // same expression except for the first one. We also need to signal
+ // this map is the first one that relates with the current capture
+ // (there is a set of entries for each capture).
+ Types.push_back(getMapTypeBits(MapType, MapTypeModifier,
+ !IsExpressionFirstInfo,
+ IsCaptureFirstInfo));
+
+ // If we have a final array section, we are done with this expression.
+ if (IsFinalArraySection)
+ break;
+
+ // The pointer becomes the base for the next element.
+ if (Next != CE)
+ BP = LB;
+
+ IsExpressionFirstInfo = false;
+ IsCaptureFirstInfo = false;
+ continue;
+ }
+ }
+ }
+
+ /// \brief Return the adjusted map modifiers if the declaration a capture
+ /// refers to appears in a first-private clause. This is expected to be used
+ /// only with directives that start with 'target'.
+ unsigned adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap,
+ unsigned CurrentModifiers) {
+ assert(Cap.capturesVariable() && "Expected capture by reference only!");
+
+ // A first private variable captured by reference will use only the
+ // 'private ptr' and 'map to' flag. Return the right flags if the captured
+ // declaration is known as first-private in this handler.
+ if (FirstPrivateDecls.count(Cap.getCapturedVar()))
+ return MappableExprsHandler::OMP_MAP_PRIVATE_PTR |
+ MappableExprsHandler::OMP_MAP_TO;
+
+ // We didn't modify anything.
+ return CurrentModifiers;
+ }
+
+public:
+ MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
+ : CurDir(Dir), CGF(CGF) {
+ // Extract firstprivate clause information.
+ for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
+ for (const auto *D : C->varlists())
+ FirstPrivateDecls.insert(
+ cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl());
+ // Extract device pointer clause information.
+ for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
+ for (auto L : C->component_lists())
+ DevPointersMap[L.first].push_back(L.second);
+ }
+
+ /// \brief Generate all the base pointers, section pointers, sizes and map
+ /// types for the extracted mappable expressions. Also, for each item that
+ /// relates with a device pointer, a pair of the relevant declaration and
+ /// index where it occurs is appended to the device pointers info array.
+ void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
+ MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
+ MapFlagsArrayTy &Types) const {
+ BasePointers.clear();
+ Pointers.clear();
+ Sizes.clear();
+ Types.clear();
+
+ struct MapInfo {
+ /// Kind that defines how a device pointer has to be returned.
+ enum ReturnPointerKind {
+ // Don't have to return any pointer.
+ RPK_None,
+ // Pointer is the base of the declaration.
+ RPK_Base,
+ // Pointer is a member of the base declaration - 'this'
+ RPK_Member,
+ // Pointer is a reference and a member of the base declaration - 'this'
+ RPK_MemberReference,
+ };
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
+ OpenMPMapClauseKind MapType;
+ OpenMPMapClauseKind MapTypeModifier;
+ ReturnPointerKind ReturnDevicePointer;
+
+ MapInfo()
+ : MapType(OMPC_MAP_unknown), MapTypeModifier(OMPC_MAP_unknown),
+ ReturnDevicePointer(RPK_None) {}
+ MapInfo(
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
+ OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier,
+ ReturnPointerKind ReturnDevicePointer)
+ : Components(Components), MapType(MapType),
+ MapTypeModifier(MapTypeModifier),
+ ReturnDevicePointer(ReturnDevicePointer) {}
+ };
+
+ // We have to process the component lists that relate with the same
+ // declaration in a single chunk so that we can generate the map flags
+ // correctly. Therefore, we organize all lists in a map.
+ llvm::DenseMap<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
+
+ // Helper function to fill the information map for the different supported
+ // clauses.
+ auto &&InfoGen = [&Info](
+ const ValueDecl *D,
+ OMPClauseMappableExprCommon::MappableExprComponentListRef L,
+ OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapModifier,
+ MapInfo::ReturnPointerKind ReturnDevicePointer) {
+ const ValueDecl *VD =
+ D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
+ Info[VD].push_back({L, MapType, MapModifier, ReturnDevicePointer});
+ };
+
+ // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
+ for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
+ for (auto L : C->component_lists())
+ InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifier(),
+ MapInfo::RPK_None);
+ for (auto *C : this->CurDir.getClausesOfKind<OMPToClause>())
+ for (auto L : C->component_lists())
+ InfoGen(L.first, L.second, OMPC_MAP_to, OMPC_MAP_unknown,
+ MapInfo::RPK_None);
+ for (auto *C : this->CurDir.getClausesOfKind<OMPFromClause>())
+ for (auto L : C->component_lists())
+ InfoGen(L.first, L.second, OMPC_MAP_from, OMPC_MAP_unknown,
+ MapInfo::RPK_None);
+
+ // Look at the use_device_ptr clause information and mark the existing map
+ // entries as such. If there is no map information for an entry in the
+ // use_device_ptr list, we create one with map type 'alloc' and zero size
+ // section. It is the user fault if that was not mapped before.
+ // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
+ for (auto *C : this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>())
+ for (auto L : C->component_lists()) {
+ assert(!L.second.empty() && "Not expecting empty list of components!");
+ const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
+ VD = cast<ValueDecl>(VD->getCanonicalDecl());
+ auto *IE = L.second.back().getAssociatedExpression();
+ // If the first component is a member expression, we have to look into
+ // 'this', which maps to null in the map of map information. Otherwise
+ // look directly for the information.
+ auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
+
+ // We potentially have map information for this declaration already.
+ // Look for the first set of components that refer to it.
+ if (It != Info.end()) {
+ auto CI = std::find_if(
+ It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
+ return MI.Components.back().getAssociatedDeclaration() == VD;
+ });
+ // If we found a map entry, signal that the pointer has to be returned
+ // and move on to the next declaration.
+ if (CI != It->second.end()) {
+ CI->ReturnDevicePointer = isa<MemberExpr>(IE)
+ ? (VD->getType()->isReferenceType()
+ ? MapInfo::RPK_MemberReference
+ : MapInfo::RPK_Member)
+ : MapInfo::RPK_Base;
+ continue;
+ }
+ }
+
+ // We didn't find any match in our map information - generate a zero
+ // size array section.
+ // FIXME: MSVC 2013 seems to require this-> to find member CGF.
