diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp')
| -rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp | 6941 | 
1 files changed, 6941 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp new file mode 100644 index 000000000000..468838e56e38 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntime.cpp @@ -0,0 +1,6941 @@ +//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This provides a class for OpenMP runtime code generation. +// +//===----------------------------------------------------------------------===// + +#include "CGCXXABI.h" +#include "CGCleanup.h" +#include "CGOpenMPRuntime.h" +#include "CodeGenFunction.h" +#include "clang/CodeGen/ConstantInitBuilder.h" +#include "clang/AST/Decl.h" +#include "clang/AST/StmtOpenMP.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/Bitcode/BitcodeReader.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> + +using namespace clang; +using namespace CodeGen; + +namespace { +/// \brief Base class for handling code generation inside OpenMP regions. +class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo { +public: +  /// \brief Kinds of OpenMP regions used in codegen. +  enum CGOpenMPRegionKind { +    /// \brief Region with outlined function for standalone 'parallel' +    /// directive. +    ParallelOutlinedRegion, +    /// \brief Region with outlined function for standalone 'task' directive. +    TaskOutlinedRegion, +    /// \brief Region for constructs that do not require function outlining, +    /// like 'for', 'sections', 'atomic' etc. directives. +    InlinedRegion, +    /// \brief Region with outlined function for standalone 'target' directive. +    TargetRegion, +  }; + +  CGOpenMPRegionInfo(const CapturedStmt &CS, +                     const CGOpenMPRegionKind RegionKind, +                     const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, +                     bool HasCancel) +      : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind), +        CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} + +  CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind, +                     const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, +                     bool HasCancel) +      : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), +        Kind(Kind), HasCancel(HasCancel) {} + +  /// \brief Get a variable or parameter for storing global thread id +  /// inside OpenMP construct. +  virtual const VarDecl *getThreadIDVariable() const = 0; + +  /// \brief Emit the captured statement body. +  void EmitBody(CodeGenFunction &CGF, const Stmt *S) override; + +  /// \brief Get an LValue for the current ThreadID variable. +  /// \return LValue for thread id variable. This LValue always has type int32*. +  virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF); + +  virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {} + +  CGOpenMPRegionKind getRegionKind() const { return RegionKind; } + +  OpenMPDirectiveKind getDirectiveKind() const { return Kind; } + +  bool hasCancel() const { return HasCancel; } + +  static bool classof(const CGCapturedStmtInfo *Info) { +    return Info->getKind() == CR_OpenMP; +  } + +  ~CGOpenMPRegionInfo() override = default; + +protected: +  CGOpenMPRegionKind RegionKind; +  RegionCodeGenTy CodeGen; +  OpenMPDirectiveKind Kind; +  bool HasCancel; +}; + +/// \brief API for captured statement code generation in OpenMP constructs. +class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo { +public: +  CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, +                             const RegionCodeGenTy &CodeGen, +                             OpenMPDirectiveKind Kind, bool HasCancel, +                             StringRef HelperName) +      : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind, +                           HasCancel), +        ThreadIDVar(ThreadIDVar), HelperName(HelperName) { +    assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); +  } + +  /// \brief Get a variable or parameter for storing global thread id +  /// inside OpenMP construct. +  const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } + +  /// \brief Get the name of the capture helper. +  StringRef getHelperName() const override { return HelperName; } + +  static bool classof(const CGCapturedStmtInfo *Info) { +    return CGOpenMPRegionInfo::classof(Info) && +           cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == +               ParallelOutlinedRegion; +  } + +private: +  /// \brief A variable or parameter storing global thread id for OpenMP +  /// constructs. +  const VarDecl *ThreadIDVar; +  StringRef HelperName; +}; + +/// \brief API for captured statement code generation in OpenMP constructs. +class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo { +public: +  class UntiedTaskActionTy final : public PrePostActionTy { +    bool Untied; +    const VarDecl *PartIDVar; +    const RegionCodeGenTy UntiedCodeGen; +    llvm::SwitchInst *UntiedSwitch = nullptr; + +  public: +    UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar, +                       const RegionCodeGenTy &UntiedCodeGen) +        : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {} +    void Enter(CodeGenFunction &CGF) override { +      if (Untied) { +        // Emit task switching point. +        auto PartIdLVal = CGF.EmitLoadOfPointerLValue( +            CGF.GetAddrOfLocalVar(PartIDVar), +            PartIDVar->getType()->castAs<PointerType>()); +        auto *Res = CGF.EmitLoadOfScalar(PartIdLVal, SourceLocation()); +        auto *DoneBB = CGF.createBasicBlock(".untied.done."); +        UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB); +        CGF.EmitBlock(DoneBB); +        CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); +        CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); +        UntiedSwitch->addCase(CGF.Builder.getInt32(0), +                              CGF.Builder.GetInsertBlock()); +        emitUntiedSwitch(CGF); +      } +    } +    void emitUntiedSwitch(CodeGenFunction &CGF) const { +      if (Untied) { +        auto PartIdLVal = CGF.EmitLoadOfPointerLValue( +            CGF.GetAddrOfLocalVar(PartIDVar), +            PartIDVar->getType()->castAs<PointerType>()); +        CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), +                              PartIdLVal); +        UntiedCodeGen(CGF); +        CodeGenFunction::JumpDest CurPoint = +            CGF.getJumpDestInCurrentScope(".untied.next."); +        CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); +        CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); +        UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), +                              CGF.Builder.GetInsertBlock()); +        CGF.EmitBranchThroughCleanup(CurPoint); +        CGF.EmitBlock(CurPoint.getBlock()); +      } +    } +    unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); } +  }; +  CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS, +                                 const VarDecl *ThreadIDVar, +                                 const RegionCodeGenTy &CodeGen, +                                 OpenMPDirectiveKind Kind, bool HasCancel, +                                 const UntiedTaskActionTy &Action) +      : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel), +        ThreadIDVar(ThreadIDVar), Action(Action) { +    assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); +  } + +  /// \brief Get a variable or parameter for storing global thread id +  /// inside OpenMP construct. +  const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } + +  /// \brief Get an LValue for the current ThreadID variable. +  LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override; + +  /// \brief Get the name of the capture helper. +  StringRef getHelperName() const override { return ".omp_outlined."; } + +  void emitUntiedSwitch(CodeGenFunction &CGF) override { +    Action.emitUntiedSwitch(CGF); +  } + +  static bool classof(const CGCapturedStmtInfo *Info) { +    return CGOpenMPRegionInfo::classof(Info) && +           cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == +               TaskOutlinedRegion; +  } + +private: +  /// \brief A variable or parameter storing global thread id for OpenMP +  /// constructs. +  const VarDecl *ThreadIDVar; +  /// Action for emitting code for untied tasks. +  const UntiedTaskActionTy &Action; +}; + +/// \brief API for inlined captured statement code generation in OpenMP +/// constructs. +class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo { +public: +  CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI, +                            const RegionCodeGenTy &CodeGen, +                            OpenMPDirectiveKind Kind, bool HasCancel) +      : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel), +        OldCSI(OldCSI), +        OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {} + +  // \brief Retrieve the value of the context parameter. +  llvm::Value *getContextValue() const override { +    if (OuterRegionInfo) +      return OuterRegionInfo->getContextValue(); +    llvm_unreachable("No context value for inlined OpenMP region"); +  } + +  void setContextValue(llvm::Value *V) override { +    if (OuterRegionInfo) { +      OuterRegionInfo->setContextValue(V); +      return; +    } +    llvm_unreachable("No context value for inlined OpenMP region"); +  } + +  /// \brief Lookup the captured field decl for a variable. +  const FieldDecl *lookup(const VarDecl *VD) const override { +    if (OuterRegionInfo) +      return OuterRegionInfo->lookup(VD); +    // If there is no outer outlined region,no need to lookup in a list of +    // captured variables, we can use the original one. +    return nullptr; +  } + +  FieldDecl *getThisFieldDecl() const override { +    if (OuterRegionInfo) +      return OuterRegionInfo->getThisFieldDecl(); +    return nullptr; +  } + +  /// \brief Get a variable or parameter for storing global thread id +  /// inside OpenMP construct. +  const VarDecl *getThreadIDVariable() const override { +    if (OuterRegionInfo) +      return OuterRegionInfo->getThreadIDVariable(); +    return nullptr; +  } + +  /// \brief Get the name of the capture helper. +  StringRef getHelperName() const override { +    if (auto *OuterRegionInfo = getOldCSI()) +      return OuterRegionInfo->getHelperName(); +    llvm_unreachable("No helper name for inlined OpenMP construct"); +  } + +  void emitUntiedSwitch(CodeGenFunction &CGF) override { +    if (OuterRegionInfo) +      OuterRegionInfo->emitUntiedSwitch(CGF); +  } + +  CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; } + +  static bool classof(const CGCapturedStmtInfo *Info) { +    return CGOpenMPRegionInfo::classof(Info) && +           cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion; +  } + +  ~CGOpenMPInlinedRegionInfo() override = default; + +private: +  /// \brief CodeGen info about outer OpenMP region. +  CodeGenFunction::CGCapturedStmtInfo *OldCSI; +  CGOpenMPRegionInfo *OuterRegionInfo; +}; + +/// \brief API for captured statement code generation in OpenMP target +/// constructs. For this captures, implicit parameters are used instead of the +/// captured fields. The name of the target region has to be unique in a given +/// application so it is provided by the client, because only the client has +/// the information to generate that. +class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo { +public: +  CGOpenMPTargetRegionInfo(const CapturedStmt &CS, +                           const RegionCodeGenTy &CodeGen, StringRef HelperName) +      : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target, +                           /*HasCancel=*/false), +        HelperName(HelperName) {} + +  /// \brief This is unused for target regions because each starts executing +  /// with a single thread. +  const VarDecl *getThreadIDVariable() const override { return nullptr; } + +  /// \brief Get the name of the capture helper. +  StringRef getHelperName() const override { return HelperName; } + +  static bool classof(const CGCapturedStmtInfo *Info) { +    return CGOpenMPRegionInfo::classof(Info) && +           cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion; +  } + +private: +  StringRef HelperName; +}; + +static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) { +  llvm_unreachable("No codegen for expressions"); +} +/// \brief API for generation of expressions captured in a innermost OpenMP +/// region. +class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo { +public: +  CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS) +      : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen, +                                  OMPD_unknown, +                                  /*HasCancel=*/false), +        PrivScope(CGF) { +    // Make sure the globals captured in the provided statement are local by +    // using the privatization logic. We assume the same variable is not +    // captured more than once. +    for (auto &C : CS.captures()) { +      if (!C.capturesVariable() && !C.capturesVariableByCopy()) +        continue; + +      const VarDecl *VD = C.getCapturedVar(); +      if (VD->isLocalVarDeclOrParm()) +        continue; + +      DeclRefExpr DRE(const_cast<VarDecl *>(VD), +                      /*RefersToEnclosingVariableOrCapture=*/false, +                      VD->getType().getNonReferenceType(), VK_LValue, +                      SourceLocation()); +      PrivScope.addPrivate(VD, [&CGF, &DRE]() -> Address { +        return CGF.EmitLValue(&DRE).getAddress(); +      }); +    } +    (void)PrivScope.Privatize(); +  } + +  /// \brief Lookup the captured field decl for a variable. +  const FieldDecl *lookup(const VarDecl *VD) const override { +    if (auto *FD = CGOpenMPInlinedRegionInfo::lookup(VD)) +      return FD; +    return nullptr; +  } + +  /// \brief Emit the captured statement body. +  void EmitBody(CodeGenFunction &CGF, const Stmt *S) override { +    llvm_unreachable("No body for expressions"); +  } + +  /// \brief Get a variable or parameter for storing global thread id +  /// inside OpenMP construct. +  const VarDecl *getThreadIDVariable() const override { +    llvm_unreachable("No thread id for expressions"); +  } + +  /// \brief Get the name of the capture helper. +  StringRef getHelperName() const override { +    llvm_unreachable("No helper name for expressions"); +  } + +  static bool classof(const CGCapturedStmtInfo *Info) { return false; } + +private: +  /// Private scope to capture global variables. +  CodeGenFunction::OMPPrivateScope PrivScope; +}; + +/// \brief RAII for emitting code of OpenMP constructs. +class InlinedOpenMPRegionRAII { +  CodeGenFunction &CGF; +  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; +  FieldDecl *LambdaThisCaptureField = nullptr; + +public: +  /// \brief Constructs region for combined constructs. +  /// \param CodeGen Code generation sequence for combined directives. Includes +  /// a list of functions used for code generation of implicitly inlined +  /// regions. +  InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen, +                          OpenMPDirectiveKind Kind, bool HasCancel) +      : CGF(CGF) { +    // Start emission for the construct. +    CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo( +        CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel); +    std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); +    LambdaThisCaptureField = CGF.LambdaThisCaptureField; +    CGF.LambdaThisCaptureField = nullptr; +  } + +  ~InlinedOpenMPRegionRAII() { +    // Restore original CapturedStmtInfo only if we're done with code emission. +    auto *OldCSI = +        cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI(); +    delete CGF.CapturedStmtInfo; +    CGF.CapturedStmtInfo = OldCSI; +    std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); +    CGF.LambdaThisCaptureField = LambdaThisCaptureField; +  } +}; + +/// \brief Values for bit flags used in the ident_t to describe the fields. +/// All enumeric elements are named and described in accordance with the code +/// from http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h +enum OpenMPLocationFlags { +  /// \brief Use trampoline for internal microtask. +  OMP_IDENT_IMD = 0x01, +  /// \brief Use c-style ident structure. +  OMP_IDENT_KMPC = 0x02, +  /// \brief Atomic reduction option for kmpc_reduce. +  OMP_ATOMIC_REDUCE = 0x10, +  /// \brief Explicit 'barrier' directive. +  OMP_IDENT_BARRIER_EXPL = 0x20, +  /// \brief Implicit barrier in code. +  OMP_IDENT_BARRIER_IMPL = 0x40, +  /// \brief Implicit barrier in 'for' directive. +  OMP_IDENT_BARRIER_IMPL_FOR = 0x40, +  /// \brief Implicit barrier in 'sections' directive. +  OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0, +  /// \brief Implicit barrier in 'single' directive. +  OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140 +}; + +/// \brief Describes ident structure that describes a source location. +/// All descriptions are taken from +/// http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h +/// Original structure: +/// typedef struct ident { +///    kmp_int32 reserved_1;   /**<  might be used in Fortran; +///                                  see above  */ +///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags; +///                                  KMP_IDENT_KMPC identifies this union +///                                  member  */ +///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more; +///                                  see above */ +///#if USE_ITT_BUILD +///                            /*  but currently used for storing +///                                region-specific ITT */ +///                            /*  contextual information. */ +///#endif /* USE_ITT_BUILD */ +///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for +///                                 C++  */ +///    char const *psource;    /**< String describing the source location. +///                            The string is composed of semi-colon separated +//                             fields which describe the source file, +///                            the function and a pair of line numbers that +///                            delimit the construct. +///                             */ +/// } ident_t; +enum IdentFieldIndex { +  /// \brief might be used in Fortran +  IdentField_Reserved_1, +  /// \brief OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member. +  IdentField_Flags, +  /// \brief Not really used in Fortran any more +  IdentField_Reserved_2, +  /// \brief Source[4] in Fortran, do not use for C++ +  IdentField_Reserved_3, +  /// \brief String describing the source location. The string is composed of +  /// semi-colon separated fields which describe the source file, the function +  /// and a pair of line numbers that delimit the construct. +  IdentField_PSource +}; + +/// \brief Schedule types for 'omp for' loops (these enumerators are taken from +/// the enum sched_type in kmp.h). +enum OpenMPSchedType { +  /// \brief Lower bound for default (unordered) versions. +  OMP_sch_lower = 32, +  OMP_sch_static_chunked = 33, +  OMP_sch_static = 34, +  OMP_sch_dynamic_chunked = 35, +  OMP_sch_guided_chunked = 36, +  OMP_sch_runtime = 37, +  OMP_sch_auto = 38, +  /// static with chunk adjustment (e.g., simd) +  OMP_sch_static_balanced_chunked = 45, +  /// \brief Lower bound for 'ordered' versions. +  OMP_ord_lower = 64, +  OMP_ord_static_chunked = 65, +  OMP_ord_static = 66, +  OMP_ord_dynamic_chunked = 67, +  OMP_ord_guided_chunked = 68, +  OMP_ord_runtime = 69, +  OMP_ord_auto = 70, +  OMP_sch_default = OMP_sch_static, +  /// \brief dist_schedule types +  OMP_dist_sch_static_chunked = 91, +  OMP_dist_sch_static = 92, +  /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. +  /// Set if the monotonic schedule modifier was present. +  OMP_sch_modifier_monotonic = (1 << 29), +  /// Set if the nonmonotonic schedule modifier was present. +  OMP_sch_modifier_nonmonotonic = (1 << 30), +}; + +enum OpenMPRTLFunction { +  /// \brief Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, +  /// kmpc_micro microtask, ...); +  OMPRTL__kmpc_fork_call, +  /// \brief Call to void *__kmpc_threadprivate_cached(ident_t *loc, +  /// kmp_int32 global_tid, void *data, size_t size, void ***cache); +  OMPRTL__kmpc_threadprivate_cached, +  /// \brief Call to void __kmpc_threadprivate_register( ident_t *, +  /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); +  OMPRTL__kmpc_threadprivate_register, +  // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc); +  OMPRTL__kmpc_global_thread_num, +  // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, +  // kmp_critical_name *crit); +  OMPRTL__kmpc_critical, +  // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 +  // global_tid, kmp_critical_name *crit, uintptr_t hint); +  OMPRTL__kmpc_critical_with_hint, +  // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, +  // kmp_critical_name *crit); +  OMPRTL__kmpc_end_critical, +  // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 +  // global_tid); +  OMPRTL__kmpc_cancel_barrier, +  // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); +  OMPRTL__kmpc_barrier, +  // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); +  OMPRTL__kmpc_for_static_fini, +  // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 +  // global_tid); +  OMPRTL__kmpc_serialized_parallel, +  // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 +  // global_tid); +  OMPRTL__kmpc_end_serialized_parallel, +  // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, +  // kmp_int32 num_threads); +  OMPRTL__kmpc_push_num_threads, +  // Call to void __kmpc_flush(ident_t *loc); +  OMPRTL__kmpc_flush, +  // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); +  OMPRTL__kmpc_master, +  // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid); +  OMPRTL__kmpc_end_master, +  // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, +  // int end_part); +  OMPRTL__kmpc_omp_taskyield, +  // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); +  OMPRTL__kmpc_single, +  // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid); +  OMPRTL__kmpc_end_single, +  // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, +  // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, +  // kmp_routine_entry_t *task_entry); +  OMPRTL__kmpc_omp_task_alloc, +  // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t * +  // new_task); +  OMPRTL__kmpc_omp_task, +  // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, +  // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), +  // kmp_int32 didit); +  OMPRTL__kmpc_copyprivate, +  // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, +  // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void +  // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); +  OMPRTL__kmpc_reduce, +  // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 +  // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, +  // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name +  // *lck); +  OMPRTL__kmpc_reduce_nowait, +  // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, +  // kmp_critical_name *lck); +  OMPRTL__kmpc_end_reduce, +  // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, +  // kmp_critical_name *lck); +  OMPRTL__kmpc_end_reduce_nowait, +  // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, +  // kmp_task_t * new_task); +  OMPRTL__kmpc_omp_task_begin_if0, +  // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, +  // kmp_task_t * new_task); +  OMPRTL__kmpc_omp_task_complete_if0, +  // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); +  OMPRTL__kmpc_ordered, +  // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); +  OMPRTL__kmpc_end_ordered, +  // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 +  // global_tid); +  OMPRTL__kmpc_omp_taskwait, +  // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); +  OMPRTL__kmpc_taskgroup, +  // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); +  OMPRTL__kmpc_end_taskgroup, +  // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, +  // int proc_bind); +  OMPRTL__kmpc_push_proc_bind, +  // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 +  // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t +  // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); +  OMPRTL__kmpc_omp_task_with_deps, +  // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 +  // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 +  // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); +  OMPRTL__kmpc_omp_wait_deps, +  // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 +  // global_tid, kmp_int32 cncl_kind); +  OMPRTL__kmpc_cancellationpoint, +  // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, +  // kmp_int32 cncl_kind); +  OMPRTL__kmpc_cancel, +  // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, +  // kmp_int32 num_teams, kmp_int32 thread_limit); +  OMPRTL__kmpc_push_num_teams, +  // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro +  // microtask, ...); +  OMPRTL__kmpc_fork_teams, +  // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int +  // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int +  // sched, kmp_uint64 grainsize, void *task_dup); +  OMPRTL__kmpc_taskloop, +  // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 +  // num_dims, struct kmp_dim *dims); +  OMPRTL__kmpc_doacross_init, +  // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); +  OMPRTL__kmpc_doacross_fini, +  // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 +  // *vec); +  OMPRTL__kmpc_doacross_post, +  // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 +  // *vec); +  OMPRTL__kmpc_doacross_wait, + +  // +  // Offloading related calls +  // +  // Call to int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t +  // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t +  // *arg_types); +  OMPRTL__tgt_target, +  // Call to int32_t __tgt_target_teams(int32_t device_id, void *host_ptr, +  // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, +  // int32_t *arg_types, int32_t num_teams, int32_t thread_limit); +  OMPRTL__tgt_target_teams, +  // Call to void __tgt_register_lib(__tgt_bin_desc *desc); +  OMPRTL__tgt_register_lib, +  // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc); +  OMPRTL__tgt_unregister_lib, +  // Call to void __tgt_target_data_begin(int32_t device_id, int32_t arg_num, +  // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); +  OMPRTL__tgt_target_data_begin, +  // Call to void __tgt_target_data_end(int32_t device_id, int32_t arg_num, +  // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); +  OMPRTL__tgt_target_data_end, +  // Call to void __tgt_target_data_update(int32_t device_id, int32_t arg_num, +  // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); +  OMPRTL__tgt_target_data_update, +}; + +/// A basic class for pre|post-action for advanced codegen sequence for OpenMP +/// region. +class CleanupTy final : public EHScopeStack::Cleanup { +  PrePostActionTy *Action; + +public: +  explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {} +  void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { +    if (!CGF.HaveInsertPoint()) +      return; +    Action->Exit(CGF); +  } +}; + +} // anonymous namespace + +void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const { +  CodeGenFunction::RunCleanupsScope Scope(CGF); +  if (PrePostAction) { +    CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction); +    Callback(CodeGen, CGF, *PrePostAction); +  } else { +    PrePostActionTy Action; +    Callback(CodeGen, CGF, Action); +  } +} + +LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) { +  return CGF.EmitLoadOfPointerLValue( +      CGF.GetAddrOfLocalVar(getThreadIDVariable()), +      getThreadIDVariable()->getType()->castAs<PointerType>()); +} + +void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) { +  if (!CGF.HaveInsertPoint()) +    return; +  // 1.2.2 OpenMP Language Terminology +  // Structured block - An executable statement with a single entry at the +  // top and a single exit at the bottom. +  // The point of exit cannot be a branch out of the structured block. +  // longjmp() and throw() must not violate the entry/exit criteria. +  CGF.EHStack.pushTerminate(); +  CodeGen(CGF); +  CGF.EHStack.popTerminate(); +} + +LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue( +    CodeGenFunction &CGF) { +  return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()), +                            getThreadIDVariable()->getType(), +                            LValueBaseInfo(AlignmentSource::Decl, false)); +} + +CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM) +    : CGM(CGM), OffloadEntriesInfoManager(CGM) { +  IdentTy = llvm::StructType::create( +      "ident_t", CGM.Int32Ty /* reserved_1 */, CGM.Int32Ty /* flags */, +      CGM.Int32Ty /* reserved_2 */, CGM.Int32Ty /* reserved_3 */, +      CGM.Int8PtrTy /* psource */); +  KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8); + +  loadOffloadInfoMetadata(); +} + +void CGOpenMPRuntime::clear() { +  InternalVars.clear(); +} + +static llvm::Function * +emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty, +                          const Expr *CombinerInitializer, const VarDecl *In, +                          const VarDecl *Out, bool IsCombiner) { +  // void .omp_combiner.