+ llvm::Value *Ptr =
+ this->CGF
+ .EmitLoadOfLValue(this->CGF.EmitLValue(IE), SourceLocation())
+ .getScalarVal();
+ BasePointers.push_back({Ptr, VD});
+ Pointers.push_back(Ptr);
+ Sizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy));
+ Types.push_back(OMP_MAP_RETURN_PTR | OMP_MAP_FIRST_REF);
+ }
+
+ for (auto &M : Info) {
+ // We need to know when we generate information for the first component
+ // associated with a capture, because the mapping flags depend on it.
+ bool IsFirstComponentList = true;
+ for (MapInfo &L : M.second) {
+ assert(!L.Components.empty() &&
+ "Not expecting declaration with no component lists.");
+
+ // Remember the current base pointer index.
+ unsigned CurrentBasePointersIdx = BasePointers.size();
+ // FIXME: MSVC 2013 seems to require this-> to find the member method.
+ this->generateInfoForComponentList(L.MapType, L.MapTypeModifier,
+ L.Components, BasePointers, Pointers,
+ Sizes, Types, IsFirstComponentList);
+
+ // If this entry relates with a device pointer, set the relevant
+ // declaration and add the 'return pointer' flag.
+ if (IsFirstComponentList &&
+ L.ReturnDevicePointer != MapInfo::RPK_None) {
+ // If the pointer is not the base of the map, we need to skip the
+ // base. If it is a reference in a member field, we also need to skip
+ // the map of the reference.
+ if (L.ReturnDevicePointer != MapInfo::RPK_Base) {
+ ++CurrentBasePointersIdx;
+ if (L.ReturnDevicePointer == MapInfo::RPK_MemberReference)
+ ++CurrentBasePointersIdx;
+ }
+ assert(BasePointers.size() > CurrentBasePointersIdx &&
+ "Unexpected number of mapped base pointers.");
+
+ auto *RelevantVD = L.Components.back().getAssociatedDeclaration();
+ assert(RelevantVD &&
+ "No relevant declaration related with device pointer??");
+
+ BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
+ Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PTR;
+ }
+ IsFirstComponentList = false;
+ }
+ }
+ }
+
+ /// \brief Generate the base pointers, section pointers, sizes and map types
+ /// associated to a given capture.
+ void generateInfoForCapture(const CapturedStmt::Capture *Cap,
+ llvm::Value *Arg,
+ MapBaseValuesArrayTy &BasePointers,
+ MapValuesArrayTy &Pointers,
+ MapValuesArrayTy &Sizes,
+ MapFlagsArrayTy &Types) const {
+ assert(!Cap->capturesVariableArrayType() &&
+ "Not expecting to generate map info for a variable array type!");
+
+ BasePointers.clear();
+ Pointers.clear();
+ Sizes.clear();
+ Types.clear();
+
+ // We need to know when we generating information for the first component
+ // associated with a capture, because the mapping flags depend on it.
+ bool IsFirstComponentList = true;
+
+ const ValueDecl *VD =
+ Cap->capturesThis()
+ ? nullptr
+ : cast<ValueDecl>(Cap->getCapturedVar()->getCanonicalDecl());
+
+ // If this declaration appears in a is_device_ptr clause we just have to
+ // pass the pointer by value. If it is a reference to a declaration, we just
+ // pass its value, otherwise, if it is a member expression, we need to map
+ // 'to' the field.
+ if (!VD) {
+ auto It = DevPointersMap.find(VD);
+ if (It != DevPointersMap.end()) {
+ for (auto L : It->second) {
+ generateInfoForComponentList(
+ /*MapType=*/OMPC_MAP_to, /*MapTypeModifier=*/OMPC_MAP_unknown, L,
+ BasePointers, Pointers, Sizes, Types, IsFirstComponentList);
+ IsFirstComponentList = false;
+ }
+ return;
+ }
+ } else if (DevPointersMap.count(VD)) {
+ BasePointers.push_back({Arg, VD});
+ Pointers.push_back(Arg);
+ Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy));
+ Types.push_back(OMP_MAP_PRIVATE_VAL | OMP_MAP_FIRST_REF);
+ return;
+ }
+
+ // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
+ for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
+ for (auto L : C->decl_component_lists(VD)) {
+ assert(L.first == VD &&
+ "We got information for the wrong declaration??");
+ assert(!L.second.empty() &&
+ "Not expecting declaration with no component lists.");
+ generateInfoForComponentList(C->getMapType(), C->getMapTypeModifier(),
+ L.second, BasePointers, Pointers, Sizes,
+ Types, IsFirstComponentList);
+ IsFirstComponentList = false;
+ }
+
+ return;
+ }
+
+ /// \brief Generate the default map information for a given capture \a CI,
+ /// record field declaration \a RI and captured value \a CV.
+ void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
+ const FieldDecl &RI, llvm::Value *CV,
+ MapBaseValuesArrayTy &CurBasePointers,
+ MapValuesArrayTy &CurPointers,
+ MapValuesArrayTy &CurSizes,
+ MapFlagsArrayTy &CurMapTypes) {
+
+ // Do the default mapping.
+ if (CI.capturesThis()) {
+ CurBasePointers.push_back(CV);
+ CurPointers.push_back(CV);
+ const PointerType *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
+ CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType()));
+ // Default map type.
+ CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
+ } else if (CI.capturesVariableByCopy()) {
+ CurBasePointers.push_back(CV);
+ CurPointers.push_back(CV);
+ if (!RI.getType()->isAnyPointerType()) {
+ // We have to signal to the runtime captures passed by value that are
+ // not pointers.
+ CurMapTypes.push_back(OMP_MAP_PRIVATE_VAL);
+ CurSizes.push_back(CGF.getTypeSize(RI.getType()));
+ } else {
+ // Pointers are implicitly mapped with a zero size and no flags
+ // (other than first map that is added for all implicit maps).
+ CurMapTypes.push_back(0u);
+ CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy));
+ }
+ } else {
+ assert(CI.capturesVariable() && "Expected captured reference.");
+ CurBasePointers.push_back(CV);
+ CurPointers.push_back(CV);
+
+ const ReferenceType *PtrTy =
+ cast<ReferenceType>(RI.getType().getTypePtr());
+ QualType ElementType = PtrTy->getPointeeType();
+ CurSizes.push_back(CGF.getTypeSize(ElementType));
+ // The default map type for a scalar/complex type is 'to' because by
+ // default the value doesn't have to be retrieved. For an aggregate
+ // type, the default is 'tofrom'.
+ CurMapTypes.push_back(ElementType->isAggregateType()
+ ? (OMP_MAP_TO | OMP_MAP_FROM)
+ : OMP_MAP_TO);
+
+ // If we have a capture by reference we may need to add the private
+ // pointer flag if the base declaration shows in some first-private
+ // clause.
+ CurMapTypes.back() =
+ adjustMapModifiersForPrivateClauses(CI, CurMapTypes.back());
+ }
+ // Every default map produces a single argument, so, it is always the
+ // first one.
+ CurMapTypes.back() |= OMP_MAP_FIRST_REF;
+ }
+};
+
+enum OpenMPOffloadingReservedDeviceIDs {
+ /// \brief Device ID if the device was not defined, runtime should get it
+ /// from environment variables in the spec.
+ OMP_DEVICEID_UNDEF = -1,
+};
+} // anonymous namespace
+
+/// \brief Emit the arrays used to pass the captures and map information to the
+/// offloading runtime library. If there is no map or capture information,
+/// return nullptr by reference.
+static void
+emitOffloadingArrays(CodeGenFunction &CGF,
+ MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
+ MappableExprsHandler::MapValuesArrayTy &Pointers,
+ MappableExprsHandler::MapValuesArrayTy &Sizes,
+ MappableExprsHandler::MapFlagsArrayTy &MapTypes,
+ CGOpenMPRuntime::TargetDataInfo &Info) {
+ auto &CGM = CGF.CGM;
+ auto &Ctx = CGF.getContext();
+
+ // Reset the array information.
+ Info.clearArrayInfo();
+ Info.NumberOfPtrs = BasePointers.size();
+
+ if (Info.NumberOfPtrs) {
+ // Detect if we have any capture size requiring runtime evaluation of the
+ // size so that a constant array could be eventually used.
+ bool hasRuntimeEvaluationCaptureSize = false;
+ for (auto *S : Sizes)
+ if (!isa<llvm::Constant>(S)) {
+ hasRuntimeEvaluationCaptureSize = true;
+ break;
+ }
+
+ llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
+ QualType PointerArrayType =
+ Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+
+ Info.BasePointersArray =
+ CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
+ Info.PointersArray =
+ CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
+
+ // If we don't have any VLA types or other types that require runtime
+ // evaluation, we can use a constant array for the map sizes, otherwise we
+ // need to fill up the arrays as we do for the pointers.
+ if (hasRuntimeEvaluationCaptureSize) {
+ QualType SizeArrayType = Ctx.getConstantArrayType(
+ Ctx.getSizeType(), PointerNumAP, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ Info.SizesArray =
+ CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
+ } else {
+ // We expect all the sizes to be constant, so we collect them to create
+ // a constant array.
+ SmallVector<llvm::Constant *, 16> ConstSizes;
+ for (auto S : Sizes)
+ ConstSizes.push_back(cast<llvm::Constant>(S));
+
+ auto *SizesArrayInit = llvm::ConstantArray::get(
+ llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes);
+ auto *SizesArrayGbl = new llvm::GlobalVariable(
+ CGM.getModule(), SizesArrayInit->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
+ SizesArrayInit, ".offload_sizes");
+ SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ Info.SizesArray = SizesArrayGbl;
+ }
+
+ // The map types are always constant so we don't need to generate code to
+ // fill arrays. Instead, we create an array constant.
+ llvm::Constant *MapTypesArrayInit =
+ llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes);
+ auto *MapTypesArrayGbl = new llvm::GlobalVariable(
+ CGM.getModule(), MapTypesArrayInit->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
+ MapTypesArrayInit, ".offload_maptypes");
+ MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ Info.MapTypesArray = MapTypesArrayGbl;
+
+ for (unsigned i = 0; i < Info.NumberOfPtrs; ++i) {
+ llvm::Value *BPVal = *BasePointers[i];
+ if (BPVal->getType()->isPointerTy())
+ BPVal = CGF.Builder.CreateBitCast(BPVal, CGM.VoidPtrTy);
+ else {
+ assert(BPVal->getType()->isIntegerTy() &&
+ "If not a pointer, the value type must be an integer.");
+ BPVal = CGF.Builder.CreateIntToPtr(BPVal, CGM.VoidPtrTy);
+ }
+ llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.BasePointersArray, 0, i);
+ Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
+ CGF.Builder.CreateStore(BPVal, BPAddr);
+
+ if (Info.requiresDevicePointerInfo())
+ if (auto *DevVD = BasePointers[i].getDevicePtrDecl())
+ Info.CaptureDeviceAddrMap.insert(std::make_pair(DevVD, BPAddr));
+
+ llvm::Value *PVal = Pointers[i];
+ if (PVal->getType()->isPointerTy())
+ PVal = CGF.Builder.CreateBitCast(PVal, CGM.VoidPtrTy);
+ else {
+ assert(PVal->getType()->isIntegerTy() &&
+ "If not a pointer, the value type must be an integer.");
+ PVal = CGF.Builder.CreateIntToPtr(PVal, CGM.VoidPtrTy);
+ }
+ llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.PointersArray, 0, i);
+ Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
+ CGF.Builder.CreateStore(PVal, PAddr);
+
+ if (hasRuntimeEvaluationCaptureSize) {
+ llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs),
+ Info.SizesArray,
+ /*Idx0=*/0,
+ /*Idx1=*/i);
+ Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType()));
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreateIntCast(Sizes[i], CGM.SizeTy, /*isSigned=*/true),
+ SAddr);
+ }
+ }
+ }
+}
+/// \brief Emit the arguments to be passed to the runtime library based on the
+/// arrays of pointers, sizes and map types.