(Ty *in, Ty *out); +  auto &C = CGM.getContext(); +  QualType PtrTy = C.getPointerType(Ty).withRestrict(); +  FunctionArgList Args; +  ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(), +                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); +  ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(), +                              /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); +  Args.push_back(&OmpOutParm); +  Args.push_back(&OmpInParm); +  auto &FnInfo = +      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); +  auto *FnTy = CGM.getTypes().GetFunctionType(FnInfo); +  auto *Fn = llvm::Function::Create( +      FnTy, llvm::GlobalValue::InternalLinkage, +      IsCombiner ? ".omp_combiner." : ".omp_initializer.", &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, FnInfo); +  Fn->removeFnAttr(llvm::Attribute::NoInline); +  Fn->removeFnAttr(llvm::Attribute::OptimizeNone); +  Fn->addFnAttr(llvm::Attribute::AlwaysInline); +  CodeGenFunction CGF(CGM); +  // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions. +  // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions. +  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args); +  CodeGenFunction::OMPPrivateScope Scope(CGF); +  Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm); +  Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() -> Address { +    return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>()) +        .getAddress(); +  }); +  Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm); +  Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() -> Address { +    return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>()) +        .getAddress(); +  }); +  (void)Scope.Privatize(); +  CGF.EmitIgnoredExpr(CombinerInitializer); +  Scope.ForceCleanup(); +  CGF.FinishFunction(); +  return Fn; +} + +void CGOpenMPRuntime::emitUserDefinedReduction( +    CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) { +  if (UDRMap.count(D) > 0) +    return; +  auto &C = CGM.getContext(); +  if (!In || !Out) { +    In = &C.Idents.get("omp_in"); +    Out = &C.Idents.get("omp_out"); +  } +  llvm::Function *Combiner = emitCombinerOrInitializer( +      CGM, D->getType(), D->getCombiner(), cast<VarDecl>(D->lookup(In).front()), +      cast<VarDecl>(D->lookup(Out).front()), +      /*IsCombiner=*/true); +  llvm::Function *Initializer = nullptr; +  if (auto *Init = D->getInitializer()) { +    if (!Priv || !Orig) { +      Priv = &C.Idents.get("omp_priv"); +      Orig = &C.Idents.get("omp_orig"); +    } +    Initializer = emitCombinerOrInitializer( +        CGM, D->getType(), Init, cast<VarDecl>(D->lookup(Orig).front()), +        cast<VarDecl>(D->lookup(Priv).front()), +        /*IsCombiner=*/false); +  } +  UDRMap.insert(std::make_pair(D, std::make_pair(Combiner, Initializer))); +  if (CGF) { +    auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn); +    Decls.second.push_back(D); +  } +} + +std::pair<llvm::Function *, llvm::Function *> +CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) { +  auto I = UDRMap.find(D); +  if (I != UDRMap.end()) +    return I->second; +  emitUserDefinedReduction(/*CGF=*/nullptr, D); +  return UDRMap.lookup(D); +} + +// Layout information for ident_t. +static CharUnits getIdentAlign(CodeGenModule &CGM) { +  return CGM.getPointerAlign(); +} +static CharUnits getIdentSize(CodeGenModule &CGM) { +  assert((4 * CGM.getPointerSize()).isMultipleOf(CGM.getPointerAlign())); +  return CharUnits::fromQuantity(16) + CGM.getPointerSize(); +} +static CharUnits getOffsetOfIdentField(IdentFieldIndex Field) { +  // All the fields except the last are i32, so this works beautifully. +  return unsigned(Field) * CharUnits::fromQuantity(4); +} +static Address createIdentFieldGEP(CodeGenFunction &CGF, Address Addr, +                                   IdentFieldIndex Field, +                                   const llvm::Twine &Name = "") { +  auto Offset = getOffsetOfIdentField(Field); +  return CGF.Builder.CreateStructGEP(Addr, Field, Offset, Name); +} + +static llvm::Value *emitParallelOrTeamsOutlinedFunction( +    CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS, +    const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, +    const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) { +  assert(ThreadIDVar->getType()->isPointerType() && +         "thread id variable must be of type kmp_int32 *"); +  CodeGenFunction CGF(CGM, true); +  bool HasCancel = false; +  if (auto *OPD = dyn_cast<OMPParallelDirective>(&D)) +    HasCancel = OPD->hasCancel(); +  else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D)) +    HasCancel = OPSD->hasCancel(); +  else if (auto *OPFD = dyn_cast<OMPParallelForDirective>(&D)) +    HasCancel = OPFD->hasCancel(); +  CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, +                                    HasCancel, OutlinedHelperName); +  CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); +  return CGF.GenerateOpenMPCapturedStmtFunction(*CS); +} + +llvm::Value *CGOpenMPRuntime::emitParallelOutlinedFunction( +    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, +    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { +  const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel); +  return emitParallelOrTeamsOutlinedFunction( +      CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); +} + +llvm::Value *CGOpenMPRuntime::emitTeamsOutlinedFunction( +    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, +    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { +  const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams); +  return emitParallelOrTeamsOutlinedFunction( +      CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); +} + +llvm::Value *CGOpenMPRuntime::emitTaskOutlinedFunction( +    const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, +    const VarDecl *PartIDVar, const VarDecl *TaskTVar, +    OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, +    bool Tied, unsigned &NumberOfParts) { +  auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF, +                                              PrePostActionTy &) { +    auto *ThreadID = getThreadID(CGF, D.getLocStart()); +    auto *UpLoc = emitUpdateLocation(CGF, D.getLocStart()); +    llvm::Value *TaskArgs[] = { +        UpLoc, ThreadID, +        CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar), +                                    TaskTVar->getType()->castAs<PointerType>()) +            .getPointer()}; +    CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs); +  }; +  CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar, +                                                            UntiedCodeGen); +  CodeGen.setAction(Action); +  assert(!ThreadIDVar->getType()->isPointerType() && +         "thread id variable must be of type kmp_int32 for tasks"); +  auto *CS = cast<CapturedStmt>(D.getAssociatedStmt()); +  auto *TD = dyn_cast<OMPTaskDirective>(&D); +  CodeGenFunction CGF(CGM, true); +  CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, +                                        InnermostKind, +                                        TD ? TD->hasCancel() : false, Action); +  CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); +  auto *Res = CGF.GenerateCapturedStmtFunction(*CS); +  if (!Tied) +    NumberOfParts = Action.getNumberOfParts(); +  return Res; +} + +Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) { +  CharUnits Align = getIdentAlign(CGM); +  llvm::Value *Entry = OpenMPDefaultLocMap.lookup(Flags); +  if (!Entry) { +    if (!DefaultOpenMPPSource) { +      // Initialize default location for psource field of ident_t structure of +      // all ident_t objects. Format is ";file;function;line;column;;". +      // Taken from +      // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp_str.c +      DefaultOpenMPPSource = +          CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer(); +      DefaultOpenMPPSource = +          llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy); +    } + +    ConstantInitBuilder builder(CGM); +    auto fields = builder.beginStruct(IdentTy); +    fields.addInt(CGM.Int32Ty, 0); +    fields.addInt(CGM.Int32Ty, Flags); +    fields.addInt(CGM.Int32Ty, 0); +    fields.addInt(CGM.Int32Ty, 0); +    fields.add(DefaultOpenMPPSource); +    auto DefaultOpenMPLocation = +      fields.finishAndCreateGlobal("", Align, /*isConstant*/ true, +                                   llvm::GlobalValue::PrivateLinkage); +    DefaultOpenMPLocation->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + +    OpenMPDefaultLocMap[Flags] = Entry = DefaultOpenMPLocation; +  } +  return Address(Entry, Align); +} + +llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF, +                                                 SourceLocation Loc, +                                                 unsigned Flags) { +  Flags |= OMP_IDENT_KMPC; +  // If no debug info is generated - return global default location. +  if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo || +      Loc.isInvalid()) +    return getOrCreateDefaultLocation(Flags).getPointer(); + +  assert(CGF.CurFn && "No function in current CodeGenFunction."); + +  Address LocValue = Address::invalid(); +  auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); +  if (I != OpenMPLocThreadIDMap.end()) +    LocValue = Address(I->second.DebugLoc, getIdentAlign(CGF.CGM)); + +  // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if +  // GetOpenMPThreadID was called before this routine. +  if (!LocValue.isValid()) { +    // Generate "ident_t .kmpc_loc.addr;" +    Address AI = CGF.CreateTempAlloca(IdentTy, getIdentAlign(CGF.CGM), +                                      ".kmpc_loc.addr"); +    auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); +    Elem.second.DebugLoc = AI.getPointer(); +    LocValue = AI; + +    CGBuilderTy::InsertPointGuard IPG(CGF.Builder); +    CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt); +    CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags), +                             CGM.getSize(getIdentSize(CGF.CGM))); +  } + +  // char **psource = &.kmpc_loc_<flags>.addr.psource; +  Address PSource = createIdentFieldGEP(CGF, LocValue, IdentField_PSource); + +  auto OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding()); +  if (OMPDebugLoc == nullptr) { +    SmallString<128> Buffer2; +    llvm::raw_svector_ostream OS2(Buffer2); +    // Build debug location +    PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); +    OS2 << ";" << PLoc.getFilename() << ";"; +    if (const FunctionDecl *FD = +            dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) { +      OS2 << FD->getQualifiedNameAsString(); +    } +    OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;"; +    OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str()); +    OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc; +  } +  // *psource = ";<File>;<Function>;<Line>;<Column>;;"; +  CGF.Builder.CreateStore(OMPDebugLoc, PSource); + +  // Our callers always pass this to a runtime function, so for +  // convenience, go ahead and return a naked pointer. +  return LocValue.getPointer(); +} + +llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF, +                                          SourceLocation Loc) { +  assert(CGF.CurFn && "No function in current CodeGenFunction."); + +  llvm::Value *ThreadID = nullptr; +  // Check whether we've already cached a load of the thread id in this +  // function. +  auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); +  if (I != OpenMPLocThreadIDMap.end()) { +    ThreadID = I->second.ThreadID; +    if (ThreadID != nullptr) +      return ThreadID; +  } +  if (auto *OMPRegionInfo = +          dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { +    if (OMPRegionInfo->getThreadIDVariable()) { +      // Check if this an outlined function with thread id passed as argument. +      auto LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF); +      ThreadID = CGF.EmitLoadOfLValue(LVal, Loc).getScalarVal(); +      // If value loaded in entry block, cache it and use it everywhere in +      // function. +      if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) { +        auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); +        Elem.second.ThreadID = ThreadID; +      } +      return ThreadID; +    } +  } + +  // This is not an outlined function region - need to call __kmpc_int32 +  // kmpc_global_thread_num(ident_t *loc). +  // Generate thread id value and cache this value for use across the +  // function. +  CGBuilderTy::InsertPointGuard IPG(CGF.Builder); +  CGF.Builder.SetInsertPoint(CGF.AllocaInsertPt); +  ThreadID = +      CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), +                          emitUpdateLocation(CGF, Loc)); +  auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); +  Elem.second.ThreadID = ThreadID; +  return ThreadID; +} + +void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) { +  assert(CGF.CurFn && "No function in current CodeGenFunction."); +  if (OpenMPLocThreadIDMap.count(CGF.CurFn)) +    OpenMPLocThreadIDMap.erase(CGF.CurFn); +  if (FunctionUDRMap.count(CGF.CurFn) > 0) { +    for(auto *D : FunctionUDRMap[CGF.CurFn]) { +      UDRMap.erase(D); +    } +    FunctionUDRMap.erase(CGF.CurFn); +  } +} + +llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() { +  if (!IdentTy) { +  } +  return llvm::PointerType::getUnqual(IdentTy); +} + +llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() { +  if (!Kmpc_MicroTy) { +    // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...) +    llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty), +                                 llvm::PointerType::getUnqual(CGM.Int32Ty)}; +    Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true); +  } +  return llvm::PointerType::getUnqual(Kmpc_MicroTy); +} + +llvm::Constant * +CGOpenMPRuntime::createRuntimeFunction(unsigned Function) { +  llvm::Constant *RTLFn = nullptr; +  switch (static_cast<OpenMPRTLFunction>(Function)) { +  case OMPRTL__kmpc_fork_call: { +    // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro +    // microtask, ...); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                getKmpc_MicroPointerTy()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call"); +    break; +  } +  case OMPRTL__kmpc_global_thread_num: { +    // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num"); +    break; +  } +  case OMPRTL__kmpc_threadprivate_cached: { +    // Build void *__kmpc_threadprivate_cached(ident_t *loc, +    // kmp_int32 global_tid, void *data, size_t size, void ***cache); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.VoidPtrTy, CGM.SizeTy, +                                CGM.VoidPtrTy->getPointerTo()->getPointerTo()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached"); +    break; +  } +  case OMPRTL__kmpc_critical: { +    // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, +    // kmp_critical_name *crit); +    llvm::Type *TypeParams[] = { +        getIdentTyPointerTy(), CGM.Int32Ty, +        llvm::PointerType::getUnqual(KmpCriticalNameTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical"); +    break; +  } +  case OMPRTL__kmpc_critical_with_hint: { +    // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid, +    // kmp_critical_name *crit, uintptr_t hint); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                llvm::PointerType::getUnqual(KmpCriticalNameTy), +                                CGM.IntPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint"); +    break; +  } +  case OMPRTL__kmpc_threadprivate_register: { +    // Build void __kmpc_threadprivate_register(ident_t *, void *data, +    // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); +    // typedef void *(*kmpc_ctor)(void *); +    auto KmpcCtorTy = +        llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, +                                /*isVarArg*/ false)->getPointerTo(); +    // typedef void *(*kmpc_cctor)(void *, void *); +    llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; +    auto KmpcCopyCtorTy = +        llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs, +                                /*isVarArg*/ false)->getPointerTo(); +    // typedef void (*kmpc_dtor)(void *); +    auto KmpcDtorTy = +        llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false) +            ->getPointerTo(); +    llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy, +                              KmpcCopyCtorTy, KmpcDtorTy}; +    auto FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs, +                                        /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register"); +    break; +  } +  case OMPRTL__kmpc_end_critical: { +    // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, +    // kmp_critical_name *crit); +    llvm::Type *TypeParams[] = { +        getIdentTyPointerTy(), CGM.Int32Ty, +        llvm::PointerType::getUnqual(KmpCriticalNameTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical"); +    break; +  } +  case OMPRTL__kmpc_cancel_barrier: { +    // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 +    // global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier"); +    break; +  } +  case OMPRTL__kmpc_barrier: { +    // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier"); +    break; +  } +  case OMPRTL__kmpc_for_static_fini: { +    // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini"); +    break; +  } +  case OMPRTL__kmpc_push_num_threads: { +    // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, +    // kmp_int32 num_threads) +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads"); +    break; +  } +  case OMPRTL__kmpc_serialized_parallel: { +    // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 +    // global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel"); +    break; +  } +  case OMPRTL__kmpc_end_serialized_parallel: { +    // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 +    // global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); +    break; +  } +  case OMPRTL__kmpc_flush: { +    // Build void __kmpc_flush(ident_t *loc); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush"); +    break; +  } +  case OMPRTL__kmpc_master: { +    // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master"); +    break; +  } +  case OMPRTL__kmpc_end_master: { +    // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master"); +    break; +  } +  case OMPRTL__kmpc_omp_taskyield: { +    // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, +    // int end_part); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield"); +    break; +  } +  case OMPRTL__kmpc_single: { +    // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single"); +    break; +  } +  case OMPRTL__kmpc_end_single: { +    // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single"); +    break; +  } +  case OMPRTL__kmpc_omp_task_alloc: { +    // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, +    // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, +    // kmp_routine_entry_t *task_entry); +    assert(KmpRoutineEntryPtrTy != nullptr && +           "Type kmp_routine_entry_t must be created."); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, +                                CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy}; +    // Return void * and then cast to particular kmp_task_t type. +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc"); +    break; +  } +  case OMPRTL__kmpc_omp_task: { +    // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t +    // *new_task); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.VoidPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task"); +    break; +  } +  case OMPRTL__kmpc_copyprivate: { +    // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, +    // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), +    // kmp_int32 didit); +    llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; +    auto *CpyFnTy = +        llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy, +                                CGM.VoidPtrTy, CpyFnTy->getPointerTo(), +                                CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate"); +    break; +  } +  case OMPRTL__kmpc_reduce: { +    // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, +    // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void +    // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); +    llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; +    auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, +                                               /*isVarArg=*/false); +    llvm::Type *TypeParams[] = { +        getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, +        CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), +        llvm::PointerType::getUnqual(KmpCriticalNameTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce"); +    break; +  } +  case OMPRTL__kmpc_reduce_nowait: { +    // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 +    // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, +    // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name +    // *lck); +    llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; +    auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, +                                               /*isVarArg=*/false); +    llvm::Type *TypeParams[] = { +        getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, +        CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), +        llvm::PointerType::getUnqual(KmpCriticalNameTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait"); +    break; +  } +  case OMPRTL__kmpc_end_reduce: { +    // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, +    // kmp_critical_name *lck); +    llvm::Type *TypeParams[] = { +        getIdentTyPointerTy(), CGM.Int32Ty, +        llvm::PointerType::getUnqual(KmpCriticalNameTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce"); +    break; +  } +  case OMPRTL__kmpc_end_reduce_nowait: { +    // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, +    // kmp_critical_name *lck); +    llvm::Type *TypeParams[] = { +        getIdentTyPointerTy(), CGM.Int32Ty, +        llvm::PointerType::getUnqual(KmpCriticalNameTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = +        CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait"); +    break; +  } +  case OMPRTL__kmpc_omp_task_begin_if0: { +    // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t +    // *new_task); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.VoidPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = +        CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0"); +    break; +  } +  case OMPRTL__kmpc_omp_task_complete_if0: { +    // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t +    // *new_task); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.VoidPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, +                                      /*Name=*/"__kmpc_omp_task_complete_if0"); +    break; +  } +  case OMPRTL__kmpc_ordered: { +    // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered"); +    break; +  } +  case OMPRTL__kmpc_end_ordered: { +    // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered"); +    break; +  } +  case OMPRTL__kmpc_omp_taskwait: { +    // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait"); +    break; +  } +  case OMPRTL__kmpc_taskgroup: { +    // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup"); +    break; +  } +  case OMPRTL__kmpc_end_taskgroup: { +    // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup"); +    break; +  } +  case OMPRTL__kmpc_push_proc_bind: { +    // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, +    // int proc_bind) +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind"); +    break; +  } +  case OMPRTL__kmpc_omp_task_with_deps: { +    // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, +    // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, +    // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); +    llvm::Type *TypeParams[] = { +        getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, +        CGM.VoidPtrTy,         CGM.Int32Ty, CGM.VoidPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); +    RTLFn = +        CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps"); +    break; +  } +  case OMPRTL__kmpc_omp_wait_deps: { +    // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, +    // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, +    // kmp_depend_info_t *noalias_dep_list); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.Int32Ty,           CGM.VoidPtrTy, +                                CGM.Int32Ty,           CGM.VoidPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps"); +    break; +  } +  case OMPRTL__kmpc_cancellationpoint: { +    // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 +    // global_tid, kmp_int32 cncl_kind) +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint"); +    break; +  } +  case OMPRTL__kmpc_cancel: { +    // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, +    // kmp_int32 cncl_kind) +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel"); +    break; +  } +  case OMPRTL__kmpc_push_num_teams: { +    // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid, +    // kmp_int32 num_teams, kmp_int32 num_threads) +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, +        CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams"); +    break; +  } +  case OMPRTL__kmpc_fork_teams: { +    // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro +    // microtask, ...); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                getKmpc_MicroPointerTy()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams"); +    break; +  } +  case OMPRTL__kmpc_taskloop: { +    // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int +    // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int +    // sched, kmp_uint64 grainsize, void *task_dup); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), +                                CGM.IntTy, +                                CGM.VoidPtrTy, +                                CGM.IntTy, +                                CGM.Int64Ty->getPointerTo(), +                                CGM.Int64Ty->getPointerTo(), +                                CGM.Int64Ty, +                                