+static void emitOffloadingArraysArgument(
+ CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
+ llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
+ llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
+ auto &CGM = CGF.CGM;
+ if (Info.NumberOfPtrs) {
+ BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.BasePointersArray,
+ /*Idx0=*/0, /*Idx1=*/0);
+ PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.PointersArray,
+ /*Idx0=*/0,
+ /*Idx1=*/0);
+ SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), Info.SizesArray,
+ /*Idx0=*/0, /*Idx1=*/0);
+ MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.Int32Ty, Info.NumberOfPtrs),
+ Info.MapTypesArray,
+ /*Idx0=*/0,
+ /*Idx1=*/0);
+ } else {
+ BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
+ PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
+ SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo());
+ MapTypesArrayArg =
+ llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo());
+ }
+}
+
+void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ llvm::Value *OutlinedFn,
+ llvm::Value *OutlinedFnID,
+ const Expr *IfCond, const Expr *Device,
+ ArrayRef<llvm::Value *> CapturedVars) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ assert(OutlinedFn && "Invalid outlined function!");
+
+ auto &Ctx = CGF.getContext();
+
+ // Fill up the arrays with all the captured variables.
+ MappableExprsHandler::MapValuesArrayTy KernelArgs;
+ MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
+ MappableExprsHandler::MapValuesArrayTy Pointers;
+ MappableExprsHandler::MapValuesArrayTy Sizes;
+ MappableExprsHandler::MapFlagsArrayTy MapTypes;
+
+ MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
+ MappableExprsHandler::MapValuesArrayTy CurPointers;
+ MappableExprsHandler::MapValuesArrayTy CurSizes;
+ MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
+
+ // Get mappable expression information.
+ MappableExprsHandler MEHandler(D, CGF);
+
+ const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt());
+ auto RI = CS.getCapturedRecordDecl()->field_begin();
+ auto CV = CapturedVars.begin();
+ for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
+ CE = CS.capture_end();
+ CI != CE; ++CI, ++RI, ++CV) {
+ StringRef Name;
+ QualType Ty;
+
+ CurBasePointers.clear();
+ CurPointers.clear();
+ CurSizes.clear();
+ CurMapTypes.clear();
+
+ // VLA sizes are passed to the outlined region by copy and do not have map
+ // information associated.
+ if (CI->capturesVariableArrayType()) {
+ CurBasePointers.push_back(*CV);
+ CurPointers.push_back(*CV);
+ CurSizes.push_back(CGF.getTypeSize(RI->getType()));
+ // Copy to the device as an argument. No need to retrieve it.
+ CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL |
+ MappableExprsHandler::OMP_MAP_FIRST_REF);
+ } else {
+ // If we have any information in the map clause, we use it, otherwise we
+ // just do a default mapping.
+ MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
+ CurSizes, CurMapTypes);
+ if (CurBasePointers.empty())
+ MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
+ CurPointers, CurSizes, CurMapTypes);
+ }
+ // We expect to have at least an element of information for this capture.
+ assert(!CurBasePointers.empty() && "Non-existing map pointer for capture!");
+ assert(CurBasePointers.size() == CurPointers.size() &&
+ CurBasePointers.size() == CurSizes.size() &&
+ CurBasePointers.size() == CurMapTypes.size() &&
+ "Inconsistent map information sizes!");
+
+ // The kernel args are always the first elements of the base pointers
+ // associated with a capture.
+ KernelArgs.push_back(*CurBasePointers.front());
+ // We need to append the results of this capture to what we already have.
+ BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
+ Pointers.append(CurPointers.begin(), CurPointers.end());
+ Sizes.append(CurSizes.begin(), CurSizes.end());
+ MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
+ }
+
+ // Keep track on whether the host function has to be executed.
+ auto OffloadErrorQType =
+ Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true);
+ auto OffloadError = CGF.MakeAddrLValue(
+ CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"),
+ OffloadErrorQType);
+ CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty),
+ OffloadError);
+
+ // Fill up the pointer arrays and transfer execution to the device.
+ auto &&ThenGen = [&BasePointers, &Pointers, &Sizes, &MapTypes, Device,
+ OutlinedFnID, OffloadError,
+ &D](CodeGenFunction &CGF, PrePostActionTy &) {
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ // Emit the offloading arrays.
+ TargetDataInfo Info;
+ emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
+ emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
+ Info.PointersArray, Info.SizesArray,
+ Info.MapTypesArray, Info);
+
+ // On top of the arrays that were filled up, the target offloading call
+ // takes as arguments the device id as well as the host pointer. The host
+ // pointer is used by the runtime library to identify the current target
+ // region, so it only has to be unique and not necessarily point to
+ // anything. It could be the pointer to the outlined function that
+ // implements the target region, but we aren't using that so that the
+ // compiler doesn't need to keep that, and could therefore inline the host
+ // function if proven worthwhile during optimization.
+
+ // From this point on, we need to have an ID of the target region defined.
+ assert(OutlinedFnID && "Invalid outlined function ID!");
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID;
+ if (Device)
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int32Ty, /*isSigned=*/true);
+ else
+ DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
+
+ // Emit the number of elements in the offloading arrays.
+ llvm::Value *PointerNum = CGF.Builder.getInt32(BasePointers.size());
+
+ // Return value of the runtime offloading call.
+ llvm::Value *Return;
+
+ auto *NumTeams = emitNumTeamsForTargetDirective(RT, CGF, D);
+ auto *NumThreads = emitNumThreadsForTargetDirective(RT, CGF, D);
+
+ // The target region is an outlined function launched by the runtime
+ // via calls __tgt_target() or __tgt_target_teams().
+ //
+ // __tgt_target() launches a target region with one team and one thread,
+ // executing a serial region. This master thread may in turn launch
+ // more threads within its team upon encountering a parallel region,
+ // however, no additional teams can be launched on the device.
+ //
+ // __tgt_target_teams() launches a target region with one or more teams,
+ // each with one or more threads. This call is required for target
+ // constructs such as:
+ // 'target teams'
+ // 'target' / 'teams'
+ // 'target teams distribute parallel for'
+ // 'target parallel'
+ // and so on.
+ //
+ // Note that on the host and CPU targets, the runtime implementation of
+ // these calls simply call the outlined function without forking threads.
+ // The outlined functions themselves have runtime calls to
+ // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
+ // the compiler in emitTeamsCall() and emitParallelCall().
+ //
+ // In contrast, on the NVPTX target, the implementation of
+ // __tgt_target_teams() launches a GPU kernel with the requested number
+ // of teams and threads so no additional calls to the runtime are required.
+ if (NumTeams) {
+ // If we have NumTeams defined this means that we have an enclosed teams
+ // region. Therefore we also expect to have NumThreads defined. These two
+ // values should be defined in the presence of a teams directive,
+ // regardless of having any clauses associated. If the user is using teams
+ // but no clauses, these two values will be the default that should be
+ // passed to the runtime library - a 32-bit integer with the value zero.
+ assert(NumThreads && "Thread limit expression should be available along "
+ "with number of teams.");
+ llvm::Value *OffloadingArgs[] = {
+ DeviceID, OutlinedFnID,
+ PointerNum, Info.BasePointersArray,
+ Info.PointersArray, Info.SizesArray,
+ Info.MapTypesArray, NumTeams,
+ NumThreads};
+ Return = CGF.EmitRuntimeCall(
+ RT.createRuntimeFunction(OMPRTL__tgt_target_teams), OffloadingArgs);
+ } else {
+ llvm::Value *OffloadingArgs[] = {
+ DeviceID, OutlinedFnID,
+ PointerNum, Info.BasePointersArray,
+ Info.PointersArray, Info.SizesArray,
+ Info.MapTypesArray};
+ Return = CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target),
+ OffloadingArgs);
+ }
+
+ CGF.EmitStoreOfScalar(Return, OffloadError);
+ };
+
+ // Notify that the host version must be executed.
+ auto &&ElseGen = [OffloadError](CodeGenFunction &CGF, PrePostActionTy &) {
+ CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/-1u),
+ OffloadError);
+ };
+
+ // If we have a target function ID it means that we need to support
+ // offloading, otherwise, just execute on the host. We need to execute on host
+ // regardless of the conditional in the if clause if, e.g., the user do not
+ // specify target triples.
+ if (OutlinedFnID) {
+ if (IfCond)
+ emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
+ else {
+ RegionCodeGenTy ThenRCG(ThenGen);
+ ThenRCG(CGF);
+ }
+ } else {
+ RegionCodeGenTy ElseRCG(ElseGen);
+ ElseRCG(CGF);
+ }
+
+ // Check the error code and execute the host version if required.
+ auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed");
+ auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont");
+ auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation());
+ auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal);
+ CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
+
+ CGF.EmitBlock(OffloadFailedBlock);
+ CGF.Builder.CreateCall(OutlinedFn, KernelArgs);
+ CGF.EmitBranch(OffloadContBlock);
+
+ CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
+}
+
+void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
+ StringRef ParentName) {
+ if (!S)
+ return;
+
+ // Codegen OMP target directives that offload compute to the device.
+ bool requiresDeviceCodegen =
+ isa<OMPExecutableDirective>(S) &&
+ isOpenMPTargetExecutionDirective(
+ cast<OMPExecutableDirective>(S)->getDirectiveKind());
+
+ if (requiresDeviceCodegen) {
+ auto &E = *cast<OMPExecutableDirective>(S);
+ unsigned DeviceID;
+ unsigned FileID;
+ unsigned Line;
+ getTargetEntryUniqueInfo(CGM.getContext(), E.getLocStart(), DeviceID,
+ FileID, Line);
+
+ // Is this a target region that should not be emitted as an entry point? If
+ // so just signal we are done with this target region.
+ if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
+ ParentName, Line))
+ return;
+
+ switch (S->getStmtClass()) {
+ case Stmt::OMPTargetDirectiveClass:
+ CodeGenFunction::EmitOMPTargetDeviceFunction(
+ CGM, ParentName, cast<OMPTargetDirective>(*S));
+ break;
+ case Stmt::OMPTargetParallelDirectiveClass:
+ CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
+ CGM, ParentName, cast<OMPTargetParallelDirective>(*S));
+ break;
+ case Stmt::OMPTargetTeamsDirectiveClass:
+ CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
+ CGM, ParentName, cast<OMPTargetTeamsDirective>(*S));
+ break;
+ default:
+ llvm_unreachable("Unknown target directive for OpenMP device codegen.");
+ }
+ return;
+ }
+
+ if (const OMPExecutableDirective *E = dyn_cast<OMPExecutableDirective>(S)) {
+ if (!E->hasAssociatedStmt())
+ return;
+
+ scanForTargetRegionsFunctions(
+ cast<CapturedStmt>(E->getAssociatedStmt())->getCapturedStmt(),
+ ParentName);
+ return;
+ }
+
+ // If this is a lambda function, look into its body.
+ if (auto *L = dyn_cast<LambdaExpr>(S))
+ S = L->getBody();
+
+ // Keep looking for target regions recursively.
+ for (auto *II : S->children())
+ scanForTargetRegionsFunctions(II, ParentName);
+}
+
+bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
+ auto &FD = *cast<FunctionDecl>(GD.getDecl());
+
+ // If emitting code for the host, we do not process FD here. Instead we do
+ // the normal code generation.
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ return false;
+
+ // Try to detect target regions in the function.
+ scanForTargetRegionsFunctions(FD.getBody(), CGM.getMangledName(GD));
+
+ // We should not emit any function other that the ones created during the
+ // scanning. Therefore, we signal that this function is completely dealt
+ // with.
+ return true;
+}
+
+bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ return false;
+
+ // Check if there are Ctors/Dtors in this declaration and look for target
+ // regions in it. We use the complete variant to produce the kernel name
+ // mangling.
+ QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
+ if (auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
+ for (auto *Ctor : RD->ctors()) {
+ StringRef ParentName =
+ CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
+ scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
+ }
+ auto *Dtor = RD->getDestructor();
+ if (Dtor) {
+ StringRef ParentName =
+ CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
+ scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
+ }
+ }
+
+ // If we are in target mode we do not emit any global (declare target is not
+ // implemented yet). Therefore we signal that GD was processed in this case.
+ return true;
+}
+
+bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
+ auto *VD = GD.getDecl();
+ if (isa<FunctionDecl>(VD))
+ return emitTargetFunctions(GD);
+
+ return emitTargetGlobalVariable(GD);
+}
+
+llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
+ // If we have offloading in the current module, we need to emit the entries
+ // now and register the offloading descriptor.
+ createOffloadEntriesAndInfoMetadata();
+
+ // Create and register the offloading binary descriptors. This is the main
+ // entity that captures all the information about offloading in the current
+ // compilation unit.