CGM.IntTy, +                                CGM.IntTy, +                                CGM.Int64Ty, +                                CGM.VoidPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop"); +    break; +  } +  case OMPRTL__kmpc_doacross_init: { +    // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 +    // num_dims, struct kmp_dim *dims); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), +                                CGM.Int32Ty, +                                CGM.Int32Ty, +                                CGM.VoidPtrTy}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init"); +    break; +  } +  case OMPRTL__kmpc_doacross_fini: { +    // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini"); +    break; +  } +  case OMPRTL__kmpc_doacross_post: { +    // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 +    // *vec); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.Int64Ty->getPointerTo()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post"); +    break; +  } +  case OMPRTL__kmpc_doacross_wait: { +    // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 +    // *vec); +    llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, +                                CGM.Int64Ty->getPointerTo()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait"); +    break; +  } +  case OMPRTL__tgt_target: { +    // Build int32_t __tgt_target(int32_t device_id, void *host_ptr, int32_t +    // arg_num, void** args_base, void **args, size_t *arg_sizes, int32_t +    // *arg_types); +    llvm::Type *TypeParams[] = {CGM.Int32Ty, +                                CGM.VoidPtrTy, +                                CGM.Int32Ty, +                                CGM.VoidPtrPtrTy, +                                CGM.VoidPtrPtrTy, +                                CGM.SizeTy->getPointerTo(), +                                CGM.Int32Ty->getPointerTo()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target"); +    break; +  } +  case OMPRTL__tgt_target_teams: { +    // Build int32_t __tgt_target_teams(int32_t device_id, void *host_ptr, +    // int32_t arg_num, void** args_base, void **args, size_t *arg_sizes, +    // int32_t *arg_types, int32_t num_teams, int32_t thread_limit); +    llvm::Type *TypeParams[] = {CGM.Int32Ty, +                                CGM.VoidPtrTy, +                                CGM.Int32Ty, +                                CGM.VoidPtrPtrTy, +                                CGM.VoidPtrPtrTy, +                                CGM.SizeTy->getPointerTo(), +                                CGM.Int32Ty->getPointerTo(), +                                CGM.Int32Ty, +                                CGM.Int32Ty}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams"); +    break; +  } +  case OMPRTL__tgt_register_lib: { +    // Build void __tgt_register_lib(__tgt_bin_desc *desc); +    QualType ParamTy = +        CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); +    llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib"); +    break; +  } +  case OMPRTL__tgt_unregister_lib: { +    // Build void __tgt_unregister_lib(__tgt_bin_desc *desc); +    QualType ParamTy = +        CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); +    llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib"); +    break; +  } +  case OMPRTL__tgt_target_data_begin: { +    // Build void __tgt_target_data_begin(int32_t device_id, int32_t arg_num, +    // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); +    llvm::Type *TypeParams[] = {CGM.Int32Ty, +                                CGM.Int32Ty, +                                CGM.VoidPtrPtrTy, +                                CGM.VoidPtrPtrTy, +                                CGM.SizeTy->getPointerTo(), +                                CGM.Int32Ty->getPointerTo()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin"); +    break; +  } +  case OMPRTL__tgt_target_data_end: { +    // Build void __tgt_target_data_end(int32_t device_id, int32_t arg_num, +    // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); +    llvm::Type *TypeParams[] = {CGM.Int32Ty, +                                CGM.Int32Ty, +                                CGM.VoidPtrPtrTy, +                                CGM.VoidPtrPtrTy, +                                CGM.SizeTy->getPointerTo(), +                                CGM.Int32Ty->getPointerTo()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end"); +    break; +  } +  case OMPRTL__tgt_target_data_update: { +    // Build void __tgt_target_data_update(int32_t device_id, int32_t arg_num, +    // void** args_base, void **args, size_t *arg_sizes, int32_t *arg_types); +    llvm::Type *TypeParams[] = {CGM.Int32Ty, +                                CGM.Int32Ty, +                                CGM.VoidPtrPtrTy, +                                CGM.VoidPtrPtrTy, +                                CGM.SizeTy->getPointerTo(), +                                CGM.Int32Ty->getPointerTo()}; +    llvm::FunctionType *FnTy = +        llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +    RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update"); +    break; +  } +  } +  assert(RTLFn && "Unable to find OpenMP runtime function"); +  return RTLFn; +} + +llvm::Constant *CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, +                                                             bool IVSigned) { +  assert((IVSize == 32 || IVSize == 64) && +         "IV size is not compatible with the omp runtime"); +  auto Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4" +                                       : "__kmpc_for_static_init_4u") +                           : (IVSigned ? "__kmpc_for_static_init_8" +                                       : "__kmpc_for_static_init_8u"); +  auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; +  auto PtrTy = llvm::PointerType::getUnqual(ITy); +  llvm::Type *TypeParams[] = { +    getIdentTyPointerTy(),                     // loc +    CGM.Int32Ty,                               // tid +    CGM.Int32Ty,                               // schedtype +    llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter +    PtrTy,                                     // p_lower +    PtrTy,                                     // p_upper +    PtrTy,                                     // p_stride +    ITy,                                       // incr +    ITy                                        // chunk +  }; +  llvm::FunctionType *FnTy = +      llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +  return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant *CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, +                                                            bool IVSigned) { +  assert((IVSize == 32 || IVSize == 64) && +         "IV size is not compatible with the omp runtime"); +  auto Name = +      IVSize == 32 +          ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u") +          : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u"); +  auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; +  llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc +                               CGM.Int32Ty,           // tid +                               CGM.Int32Ty,           // schedtype +                               ITy,                   // lower +                               ITy,                   // upper +                               ITy,                   // stride +                               ITy                    // chunk +  }; +  llvm::FunctionType *FnTy = +      llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); +  return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant *CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, +                                                            bool IVSigned) { +  assert((IVSize == 32 || IVSize == 64) && +         "IV size is not compatible with the omp runtime"); +  auto Name = +      IVSize == 32 +          ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u") +          : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u"); +  llvm::Type *TypeParams[] = { +      getIdentTyPointerTy(), // loc +      CGM.Int32Ty,           // tid +  }; +  llvm::FunctionType *FnTy = +      llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); +  return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant *CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, +                                                            bool IVSigned) { +  assert((IVSize == 32 || IVSize == 64) && +         "IV size is not compatible with the omp runtime"); +  auto Name = +      IVSize == 32 +          ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u") +          : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u"); +  auto ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; +  auto PtrTy = llvm::PointerType::getUnqual(ITy); +  llvm::Type *TypeParams[] = { +    getIdentTyPointerTy(),                     // loc +    CGM.Int32Ty,                               // tid +    llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter +    PtrTy,                                     // p_lower +    PtrTy,                                     // p_upper +    PtrTy                                      // p_stride +  }; +  llvm::FunctionType *FnTy = +      llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); +  return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::Constant * +CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) { +  assert(!CGM.getLangOpts().OpenMPUseTLS || +         !CGM.getContext().getTargetInfo().isTLSSupported()); +  // Lookup the entry, lazily creating it if necessary. +  return getOrCreateInternalVariable(CGM.Int8PtrPtrTy, +                                     Twine(CGM.getMangledName(VD)) + ".cache."); +} + +Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, +                                                const VarDecl *VD, +                                                Address VDAddr, +                                                SourceLocation Loc) { +  if (CGM.getLangOpts().OpenMPUseTLS && +      CGM.getContext().getTargetInfo().isTLSSupported()) +    return VDAddr; + +  auto VarTy = VDAddr.getElementType(); +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), +                         CGF.Builder.CreatePointerCast(VDAddr.getPointer(), +                                                       CGM.Int8PtrTy), +                         CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)), +                         getOrCreateThreadPrivateCache(VD)}; +  return Address(CGF.EmitRuntimeCall( +      createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args), +                 VDAddr.getAlignment()); +} + +void CGOpenMPRuntime::emitThreadPrivateVarInit( +    CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor, +    llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) { +  // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime +  // library. +  auto OMPLoc = emitUpdateLocation(CGF, Loc); +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), +                      OMPLoc); +  // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor) +  // to register constructor/destructor for variable. +  llvm::Value *Args[] = {OMPLoc, +                         CGF.Builder.CreatePointerCast(VDAddr.getPointer(), +                                                       CGM.VoidPtrTy), +                         Ctor, CopyCtor, Dtor}; +  CGF.EmitRuntimeCall( +      createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args); +} + +llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition( +    const VarDecl *VD, Address VDAddr, SourceLocation Loc, +    bool PerformInit, CodeGenFunction *CGF) { +  if (CGM.getLangOpts().OpenMPUseTLS && +      CGM.getContext().getTargetInfo().isTLSSupported()) +    return nullptr; + +  VD = VD->getDefinition(CGM.getContext()); +  if (VD && ThreadPrivateWithDefinition.count(VD) == 0) { +    ThreadPrivateWithDefinition.insert(VD); +    QualType ASTTy = VD->getType(); + +    llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr; +    auto Init = VD->getAnyInitializer(); +    if (CGM.getLangOpts().CPlusPlus && PerformInit) { +      // Generate function that re-emits the declaration's initializer into the +      // threadprivate copy of the variable VD +      CodeGenFunction CtorCGF(CGM); +      FunctionArgList Args; +      ImplicitParamDecl Dst(CGM.getContext(), CGM.getContext().VoidPtrTy, +                            ImplicitParamDecl::Other); +      Args.push_back(&Dst); + +      auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( +          CGM.getContext().VoidPtrTy, Args); +      auto FTy = CGM.getTypes().GetFunctionType(FI); +      auto Fn = CGM.CreateGlobalInitOrDestructFunction( +          FTy, ".__kmpc_global_ctor_.", FI, Loc); +      CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI, +                            Args, SourceLocation()); +      auto ArgVal = CtorCGF.EmitLoadOfScalar( +          CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, +          CGM.getContext().VoidPtrTy, Dst.getLocation()); +      Address Arg = Address(ArgVal, VDAddr.getAlignment()); +      Arg = CtorCGF.Builder.CreateElementBitCast(Arg, +                                             CtorCGF.ConvertTypeForMem(ASTTy)); +      CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(), +                               /*IsInitializer=*/true); +      ArgVal = CtorCGF.EmitLoadOfScalar( +          CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, +          CGM.getContext().VoidPtrTy, Dst.getLocation()); +      CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue); +      CtorCGF.FinishFunction(); +      Ctor = Fn; +    } +    if (VD->getType().isDestructedType() != QualType::DK_none) { +      // Generate function that emits destructor call for the threadprivate copy +      // of the variable VD +      CodeGenFunction DtorCGF(CGM); +      FunctionArgList Args; +      ImplicitParamDecl Dst(CGM.getContext(), CGM.getContext().VoidPtrTy, +                            ImplicitParamDecl::Other); +      Args.push_back(&Dst); + +      auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( +          CGM.getContext().VoidTy, Args); +      auto FTy = CGM.getTypes().GetFunctionType(FI); +      auto Fn = CGM.CreateGlobalInitOrDestructFunction( +          FTy, ".__kmpc_global_dtor_.", FI, Loc); +      auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); +      DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args, +                            SourceLocation()); +      // Create a scope with an artificial location for the body of this function. +      auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); +      auto ArgVal = DtorCGF.EmitLoadOfScalar( +          DtorCGF.GetAddrOfLocalVar(&Dst), +          /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); +      DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy, +                          DtorCGF.getDestroyer(ASTTy.isDestructedType()), +                          DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); +      DtorCGF.FinishFunction(); +      Dtor = Fn; +    } +    // Do not emit init function if it is not required. +    if (!Ctor && !Dtor) +      return nullptr; + +    llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; +    auto CopyCtorTy = +        llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs, +                                /*isVarArg=*/false)->getPointerTo(); +    // Copying constructor for the threadprivate variable. +    // Must be NULL - reserved by runtime, but currently it requires that this +    // parameter is always NULL. Otherwise it fires assertion. +    CopyCtor = llvm::Constant::getNullValue(CopyCtorTy); +    if (Ctor == nullptr) { +      auto CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, +                                            /*isVarArg=*/false)->getPointerTo(); +      Ctor = llvm::Constant::getNullValue(CtorTy); +    } +    if (Dtor == nullptr) { +      auto DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, +                                            /*isVarArg=*/false)->getPointerTo(); +      Dtor = llvm::Constant::getNullValue(DtorTy); +    } +    if (!CGF) { +      auto InitFunctionTy = +          llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false); +      auto InitFunction = CGM.CreateGlobalInitOrDestructFunction( +          InitFunctionTy, ".__omp_threadprivate_init_.", +          CGM.getTypes().arrangeNullaryFunction()); +      CodeGenFunction InitCGF(CGM); +      FunctionArgList ArgList; +      InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction, +                            CGM.getTypes().arrangeNullaryFunction(), ArgList, +                            Loc); +      emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); +      InitCGF.FinishFunction(); +      return InitFunction; +    } +    emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); +  } +  return nullptr; +} + +/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen +/// function. Here is the logic: +/// if (Cond) { +///   ThenGen(); +/// } else { +///   ElseGen(); +/// } +void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond, +                                      const RegionCodeGenTy &ThenGen, +                                      const RegionCodeGenTy &ElseGen) { +  CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange()); + +  // If the condition constant folds and can be elided, try to avoid emitting +  // the condition and the dead arm of the if/else. +  bool CondConstant; +  if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) { +    if (CondConstant) +      ThenGen(CGF); +    else +      ElseGen(CGF); +    return; +  } + +  // Otherwise, the condition did not fold, or we couldn't elide it.  Just +  // emit the conditional branch. +  auto ThenBlock = CGF.createBasicBlock("omp_if.then"); +  auto ElseBlock = CGF.createBasicBlock("omp_if.else"); +  auto ContBlock = CGF.createBasicBlock("omp_if.end"); +  CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0); + +  // Emit the 'then' code. +  CGF.EmitBlock(ThenBlock); +  ThenGen(CGF); +  CGF.EmitBranch(ContBlock); +  // Emit the 'else' code if present. +  // There is no need to emit line number for unconditional branch. +  (void)ApplyDebugLocation::CreateEmpty(CGF); +  CGF.EmitBlock(ElseBlock); +  ElseGen(CGF); +  // There is no need to emit line number for unconditional branch. +  (void)ApplyDebugLocation::CreateEmpty(CGF); +  CGF.EmitBranch(ContBlock); +  // Emit the continuation block for code after the if. +  CGF.EmitBlock(ContBlock, /*IsFinished=*/true); +} + +void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, +                                       llvm::Value *OutlinedFn, +                                       ArrayRef<llvm::Value *> CapturedVars, +                                       const Expr *IfCond) { +  if (!CGF.HaveInsertPoint()) +    return; +  auto *RTLoc = emitUpdateLocation(CGF, Loc); +  auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF, +                                                     PrePostActionTy &) { +    // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn); +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    llvm::Value *Args[] = { +        RTLoc, +        CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars +        CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())}; +    llvm::SmallVector<llvm::Value *, 16> RealArgs; +    RealArgs.append(std::begin(Args), std::end(Args)); +    RealArgs.append(CapturedVars.begin(), CapturedVars.end()); + +    auto RTLFn = RT.createRuntimeFunction(OMPRTL__kmpc_fork_call); +    CGF.EmitRuntimeCall(RTLFn, RealArgs); +  }; +  auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF, +                                                          PrePostActionTy &) { +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    auto ThreadID = RT.getThreadID(CGF, Loc); +    // Build calls: +    // __kmpc_serialized_parallel(&Loc, GTid); +    llvm::Value *Args[] = {RTLoc, ThreadID}; +    CGF.EmitRuntimeCall( +        RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args); + +    // OutlinedFn(>id, &zero, CapturedStruct); +    auto ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc); +    Address ZeroAddr = +        CGF.CreateTempAlloca(CGF.Int32Ty, CharUnits::fromQuantity(4), +                             /*Name*/ ".zero.addr"); +    CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); +    llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; +    OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); +    OutlinedFnArgs.push_back(ZeroAddr.getPointer()); +    OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); +    CGF.EmitCallOrInvoke(OutlinedFn, OutlinedFnArgs); + +    // __kmpc_end_serialized_parallel(&Loc, GTid); +    llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID}; +    CGF.EmitRuntimeCall( +        RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel), +        EndArgs); +  }; +  if (IfCond) +    emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); +  else { +    RegionCodeGenTy ThenRCG(ThenGen); +    ThenRCG(CGF); +  } +} + +// If we're inside an (outlined) parallel region, use the region info's +// thread-ID variable (it is passed in a first argument of the outlined function +// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in +// regular serial code region, get thread ID by calling kmp_int32 +// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and +// return the address of that temp. +Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF, +                                             SourceLocation Loc) { +  if (auto *OMPRegionInfo = +          dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) +    if (OMPRegionInfo->getThreadIDVariable()) +      return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(); + +  auto ThreadID = getThreadID(CGF, Loc); +  auto Int32Ty = +      CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true); +  auto ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp."); +  CGF.EmitStoreOfScalar(ThreadID, +                        CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty)); + +  return ThreadIDTemp; +} + +llvm::Constant * +CGOpenMPRuntime::getOrCreateInternalVariable(llvm::Type *Ty, +                                             const llvm::Twine &Name) { +  SmallString<256> Buffer; +  llvm::raw_svector_ostream Out(Buffer); +  Out << Name; +  auto RuntimeName = Out.str(); +  auto &Elem = *InternalVars.insert(std::make_pair(RuntimeName, nullptr)).first; +  if (Elem.second) { +    assert(Elem.second->getType()->getPointerElementType() == Ty && +           "OMP internal variable has different type than requested"); +    return &*Elem.second; +  } + +  return Elem.second = new llvm::GlobalVariable( +             CGM.getModule(), Ty, /*IsConstant*/ false, +             llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), +             Elem.first()); +} + +llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) { +  llvm::Twine Name(".gomp_critical_user_", CriticalName); +  return getOrCreateInternalVariable(KmpCriticalNameTy, Name.concat(".var")); +} + +namespace { +/// Common pre(post)-action for different OpenMP constructs. +class CommonActionTy final : public PrePostActionTy { +  llvm::Value *EnterCallee; +  ArrayRef<llvm::Value *> EnterArgs; +  llvm::Value *ExitCallee; +  ArrayRef<llvm::Value *> ExitArgs; +  bool Conditional; +  llvm::BasicBlock *ContBlock = nullptr; + +public: +  CommonActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs, +                 llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs, +                 bool Conditional = false) +      : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), +        ExitArgs(ExitArgs), Conditional(Conditional) {} +  void Enter(CodeGenFunction &CGF) override { +    llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); +    if (Conditional) { +      llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); +      auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); +      ContBlock = CGF.createBasicBlock("omp_if.end"); +      // Generate the branch (If-stmt) +      CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); +      CGF.EmitBlock(ThenBlock); +    } +  } +  void Done(CodeGenFunction &CGF) { +    // Emit the rest of blocks/branches +    CGF.EmitBranch(ContBlock); +    CGF.EmitBlock(ContBlock, true); +  } +  void Exit(CodeGenFunction &CGF) override { +    CGF.EmitRuntimeCall(ExitCallee, ExitArgs); +  } +}; +} // anonymous namespace + +void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF, +                                         StringRef CriticalName, +                                         const RegionCodeGenTy &CriticalOpGen, +                                         SourceLocation Loc, const Expr *Hint) { +  // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]); +  // CriticalOpGen(); +  // __kmpc_end_critical(ident_t *, gtid, Lock); +  // Prepare arguments and build a call to __kmpc_critical +  if (!CGF.HaveInsertPoint()) +    return; +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), +                         getCriticalRegionLock(CriticalName)}; +  llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), +                                                std::end(Args)); +  if (Hint) { +    EnterArgs.push_back(CGF.Builder.CreateIntCast( +        CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false)); +  } +  CommonActionTy Action( +      createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint +                                 : OMPRTL__kmpc_critical), +      EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args); +  CriticalOpGen.setAction(Action); +  emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen); +} + +void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF, +                                       const RegionCodeGenTy &MasterOpGen, +                                       SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // if(__kmpc_master(ident_t *, gtid)) { +  //   MasterOpGen(); +  //   __kmpc_end_master(ident_t *, gtid); +  // } +  // Prepare arguments and build a call to __kmpc_master +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; +  CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args, +                        createRuntimeFunction(OMPRTL__kmpc_end_master), Args, +                        /*Conditional=*/true); +  MasterOpGen.setAction(Action); +  emitInlinedDirective(CGF, OMPD_master, MasterOpGen); +  Action.Done(CGF); +} + +void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF, +                                        SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Build call __kmpc_omp_taskyield(loc, thread_id, 0); +  llvm::Value *Args[] = { +      emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), +      llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)}; +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args); +  if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) +    Region->emitUntiedSwitch(CGF); +} + +void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF, +                                          const RegionCodeGenTy &TaskgroupOpGen, +                                          SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // __kmpc_taskgroup(ident_t *, gtid); +  // TaskgroupOpGen(); +  // __kmpc_end_taskgroup(ident_t *, gtid); +  // Prepare arguments and build a call to __kmpc_taskgroup +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; +  CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args, +                        createRuntimeFunction(OMPRTL__kmpc_end_taskgroup), +                        Args); +  TaskgroupOpGen.setAction(Action); +  emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen); +} + +/// Given an array of pointers to variables, project the address of a +/// given