+ return createOffloadingBinaryDescriptorRegistration();
+}
+
+void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ SourceLocation Loc,
+ llvm::Value *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ auto *RTLoc = emitUpdateLocation(CGF, Loc);
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+
+ // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
+ llvm::Value *Args[] = {
+ RTLoc,
+ CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
+ CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
+ llvm::SmallVector<llvm::Value *, 16> RealArgs;
+ RealArgs.append(std::begin(Args), std::end(Args));
+ RealArgs.append(CapturedVars.begin(), CapturedVars.end());
+
+ auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
+ CGF.EmitRuntimeCall(RTLFn, RealArgs);
+}
+
+void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
+ const Expr *NumTeams,
+ const Expr *ThreadLimit,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ auto *RTLoc = emitUpdateLocation(CGF, Loc);
+
+ llvm::Value *NumTeamsVal =
+ (NumTeams)
+ ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
+ CGF.CGM.Int32Ty, /* isSigned = */ true)
+ : CGF.Builder.getInt32(0);
+
+ llvm::Value *ThreadLimitVal =
+ (ThreadLimit)
+ ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
+ CGF.CGM.Int32Ty, /* isSigned = */ true)
+ : CGF.Builder.getInt32(0);
+
+ // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
+ llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
+ ThreadLimitVal};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
+ PushNumTeamsArgs);
+}
+
+void CGOpenMPRuntime::emitTargetDataCalls(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
+ const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ // Action used to replace the default codegen action and turn privatization
+ // off.
+ PrePostActionTy NoPrivAction;
+
+ // Generate the code for the opening of the data environment. Capture all the
+ // arguments of the runtime call by reference because they are used in the
+ // closing of the region.
+ auto &&BeginThenGen = [&D, Device, &Info, &CodeGen](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ // Fill up the arrays with all the mapped variables.
+ MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
+ MappableExprsHandler::MapValuesArrayTy Pointers;
+ MappableExprsHandler::MapValuesArrayTy Sizes;
+ MappableExprsHandler::MapFlagsArrayTy MapTypes;
+
+ // Get map clause information.
+ MappableExprsHandler MCHandler(D, CGF);
+ MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
+
+ // Fill up the arrays and create the arguments.
+ emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
+
+ llvm::Value *BasePointersArrayArg = nullptr;
+ llvm::Value *PointersArrayArg = nullptr;
+ llvm::Value *SizesArrayArg = nullptr;
+ llvm::Value *MapTypesArrayArg = nullptr;
+ emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
+ SizesArrayArg, MapTypesArrayArg, Info);
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID = nullptr;
+ if (Device)
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int32Ty, /*isSigned=*/true);
+ else
+ DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
+
+ // Emit the number of elements in the offloading arrays.
+ auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
+
+ llvm::Value *OffloadingArgs[] = {
+ DeviceID, PointerNum, BasePointersArrayArg,
+ PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_begin),
+ OffloadingArgs);
+
+ // If device pointer privatization is required, emit the body of the region
+ // here. It will have to be duplicated: with and without privatization.
+ if (!Info.CaptureDeviceAddrMap.empty())
+ CodeGen(CGF);
+ };
+
+ // Generate code for the closing of the data region.
+ auto &&EndThenGen = [Device, &Info](CodeGenFunction &CGF, PrePostActionTy &) {
+ assert(Info.isValid() && "Invalid data environment closing arguments.");
+
+ llvm::Value *BasePointersArrayArg = nullptr;
+ llvm::Value *PointersArrayArg = nullptr;
+ llvm::Value *SizesArrayArg = nullptr;
+ llvm::Value *MapTypesArrayArg = nullptr;
+ emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
+ SizesArrayArg, MapTypesArrayArg, Info);
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID = nullptr;
+ if (Device)
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int32Ty, /*isSigned=*/true);
+ else
+ DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
+
+ // Emit the number of elements in the offloading arrays.
+ auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
+
+ llvm::Value *OffloadingArgs[] = {
+ DeviceID, PointerNum, BasePointersArrayArg,
+ PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_end),
+ OffloadingArgs);
+ };
+
+ // If we need device pointer privatization, we need to emit the body of the
+ // region with no privatization in the 'else' branch of the conditional.
+ // Otherwise, we don't have to do anything.
+ auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ if (!Info.CaptureDeviceAddrMap.empty()) {
+ CodeGen.setAction(NoPrivAction);
+ CodeGen(CGF);
+ }
+ };
+
+ // We don't have to do anything to close the region if the if clause evaluates
+ // to false.
+ auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
+ } else {
+ RegionCodeGenTy RCG(BeginThenGen);
+ RCG(CGF);
+ }
+
+ // If we don't require privatization of device pointers, we emit the body in
+ // between the runtime calls. This avoids duplicating the body code.
+ if (Info.CaptureDeviceAddrMap.empty()) {
+ CodeGen.setAction(NoPrivAction);
+ CodeGen(CGF);
+ }
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen);
+ } else {
+ RegionCodeGenTy RCG(EndThenGen);
+ RCG(CGF);
+ }
+}
+
+void CGOpenMPRuntime::emitTargetDataStandAloneCall(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
+ const Expr *Device) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ assert((isa<OMPTargetEnterDataDirective>(D) ||
+ isa<OMPTargetExitDataDirective>(D) ||
+ isa<OMPTargetUpdateDirective>(D)) &&
+ "Expecting either target enter, exit data, or update directives.");
+
+ // Generate the code for the opening of the data environment.
+ auto &&ThenGen = [&D, Device](CodeGenFunction &CGF, PrePostActionTy &) {
+ // Fill up the arrays with all the mapped variables.
+ MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
+ MappableExprsHandler::MapValuesArrayTy Pointers;
+ MappableExprsHandler::MapValuesArrayTy Sizes;
+ MappableExprsHandler::MapFlagsArrayTy MapTypes;
+
+ // Get map clause information.
+ MappableExprsHandler MEHandler(D, CGF);
+ MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
+
+ // Fill up the arrays and create the arguments.
+ TargetDataInfo Info;
+ emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
+ emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
+ Info.PointersArray, Info.SizesArray,
+ Info.MapTypesArray, Info);
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID = nullptr;
+ if (Device)
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int32Ty, /*isSigned=*/true);
+ else
+ DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF);
+
+ // Emit the number of elements in the offloading arrays.
+ auto *PointerNum = CGF.Builder.getInt32(BasePointers.size());
+
+ llvm::Value *OffloadingArgs[] = {
+ DeviceID, PointerNum, Info.BasePointersArray,
+ Info.PointersArray, Info.SizesArray, Info.MapTypesArray};
+
+ auto &RT = CGF.CGM.getOpenMPRuntime();
+ // Select the right runtime function call for each expected standalone
+ // directive.