variable. +static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array, +                                      unsigned Index, const VarDecl *Var) { +  // Pull out the pointer to the variable. +  Address PtrAddr = +      CGF.Builder.CreateConstArrayGEP(Array, Index, CGF.getPointerSize()); +  llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr); + +  Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var)); +  Addr = CGF.Builder.CreateElementBitCast( +      Addr, CGF.ConvertTypeForMem(Var->getType())); +  return Addr; +} + +static llvm::Value *emitCopyprivateCopyFunction( +    CodeGenModule &CGM, llvm::Type *ArgsType, +    ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs, +    ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps) { +  auto &C = CGM.getContext(); +  // void copy_func(void *LHSArg, void *RHSArg); +  FunctionArgList Args; +  ImplicitParamDecl LHSArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); +  ImplicitParamDecl RHSArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); +  Args.push_back(&LHSArg); +  Args.push_back(&RHSArg); +  auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); +  auto *Fn = llvm::Function::Create( +      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, +      ".omp.copyprivate.copy_func", &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); +  CodeGenFunction CGF(CGM); +  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); +  // Dest = (void*[n])(LHSArg); +  // Src = (void*[n])(RHSArg); +  Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), +      ArgsType), CGF.getPointerAlign()); +  Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), +      ArgsType), CGF.getPointerAlign()); +  // *(Type0*)Dst[0] = *(Type0*)Src[0]; +  // *(Type1*)Dst[1] = *(Type1*)Src[1]; +  // ... +  // *(Typen*)Dst[n] = *(Typen*)Src[n]; +  for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) { +    auto DestVar = cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl()); +    Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar); + +    auto SrcVar = cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl()); +    Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar); + +    auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl(); +    QualType Type = VD->getType(); +    CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]); +  } +  CGF.FinishFunction(); +  return Fn; +} + +void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF, +                                       const RegionCodeGenTy &SingleOpGen, +                                       SourceLocation Loc, +                                       ArrayRef<const Expr *> CopyprivateVars, +                                       ArrayRef<const Expr *> SrcExprs, +                                       ArrayRef<const Expr *> DstExprs, +                                       ArrayRef<const Expr *> AssignmentOps) { +  if (!CGF.HaveInsertPoint()) +    return; +  assert(CopyprivateVars.size() == SrcExprs.size() && +         CopyprivateVars.size() == DstExprs.size() && +         CopyprivateVars.size() == AssignmentOps.size()); +  auto &C = CGM.getContext(); +  // int32 did_it = 0; +  // if(__kmpc_single(ident_t *, gtid)) { +  //   SingleOpGen(); +  //   __kmpc_end_single(ident_t *, gtid); +  //   did_it = 1; +  // } +  // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, +  // <copy_func>, did_it); + +  Address DidIt = Address::invalid(); +  if (!CopyprivateVars.empty()) { +    // int32 did_it = 0; +    auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); +    DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it"); +    CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt); +  } +  // Prepare arguments and build a call to __kmpc_single +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; +  CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args, +                        createRuntimeFunction(OMPRTL__kmpc_end_single), Args, +                        /*Conditional=*/true); +  SingleOpGen.setAction(Action); +  emitInlinedDirective(CGF, OMPD_single, SingleOpGen); +  if (DidIt.isValid()) { +    // did_it = 1; +    CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt); +  } +  Action.Done(CGF); +  // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, +  // <copy_func>, did_it); +  if (DidIt.isValid()) { +    llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size()); +    auto CopyprivateArrayTy = +        C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, +                               /*IndexTypeQuals=*/0); +    // Create a list of all private variables for copyprivate. +    Address CopyprivateList = +        CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list"); +    for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) { +      Address Elem = CGF.Builder.CreateConstArrayGEP( +          CopyprivateList, I, CGF.getPointerSize()); +      CGF.Builder.CreateStore( +          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +              CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy), +          Elem); +    } +    // Build function that copies private values from single region to all other +    // threads in the corresponding parallel region. +    auto *CpyFn = emitCopyprivateCopyFunction( +        CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(), +        CopyprivateVars, SrcExprs, DstExprs, AssignmentOps); +    auto *BufSize = CGF.getTypeSize(CopyprivateArrayTy); +    Address CL = +      CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList, +                                                      CGF.VoidPtrTy); +    auto *DidItVal = CGF.Builder.CreateLoad(DidIt); +    llvm::Value *Args[] = { +        emitUpdateLocation(CGF, Loc), // ident_t *<loc> +        getThreadID(CGF, Loc),        // i32 <gtid> +        BufSize,                      // size_t <buf_size> +        CL.getPointer(),              // void *<copyprivate list> +        CpyFn,                        // void (*) (void *, void *) <copy_func> +        DidItVal                      // i32 did_it +    }; +    CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args); +  } +} + +void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF, +                                        const RegionCodeGenTy &OrderedOpGen, +                                        SourceLocation Loc, bool IsThreads) { +  if (!CGF.HaveInsertPoint()) +    return; +  // __kmpc_ordered(ident_t *, gtid); +  // OrderedOpGen(); +  // __kmpc_end_ordered(ident_t *, gtid); +  // Prepare arguments and build a call to __kmpc_ordered +  if (IsThreads) { +    llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; +    CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args, +                          createRuntimeFunction(OMPRTL__kmpc_end_ordered), +                          Args); +    OrderedOpGen.setAction(Action); +    emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); +    return; +  } +  emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); +} + +void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, +                                      OpenMPDirectiveKind Kind, bool EmitChecks, +                                      bool ForceSimpleCall) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Build call __kmpc_cancel_barrier(loc, thread_id); +  // Build call __kmpc_barrier(loc, thread_id); +  unsigned Flags; +  if (Kind == OMPD_for) +    Flags = OMP_IDENT_BARRIER_IMPL_FOR; +  else if (Kind == OMPD_sections) +    Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS; +  else if (Kind == OMPD_single) +    Flags = OMP_IDENT_BARRIER_IMPL_SINGLE; +  else if (Kind == OMPD_barrier) +    Flags = OMP_IDENT_BARRIER_EXPL; +  else +    Flags = OMP_IDENT_BARRIER_IMPL; +  // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc, +  // thread_id); +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), +                         getThreadID(CGF, Loc)}; +  if (auto *OMPRegionInfo = +          dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { +    if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) { +      auto *Result = CGF.EmitRuntimeCall( +          createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args); +      if (EmitChecks) { +        // if (__kmpc_cancel_barrier()) { +        //   exit from construct; +        // } +        auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); +        auto *ContBB = CGF.createBasicBlock(".cancel.continue"); +        auto *Cmp = CGF.Builder.CreateIsNotNull(Result); +        CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); +        CGF.EmitBlock(ExitBB); +        //   exit from construct; +        auto CancelDestination = +            CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); +        CGF.EmitBranchThroughCleanup(CancelDestination); +        CGF.EmitBlock(ContBB, /*IsFinished=*/true); +      } +      return; +    } +  } +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args); +} + +/// \brief Map the OpenMP loop schedule to the runtime enumeration. +static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind, +                                          bool Chunked, bool Ordered) { +  switch (ScheduleKind) { +  case OMPC_SCHEDULE_static: +    return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked) +                   : (Ordered ? OMP_ord_static : OMP_sch_static); +  case OMPC_SCHEDULE_dynamic: +    return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked; +  case OMPC_SCHEDULE_guided: +    return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked; +  case OMPC_SCHEDULE_runtime: +    return Ordered ? OMP_ord_runtime : OMP_sch_runtime; +  case OMPC_SCHEDULE_auto: +    return Ordered ? OMP_ord_auto : OMP_sch_auto; +  case OMPC_SCHEDULE_unknown: +    assert(!Chunked && "chunk was specified but schedule kind not known"); +    return Ordered ? OMP_ord_static : OMP_sch_static; +  } +  llvm_unreachable("Unexpected runtime schedule"); +} + +/// \brief Map the OpenMP distribute schedule to the runtime enumeration. +static OpenMPSchedType +getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) { +  // only static is allowed for dist_schedule +  return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static; +} + +bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind, +                                         bool Chunked) const { +  auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); +  return Schedule == OMP_sch_static; +} + +bool CGOpenMPRuntime::isStaticNonchunked( +    OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { +  auto Schedule = getRuntimeSchedule(ScheduleKind, Chunked); +  return Schedule == OMP_dist_sch_static; +} + + +bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const { +  auto Schedule = +      getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false); +  assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here"); +  return Schedule != OMP_sch_static; +} + +static int addMonoNonMonoModifier(OpenMPSchedType Schedule, +                                  OpenMPScheduleClauseModifier M1, +                                  OpenMPScheduleClauseModifier M2) { +  int Modifier = 0; +  switch (M1) { +  case OMPC_SCHEDULE_MODIFIER_monotonic: +    Modifier = OMP_sch_modifier_monotonic; +    break; +  case OMPC_SCHEDULE_MODIFIER_nonmonotonic: +    Modifier = OMP_sch_modifier_nonmonotonic; +    break; +  case OMPC_SCHEDULE_MODIFIER_simd: +    if (Schedule == OMP_sch_static_chunked) +      Schedule = OMP_sch_static_balanced_chunked; +    break; +  case OMPC_SCHEDULE_MODIFIER_last: +  case OMPC_SCHEDULE_MODIFIER_unknown: +    break; +  } +  switch (M2) { +  case OMPC_SCHEDULE_MODIFIER_monotonic: +    Modifier = OMP_sch_modifier_monotonic; +    break; +  case OMPC_SCHEDULE_MODIFIER_nonmonotonic: +    Modifier = OMP_sch_modifier_nonmonotonic; +    break; +  case OMPC_SCHEDULE_MODIFIER_simd: +    if (Schedule == OMP_sch_static_chunked) +      Schedule = OMP_sch_static_balanced_chunked; +    break; +  case OMPC_SCHEDULE_MODIFIER_last: +  case OMPC_SCHEDULE_MODIFIER_unknown: +    break; +  } +  return Schedule | Modifier; +} + +void CGOpenMPRuntime::emitForDispatchInit( +    CodeGenFunction &CGF, SourceLocation Loc, +    const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, +    bool Ordered, const DispatchRTInput &DispatchValues) { +  if (!CGF.HaveInsertPoint()) +    return; +  OpenMPSchedType Schedule = getRuntimeSchedule( +      ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered); +  assert(Ordered || +         (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && +          Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && +          Schedule != OMP_sch_static_balanced_chunked)); +  // Call __kmpc_dispatch_init( +  //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule, +  //          kmp_int[32|64] lower, kmp_int[32|64] upper, +  //          kmp_int[32|64] stride, kmp_int[32|64] chunk); + +  // If the Chunk was not specified in the clause - use default value 1. +  llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk +                                            : CGF.Builder.getIntN(IVSize, 1); +  llvm::Value *Args[] = { +      emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), +      CGF.Builder.getInt32(addMonoNonMonoModifier( +          Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type +      DispatchValues.LB,                                // Lower +      DispatchValues.UB,                                // Upper +      CGF.Builder.getIntN(IVSize, 1),                   // Stride +      Chunk                                             // Chunk +  }; +  CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args); +} + +static void emitForStaticInitCall( +    CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId, +    llvm::Constant *ForStaticInitFunction, OpenMPSchedType Schedule, +    OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, +    unsigned IVSize, bool Ordered, Address IL, Address LB, Address UB, +    Address ST, llvm::Value *Chunk) { +  if (!CGF.HaveInsertPoint()) +     return; + +   assert(!Ordered); +   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || +          Schedule == OMP_sch_static_balanced_chunked || +          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || +          Schedule == OMP_dist_sch_static || +          Schedule == OMP_dist_sch_static_chunked); + +   // Call __kmpc_for_static_init( +   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype, +   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower, +   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride, +   //          kmp_int[32|64] incr, kmp_int[32|64] chunk); +   if (Chunk == nullptr) { +     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static || +             Schedule == OMP_dist_sch_static) && +            "expected static non-chunked schedule"); +     // If the Chunk was not specified in the clause - use default value 1. +       Chunk = CGF.Builder.getIntN(IVSize, 1); +   } else { +     assert((Schedule == OMP_sch_static_chunked || +             Schedule == OMP_sch_static_balanced_chunked || +             Schedule == OMP_ord_static_chunked || +             Schedule == OMP_dist_sch_static_chunked) && +            "expected static chunked schedule"); +   } +   llvm::Value *Args[] = { +       UpdateLocation, ThreadId, CGF.Builder.getInt32(addMonoNonMonoModifier( +                                     Schedule, M1, M2)), // Schedule type +       IL.getPointer(),                                  // &isLastIter +       LB.getPointer(),                                  // &LB +       UB.getPointer(),                                  // &UB +       ST.getPointer(),                                  // &Stride +       CGF.Builder.getIntN(IVSize, 1),                   // Incr +       Chunk                                             // Chunk +   }; +   CGF.EmitRuntimeCall(ForStaticInitFunction, Args); +} + +void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF, +                                        SourceLocation Loc, +                                        const OpenMPScheduleTy &ScheduleKind, +                                        unsigned IVSize, bool IVSigned, +                                        bool Ordered, Address IL, Address LB, +                                        Address UB, Address ST, +                                        llvm::Value *Chunk) { +  OpenMPSchedType ScheduleNum = +      getRuntimeSchedule(ScheduleKind.Schedule, Chunk != nullptr, Ordered); +  auto *UpdatedLocation = emitUpdateLocation(CGF, Loc); +  auto *ThreadId = getThreadID(CGF, Loc); +  auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned); +  emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, +                        ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, IVSize, +                        Ordered, IL, LB, UB, ST, Chunk); +} + +void CGOpenMPRuntime::emitDistributeStaticInit( +    CodeGenFunction &CGF, SourceLocation Loc, +    OpenMPDistScheduleClauseKind SchedKind, unsigned IVSize, bool IVSigned, +    bool Ordered, Address IL, Address LB, Address UB, Address ST, +    llvm::Value *Chunk) { +  OpenMPSchedType ScheduleNum = getRuntimeSchedule(SchedKind, Chunk != nullptr); +  auto *UpdatedLocation = emitUpdateLocation(CGF, Loc); +  auto *ThreadId = getThreadID(CGF, Loc); +  auto *StaticInitFunction = createForStaticInitFunction(IVSize, IVSigned); +  emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, +                        ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown, +                        OMPC_SCHEDULE_MODIFIER_unknown, IVSize, Ordered, IL, LB, +                        UB, ST, Chunk); +} + +void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF, +                                          SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid); +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini), +                      Args); +} + +void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, +                                                 SourceLocation Loc, +                                                 unsigned IVSize, +                                                 bool IVSigned) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid); +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; +  CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args); +} + +llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF, +                                          SourceLocation Loc, unsigned IVSize, +                                          bool IVSigned, Address IL, +                                          Address LB, Address UB, +                                          Address ST) { +  // Call __kmpc_dispatch_next( +  //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter, +  //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper, +  //          kmp_int[32|64] *p_stride); +  llvm::Value *Args[] = { +      emitUpdateLocation(CGF, Loc), +      getThreadID(CGF, Loc), +      IL.getPointer(), // &isLastIter +      LB.getPointer(), // &Lower +      UB.getPointer(), // &Upper +      ST.getPointer()  // &Stride +  }; +  llvm::Value *Call = +      CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args); +  return CGF.EmitScalarConversion( +      Call, CGF.getContext().getIntTypeForBitwidth(32, /* Signed */ true), +      CGF.getContext().BoolTy, Loc); +} + +void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF, +                                           llvm::Value *NumThreads, +                                           SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads) +  llvm::Value *Args[] = { +      emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), +      CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)}; +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads), +                      Args); +} + +void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF, +                                         OpenMPProcBindClauseKind ProcBind, +                                         SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Constants for proc bind value accepted by the runtime. +  enum ProcBindTy { +    ProcBindFalse = 0, +    ProcBindTrue, +    ProcBindMaster, +    ProcBindClose, +    ProcBindSpread, +    ProcBindIntel, +    ProcBindDefault +  } RuntimeProcBind; +  switch (ProcBind) { +  case OMPC_PROC_BIND_master: +    RuntimeProcBind = ProcBindMaster; +    break; +  case OMPC_PROC_BIND_close: +    RuntimeProcBind = ProcBindClose; +    break; +  case OMPC_PROC_BIND_spread: +    RuntimeProcBind = ProcBindSpread; +    break; +  case OMPC_PROC_BIND_unknown: +    llvm_unreachable("Unsupported proc_bind value."); +  } +  // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind) +  llvm::Value *Args[] = { +      emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), +      llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)}; +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args); +} + +void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>, +                                SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Build call void __kmpc_flush(ident_t *loc) +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush), +                      emitUpdateLocation(CGF, Loc)); +} + +namespace { +/// \brief Indexes of fields for type kmp_task_t. +enum KmpTaskTFields { +  /// \brief List of shared variables. +  KmpTaskTShareds, +  /// \brief Task routine. +  KmpTaskTRoutine, +  /// \brief Partition id for the untied tasks. +  KmpTaskTPartId, +  /// Function with call of destructors for private variables. +  Data1, +  /// Task priority. +  Data2, +  /// (Taskloops only) Lower bound. +  KmpTaskTLowerBound, +  /// (Taskloops only) Upper bound. +  KmpTaskTUpperBound, +  /// (Taskloops only) Stride. +  KmpTaskTStride, +  /// (Taskloops only) Is last iteration flag. +  KmpTaskTLastIter, +}; +} // anonymous namespace + +bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const { +  // FIXME: Add other entries type when they become supported. +  return OffloadEntriesTargetRegion.empty(); +} + +/// \brief Initialize target region entry. +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: +    initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, +                                    StringRef ParentName, unsigned LineNum, +                                    unsigned Order) { +  assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " +                                             "only required for the device " +                                             "code generation."); +  OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = +      OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, +                                   /*Flags=*/0); +  ++OffloadingEntriesNum; +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: +    registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, +                                  StringRef ParentName, unsigned LineNum, +                                  llvm::Constant *Addr, llvm::Constant *ID, +                                  int32_t Flags) { +  // If we are emitting code for a target, the entry is already initialized, +  // only has to be registered. +  if (CGM.getLangOpts().OpenMPIsDevice) { +    assert(hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) && +           "Entry must exist."); +    auto &Entry = +        OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum]; +    assert(Entry.isValid() && "Entry not initialized!"); +    Entry.setAddress(Addr); +    Entry.setID(ID); +    Entry.setFlags(Flags); +    return; +  } else { +    OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum++, Addr, ID, Flags); +    OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry; +  } +} + +bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo( +    unsigned DeviceID, unsigned FileID, StringRef ParentName, +    unsigned LineNum) const { +  auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID); +  if (PerDevice == OffloadEntriesTargetRegion.end()) +    return false; +  auto PerFile = PerDevice->second.find(FileID); +  if (PerFile == PerDevice->second.end()) +    return false; +  auto PerParentName = PerFile->second.find(ParentName); +  if (PerParentName == PerFile->second.end()) +    return false; +  auto PerLine = PerParentName->second.find(LineNum); +  if (PerLine == PerParentName->second.end()) +    return false; +  // Fail if this entry is already registered. +  if (PerLine->second.getAddress() || PerLine->second.getID()) +    return false; +  return true; +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo( +    const OffloadTargetRegionEntryInfoActTy &Action) { +  // Scan all target region entries and perform the provided action. +  for (auto &D : OffloadEntriesTargetRegion) +    for (auto &F : D.second) +      for (auto &P : F.second) +        for (auto &L : P.second) +          Action(D.first, F.first, P.first(), L.first, L.second); +} + +/// \brief Create a Ctor/Dtor-like function whose body is emitted through +/// \a Codegen. This is used to emit the two functions that register and +/// unregister the descriptor of the current compilation unit. +static llvm::Function * +createOffloadingBinaryDescriptorFunction(CodeGenModule &CGM, StringRef Name, +                                         const RegionCodeGenTy &Codegen) { +  auto &C = CGM.getContext(); +  FunctionArgList Args; +  ImplicitParamDecl DummyPtr(C, C.VoidPtrTy, ImplicitParamDecl::Other); +  Args.push_back(&DummyPtr); + +  CodeGenFunction CGF(CGM); +  auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); +  auto FTy = CGM.getTypes().GetFunctionType(FI); +  auto *Fn = +      CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, SourceLocation()); +  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FI, Args, SourceLocation()); +  Codegen(CGF); +  CGF.FinishFunction(); +  return Fn; +} + +llvm::Function * +CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() { + +  // If we don't have entries or if we are emitting code for the device, we +  // don't need to do anything. +  if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty()) +    return nullptr; + +  auto &M = CGM.getModule(); +  auto &C = CGM.getContext(); + +  // Get list of devices we care about +  auto &Devices = CGM.getLangOpts().OMPTargetTriples; + +  // We should be creating an offloading descriptor only if there are devices +  // specified. +  assert(!Devices.empty() && "No OpenMP offloading devices??"); + +  // Create the external variables that will point to the begin and end of the +  // host entries section. These will be defined by the linker. +  auto *OffloadEntryTy = +      CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()); +  llvm::GlobalVariable *HostEntriesBegin = new llvm::GlobalVariable( +      M, OffloadEntryTy, /*isConstant=*/true, +      llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, +      ".omp_offloading.entries_begin"); +  llvm::GlobalVariable *HostEntriesEnd = new llvm::GlobalVariable( +      M, OffloadEntryTy, /*isConstant=*/true, +      llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, +      ".omp_offloading.entries_end"); + +  // Create all device images +  auto *DeviceImageTy = cast<llvm::StructType>( +      CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy())); +  ConstantInitBuilder DeviceImagesBuilder(CGM); +  auto DeviceImagesEntries = DeviceImagesBuilder.beginArray(DeviceImageTy); + +  for (unsigned i = 0; i < Devices.size(); ++i) { +    StringRef T = Devices[i].getTriple(); +    auto *ImgBegin = new llvm::GlobalVariable( +        M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, +        /*Initializer=*/nullptr, +        Twine(".omp_offloading.img_start.") + Twine(T)); +    auto *ImgEnd = new llvm::GlobalVariable( +        M, CGM.Int8Ty, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, +        /*Initializer=*/nullptr, Twine(".omp_offloading.img_end.") + Twine(T)); + +    auto