+ OpenMPRTLFunction RTLFn;
+ switch (D.getDirectiveKind()) {
+ default:
+ llvm_unreachable("Unexpected standalone target data directive.");
+ break;
+ case OMPD_target_enter_data:
+ RTLFn = OMPRTL__tgt_target_data_begin;
+ break;
+ case OMPD_target_exit_data:
+ RTLFn = OMPRTL__tgt_target_data_end;
+ break;
+ case OMPD_target_update:
+ RTLFn = OMPRTL__tgt_target_data_update;
+ break;
+ }
+ CGF.EmitRuntimeCall(RT.createRuntimeFunction(RTLFn), OffloadingArgs);
+ };
+
+ // In the event we get an if clause, we don't have to take any action on the
+ // else side.
+ auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
+ } else {
+ RegionCodeGenTy ThenGenRCG(ThenGen);
+ ThenGenRCG(CGF);
+ }
+}
+
+namespace {
+ /// Kind of parameter in a function with 'declare simd' directive.
+ enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
+ /// Attribute set of the parameter.
+ struct ParamAttrTy {
+ ParamKindTy Kind = Vector;
+ llvm::APSInt StrideOrArg;
+ llvm::APSInt Alignment;
+ };
+} // namespace
+
+static unsigned evaluateCDTSize(const FunctionDecl *FD,
+ ArrayRef<ParamAttrTy> ParamAttrs) {
+ // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
+ // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
+ // of that clause. The VLEN value must be power of 2.
+ // In other case the notion of the function`s "characteristic data type" (CDT)
+ // is used to compute the vector length.
+ // CDT is defined in the following order:
+ // a) For non-void function, the CDT is the return type.
+ // b) If the function has any non-uniform, non-linear parameters, then the
+ // CDT is the type of the first such parameter.
+ // c) If the CDT determined by a) or b) above is struct, union, or class
+ // type which is pass-by-value (except for the type that maps to the
+ // built-in complex data type), the characteristic data type is int.
+ // d) If none of the above three cases is applicable, the CDT is int.
+ // The VLEN is then determined based on the CDT and the size of vector
+ // register of that ISA for which current vector version is generated. The
+ // VLEN is computed using the formula below:
+ // VLEN = sizeof(vector_register) / sizeof(CDT),
+ // where vector register size specified in section 3.2.1 Registers and the
+ // Stack Frame of original AMD64 ABI document.
+ QualType RetType = FD->getReturnType();
+ if (RetType.isNull())
+ return 0;
+ ASTContext &C = FD->getASTContext();
+ QualType CDT;
+ if (!RetType.isNull() && !RetType->isVoidType())
+ CDT = RetType;
+ else {
+ unsigned Offset = 0;
+ if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (ParamAttrs[Offset].Kind == Vector)
+ CDT = C.getPointerType(C.getRecordType(MD->getParent()));
+ ++Offset;
+ }
+ if (CDT.isNull()) {
+ for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
+ if (ParamAttrs[I + Offset].Kind == Vector) {
+ CDT = FD->getParamDecl(I)->getType();
+ break;
+ }
+ }
+ }
+ }
+ if (CDT.isNull())
+ CDT = C.IntTy;
+ CDT = CDT->getCanonicalTypeUnqualified();
+ if (CDT->isRecordType() || CDT->isUnionType())
+ CDT = C.IntTy;
+ return C.getTypeSize(CDT);
+}
+
+static void
+emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
+ const llvm::APSInt &VLENVal,
+ ArrayRef<ParamAttrTy> ParamAttrs,
+ OMPDeclareSimdDeclAttr::BranchStateTy State) {
+ struct ISADataTy {
+ char ISA;
+ unsigned VecRegSize;
+ };
+ ISADataTy ISAData[] = {
+ {
+ 'b', 128
+ }, // SSE
+ {
+ 'c', 256
+ }, // AVX
+ {
+ 'd', 256
+ }, // AVX2
+ {
+ 'e', 512
+ }, // AVX512
+ };
+ llvm::SmallVector<char, 2> Masked;
+ switch (State) {
+ case OMPDeclareSimdDeclAttr::BS_Undefined:
+ Masked.push_back('N');
+ Masked.push_back('M');
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Notinbranch:
+ Masked.push_back('N');
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Inbranch:
+ Masked.push_back('M');
+ break;
+ }
+ for (auto Mask : Masked) {
+ for (auto &Data : ISAData) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << "_ZGV" << Data.ISA << Mask;
+ if (!VLENVal) {
+ Out << llvm::APSInt::getUnsigned(Data.VecRegSize /
+ evaluateCDTSize(FD, ParamAttrs));
+ } else
+ Out << VLENVal;
+ for (auto &ParamAttr : ParamAttrs) {
+ switch (ParamAttr.Kind){
+ case LinearWithVarStride:
+ Out << 's' << ParamAttr.StrideOrArg;
+ break;
+ case Linear:
+ Out << 'l';
+ if (!!ParamAttr.StrideOrArg)
+ Out << ParamAttr.StrideOrArg;
+ break;
+ case Uniform:
+ Out << 'u';
+ break;
+ case Vector:
+ Out << 'v';
+ break;
+ }
+ if (!!ParamAttr.Alignment)
+ Out << 'a' << ParamAttr.Alignment;
+ }
+ Out << '_' << Fn->getName();
+ Fn->addFnAttr(Out.str());
+ }
+ }
+}
+
+void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
+ llvm::Function *Fn) {
+ ASTContext &C = CGM.getContext();
+ FD = FD->getCanonicalDecl();
+ // Map params to their positions in function decl.
+ llvm::DenseMap<const Decl *, unsigned> ParamPositions;
+ if (isa<CXXMethodDecl>(FD))
+ ParamPositions.insert({FD, 0});
+ unsigned ParamPos = ParamPositions.size();
+ for (auto *P : FD->parameters()) {
+ ParamPositions.insert({P->getCanonicalDecl(), ParamPos});
+ ++ParamPos;
+ }
+ for (auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
+ llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
+ // Mark uniform parameters.
+ for (auto *E : Attr->uniforms()) {
+ E = E->IgnoreParenImpCasts();
+ unsigned Pos;
+ if (isa<CXXThisExpr>(E))
+ Pos = ParamPositions[FD];
+ else {
+ auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
+ ->getCanonicalDecl();
+ Pos = ParamPositions[PVD];
+ }
+ ParamAttrs[Pos].Kind = Uniform;
+ }
+ // Get alignment info.
+ auto NI = Attr->alignments_begin();
+ for (auto *E : Attr->aligneds()) {
+ E = E->IgnoreParenImpCasts();
+ unsigned Pos;
+ QualType ParmTy;
+ if (isa<CXXThisExpr>(E)) {
+ Pos = ParamPositions[FD];
+ ParmTy = E->getType();
+ } else {
+ auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
+ ->getCanonicalDecl();
+ Pos = ParamPositions[PVD];
+ ParmTy = PVD->getType();
+ }
+ ParamAttrs[Pos].Alignment =
+ (*NI) ? (*NI)->EvaluateKnownConstInt(C)
+ : llvm::APSInt::getUnsigned(
+ C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
+ .getQuantity());
+ ++NI;
+ }
+ // Mark linear parameters.
+ auto SI = Attr->steps_begin();
+ auto MI = Attr->modifiers_begin();
+ for (auto *E : Attr->linears()) {
+ E = E->IgnoreParenImpCasts();
+ unsigned Pos;
+ if (isa<CXXThisExpr>(E))
+ Pos = ParamPositions[FD];
+ else {
+ auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
+ ->getCanonicalDecl();
+ Pos = ParamPositions[PVD];
+ }
+ auto &ParamAttr = ParamAttrs[Pos];
+ ParamAttr.Kind = Linear;
+ if (*SI) {
+ if (!(*SI)->EvaluateAsInt(ParamAttr.StrideOrArg, C,
+ Expr::SE_AllowSideEffects)) {
+ if (auto *DRE = cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
+ if (auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
+ ParamAttr.Kind = LinearWithVarStride;
+ ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
+ ParamPositions[StridePVD->getCanonicalDecl()]);
+ }
+ }
+ }
+ }
+ ++SI;
+ ++MI;
+ }
+ llvm::APSInt VLENVal;
+ if (const Expr *VLEN = Attr->getSimdlen())
+ VLENVal = VLEN->EvaluateKnownConstInt(C);
+ OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
+ if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
+ CGM.getTriple().getArch() == llvm::Triple::x86_64)
+ emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
+ }
+}
+
+namespace {
+/// Cleanup action for doacross support.
+class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
+public:
+ static const int DoacrossFinArgs = 2;
+
+private:
+ llvm::Value *RTLFn;
+ llvm::Value *Args[DoacrossFinArgs];
+
+public:
+ DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef<llvm::Value *> CallArgs)
+ : RTLFn(RTLFn) {
+ assert(CallArgs.size() == DoacrossFinArgs);
+ std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
+ }
+ void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
+ if (!CGF.HaveInsertPoint())
+ return;
+ CGF.EmitRuntimeCall(RTLFn, Args);
+ }
+};
+} // namespace
+
+void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
+ const OMPLoopDirective &D) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ ASTContext &C = CGM.getContext();
+ QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
+ RecordDecl *RD;
+ if (KmpDimTy.isNull()) {
+ // Build struct kmp_dim { // loop bounds info casted to kmp_int64
+ // kmp_int64 lo; // lower
+ // kmp_int64 up; // upper
+ // kmp_int64 st; // stride
+ // };
+ RD = C.buildImplicitRecord("kmp_dim");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, Int64Ty);
+ addFieldToRecordDecl(C, RD, Int64Ty);
+ addFieldToRecordDecl(C, RD, Int64Ty);
+ RD->completeDefinition();
+ KmpDimTy = C.getRecordType(RD);
+ } else
+ RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
+
+ Address DimsAddr = CGF.CreateMemTemp(KmpDimTy, "dims");
+ CGF.EmitNullInitialization(DimsAddr, KmpDimTy);
+ enum { LowerFD = 0, UpperFD, StrideFD };
+ // Fill dims with data.
+ LValue DimsLVal = CGF.MakeAddrLValue(DimsAddr, KmpDimTy);
+ // dims.upper = num_iterations;
+ LValue UpperLVal =
+ CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), UpperFD));
+ llvm::Value *NumIterVal = CGF.EmitScalarConversion(
+ CGF.EmitScalarExpr(D.getNumIterations()), D.getNumIterations()->getType(),
+ Int64Ty, D.getNumIterations()->getExprLoc());
+ CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
+ // dims.stride = 1;
+ LValue StrideLVal =
+ CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), StrideFD));
+ CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
+ StrideLVal);
+
+ // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
+ // kmp_int32 num_dims, struct kmp_dim * dims);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, D.getLocStart()),
+ getThreadID(CGF, D.getLocStart()),
+ llvm::ConstantInt::getSigned(CGM.Int32Ty, 1),
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ DimsAddr.getPointer(), CGM.VoidPtrTy)};
+
+ llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init);
+ CGF.EmitRuntimeCall(RTLFn, Args);
+ llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
+ emitUpdateLocation(CGF, D.getLocEnd()), getThreadID(CGF, D.getLocEnd())};
+ llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
+ CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
+ llvm::makeArrayRef(FiniArgs));
+}
+
+void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
+ const OMPDependClause *C) {
+ QualType Int64Ty =
+ CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
+ const Expr *CounterVal = C->getCounterValue();
+ assert(CounterVal);
+ llvm::Value *CntVal = CGF.EmitScalarConversion(CGF.EmitScalarExpr(CounterVal),
+ CounterVal->getType(), Int64Ty,
+ CounterVal->getExprLoc());
+ Address CntAddr = CGF.CreateMemTemp(Int64Ty, ".cnt.addr");
+ CGF.EmitStoreOfScalar(CntVal, CntAddr, /*Volatile=*/false, Int64Ty);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, C->getLocStart()),
+ getThreadID(CGF, C->getLocStart()),
+ CntAddr.getPointer()};
+ llvm::Value *RTLFn;
+ if (C->getDependencyKind() == OMPC_DEPEND_source)
+ RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
+ else {
+ assert(C->getDependencyKind() == OMPC_DEPEND_sink);
+ RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
+ }
+ CGF.EmitRuntimeCall(RTLFn, Args);
+}
+