Dev = DeviceImagesEntries.beginStruct(DeviceImageTy); +    Dev.add(ImgBegin); +    Dev.add(ImgEnd); +    Dev.add(HostEntriesBegin); +    Dev.add(HostEntriesEnd); +    Dev.finishAndAddTo(DeviceImagesEntries); +  } + +  // Create device images global array. +  llvm::GlobalVariable *DeviceImages = +    DeviceImagesEntries.finishAndCreateGlobal(".omp_offloading.device_images", +                                              CGM.getPointerAlign(), +                                              /*isConstant=*/true); +  DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + +  // This is a Zero array to be used in the creation of the constant expressions +  llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty), +                             llvm::Constant::getNullValue(CGM.Int32Ty)}; + +  // Create the target region descriptor. +  auto *BinaryDescriptorTy = cast<llvm::StructType>( +      CGM.getTypes().ConvertTypeForMem(getTgtBinaryDescriptorQTy())); +  ConstantInitBuilder DescBuilder(CGM); +  auto DescInit = DescBuilder.beginStruct(BinaryDescriptorTy); +  DescInit.addInt(CGM.Int32Ty, Devices.size()); +  DescInit.add(llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(), +                                                    DeviceImages, +                                                    Index)); +  DescInit.add(HostEntriesBegin); +  DescInit.add(HostEntriesEnd); + +  auto *Desc = DescInit.finishAndCreateGlobal(".omp_offloading.descriptor", +                                              CGM.getPointerAlign(), +                                              /*isConstant=*/true); + +  // Emit code to register or unregister the descriptor at execution +  // startup or closing, respectively. + +  // Create a variable to drive the registration and unregistration of the +  // descriptor, so we can reuse the logic that emits Ctors and Dtors. +  auto *IdentInfo = &C.Idents.get(".omp_offloading.reg_unreg_var"); +  ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), SourceLocation(), +                                IdentInfo, C.CharTy, ImplicitParamDecl::Other); + +  auto *UnRegFn = createOffloadingBinaryDescriptorFunction( +      CGM, ".omp_offloading.descriptor_unreg", +      [&](CodeGenFunction &CGF, PrePostActionTy &) { +        CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_unregister_lib), +                             Desc); +      }); +  auto *RegFn = createOffloadingBinaryDescriptorFunction( +      CGM, ".omp_offloading.descriptor_reg", +      [&](CodeGenFunction &CGF, PrePostActionTy &) { +        CGF.EmitCallOrInvoke(createRuntimeFunction(OMPRTL__tgt_register_lib), +                             Desc); +        CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc); +      }); +  if (CGM.supportsCOMDAT()) { +    // It is sufficient to call registration function only once, so create a +    // COMDAT group for registration/unregistration functions and associated +    // data. That would reduce startup time and code size. Registration +    // function serves as a COMDAT group key. +    auto ComdatKey = M.getOrInsertComdat(RegFn->getName()); +    RegFn->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); +    RegFn->setVisibility(llvm::GlobalValue::HiddenVisibility); +    RegFn->setComdat(ComdatKey); +    UnRegFn->setComdat(ComdatKey); +    DeviceImages->setComdat(ComdatKey); +    Desc->setComdat(ComdatKey); +  } +  return RegFn; +} + +void CGOpenMPRuntime::createOffloadEntry(llvm::Constant *ID, +                                         llvm::Constant *Addr, uint64_t Size, +                                         int32_t Flags) { +  StringRef Name = Addr->getName(); +  auto *TgtOffloadEntryType = cast<llvm::StructType>( +      CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy())); +  llvm::LLVMContext &C = CGM.getModule().getContext(); +  llvm::Module &M = CGM.getModule(); + +  // Make sure the address has the right type. +  llvm::Constant *AddrPtr = llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy); + +  // Create constant string with the name. +  llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name); + +  llvm::GlobalVariable *Str = +      new llvm::GlobalVariable(M, StrPtrInit->getType(), /*isConstant=*/true, +                               llvm::GlobalValue::InternalLinkage, StrPtrInit, +                               ".omp_offloading.entry_name"); +  Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +  llvm::Constant *StrPtr = llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy); + +  // We can't have any padding between symbols, so we need to have 1-byte +  // alignment. +  auto Align = CharUnits::fromQuantity(1); + +  // Create the entry struct. +  ConstantInitBuilder EntryBuilder(CGM); +  auto EntryInit = EntryBuilder.beginStruct(TgtOffloadEntryType); +  EntryInit.add(AddrPtr); +  EntryInit.add(StrPtr); +  EntryInit.addInt(CGM.SizeTy, Size); +  EntryInit.addInt(CGM.Int32Ty, Flags); +  EntryInit.addInt(CGM.Int32Ty, 0); +  llvm::GlobalVariable *Entry = +    EntryInit.finishAndCreateGlobal(".omp_offloading.entry", +                                    Align, +                                    /*constant*/ true, +                                    llvm::GlobalValue::ExternalLinkage); + +  // The entry has to be created in the section the linker expects it to be. +  Entry->setSection(".omp_offloading.entries"); +} + +void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() { +  // Emit the offloading entries and metadata so that the device codegen side +  // can easily figure out what to emit. The produced metadata looks like +  // this: +  // +  // !omp_offload.info = !{!1, ...} +  // +  // Right now we only generate metadata for function that contain target +  // regions. + +  // If we do not have entries, we dont need to do anything. +  if (OffloadEntriesInfoManager.empty()) +    return; + +  llvm::Module &M = CGM.getModule(); +  llvm::LLVMContext &C = M.getContext(); +  SmallVector<OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16> +      OrderedEntries(OffloadEntriesInfoManager.size()); + +  // Create the offloading info metadata node. +  llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); + +  // Auxiliary methods to create metadata values and strings. +  auto getMDInt = [&](unsigned v) { +    return llvm::ConstantAsMetadata::get( +        llvm::ConstantInt::get(llvm::Type::getInt32Ty(C), v)); +  }; + +  auto getMDString = [&](StringRef v) { return llvm::MDString::get(C, v); }; + +  // Create function that emits metadata for each target region entry; +  auto &&TargetRegionMetadataEmitter = [&]( +      unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned Line, +      OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) { +    llvm::SmallVector<llvm::Metadata *, 32> Ops; +    // Generate metadata for target regions. Each entry of this metadata +    // contains: +    // - Entry 0 -> Kind of this type of metadata (0). +    // - Entry 1 -> Device ID of the file where the entry was identified. +    // - Entry 2 -> File ID of the file where the entry was identified. +    // - Entry 3 -> Mangled name of the function where the entry was identified. +    // - Entry 4 -> Line in the file where the entry was identified. +    // - Entry 5 -> Order the entry was created. +    // The first element of the metadata node is the kind. +    Ops.push_back(getMDInt(E.getKind())); +    Ops.push_back(getMDInt(DeviceID)); +    Ops.push_back(getMDInt(FileID)); +    Ops.push_back(getMDString(ParentName)); +    Ops.push_back(getMDInt(Line)); +    Ops.push_back(getMDInt(E.getOrder())); + +    // Save this entry in the right position of the ordered entries array. +    OrderedEntries[E.getOrder()] = &E; + +    // Add metadata to the named metadata node. +    MD->addOperand(llvm::MDNode::get(C, Ops)); +  }; + +  OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( +      TargetRegionMetadataEmitter); + +  for (auto *E : OrderedEntries) { +    assert(E && "All ordered entries must exist!"); +    if (auto *CE = +            dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>( +                E)) { +      assert(CE->getID() && CE->getAddress() && +             "Entry ID and Addr are invalid!"); +      createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0); +    } else +      llvm_unreachable("Unsupported entry kind."); +  } +} + +/// \brief Loads all the offload entries information from the host IR +/// metadata. +void CGOpenMPRuntime::loadOffloadInfoMetadata() { +  // If we are in target mode, load the metadata from the host IR. This code has +  // to match the metadaata creation in createOffloadEntriesAndInfoMetadata(). + +  if (!CGM.getLangOpts().OpenMPIsDevice) +    return; + +  if (CGM.getLangOpts().OMPHostIRFile.empty()) +    return; + +  auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile); +  if (Buf.getError()) +    return; + +  llvm::LLVMContext C; +  auto ME = expectedToErrorOrAndEmitErrors( +      C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C)); + +  if (ME.getError()) +    return; + +  llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info"); +  if (!MD) +    return; + +  for (auto I : MD->operands()) { +    llvm::MDNode *MN = cast<llvm::MDNode>(I); + +    auto getMDInt = [&](unsigned Idx) { +      llvm::ConstantAsMetadata *V = +          cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx)); +      return cast<llvm::ConstantInt>(V->getValue())->getZExtValue(); +    }; + +    auto getMDString = [&](unsigned Idx) { +      llvm::MDString *V = cast<llvm::MDString>(MN->getOperand(Idx)); +      return V->getString(); +    }; + +    switch (getMDInt(0)) { +    default: +      llvm_unreachable("Unexpected metadata!"); +      break; +    case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: +        OFFLOAD_ENTRY_INFO_TARGET_REGION: +      OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( +          /*DeviceID=*/getMDInt(1), /*FileID=*/getMDInt(2), +          /*ParentName=*/getMDString(3), /*Line=*/getMDInt(4), +          /*Order=*/getMDInt(5)); +      break; +    } +  } +} + +void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) { +  if (!KmpRoutineEntryPtrTy) { +    // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type. +    auto &C = CGM.getContext(); +    QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy}; +    FunctionProtoType::ExtProtoInfo EPI; +    KmpRoutineEntryPtrQTy = C.getPointerType( +        C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI)); +    KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy); +  } +} + +static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC, +                                       QualType FieldTy) { +  auto *Field = FieldDecl::Create( +      C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy, +      C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()), +      /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); +  Field->setAccess(AS_public); +  DC->addDecl(Field); +  return Field; +} + +QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() { + +  // Make sure the type of the entry is already created. This is the type we +  // have to create: +  // struct __tgt_offload_entry{ +  //   void      *addr;       // Pointer to the offload entry info. +  //                          // (function or global) +  //   char      *name;       // Name of the function or global. +  //   size_t     size;       // Size of the entry info (0 if it a function). +  //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'. +  //   int32_t    reserved;   // Reserved, to use by the runtime library. +  // }; +  if (TgtOffloadEntryQTy.isNull()) { +    ASTContext &C = CGM.getContext(); +    auto *RD = C.buildImplicitRecord("__tgt_offload_entry"); +    RD->startDefinition(); +    addFieldToRecordDecl(C, RD, C.VoidPtrTy); +    addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy)); +    addFieldToRecordDecl(C, RD, C.getSizeType()); +    addFieldToRecordDecl( +        C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); +    addFieldToRecordDecl( +        C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); +    RD->completeDefinition(); +    TgtOffloadEntryQTy = C.getRecordType(RD); +  } +  return TgtOffloadEntryQTy; +} + +QualType CGOpenMPRuntime::getTgtDeviceImageQTy() { +  // These are the types we need to build: +  // struct __tgt_device_image{ +  // void   *ImageStart;       // Pointer to the target code start. +  // void   *ImageEnd;         // Pointer to the target code end. +  // // We also add the host entries to the device image, as it may be useful +  // // for the target runtime to have access to that information. +  // __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all +  //                                       // the entries. +  // __tgt_offload_entry  *EntriesEnd;     // End of the table with all the +  //                                       // entries (non inclusive). +  // }; +  if (TgtDeviceImageQTy.isNull()) { +    ASTContext &C = CGM.getContext(); +    auto *RD = C.buildImplicitRecord("__tgt_device_image"); +    RD->startDefinition(); +    addFieldToRecordDecl(C, RD, C.VoidPtrTy); +    addFieldToRecordDecl(C, RD, C.VoidPtrTy); +    addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); +    addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); +    RD->completeDefinition(); +    TgtDeviceImageQTy = C.getRecordType(RD); +  } +  return TgtDeviceImageQTy; +} + +QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() { +  // struct __tgt_bin_desc{ +  //   int32_t              NumDevices;      // Number of devices supported. +  //   __tgt_device_image   *DeviceImages;   // Arrays of device images +  //                                         // (one per device). +  //   __tgt_offload_entry  *EntriesBegin;   // Begin of the table with all the +  //                                         // entries. +  //   __tgt_offload_entry  *EntriesEnd;     // End of the table with all the +  //                                         // entries (non inclusive). +  // }; +  if (TgtBinaryDescriptorQTy.isNull()) { +    ASTContext &C = CGM.getContext(); +    auto *RD = C.buildImplicitRecord("__tgt_bin_desc"); +    RD->startDefinition(); +    addFieldToRecordDecl( +        C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); +    addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy())); +    addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); +    addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); +    RD->completeDefinition(); +    TgtBinaryDescriptorQTy = C.getRecordType(RD); +  } +  return TgtBinaryDescriptorQTy; +} + +namespace { +struct PrivateHelpersTy { +  PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy, +                   const VarDecl *PrivateElemInit) +      : Original(Original), PrivateCopy(PrivateCopy), +        PrivateElemInit(PrivateElemInit) {} +  const VarDecl *Original; +  const VarDecl *PrivateCopy; +  const VarDecl *PrivateElemInit; +}; +typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy; +} // anonymous namespace + +static RecordDecl * +createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) { +  if (!Privates.empty()) { +    auto &C = CGM.getContext(); +    // Build struct .kmp_privates_t. { +    //         /*  private vars  */ +    //       }; +    auto *RD = C.buildImplicitRecord(".kmp_privates.t"); +    RD->startDefinition(); +    for (auto &&Pair : Privates) { +      auto *VD = Pair.second.Original; +      auto Type = VD->getType(); +      Type = Type.getNonReferenceType(); +      auto *FD = addFieldToRecordDecl(C, RD, Type); +      if (VD->hasAttrs()) { +        for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), +             E(VD->getAttrs().end()); +             I != E; ++I) +          FD->addAttr(*I); +      } +    } +    RD->completeDefinition(); +    return RD; +  } +  return nullptr; +} + +static RecordDecl * +createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind, +                         QualType KmpInt32Ty, +                         QualType KmpRoutineEntryPointerQTy) { +  auto &C = CGM.getContext(); +  // Build struct kmp_task_t { +  //         void *              shareds; +  //         kmp_routine_entry_t routine; +  //         kmp_int32           part_id; +  //         kmp_cmplrdata_t data1; +  //         kmp_cmplrdata_t data2; +  // For taskloops additional fields: +  //         kmp_uint64          lb; +  //         kmp_uint64          ub; +  //         kmp_int64           st; +  //         kmp_int32           liter; +  //       }; +  auto *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union); +  UD->startDefinition(); +  addFieldToRecordDecl(C, UD, KmpInt32Ty); +  addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy); +  UD->completeDefinition(); +  QualType KmpCmplrdataTy = C.getRecordType(UD); +  auto *RD = C.buildImplicitRecord("kmp_task_t"); +  RD->startDefinition(); +  addFieldToRecordDecl(C, RD, C.VoidPtrTy); +  addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy); +  addFieldToRecordDecl(C, RD, KmpInt32Ty); +  addFieldToRecordDecl(C, RD, KmpCmplrdataTy); +  addFieldToRecordDecl(C, RD, KmpCmplrdataTy); +  if (isOpenMPTaskLoopDirective(Kind)) { +    QualType KmpUInt64Ty = +        CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); +    QualType KmpInt64Ty = +        CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); +    addFieldToRecordDecl(C, RD, KmpUInt64Ty); +    addFieldToRecordDecl(C, RD, KmpUInt64Ty); +    addFieldToRecordDecl(C, RD, KmpInt64Ty); +    addFieldToRecordDecl(C, RD, KmpInt32Ty); +  } +  RD->completeDefinition(); +  return RD; +} + +static RecordDecl * +createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy, +                                     ArrayRef<PrivateDataTy> Privates) { +  auto &C = CGM.getContext(); +  // Build struct kmp_task_t_with_privates { +  //         kmp_task_t task_data; +  //         .kmp_privates_t. privates; +  //       }; +  auto *RD = C.buildImplicitRecord("kmp_task_t_with_privates"); +  RD->startDefinition(); +  addFieldToRecordDecl(C, RD, KmpTaskTQTy); +  if (auto *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) { +    addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD)); +  } +  RD->completeDefinition(); +  return RD; +} + +/// \brief Emit a proxy function which accepts kmp_task_t as the second +/// argument. +/// \code +/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) { +///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt, +///   For taskloops: +///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, +///   tt->shareds); +///   return 0; +/// } +/// \endcode +static llvm::Value * +emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc, +                      OpenMPDirectiveKind Kind, QualType KmpInt32Ty, +                      QualType KmpTaskTWithPrivatesPtrQTy, +                      QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy, +                      QualType SharedsPtrTy, llvm::Value *TaskFunction, +                      llvm::Value *TaskPrivatesMap) { +  auto &C = CGM.getContext(); +  FunctionArgList Args; +  ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, +                            ImplicitParamDecl::Other); +  ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +                                KmpTaskTWithPrivatesPtrQTy.withRestrict(), +                                ImplicitParamDecl::Other); +  Args.push_back(&GtidArg); +  Args.push_back(&TaskTypeArg); +  auto &TaskEntryFnInfo = +      CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); +  auto *TaskEntryTy = CGM.getTypes().GetFunctionType(TaskEntryFnInfo); +  auto *TaskEntry = +      llvm::Function::Create(TaskEntryTy, llvm::GlobalValue::InternalLinkage, +                             ".omp_task_entry.", &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskEntry, TaskEntryFnInfo); +  CodeGenFunction CGF(CGM); +  CGF.disableDebugInfo(); +  CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args); + +  // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map, +  // tt, +  // For taskloops: +  // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, +  // tt->task_data.shareds); +  auto *GtidParam = CGF.EmitLoadOfScalar( +      CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc); +  LValue TDBase = CGF.EmitLoadOfPointerLValue( +      CGF.GetAddrOfLocalVar(&TaskTypeArg), +      KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); +  auto *KmpTaskTWithPrivatesQTyRD = +      cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); +  LValue Base = +      CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); +  auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); +  auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); +  auto PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI); +  auto *PartidParam = PartIdLVal.getPointer(); + +  auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds); +  auto SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI); +  auto *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      CGF.EmitLoadOfLValue(SharedsLVal, Loc).getScalarVal(), +      CGF.ConvertTypeForMem(SharedsPtrTy)); + +  auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); +  llvm::Value *PrivatesParam; +  if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) { +    auto PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI); +    PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +        PrivatesLVal.getPointer(), CGF.VoidPtrTy); +  } else +    PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); + +  llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam, +                               TaskPrivatesMap, +                               CGF.Builder +                                   .CreatePointerBitCastOrAddrSpaceCast( +                                       TDBase.getAddress(), CGF.VoidPtrTy) +                                   .getPointer()}; +  SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs), +                                          std::end(CommonArgs)); +  if (isOpenMPTaskLoopDirective(Kind)) { +    auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound); +    auto LBLVal = CGF.EmitLValueForField(Base, *LBFI); +    auto *LBParam = CGF.EmitLoadOfLValue(LBLVal, Loc).getScalarVal(); +    auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound); +    auto UBLVal = CGF.EmitLValueForField(Base, *UBFI); +    auto *UBParam = CGF.EmitLoadOfLValue(UBLVal, Loc).getScalarVal(); +    auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride); +    auto StLVal = CGF.EmitLValueForField(Base, *StFI); +    auto *StParam = CGF.EmitLoadOfLValue(StLVal, Loc).getScalarVal(); +    auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); +    auto LILVal = CGF.EmitLValueForField(Base, *LIFI); +    auto *LIParam = CGF.EmitLoadOfLValue(LILVal, Loc).getScalarVal(); +    CallArgs.push_back(LBParam); +    CallArgs.push_back(UBParam); +    CallArgs.push_back(StParam); +    CallArgs.push_back(LIParam); +  } +  CallArgs.push_back(SharedsParam); + +  CGF.EmitCallOrInvoke(TaskFunction, CallArgs); +  CGF.EmitStoreThroughLValue( +      RValue::get(CGF.Builder.getInt32(/*C=*/0)), +      CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty)); +  CGF.FinishFunction(); +  return TaskEntry; +} + +static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM, +                                            SourceLocation Loc, +                                            QualType KmpInt32Ty, +                                            QualType KmpTaskTWithPrivatesPtrQTy, +                                            QualType KmpTaskTWithPrivatesQTy) { +  auto &C = CGM.getContext(); +  FunctionArgList Args; +  ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, +                            ImplicitParamDecl::Other); +  ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +                                KmpTaskTWithPrivatesPtrQTy.withRestrict(), +                                ImplicitParamDecl::Other); +  Args.push_back(&GtidArg); +  Args.push_back(&TaskTypeArg); +  FunctionType::ExtInfo Info; +  auto &DestructorFnInfo = +      CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); +  auto *DestructorFnTy = CGM.getTypes().GetFunctionType(DestructorFnInfo); +  auto *DestructorFn = +      llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage, +                             ".omp_task_destructor.", &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, DestructorFn, +                                    DestructorFnInfo); +  CodeGenFunction CGF(CGM); +  CGF.disableDebugInfo(); +  CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo, +                    Args); + +  LValue Base = CGF.EmitLoadOfPointerLValue( +      CGF.GetAddrOfLocalVar(&TaskTypeArg), +      KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); +  auto *KmpTaskTWithPrivatesQTyRD = +      cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); +  auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); +  Base = CGF.EmitLValueForField(Base, *FI); +  for (auto *Field : +       cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) { +    if (auto DtorKind = Field->getType().isDestructedType()) { +      auto FieldLValue = CGF.EmitLValueForField(Base, Field); +      CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType()); +    } +  } +  CGF.FinishFunction(); +  return DestructorFn; +} + +/// \brief Emit a privates mapping function for correct handling of private and +/// firstprivate variables. +/// \code +/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1> +/// **noalias priv1,...,  <tyn> **noalias privn) { +///   *priv1 = &.privates.priv1; +///   ...; +///   *privn = &.privates.privn; +/// } +/// \endcode +static llvm::Value * +emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc, +                               ArrayRef<const Expr *> PrivateVars, +                               ArrayRef<const Expr *> FirstprivateVars, +                               ArrayRef<const Expr *> LastprivateVars, +                               QualType PrivatesQTy, +                               ArrayRef<PrivateDataTy> Privates) { +  auto &C = CGM.getContext(); +  FunctionArgList Args; +  ImplicitParamDecl TaskPrivatesArg( +      C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +      C.getPointerType(PrivatesQTy).withConst().withRestrict(), +      ImplicitParamDecl::Other); +  Args.push_back(&TaskPrivatesArg); +  llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos; +  unsigned Counter = 1; +  for (auto *E: PrivateVars) { +    Args.push_back(ImplicitParamDecl::Create( +        C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +        C.getPointerType(C.getPointerType(E->getType())) +            .withConst() +            .withRestrict(), +        ImplicitParamDecl::Other)); +    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); +    PrivateVarsPos[VD] = Counter; +    ++Counter; +  } +  for (auto *E : FirstprivateVars) { +    Args.push_back(ImplicitParamDecl::Create( +        C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +        C.getPointerType(C.getPointerType(E->getType())) +            .withConst() +            .withRestrict(), +        ImplicitParamDecl::Other)); +    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); +    PrivateVarsPos[VD] = Counter; +    ++Counter; +  } +  for (auto *E: LastprivateVars) { +    Args.push_back(ImplicitParamDecl::Create( +        C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +        C.getPointerType(C.getPointerType(E->getType())) +            .withConst() +            .withRestrict(), +        ImplicitParamDecl::Other)); +    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); +    PrivateVarsPos[VD] = Counter; +    ++Counter; +  } +  auto &TaskPrivatesMapFnInfo = +      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); +  auto *TaskPrivatesMapTy = +      CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo); +  auto *TaskPrivatesMap = llvm::Function::Create( +      TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, +      ".omp_task_privates_map.", &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskPrivatesMap, +                                    TaskPrivatesMapFnInfo); +  TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline); +  TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone); +  TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline); +  CodeGenFunction CGF(CGM); +  CGF.disableDebugInfo(); +  CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap, +                    TaskPrivatesMapFnInfo, Args); + +  // *privi = &.privates.privi; +  LValue Base = CGF.EmitLoadOfPointerLValue( +      CGF.GetAddrOfLocalVar(&TaskPrivatesArg), +      TaskPrivatesArg.getType()->castAs<PointerType>()); +  auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl()); +  Counter = 0; +  for (auto *Field : PrivatesQTyRD->fields()) { +    auto FieldLVal = CGF.EmitLValueForField(Base, Field); +    auto *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]]; +    auto RefLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); +    auto RefLoadLVal = CGF.EmitLoadOfPointerLValue( +        RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>()); +    CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal); +    ++Counter; +  } +  CGF.FinishFunction(); +  return TaskPrivatesMap; +} + +static int array_pod_sort_comparator(const PrivateDataTy *P1, +                                     const PrivateDataTy *P2) { +  return P1->first < P2->first ? 1 : (P2->first < P1->first ? -1 : 0); +} + +/// Emit initialization for private variables in task-based directives. +static void emitPrivatesInit(CodeGenFunction &CGF, +                             const OMPExecutableDirective &D, +                             Address KmpTaskSharedsPtr, LValue TDBase, +                             const RecordDecl *KmpTaskTWithPrivatesQTyRD, +                             QualType SharedsTy, QualType SharedsPtrTy, +                             const OMPTaskDataTy &Data, +                             ArrayRef<PrivateDataTy> Privates, bool ForDup) { +  auto &C = CGF.getContext(); +  auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); +  LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI); +  LValue SrcBase; +  if (!Data.FirstprivateVars.empty()) { +    SrcBase = CGF.MakeAddrLValue( +        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +            KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)), +        SharedsTy); +  } +  CodeGenFunction::CGCapturedStmtInfo CapturesInfo( +      cast<CapturedStmt>(*D.getAssociatedStmt())); +  FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin(); +  for (auto &&Pair : Privates) { +    auto *VD = Pair.second.PrivateCopy; +    auto *Init = VD->getAnyInitializer(); +    if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) && +                             !CGF.isTrivialInitializer(Init)))) { +      LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI); +      if (auto *Elem = Pair.second.PrivateElemInit) { +        auto *OriginalVD = Pair.second.Original; +        auto *SharedField = CapturesInfo.lookup(OriginalVD); +        auto SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField); +        SharedRefLValue = CGF.MakeAddrLValue( +            Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)), +            SharedRefLValue.getType(), +            LValueBaseInfo(AlignmentSource::Decl, +                           SharedRefLValue.getBaseInfo().getMayAlias())); +        QualType Type = OriginalVD->getType(); +        if (Type->isArrayType()) { +          // Initialize firstprivate array. +          if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) { +            // Perform simple memcpy. +            CGF.EmitAggregateAssign(PrivateLValue.getAddress(), +                                    SharedRefLValue.getAddress(), Type); +          } else { +            // Initialize firstprivate array using element-by-element +            // initialization. +            CGF.EmitOMPAggregateAssign( +                PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type, +                [&CGF, Elem, Init, &CapturesInfo](Address DestElement, +                                                  Address SrcElement) { +                  // Clean up any temporaries needed by the initialization. +                  CodeGenFunction::OMPPrivateScope InitScope(CGF); +                  InitScope.addPrivate( +                      Elem, [SrcElement]() -> Address { return SrcElement; }); +                  (void)InitScope.Privatize(); +                  // Emit initialization for single element. +                  CodeGenFunction::CGCapturedStmtRAII CapInfoRAII( +                      CGF, &CapturesInfo); +                  CGF.EmitAnyExprToMem(Init, DestElement, +                                       Init->getType().getQualifiers(), +                                       /*IsInitializer=*/false); +                }); +          } +        } else { +          CodeGenFunction::OMPPrivateScope InitScope(CGF); +          InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address { +            return SharedRefLValue.getAddress(); +          }); +          (void)InitScope.Privatize(); +          CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo); +          CGF.EmitExprAsInit(Init, VD, PrivateLValue, +                             /*capturedByInit=*/false); +        } +      } else +        CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); +    } +    ++FI; +  } +} + +/// Check if duplication function is required for taskloops. +static bool checkInitIsRequired(CodeGenFunction &CGF, +                                ArrayRef<PrivateDataTy> Privates) { +  bool InitRequired = false; +  for (auto &&Pair : Privates) { +    auto *VD = Pair.second.PrivateCopy; +    auto *Init = VD->getAnyInitializer(); +    InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) && +                                    !CGF.isTrivialInitializer(Init)); +  } +  return InitRequired; +} + + +/// Emit task_dup function (for initialization of +/// private/firstprivate/lastprivate vars and last_iter flag) +/// \code +/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int +/// lastpriv) { +/// // setup lastprivate flag +///    task_dst->last = lastpriv; +/// // could be constructor calls here... +/// } +/// \endcode +static llvm::Value * +emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc, +                    const OMPExecutableDirective &D, +                    QualType KmpTaskTWithPrivatesPtrQTy, +                    const RecordDecl *KmpTaskTWithPrivatesQTyRD, +                    const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy, +                    QualType SharedsPtrTy, const OMPTaskDataTy &Data, +                    ArrayRef<PrivateDataTy> Privates, bool WithLastIter) { +  auto &C = CGM.getContext(); +  FunctionArgList Args; +  ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +                           KmpTaskTWithPrivatesPtrQTy, +                           ImplicitParamDecl::Other); +  ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, +                           KmpTaskTWithPrivatesPtrQTy, +                           ImplicitParamDecl::Other); +  ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, +                                ImplicitParamDecl::Other); +  Args.push_back(&DstArg); +  Args.push_back(&SrcArg); +  Args.push_back(&LastprivArg); +  auto &TaskDupFnInfo = +      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); +  auto *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo); +  auto *TaskDup = +      llvm::Function::Create(TaskDupTy, llvm::GlobalValue::InternalLinkage, +                             ".omp_task_dup.", &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, TaskDup, TaskDupFnInfo); +  CodeGenFunction CGF(CGM); +  CGF.disableDebugInfo(); +  CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args); + +  LValue TDBase = CGF.EmitLoadOfPointerLValue( +      CGF.GetAddrOfLocalVar(&DstArg), +      KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); +  // task_dst->liter = lastpriv; +  if (WithLastIter) { +    auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); +    LValue Base = CGF.EmitLValueForField( +        TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); +    LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); +    llvm::Value *Lastpriv = CGF.EmitLoadOfScalar( +        CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc); +    CGF.EmitStoreOfScalar(Lastpriv, LILVal); +  } + +  // Emit initial values for private copies (if any). +  assert(!Privates.empty()); +  Address KmpTaskSharedsPtr = Address::invalid(); +  if (!Data.FirstprivateVars.empty()) { +    LValue TDBase = CGF.EmitLoadOfPointerLValue( +        CGF.GetAddrOfLocalVar(&SrcArg), +        KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); +    LValue Base = CGF.EmitLValueForField( +        TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); +    KmpTaskSharedsPtr = Address( +        CGF.EmitLoadOfScalar(CGF.EmitLValueForField( +                                 Base, *std::next(KmpTaskTQTyRD->field_begin(), +                                                  KmpTaskTShareds)), +                             Loc), +        CGF.getNaturalTypeAlignment(SharedsTy)); +  } +  emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD, +                   SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true); +  CGF.FinishFunction(); +  return TaskDup; +} + +/// Checks if destructor function is required to be generated. +/// \return true if cleanups are required, false otherwise. +static bool +checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) { +  bool NeedsCleanup = false; +  auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); +  auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl()); +  for (auto *FD : PrivateRD->fields()) { +    NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType(); +    if (NeedsCleanup) +      break; +  } +  return NeedsCleanup; +} + +CGOpenMPRuntime::TaskResultTy +CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc, +                              const OMPExecutableDirective &D, +                              llvm::Value *TaskFunction, QualType SharedsTy, +                              Address Shareds, const OMPTaskDataTy &Data) { +  auto &C = CGM.getContext(); +  llvm::SmallVector<PrivateDataTy, 4> Privates; +  // Aggregate privates and sort them by the alignment. +  auto I = Data.PrivateCopies.begin(); +  for (auto *E : Data.PrivateVars) { +    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); +    Privates.push_back(std::make_pair( +        C.getDeclAlign(VD), +        PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), +                         /*PrivateElemInit=*/nullptr))); +    ++I; +  } +  I = Data.FirstprivateCopies.begin(); +  auto IElemInitRef = Data.FirstprivateInits.begin(); +  for (auto *E : Data.FirstprivateVars) { +    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); +    Privates.push_back(std::make_pair( +        C.getDeclAlign(VD), +        PrivateHelpersTy( +            VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), +            cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())))); +    ++I; +    ++IElemInitRef; +  } +  I = Data.LastprivateCopies.begin(); +  for (auto *E : Data.LastprivateVars) { +    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); +    Privates.push_back(std::make_pair( +        C.getDeclAlign(VD), +        PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), +                         /*PrivateElemInit=*/nullptr))); +    ++I; +  } +  llvm::array_pod_sort(Privates.begin(), Privates.end(), +                       array_pod_sort_comparator); +  auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); +  // Build type kmp_routine_entry_t (if not built yet). +  emitKmpRoutineEntryT(KmpInt32Ty); +  // Build type kmp_task_t (if not built yet). +  if (KmpTaskTQTy.isNull()) { +    KmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl( +        CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); +  } +  auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); +  // Build particular struct kmp_task_t for the given task. +  auto *KmpTaskTWithPrivatesQTyRD = +      createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates); +  auto KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD); +  QualType KmpTaskTWithPrivatesPtrQTy = +      C.getPointerType(KmpTaskTWithPrivatesQTy); +  auto *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy); +  auto *KmpTaskTWithPrivatesPtrTy = KmpTaskTWithPrivatesTy->getPointerTo(); +  auto *KmpTaskTWithPrivatesTySize = CGF.getTypeSize(KmpTaskTWithPrivatesQTy); +  QualType SharedsPtrTy = C.getPointerType(SharedsTy); + +  // Emit initial values for private copies (if any). +  llvm::Value *TaskPrivatesMap = nullptr; +  auto *TaskPrivatesMapTy = +      std::next(cast<llvm::Function>(TaskFunction)->arg_begin(), 3)->getType(); +  if (!Privates.empty()) { +    auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); +    TaskPrivatesMap = emitTaskPrivateMappingFunction( +        CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars, +        FI->getType(), Privates); +    TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +        TaskPrivatesMap, TaskPrivatesMapTy); +  } else { +    TaskPrivatesMap = llvm::ConstantPointerNull::get( +        cast<llvm::PointerType>(TaskPrivatesMapTy)); +  } +  // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid, +  // kmp_task_t *tt); +  auto *TaskEntry = emitProxyTaskFunction( +      CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, +      KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction, +      TaskPrivatesMap); + +  // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, +  // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, +  // kmp_routine_entry_t *task_entry); +  // Task flags. Format is taken from +  // http://llvm.org/svn/llvm-project/openmp/trunk/runtime/src/kmp.h, +  // description of kmp_tasking_flags struct. +  enum { +    TiedFlag = 0x1, +    FinalFlag = 0x2, +    DestructorsFlag = 0x8, +    PriorityFlag = 0x20 +  }; +  unsigned Flags = Data.Tied ? TiedFlag : 0; +  bool NeedsCleanup = false; +  if (!Privates.empty()) { +    NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD); +    if (NeedsCleanup) +      Flags = Flags | DestructorsFlag; +  } +  if (Data.Priority.getInt()) +    Flags = Flags | PriorityFlag; +  auto *TaskFlags = +      Data.Final.getPointer() +          ? CGF.Builder.CreateSelect(Data.Final.getPointer(), +                                     CGF.Builder.getInt32(FinalFlag), +                                     CGF.Builder.getInt32(/*C=*/0)) +          : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0); +  TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags)); +  auto *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy)); +  llvm::Value *AllocArgs[] = {emitUpdateLocation(CGF, Loc), +                              getThreadID(CGF, Loc), TaskFlags, +                              KmpTaskTWithPrivatesTySize, SharedsSize, +                              CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +                                  TaskEntry, KmpRoutineEntryPtrTy)}; +  auto *NewTask = CGF.EmitRuntimeCall( +      createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs); +  auto *NewTaskNewTaskTTy = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      NewTask, KmpTaskTWithPrivatesPtrTy); +  LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy, +                                               KmpTaskTWithPrivatesQTy); +  LValue TDBase = +      CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin()); +  // Fill the data in the resulting kmp_task_t record. +  // Copy shareds if there are any. +  Address KmpTaskSharedsPtr = Address::invalid(); +  if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) { +    KmpTaskSharedsPtr = +        Address(CGF.EmitLoadOfScalar( +                    CGF.EmitLValueForField( +                        TDBase, *std::next(KmpTaskTQTyRD->field_begin(), +                                           KmpTaskTShareds)), +                    Loc), +                CGF.getNaturalTypeAlignment(SharedsTy)); +    CGF.EmitAggregateCopy(KmpTaskSharedsPtr, Shareds, SharedsTy); +  } +  // Emit initial values for private copies (if any). +  TaskResultTy Result; +  if (!Privates.empty()) { +    emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD, +                     SharedsTy, SharedsPtrTy, Data, Privates, +                     /*ForDup=*/false); +    if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && +        (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) { +      Result.TaskDupFn = emitTaskDupFunction( +          CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD, +          KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, +          /*WithLastIter=*/!Data.LastprivateVars.empty()); +    } +  } +  // Fields of union "kmp_cmplrdata_t" for destructors and priority. +  enum { Priority = 0, Destructors = 1 }; +  // Provide pointer to function with destructors for privates. +  auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1); +  auto *KmpCmplrdataUD = (*FI)->getType()->getAsUnionType()->getDecl(); +  if (NeedsCleanup) { +    llvm::Value *DestructorFn = emitDestructorsFunction( +        CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, +        KmpTaskTWithPrivatesQTy); +    LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI); +    LValue DestructorsLV = CGF.EmitLValueForField( +        Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors)); +    CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +                              DestructorFn, KmpRoutineEntryPtrTy), +                          DestructorsLV); +  } +  // Set priority. +  if (Data.Priority.getInt()) { +    LValue Data2LV = CGF.EmitLValueForField( +        TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2)); +    LValue PriorityLV = CGF.EmitLValueForField( +        Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority)); +    CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV); +  } +  Result.NewTask = NewTask; +  Result.TaskEntry = TaskEntry; +  Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy; +  Result.TDBase = TDBase; +  Result.KmpTaskTQTyRD = KmpTaskTQTyRD; +  return Result; +} + +void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, +                                   const OMPExecutableDirective &D, +                                   llvm::Value *TaskFunction, +                                   QualType SharedsTy, Address Shareds, +                                   const Expr *IfCond, +                                   const OMPTaskDataTy &Data) { +  if (!CGF.HaveInsertPoint()) +    return; + +  TaskResultTy Result = +      emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); +  llvm::Value *NewTask = Result.NewTask; +  llvm::Value *TaskEntry = Result.TaskEntry; +  llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy; +  LValue TDBase = Result.TDBase; +  RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD; +  auto &C = CGM.getContext(); +  // Process list of dependences. +  Address DependenciesArray = Address::invalid(); +  unsigned NumDependencies = Data.Dependences.size(); +  if (NumDependencies) { +    // Dependence kind for RTL. +    enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3 }; +    enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags }; +    RecordDecl *KmpDependInfoRD; +    QualType FlagsTy = +        C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false); +    llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); +    if (KmpDependInfoTy.isNull()) { +      KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info"); +      KmpDependInfoRD->startDefinition(); +      addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType()); +      addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType()); +      addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy); +      KmpDependInfoRD->completeDefinition(); +      KmpDependInfoTy = C.getRecordType(KmpDependInfoRD); +    } else +      KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); +    CharUnits DependencySize = C.getTypeSizeInChars(KmpDependInfoTy); +    // Define type kmp_depend_info[<Dependences.size()>]; +    QualType KmpDependInfoArrayTy = C.getConstantArrayType( +        KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), +        ArrayType::Normal, /*IndexTypeQuals=*/0); +    // kmp_depend_info[<Dependences.size()>] deps; +    DependenciesArray = +        CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr"); +    for (unsigned i = 0; i < NumDependencies; ++i) { +      const Expr *E = Data.Dependences[i].second; +      auto Addr = CGF.EmitLValue(E); +      llvm::Value *Size; +      QualType Ty = E->getType(); +      if (auto *ASE = dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) { +        LValue UpAddrLVal = +            CGF.EmitOMPArraySectionExpr(ASE, /*LowerBound=*/false); +        llvm::Value *UpAddr = +            CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1); +        llvm::Value *LowIntPtr = +            CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy); +        llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy); +        Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr); +      } else +        Size = CGF.getTypeSize(Ty); +      auto Base = CGF.MakeAddrLValue( +          CGF.Builder.CreateConstArrayGEP(DependenciesArray, i, DependencySize), +          KmpDependInfoTy); +      // deps[i].base_addr = &<Dependences[i].second>; +      auto BaseAddrLVal = CGF.EmitLValueForField( +          Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); +      CGF.EmitStoreOfScalar( +          CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy), +          BaseAddrLVal); +      // deps[i].len = sizeof(<Dependences[i].second>); +      auto LenLVal = CGF.EmitLValueForField( +          Base, *std::next(KmpDependInfoRD->field_begin(), Len)); +      CGF.EmitStoreOfScalar(Size, LenLVal); +      // deps[i].flags = <Dependences[i].first>; +      RTLDependenceKindTy DepKind; +      switch (Data.Dependences[i].first) { +      case OMPC_DEPEND_in: +        DepKind = DepIn; +        break; +      // Out and InOut dependencies must use the same code. +      case OMPC_DEPEND_out: +      case OMPC_DEPEND_inout: +        DepKind = DepInOut; +        break; +      case OMPC_DEPEND_source: +      case OMPC_DEPEND_sink: +      case OMPC_DEPEND_unknown: +        llvm_unreachable("Unknown task dependence type"); +      } +      auto FlagsLVal = CGF.EmitLValueForField( +          Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); +      CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), +                            FlagsLVal); +    } +    DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +        CGF.Builder.CreateStructGEP(DependenciesArray, 0, CharUnits::Zero()), +        CGF.VoidPtrTy); +  } + +  // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc() +  // libcall. +  // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, +  // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, +  // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence +  // list is not empty +  auto *ThreadID = getThreadID(CGF, Loc); +  auto *UpLoc = emitUpdateLocation(CGF, Loc); +  llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask }; +  llvm::Value *DepTaskArgs[7]; +  if (NumDependencies) { +    DepTaskArgs[0] = UpLoc; +    DepTaskArgs[1] = ThreadID; +    DepTaskArgs[2] = NewTask; +    DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies); +    DepTaskArgs[4] = DependenciesArray.getPointer(); +    DepTaskArgs[5] = CGF.Builder.getInt32(0); +    DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); +  } +  auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies, +                        &TaskArgs, +                        &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { +    if (!Data.Tied) { +      auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); +      auto PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI); +      CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal); +    } +    if (NumDependencies) { +      CGF.EmitRuntimeCall( +          createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs); +    } else { +      CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), +                          TaskArgs); +    } +    // Check if parent region is untied and build return for untied task; +    if (auto *Region = +            dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) +      Region->emitUntiedSwitch(CGF); +  }; + +  llvm::Value *DepWaitTaskArgs[6]; +  if (NumDependencies) { +    DepWaitTaskArgs[0] = UpLoc; +    DepWaitTaskArgs[1] = ThreadID; +    DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies); +    DepWaitTaskArgs[3] = DependenciesArray.getPointer(); +    DepWaitTaskArgs[4] = CGF.Builder.getInt32(0); +    DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); +  } +  auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry, +                        NumDependencies, &DepWaitTaskArgs](CodeGenFunction &CGF, +                                                           PrePostActionTy &) { +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    CodeGenFunction::RunCleanupsScope LocalScope(CGF); +    // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, +    // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 +    // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info +    // is specified. +    if (NumDependencies) +      CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps), +                          DepWaitTaskArgs); +    // Call proxy_task_entry(gtid, new_task); +    auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy]( +        CodeGenFunction &CGF, PrePostActionTy &Action) { +      Action.Enter(CGF); +      llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy}; +      CGF.EmitCallOrInvoke(TaskEntry, OutlinedFnArgs); +    }; + +    // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, +    // kmp_task_t *new_task); +    // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, +    // kmp_task_t *new_task); +    RegionCodeGenTy RCG(CodeGen); +    CommonActionTy Action( +        RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs, +        RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs); +    RCG.setAction(Action); +    RCG(CGF); +  }; + +  if (IfCond) +    emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen); +  else { +    RegionCodeGenTy ThenRCG(ThenCodeGen); +    ThenRCG(CGF); +  } +} + +void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc, +                                       const OMPLoopDirective &D, +                                       llvm::Value *TaskFunction, +                                       QualType SharedsTy, Address Shareds, +                                       const Expr *IfCond, +                                       const OMPTaskDataTy &Data) { +  if (!CGF.HaveInsertPoint()) +    return; +  TaskResultTy Result = +      emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); +  // NOTE: routine and part_id fields are intialized by __kmpc_omp_task_alloc() +  // libcall. +  // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int +  // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int +  // sched, kmp_uint64 grainsize, void *task_dup); +  llvm::Value *ThreadID = getThreadID(CGF, Loc); +  llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); +  llvm::Value *IfVal; +  if (IfCond) { +    IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy, +                                      /*isSigned=*/true); +  } else +    IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1); + +  LValue LBLVal = CGF.EmitLValueForField( +      Result.TDBase, +      *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound)); +  auto *LBVar = +      cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl()); +  CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(), +                       /*IsInitializer=*/true); +  LValue UBLVal = CGF.EmitLValueForField( +      Result.TDBase, +      *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound)); +  auto *UBVar = +      cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl()); +  CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(), +                       /*IsInitializer=*/true); +  LValue StLVal = CGF.EmitLValueForField( +      Result.TDBase, +      *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride)); +  auto *StVar = +      cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl()); +  CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(), +                       /*IsInitializer=*/true); +  enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 }; +  llvm::Value *TaskArgs[] = { +      UpLoc, ThreadID, Result.NewTask, IfVal, LBLVal.getPointer(), +      UBLVal.getPointer(), CGF.EmitLoadOfScalar(StLVal, SourceLocation()), +      llvm::ConstantInt::getSigned(CGF.IntTy, Data.Nogroup ? 1 : 0), +      llvm::ConstantInt::getSigned( +          CGF.IntTy, Data.Schedule.getPointer() +                         ? Data.Schedule.getInt() ? NumTasks : Grainsize +                         : NoSchedule), +      Data.Schedule.getPointer() +          ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty, +                                      /*isSigned=*/false) +          : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0), +      Result.TaskDupFn +          ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Result.TaskDupFn, +                                                            CGF.VoidPtrTy) +          : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)}; +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs); +} + +/// \brief Emit reduction operation for each element of array (required for +/// array sections) LHS op = RHS. +/// \param Type Type of array. +/// \param LHSVar Variable on the left side of the reduction operation +/// (references element of array in original variable). +/// \param RHSVar Variable on the right side of the reduction operation +/// (references element of array in original variable). +/// \param RedOpGen Generator of reduction operation with use of LHSVar and +/// RHSVar. +static void EmitOMPAggregateReduction( +    CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar, +    const VarDecl *RHSVar, +    const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *, +                                  const Expr *, const Expr *)> &RedOpGen, +    const Expr *XExpr = nullptr, const Expr *EExpr = nullptr, +    const Expr *UpExpr = nullptr) { +  // Perform element-by-element initialization. +  QualType ElementTy; +  Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar); +  Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar); + +  // Drill down to the base element type on both arrays. +  auto ArrayTy = Type->getAsArrayTypeUnsafe(); +  auto NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr); + +  auto RHSBegin = RHSAddr.getPointer(); +  auto LHSBegin = LHSAddr.getPointer(); +  // Cast from pointer to array type to pointer to single element. +  auto LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements); +  // The basic structure here is a while-do loop. +  auto BodyBB = CGF.createBasicBlock("omp.arraycpy.body"); +  auto DoneBB = CGF.createBasicBlock("omp.arraycpy.done"); +  auto IsEmpty = +      CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty"); +  CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); + +  // Enter the loop body, making that address the current address. +  auto EntryBB = CGF.Builder.GetInsertBlock(); +  CGF.EmitBlock(BodyBB); + +  CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); + +  llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI( +      RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast"); +  RHSElementPHI->addIncoming(RHSBegin, EntryBB); +  Address RHSElementCurrent = +      Address(RHSElementPHI, +              RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + +  llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI( +      LHSBegin->getType(), 2, "omp.arraycpy.destElementPast"); +  LHSElementPHI->addIncoming(LHSBegin, EntryBB); +  Address LHSElementCurrent = +      Address(LHSElementPHI, +              LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + +  // Emit copy. +  CodeGenFunction::OMPPrivateScope Scope(CGF); +  Scope.addPrivate(LHSVar, [=]() -> Address { return LHSElementCurrent; }); +  Scope.addPrivate(RHSVar, [=]() -> Address { return RHSElementCurrent; }); +  Scope.Privatize(); +  RedOpGen(CGF, XExpr, EExpr, UpExpr); +  Scope.ForceCleanup(); + +  // Shift the address forward by one element. +  auto LHSElementNext = CGF.Builder.CreateConstGEP1_32( +      LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); +  auto RHSElementNext = CGF.Builder.CreateConstGEP1_32( +      RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); +  // Check whether we've reached the end. +  auto Done = +      CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done"); +  CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); +  LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock()); +  RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock()); + +  // Done. +  CGF.EmitBlock(DoneBB, /*IsFinished=*/true); +} + +/// Emit reduction combiner. If the combiner is a simple expression emit it as +/// is, otherwise consider it as combiner of UDR decl and emit it as a call of +/// UDR combiner function. +static void emitReductionCombiner(CodeGenFunction &CGF, +                                  const Expr *ReductionOp) { +  if (auto *CE = dyn_cast<CallExpr>(ReductionOp)) +    if (auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) +      if (auto *DRE = +              dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) +        if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) { +          std::pair<llvm::Function *, llvm::Function *> Reduction = +              CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); +          RValue Func = RValue::get(Reduction.first); +          CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); +          CGF.EmitIgnoredExpr(ReductionOp); +          return; +        } +  CGF.EmitIgnoredExpr(ReductionOp); +} + +llvm::Value *CGOpenMPRuntime::emitReductionFunction( +    CodeGenModule &CGM, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates, +    ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, +    ArrayRef<const Expr *> ReductionOps) { +  auto &C = CGM.getContext(); + +  // void reduction_func(void *LHSArg, void *RHSArg); +  FunctionArgList Args; +  ImplicitParamDecl LHSArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); +  ImplicitParamDecl RHSArg(C, C.VoidPtrTy, ImplicitParamDecl::Other); +  Args.push_back(&LHSArg); +  Args.push_back(&RHSArg); +  auto &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); +  auto *Fn = llvm::Function::Create( +      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, +      ".omp.reduction.reduction_func", &CGM.getModule()); +  CGM.SetInternalFunctionAttributes(/*D=*/nullptr, Fn, CGFI); +  CodeGenFunction CGF(CGM); +  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args); + +  // Dst = (void*[n])(LHSArg); +  // Src = (void*[n])(RHSArg); +  Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), +      ArgsType), CGF.getPointerAlign()); +  Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), +      ArgsType), CGF.getPointerAlign()); + +  //  ... +  //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]); +  //  ... +  CodeGenFunction::OMPPrivateScope Scope(CGF); +  auto IPriv = Privates.begin(); +  unsigned Idx = 0; +  for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) { +    auto RHSVar = cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl()); +    Scope.addPrivate(RHSVar, [&]() -> Address { +      return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar); +    }); +    auto LHSVar = cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl()); +    Scope.addPrivate(LHSVar, [&]() -> Address { +      return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar); +    }); +    QualType PrivTy = (*IPriv)->getType(); +    if (PrivTy->isVariablyModifiedType()) { +      // Get array size and emit VLA type. +      ++Idx; +      Address Elem = +          CGF.Builder.CreateConstArrayGEP(LHS, Idx, CGF.getPointerSize()); +      llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem); +      auto *VLA = CGF.getContext().getAsVariableArrayType(PrivTy); +      auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr()); +      CodeGenFunction::OpaqueValueMapping OpaqueMap( +          CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy))); +      CGF.EmitVariablyModifiedType(PrivTy); +    } +  } +  Scope.Privatize(); +  IPriv = Privates.begin(); +  auto ILHS = LHSExprs.begin(); +  auto IRHS = RHSExprs.begin(); +  for (auto *E : ReductionOps) { +    if ((*IPriv)->getType()->isArrayType()) { +      // Emit reduction for array section. +      auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); +      auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); +      EmitOMPAggregateReduction( +          CGF, (*IPriv)->getType(), LHSVar, RHSVar, +          [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { +            emitReductionCombiner(CGF, E); +          }); +    } else +      // Emit reduction for array subscript or single variable. +      emitReductionCombiner(CGF, E); +    ++IPriv; +    ++ILHS; +    ++IRHS; +  } +  Scope.ForceCleanup(); +  CGF.FinishFunction(); +  return Fn; +} + +void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF, +                                                  const Expr *ReductionOp, +                                                  const Expr *PrivateRef, +                                                  const DeclRefExpr *LHS, +                                                  const DeclRefExpr *RHS) { +  if (PrivateRef->getType()->isArrayType()) { +    // Emit reduction for array section. +    auto *LHSVar = cast<VarDecl>(LHS->getDecl()); +    auto *RHSVar = cast<VarDecl>(RHS->getDecl()); +    EmitOMPAggregateReduction( +        CGF, PrivateRef->getType(), LHSVar, RHSVar, +        [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { +          emitReductionCombiner(CGF, ReductionOp); +        }); +  } else +    // Emit reduction for array subscript or single variable. +    emitReductionCombiner(CGF, ReductionOp); +} + +void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc, +                                    ArrayRef<const Expr *> Privates, +                                    ArrayRef<const Expr *> LHSExprs, +                                    ArrayRef<const Expr *> RHSExprs, +                                    ArrayRef<const Expr *> ReductionOps, +                                    ReductionOptionsTy Options) { +  if (!CGF.HaveInsertPoint()) +    return; + +  bool WithNowait = Options.WithNowait; +  bool SimpleReduction = Options.SimpleReduction; + +  // Next code should be emitted for reduction: +  // +  // static kmp_critical_name lock = { 0 }; +  // +  // void reduce_func(void *lhs[<n>], void *rhs[<n>]) { +  //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]); +  //  ... +  //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1], +  //  *(Type<n>-1*)rhs[<n>-1]); +  // } +  // +  // ... +  // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]}; +  // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), +  // RedList, reduce_func, &<lock>)) { +  // case 1: +  //  ... +  //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); +  //  ... +  // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); +  // break; +  // case 2: +  //  ... +  //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); +  //  ... +  // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);] +  // break; +  // default:; +  // } +  // +  // if SimpleReduction is true, only the next code is generated: +  //  ... +  //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); +  //  ... + +  auto &C = CGM.getContext(); + +  if (SimpleReduction) { +    CodeGenFunction::RunCleanupsScope Scope(CGF); +    auto IPriv = Privates.begin(); +    auto ILHS = LHSExprs.begin(); +    auto IRHS = RHSExprs.begin(); +    for (auto *E : ReductionOps) { +      emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), +                                  cast<DeclRefExpr>(*IRHS)); +      ++IPriv; +      ++ILHS; +      ++IRHS; +    } +    return; +  } + +  // 1. Build a list of reduction variables. +  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; +  auto Size = RHSExprs.size(); +  for (auto *E : Privates) { +    if (E->getType()->isVariablyModifiedType()) +      // Reserve place for array size. +      ++Size; +  } +  llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); +  QualType ReductionArrayTy = +      C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, +                             /*IndexTypeQuals=*/0); +  Address ReductionList = +      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); +  auto IPriv = Privates.begin(); +  unsigned Idx = 0; +  for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { +    Address Elem = +      CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, CGF.getPointerSize()); +    CGF.Builder.CreateStore( +        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +            CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), +        Elem); +    if ((*IPriv)->getType()->isVariablyModifiedType()) { +      // Store array size. +      ++Idx; +      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx, +                                             CGF.getPointerSize()); +      llvm::Value *Size = CGF.Builder.CreateIntCast( +          CGF.getVLASize( +                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) +              .first, +          CGF.SizeTy, /*isSigned=*/false); +      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), +                              Elem); +    } +  } + +  // 2. Emit reduce_func(). +  auto *ReductionFn = emitReductionFunction( +      CGM, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, +      LHSExprs, RHSExprs, ReductionOps); + +  // 3. Create static kmp_critical_name lock = { 0 }; +  auto *Lock = getCriticalRegionLock(".reduction"); + +  // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), +  // RedList, reduce_func, &<lock>); +  auto *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE); +  auto *ThreadId = getThreadID(CGF, Loc); +  auto *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); +  auto *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +      ReductionList.getPointer(), CGF.VoidPtrTy); +  llvm::Value *Args[] = { +      IdentTLoc,                             // ident_t *<loc> +      ThreadId,                              // i32 <gtid> +      CGF.Builder.getInt32(RHSExprs.size()), // i32 <n> +      ReductionArrayTySize,                  // size_type sizeof(RedList) +      RL,                                    // void *RedList +      ReductionFn, // void (*) (void *, void *) <reduce_func> +      Lock         // kmp_critical_name *&<lock> +  }; +  auto Res = CGF.EmitRuntimeCall( +      createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait +                                       : OMPRTL__kmpc_reduce), +      Args); + +  // 5. Build switch(res) +  auto *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); +  auto *SwInst = CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2); + +  // 6. Build case 1: +  //  ... +  //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); +  //  ... +  // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); +  // break; +  auto *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); +  SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); +  CGF.EmitBlock(Case1BB); + +  // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); +  llvm::Value *EndArgs[] = { +      IdentTLoc, // ident_t *<loc> +      ThreadId,  // i32 <gtid> +      Lock       // kmp_critical_name *&<lock> +  }; +  auto &&CodeGen = [&Privates, &LHSExprs, &RHSExprs, &ReductionOps]( +      CodeGenFunction &CGF, PrePostActionTy &Action) { +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    auto IPriv = Privates.begin(); +    auto ILHS = LHSExprs.begin(); +    auto IRHS = RHSExprs.begin(); +    for (auto *E : ReductionOps) { +      RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), +                                     cast<DeclRefExpr>(*IRHS)); +      ++IPriv; +      ++ILHS; +      ++IRHS; +    } +  }; +  RegionCodeGenTy RCG(CodeGen); +  CommonActionTy Action( +      nullptr, llvm::None, +      createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait +                                       : OMPRTL__kmpc_end_reduce), +      EndArgs); +  RCG.setAction(Action); +  RCG(CGF); + +  CGF.EmitBranch(DefaultBB); + +  // 7. Build case 2: +  //  ... +  //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); +  //  ... +  // break; +  auto *Case2BB = CGF.createBasicBlock(".omp.reduction.case2"); +  SwInst->addCase(CGF.Builder.getInt32(2), Case2BB); +  CGF.EmitBlock(Case2BB); + +  auto &&AtomicCodeGen = [Loc, &Privates, &LHSExprs, &RHSExprs, &ReductionOps]( +      CodeGenFunction &CGF, PrePostActionTy &Action) { +    auto ILHS = LHSExprs.begin(); +    auto IRHS = RHSExprs.begin(); +    auto IPriv = Privates.begin(); +    for (auto *E : ReductionOps) { +      const Expr *XExpr = nullptr; +      const Expr *EExpr = nullptr; +      const Expr *UpExpr = nullptr; +      BinaryOperatorKind BO = BO_Comma; +      if (auto *BO = dyn_cast<BinaryOperator>(E)) { +        if (BO->getOpcode() == BO_Assign) { +          XExpr = BO->getLHS(); +          UpExpr = BO->getRHS(); +        } +      } +      // Try to emit update expression as a simple atomic. +      auto *RHSExpr = UpExpr; +      if (RHSExpr) { +        // Analyze RHS part of the whole expression. +        if (auto *ACO = dyn_cast<AbstractConditionalOperator>( +                RHSExpr->IgnoreParenImpCasts())) { +          // If this is a conditional operator, analyze its condition for +          // min/max reduction operator. +          RHSExpr = ACO->getCond(); +        } +        if (auto *BORHS = +                dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) { +          EExpr = BORHS->getRHS(); +          BO = BORHS->getOpcode(); +        } +      } +      if (XExpr) { +        auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); +        auto &&AtomicRedGen = [BO, VD, +                               Loc](CodeGenFunction &CGF, const Expr *XExpr, +                                    const Expr *EExpr, const Expr *UpExpr) { +          LValue X = CGF.EmitLValue(XExpr); +          RValue E; +          if (EExpr) +            E = CGF.EmitAnyExpr(EExpr); +          CGF.EmitOMPAtomicSimpleUpdateExpr( +              X, E, BO, /*IsXLHSInRHSPart=*/true, +              llvm::AtomicOrdering::Monotonic, Loc, +              [&CGF, UpExpr, VD, Loc](RValue XRValue) { +                CodeGenFunction::OMPPrivateScope PrivateScope(CGF); +                PrivateScope.addPrivate( +                    VD, [&CGF, VD, XRValue, Loc]() -> Address { +                      Address LHSTemp = CGF.CreateMemTemp(VD->getType()); +                      CGF.emitOMPSimpleStore( +                          CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue, +                          VD->getType().getNonReferenceType(), Loc); +                      return LHSTemp; +                    }); +                (void)PrivateScope.Privatize(); +                return CGF.EmitAnyExpr(UpExpr); +              }); +        }; +        if ((*IPriv)->getType()->isArrayType()) { +          // Emit atomic reduction for array section. +          auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); +          EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar, +                                    AtomicRedGen, XExpr, EExpr, UpExpr); +        } else +          // Emit atomic reduction for array subscript or single variable. +          AtomicRedGen(CGF, XExpr, EExpr, UpExpr); +      } else { +        // Emit as a critical region. +        auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *, +                                     const Expr *, const Expr *) { +          auto &RT = CGF.CGM.getOpenMPRuntime(); +          RT.emitCriticalRegion( +              CGF, ".atomic_reduction", +              [=](CodeGenFunction &CGF, PrePostActionTy &Action) { +                Action.Enter(CGF); +                emitReductionCombiner(CGF, E); +              }, +              Loc); +        }; +        if ((*IPriv)->getType()->isArrayType()) { +          auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); +          auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); +          EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar, +                                    CritRedGen); +        } else +          CritRedGen(CGF, nullptr, nullptr, nullptr); +      } +      ++ILHS; +      ++IRHS; +      ++IPriv; +    } +  }; +  RegionCodeGenTy AtomicRCG(AtomicCodeGen); +  if (!WithNowait) { +    // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>); +    llvm::Value *EndArgs[] = { +        IdentTLoc, // ident_t *<loc> +        ThreadId,  // i32 <gtid> +        Lock       // kmp_critical_name *&<lock> +    }; +    CommonActionTy Action(nullptr, llvm::None, +                          createRuntimeFunction(OMPRTL__kmpc_end_reduce), +                          EndArgs); +    AtomicRCG.setAction(Action); +    AtomicRCG(CGF); +  } else +    AtomicRCG(CGF); + +  CGF.EmitBranch(DefaultBB); +  CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); +} + +void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, +                                       SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 +  // global_tid); +  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; +  // Ignore return result until untied tasks are supported. +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args); +  if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) +    Region->emitUntiedSwitch(CGF); +} + +void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF, +                                           OpenMPDirectiveKind InnerKind, +                                           const RegionCodeGenTy &CodeGen, +                                           bool HasCancel) { +  if (!CGF.HaveInsertPoint()) +    return; +  InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel); +  CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr); +} + +namespace { +enum RTCancelKind { +  CancelNoreq = 0, +  CancelParallel = 1, +  CancelLoop = 2, +  CancelSections = 3, +  CancelTaskgroup = 4 +}; +} // anonymous namespace + +static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) { +  RTCancelKind CancelKind = CancelNoreq; +  if (CancelRegion == OMPD_parallel) +    CancelKind = CancelParallel; +  else if (CancelRegion == OMPD_for) +    CancelKind = CancelLoop; +  else if (CancelRegion == OMPD_sections) +    CancelKind = CancelSections; +  else { +    assert(CancelRegion == OMPD_taskgroup); +    CancelKind = CancelTaskgroup; +  } +  return CancelKind; +} + +void CGOpenMPRuntime::emitCancellationPointCall( +    CodeGenFunction &CGF, SourceLocation Loc, +    OpenMPDirectiveKind CancelRegion) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 +  // global_tid, kmp_int32 cncl_kind); +  if (auto *OMPRegionInfo = +          dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { +    // For 'cancellation point taskgroup', the task region info may not have a +    // cancel. This may instead happen in another adjacent task. +    if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) { +      llvm::Value *Args[] = { +          emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), +          CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; +      // Ignore return result until untied tasks are supported. +      auto *Result = CGF.EmitRuntimeCall( +          createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args); +      // if (__kmpc_cancellationpoint()) { +      //   exit from construct; +      // } +      auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); +      auto *ContBB = CGF.createBasicBlock(".cancel.continue"); +      auto *Cmp = CGF.Builder.CreateIsNotNull(Result); +      CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); +      CGF.EmitBlock(ExitBB); +      // exit from construct; +      auto CancelDest = +          CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); +      CGF.EmitBranchThroughCleanup(CancelDest); +      CGF.EmitBlock(ContBB, /*IsFinished=*/true); +    } +  } +} + +void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, +                                     const Expr *IfCond, +                                     OpenMPDirectiveKind CancelRegion) { +  if (!CGF.HaveInsertPoint()) +    return; +  // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, +  // kmp_int32 cncl_kind); +  if (auto *OMPRegionInfo = +          dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { +    auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF, +                                                        PrePostActionTy &) { +      auto &RT = CGF.CGM.getOpenMPRuntime(); +      llvm::Value *Args[] = { +          RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc), +          CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; +      // Ignore return result until untied tasks are supported. +      auto *Result = CGF.EmitRuntimeCall( +          RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args); +      // if (__kmpc_cancel()) { +      //   exit from construct; +      // } +      auto *ExitBB = CGF.createBasicBlock(".cancel.exit"); +      auto *ContBB = CGF.createBasicBlock(".cancel.continue"); +      auto *Cmp = CGF.Builder.CreateIsNotNull(Result); +      CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); +      CGF.EmitBlock(ExitBB); +      // exit from construct; +      auto CancelDest = +          CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); +      CGF.EmitBranchThroughCleanup(CancelDest); +      CGF.EmitBlock(ContBB, /*IsFinished=*/true); +    }; +    if (IfCond) +      emitOMPIfClause(CGF, IfCond, ThenGen, +                      [](CodeGenFunction &, PrePostActionTy &) {}); +    else { +      RegionCodeGenTy ThenRCG(ThenGen); +      ThenRCG(CGF); +    } +  } +} + +/// \brief Obtain information that uniquely identifies a target entry. This +/// consists of the file and device IDs as well as line number associated with +/// the relevant entry source location. +static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc, +                                     unsigned &DeviceID, unsigned &FileID, +                                     unsigned &LineNum) { + +  auto &SM = C.getSourceManager(); + +  // The loc should be always valid and have a file ID (the user cannot use +  // #pragma directives in macros) + +  assert(Loc.isValid() && "Source location is expected to be always valid."); +  assert(Loc.isFileID() && "Source location is expected to refer to a file."); + +  PresumedLoc PLoc = SM.getPresumedLoc(Loc); +  assert(PLoc.isValid() && "Source location is expected to be always valid."); + +  llvm::sys::fs::UniqueID ID; +  if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) +    llvm_unreachable("Source file with target region no longer exists!"); + +  DeviceID = ID.getDevice(); +  FileID = ID.getFile(); +  LineNum = PLoc.getLine(); +} + +void CGOpenMPRuntime::emitTargetOutlinedFunction( +    const OMPExecutableDirective &D, StringRef ParentName, +    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, +    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { +  assert(!ParentName.empty() && "Invalid target region parent name!"); + +  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, +                                   IsOffloadEntry, CodeGen); +} + +void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper( +    const OMPExecutableDirective &D, StringRef ParentName, +    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, +    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { +  // Create a unique name for the entry function using the source location +  // information of the current target region. The name will be something like: +  // +  // __omp_offloading_DD_FFFF_PP_lBB +  // +  // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the +  // mangled name of the function that encloses the target region and BB is the +  // line number of the target region. + +  unsigned DeviceID; +  unsigned FileID; +  unsigned Line; +  getTargetEntryUniqueInfo(CGM.getContext(), D.getLocStart(), DeviceID, FileID, +                           Line); +  SmallString<64> EntryFnName; +  { +    llvm::raw_svector_ostream OS(EntryFnName); +    OS << "__omp_offloading" << llvm::format("_%x", DeviceID) +       << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; +  } + +  const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); + +  CodeGenFunction CGF(CGM, true); +  CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName); +  CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + +  OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS); + +  // If this target outline function is not an offload entry, we don't need to +  // register it. +  if (!IsOffloadEntry) +    return; + +  // The target region ID is used by the runtime library to identify the current +  // target region, so it only has to be unique and not necessarily point to +  // anything. It could be the pointer to the outlined function that implements +  // the target region, but we aren't using that so that the compiler doesn't +  // need to keep that, and could therefore inline the host function if proven +  // worthwhile during optimization. In the other hand, if emitting code for the +  // device, the ID has to be the function address so that it can retrieved from +  // the offloading entry and launched by the runtime library. We also mark the +  // outlined function to have external linkage in case we are emitting code for +  // the device, because these functions will be entry points to the device. + +  if (CGM.getLangOpts().OpenMPIsDevice) { +    OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy); +    OutlinedFn->setLinkage(llvm::GlobalValue::ExternalLinkage); +  } else +    OutlinedFnID = new llvm::GlobalVariable( +        CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, +        llvm::GlobalValue::PrivateLinkage, +        llvm::Constant::getNullValue(CGM.Int8Ty), ".omp_offload.region_id"); + +  // Register the information for the entry associated with this target region. +  OffloadEntriesInfoManager.registerTargetRegionEntryInfo( +      DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID, +      /*Flags=*/0); +} + +/// discard all CompoundStmts intervening between two constructs +static const Stmt *ignoreCompoundStmts(const Stmt *Body) { +  while (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) +    Body = CS->body_front(); + +  return Body; +} + +/// Emit the number of teams for a target directive.  Inspect the num_teams +/// clause associated with a teams construct combined or closely nested +/// with the target directive. +/// +/// Emit a team of size one for directives such as 'target parallel' that +/// have no associated teams construct. +/// +/// Otherwise, return nullptr. +static llvm::Value * +emitNumTeamsForTargetDirective(CGOpenMPRuntime &OMPRuntime, +                               CodeGenFunction &CGF, +                               const OMPExecutableDirective &D) { + +  assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the " +                                              "teams directive expected to be " +                                              "emitted only for the host!"); + +  auto &Bld = CGF.Builder; + +  // If the target directive is combined with a teams directive: +  //   Return the value in the num_teams clause, if any. +  //   Otherwise, return 0 to denote the runtime default. +  if (isOpenMPTeamsDirective(D.getDirectiveKind())) { +    if (const auto *NumTeamsClause = D.getSingleClause<OMPNumTeamsClause>()) { +      CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF); +      auto NumTeams = CGF.EmitScalarExpr(NumTeamsClause->getNumTeams(), +                                         /*IgnoreResultAssign*/ true); +      return Bld.CreateIntCast(NumTeams, CGF.Int32Ty, +                               /*IsSigned=*/true); +    } + +    // The default value is 0. +    return Bld.getInt32(0); +  } + +  // If the target directive is combined with a parallel directive but not a +  // teams directive, start one team. +  if (isOpenMPParallelDirective(D.getDirectiveKind())) +    return Bld.getInt32(1); + +  // If the current target region has a teams region enclosed, we need to get +  // the number of teams to pass to the runtime function call. This is done +  // by generating the expression in a inlined region. This is required because +  // the expression is captured in the enclosing target environment when the +  // teams directive is not combined with target. + +  const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); + +  // FIXME: Accommodate other combined directives with teams when they become +  // available. +  if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>( +          ignoreCompoundStmts(CS.getCapturedStmt()))) { +    if (auto *NTE = TeamsDir->getSingleClause<OMPNumTeamsClause>()) { +      CGOpenMPInnerExprInfo CGInfo(CGF, CS); +      CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); +      llvm::Value *NumTeams = CGF.EmitScalarExpr(NTE->getNumTeams()); +      return Bld.CreateIntCast(NumTeams, CGF.Int32Ty, +                               /*IsSigned=*/true); +    } + +    // If we have an enclosed teams directive but no num_teams clause we use +    // the default value 0. +    return Bld.getInt32(0); +  } + +  // No teams associated with the directive. +  return nullptr; +} + +/// Emit the number of threads for a target directive.  Inspect the +/// thread_limit clause associated with a teams construct combined or closely +/// nested with the target directive. +/// +/// Emit the num_threads clause for directives such as 'target parallel' that +/// have no associated teams construct. +/// +/// Otherwise, return nullptr. +static llvm::Value * +emitNumThreadsForTargetDirective(CGOpenMPRuntime &OMPRuntime, +                                 CodeGenFunction &CGF, +                                 const OMPExecutableDirective &D) { + +  assert(!CGF.getLangOpts().OpenMPIsDevice && "Clauses associated with the " +                                              "teams directive expected to be " +                                              "emitted only for the host!"); + +  auto &Bld = CGF.Builder; + +  // +  // If the target directive is combined with a teams directive: +  //   Return the value in the thread_limit clause, if any. +  // +  // If the target directive is combined with a parallel directive: +  //   Return the value in the num_threads clause, if any. +  // +  // If both clauses are set, select the minimum of the two. +  // +  // If neither teams or parallel combined directives set the number of threads +  // in a team, return 0 to denote the runtime default. +  // +  // If this is not a teams directive return nullptr. + +  if (isOpenMPTeamsDirective(D.getDirectiveKind()) || +      isOpenMPParallelDirective(D.getDirectiveKind())) { +    llvm::Value *DefaultThreadLimitVal = Bld.getInt32(0); +    llvm::Value *NumThreadsVal = nullptr; +    llvm::Value *ThreadLimitVal = nullptr; + +    if (const auto *ThreadLimitClause = +            D.getSingleClause<OMPThreadLimitClause>()) { +      CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); +      auto ThreadLimit = CGF.EmitScalarExpr(ThreadLimitClause->getThreadLimit(), +                                            /*IgnoreResultAssign*/ true); +      ThreadLimitVal = Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, +                                         /*IsSigned=*/true); +    } + +    if (const auto *NumThreadsClause = +            D.getSingleClause<OMPNumThreadsClause>()) { +      CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); +      llvm::Value *NumThreads = +          CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), +                             /*IgnoreResultAssign*/ true); +      NumThreadsVal = +          Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*IsSigned=*/true); +    } + +    // Select the lesser of thread_limit and num_threads. +    if (NumThreadsVal) +      ThreadLimitVal = ThreadLimitVal +                           ? Bld.CreateSelect(Bld.CreateICmpSLT(NumThreadsVal, +                                                                ThreadLimitVal), +                                              NumThreadsVal, ThreadLimitVal) +                           : NumThreadsVal; + +    // Set default value passed to the runtime if either teams or a target +    // parallel type directive is found but no clause is specified. +    if (!ThreadLimitVal) +      ThreadLimitVal = DefaultThreadLimitVal; + +    return ThreadLimitVal; +  } + +  // If the current target region has a teams region enclosed, we need to get +  // the thread limit to pass to the runtime function call. This is done +  // by generating the expression in a inlined region. This is required because +  // the expression is captured in the enclosing target environment when the +  // teams directive is not combined with target. + +  const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); + +  // FIXME: Accommodate other combined directives with teams when they become +  // available. +  if (auto *TeamsDir = dyn_cast_or_null<OMPTeamsDirective>( +          ignoreCompoundStmts(CS.getCapturedStmt()))) { +    if (auto *TLE = TeamsDir->getSingleClause<OMPThreadLimitClause>()) { +      CGOpenMPInnerExprInfo CGInfo(CGF, CS); +      CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); +      llvm::Value *ThreadLimit = CGF.EmitScalarExpr(TLE->getThreadLimit()); +      return CGF.Builder.CreateIntCast(ThreadLimit, CGF.Int32Ty, +                                       /*IsSigned=*/true); +    } + +    // If we have an enclosed teams directive but no thread_limit clause we use +    // the default value 0. +    return CGF.Builder.getInt32(0); +  } + +  // No teams associated with the directive. +  return nullptr; +} + +namespace { +// \brief Utility to handle information from clauses associated with a given +// construct that use mappable expressions (e.g. 'map' clause, 'to' clause). +// It provides a convenient interface to obtain the information and generate +// code for that information. +class MappableExprsHandler { +public: +  /// \brief Values for bit flags used to specify the mapping type for +  /// offloading. +  enum OpenMPOffloadMappingFlags { +    /// \brief Allocate memory on the device and move data from host to device. +    OMP_MAP_TO = 0x01, +    /// \brief Allocate memory on the device and move data from device to host. +    OMP_MAP_FROM = 0x02, +    /// \brief Always perform the requested mapping action on the element, even +    /// if it was already mapped before. +    OMP_MAP_ALWAYS = 0x04, +    /// \brief Delete the element from the device environment, ignoring the +    /// current reference count associated with the element. +    OMP_MAP_DELETE = 0x08, +    /// \brief The element being mapped is a pointer, therefore the pointee +    /// should be mapped as well. +    OMP_MAP_IS_PTR = 0x10, +    /// \brief This flags signals that an argument is the first one relating to +    /// a map/private clause expression. For some cases a single +    /// map/privatization results in multiple arguments passed to the runtime +    /// library. +    OMP_MAP_FIRST_REF = 0x20, +    /// \brief Signal that the runtime library has to return the device pointer +    /// in the current position for the data being mapped. +    OMP_MAP_RETURN_PTR = 0x40, +    /// \brief This flag signals that the reference being passed is a pointer to +    /// private data. +    OMP_MAP_PRIVATE_PTR = 0x80, +    /// \brief Pass the element to the device by value. +    OMP_MAP_PRIVATE_VAL = 0x100, +  }; + +  /// Class that associates information with a base pointer to be passed to the +  /// runtime library. +  class BasePointerInfo { +    /// The base pointer. +    llvm::Value *Ptr = nullptr; +    /// The base declaration that refers to this device pointer, or null if +    /// there is none. +    const ValueDecl *DevPtrDecl = nullptr; + +  public: +    BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr) +        : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {} +    llvm::Value *operator*() const { return Ptr; } +    const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; } +    void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; } +  }; + +  typedef SmallVector<BasePointerInfo, 16> MapBaseValuesArrayTy; +  typedef SmallVector<llvm::Value *, 16> MapValuesArrayTy; +  typedef SmallVector<unsigned, 16> MapFlagsArrayTy; + +private: +  /// \brief Directive from where the map clauses were extracted. +  const OMPExecutableDirective &CurDir; + +  /// \brief Function the directive is being generated for. +  CodeGenFunction &CGF; + +  /// \brief Set of all first private variables in the current directive. +  llvm::SmallPtrSet<const VarDecl *, 8> FirstPrivateDecls; + +  /// Map between device pointer declarations and their expression components. +  /// The key value for declarations in 'this' is null. +  llvm::DenseMap< +      const ValueDecl *, +      SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>> +      DevPointersMap; + +  llvm::Value *getExprTypeSize(const Expr *E) const { +    auto ExprTy = E->getType().getCanonicalType(); + +    // Reference types are ignored for mapping purposes. +    if (auto *RefTy = ExprTy->getAs<ReferenceType>()) +      ExprTy = RefTy->getPointeeType().getCanonicalType(); + +    // Given that an array section is considered a built-in type, we need to +    // do the calculation based on the length of the section instead of relying +    // on CGF.getTypeSize(E->getType()). +    if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) { +      QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType( +                            OAE->getBase()->IgnoreParenImpCasts()) +                            .getCanonicalType(); + +      // If there is no length associated with the expression, that means we +      // are using the whole length of the base. +      if (!OAE->getLength() && OAE->getColonLoc().isValid()) +        return CGF.getTypeSize(BaseTy); + +      llvm::Value *ElemSize; +      if (auto *PTy = BaseTy->getAs<PointerType>()) +        ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType()); +      else { +        auto *ATy = cast<ArrayType>(BaseTy.getTypePtr()); +        assert(ATy && "Expecting array type if not a pointer type."); +        ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType()); +      } + +      // If we don't have a length at this point, that is because we have an +      // array section with a single element. +      if (!OAE->getLength()) +        return ElemSize; + +      auto *LengthVal = CGF.EmitScalarExpr(OAE->getLength()); +      LengthVal = +          CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false); +      return CGF.Builder.CreateNUWMul(LengthVal, ElemSize); +    } +    return CGF.getTypeSize(ExprTy); +  } + +  /// \brief Return the corresponding bits for a given map clause modifier. Add +  /// a flag marking the map as a pointer if requested. Add a flag marking the +  /// map as the first one of a series of maps that relate to the same map +  /// expression. +  unsigned getMapTypeBits(OpenMPMapClauseKind MapType, +                          OpenMPMapClauseKind MapTypeModifier, bool AddPtrFlag, +                          bool AddIsFirstFlag) const { +    unsigned Bits = 0u; +    switch (MapType) { +    case OMPC_MAP_alloc: +    case OMPC_MAP_release: +      // alloc and release is the default behavior in the runtime library,  i.e. +      // if we don't pass any bits alloc/release that is what the runtime is +      // going to do. Therefore, we don't need to signal anything for these two +      // type modifiers. +      break; +    case OMPC_MAP_to: +      Bits = OMP_MAP_TO; +      break; +    case OMPC_MAP_from: +      Bits = OMP_MAP_FROM; +      break; +    case OMPC_MAP_tofrom: +      Bits = OMP_MAP_TO | OMP_MAP_FROM; +      break; +    case OMPC_MAP_delete: +      Bits = OMP_MAP_DELETE; +      break; +    default: +      llvm_unreachable("Unexpected map type!"); +      break; +    } +    if (AddPtrFlag) +      Bits |= OMP_MAP_IS_PTR; +    if (AddIsFirstFlag) +      Bits |= OMP_MAP_FIRST_REF; +    if (MapTypeModifier == OMPC_MAP_always) +      Bits |= OMP_MAP_ALWAYS; +    return Bits; +  } + +  /// \brief Return true if the provided expression is a final array section. A +  /// final array section, is one whose length can't be proved to be one. +  bool isFinalArraySectionExpression(const Expr *E) const { +    auto *OASE = dyn_cast<OMPArraySectionExpr>(E); + +    // It is not an array section and therefore not a unity-size one. +    if (!OASE) +      return false; + +    // An array section with no colon always refer to a single element. +    if (OASE->getColonLoc().isInvalid()) +      return false; + +    auto *Length = OASE->getLength(); + +    // If we don't have a length we have to check if the array has size 1 +    // for this dimension. Also, we should always expect a length if the +    // base type is pointer. +    if (!Length) { +      auto BaseQTy = OMPArraySectionExpr::getBaseOriginalType( +                         OASE->getBase()->IgnoreParenImpCasts()) +                         .getCanonicalType(); +      if (auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr())) +        return ATy->getSize().getSExtValue() != 1; +      // If we don't have a constant dimension length, we have to consider +      // the current section as having any size, so it is not necessarily +      // unitary. If it happen to be unity size, that's user fault. +      return true; +    } + +    // Check if the length evaluates to 1. +    llvm::APSInt ConstLength; +    if (!Length->EvaluateAsInt(ConstLength, CGF.getContext())) +      return true; // Can have more that size 1. + +    return ConstLength.getSExtValue() != 1; +  } + +  /// \brief Generate the base pointers, section pointers, sizes and map type +  /// bits for the provided map type, map modifier, and expression components. +  /// \a IsFirstComponent should be set to true if the provided set of +  /// components is the first associated with a capture. +  void generateInfoForComponentList( +      OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier, +      OMPClauseMappableExprCommon::MappableExprComponentListRef Components, +      MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, +      MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types, +      bool IsFirstComponentList) const { + +    // The following summarizes what has to be generated for each map and the +    // types bellow. The generated information is expressed in this order: +    // base pointer, section pointer, size, flags +    // (to add to the ones that come from the map type and modifier). +    // +    // double d; +    // int i[100]; +    // float *p; +    // +    // struct S1 { +    //   int i; +    //   float f[50]; +    // } +    // struct S2 { +    //   int i; +    //   float f[50]; +    //   S1 s; +    //   double *p; +    //   struct S2 *ps; +    // } +    // S2 s; +    // S2 *ps; +    // +    // map(d) +    // &d, &d, sizeof(double), noflags +    // +    // map(i) +    // &i, &i, 100*sizeof(int), noflags +    // +    // map(i[1:23]) +    // &i(=&i[0]), &i[1], 23*sizeof(int), noflags +    // +    // map(p) +    // &p, &p, sizeof(float*), noflags +    // +    // map(p[1:24]) +    // p, &p[1], 24*sizeof(float), noflags +    // +    // map(s) +    // &s, &s, sizeof(S2), noflags +    // +    // map(s.i) +    // &s, &(s.i), sizeof(int), noflags +    // +    // map(s.s.f) +    // &s, &(s.i.f), 50*sizeof(int), noflags +    // +    // map(s.p) +    // &s, &(s.p), sizeof(double*), noflags +    // +    // map(s.p[:22], s.a s.b) +    // &s, &(s.p), sizeof(double*), noflags +    // &(s.p), &(s.p[0]), 22*sizeof(double), ptr_flag + extra_flag +    // +    // map(s.ps) +    // &s, &(s.ps), sizeof(S2*), noflags +    // +    // map(s.ps->s.i) +    // &s, &(s.ps), sizeof(S2*), noflags +    // &(s.ps), &(s.ps->s.i), sizeof(int), ptr_flag + extra_flag +    // +    // map(s.ps->ps) +    // &s, &(s.ps), sizeof(S2*), noflags +    // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // +    // map(s.ps->ps->ps) +    // &s, &(s.ps), sizeof(S2*), noflags +    // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // +    // map(s.ps->ps->s.f[:22]) +    // &s, &(s.ps), sizeof(S2*), noflags +    // &(s.ps), &(s.ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + extra_flag +    // +    // map(ps) +    // &ps, &ps, sizeof(S2*), noflags +    // +    // map(ps->i) +    // ps, &(ps->i), sizeof(int), noflags +    // +    // map(ps->s.f) +    // ps, &(ps->s.f[0]), 50*sizeof(float), noflags +    // +    // map(ps->p) +    // ps, &(ps->p), sizeof(double*), noflags +    // +    // map(ps->p[:22]) +    // ps, &(ps->p), sizeof(double*), noflags +    // &(ps->p), &(ps->p[0]), 22*sizeof(double), ptr_flag + extra_flag +    // +    // map(ps->ps) +    // ps, &(ps->ps), sizeof(S2*), noflags +    // +    // map(ps->ps->s.i) +    // ps, &(ps->ps), sizeof(S2*), noflags +    // &(ps->ps), &(ps->ps->s.i), sizeof(int), ptr_flag + extra_flag +    // +    // map(ps->ps->ps) +    // ps, &(ps->ps), sizeof(S2*), noflags +    // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // +    // map(ps->ps->ps->ps) +    // ps, &(ps->ps), sizeof(S2*), noflags +    // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // +    // map(ps->ps->ps->s.f[:22]) +    // ps, &(ps->ps), sizeof(S2*), noflags +    // &(ps->ps), &(ps->ps->ps), sizeof(S2*), ptr_flag + extra_flag +    // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), ptr_flag + +    // extra_flag + +    // Track if the map information being generated is the first for a capture. +    bool IsCaptureFirstInfo = IsFirstComponentList; + +    // Scan the components from the base to the complete expression. +    auto CI = Components.rbegin(); +    auto CE = Components.rend(); +    auto I = CI; + +    // Track if the map information being generated is the first for a list of +    // components. +    bool IsExpressionFirstInfo = true; +    llvm::Value *BP = nullptr; + +    if (auto *ME = dyn_cast<MemberExpr>(I->getAssociatedExpression())) { +      // The base is the 'this' pointer. The content of the pointer is going +      // to be the base of the field being mapped. +      BP = CGF.EmitScalarExpr(ME->getBase()); +    } else { +      // The base is the reference to the variable. +      // BP = &Var. +      BP = CGF.EmitLValue(cast<DeclRefExpr>(I->getAssociatedExpression())) +               .getPointer(); + +      // If the variable is a pointer and is being dereferenced (i.e. is not +      // the last component), the base has to be the pointer itself, not its +      // reference. References are ignored for mapping purposes. +      QualType Ty = +          I->getAssociatedDeclaration()->getType().getNonReferenceType(); +      if (Ty->isAnyPointerType() && std::next(I) != CE) { +        auto PtrAddr = CGF.MakeNaturalAlignAddrLValue(BP, Ty); +        BP = CGF.EmitLoadOfPointerLValue(PtrAddr.getAddress(), +                                         Ty->castAs<PointerType>()) +                 .getPointer(); + +        // We do not need to generate individual map information for the +        // pointer, it can be associated with the combined storage. +        ++I; +      } +    } + +    for (; I != CE; ++I) { +      auto Next = std::next(I); + +      // We need to generate the addresses and sizes if this is the last +      // component, if the component is a pointer or if it is an array section +      // whose length can't be proved to be one. If this is a pointer, it +      // becomes the base address for the following components. + +      // A final array section, is one whose length can't be proved to be one. +      bool IsFinalArraySection = +          isFinalArraySectionExpression(I->getAssociatedExpression()); + +      // Get information on whether the element is a pointer. Have to do a +      // special treatment for array sections given that they are built-in +      // types. +      const auto *OASE = +          dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression()); +      bool IsPointer = +          (OASE && +           OMPArraySectionExpr::getBaseOriginalType(OASE) +               .getCanonicalType() +               ->isAnyPointerType()) || +          I->getAssociatedExpression()->getType()->isAnyPointerType(); + +      if (Next == CE || IsPointer || IsFinalArraySection) { + +        // If this is not the last component, we expect the pointer to be +        // associated with an array expression or member expression. +        assert((Next == CE || +                isa<MemberExpr>(Next->getAssociatedExpression()) || +                isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || +                isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && +               "Unexpected expression"); + +        auto *LB = CGF.EmitLValue(I->getAssociatedExpression()).getPointer(); +        auto *Size = getExprTypeSize(I->getAssociatedExpression()); + +        // If we have a member expression and the current component is a +        // reference, we have to map the reference too. Whenever we have a +        // reference, the section that reference refers to is going to be a +        // load instruction from the storage assigned to the reference. +        if (isa<MemberExpr>(I->getAssociatedExpression()) && +            I->getAssociatedDeclaration()->getType()->isReferenceType()) { +          auto *LI = cast<llvm::LoadInst>(LB); +          auto *RefAddr = LI->getPointerOperand(); + +          BasePointers.push_back(BP); +          Pointers.push_back(RefAddr); +          Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy)); +          Types.push_back(getMapTypeBits( +              /*MapType*/ OMPC_MAP_alloc, /*MapTypeModifier=*/OMPC_MAP_unknown, +              !IsExpressionFirstInfo, IsCaptureFirstInfo)); +          IsExpressionFirstInfo = false; +          IsCaptureFirstInfo = false; +          // The reference will be the next base address. +          BP = RefAddr; +        } + +        BasePointers.push_back(BP); +        Pointers.push_back(LB); +        Sizes.push_back(Size); + +        // We need to add a pointer flag for each map that comes from the +        // same expression except for the first one. We also need to signal +        // this map is the first one that relates with the current capture +        // (there is a set of entries for each capture). +        Types.push_back(getMapTypeBits(MapType, MapTypeModifier, +                                       !IsExpressionFirstInfo, +                                       IsCaptureFirstInfo)); + +        // If we have a final array section, we are done with this expression. +        if (IsFinalArraySection) +          break; + +        // The pointer becomes the base for the next element. +        if (Next != CE) +          BP = LB; + +        IsExpressionFirstInfo = false; +        IsCaptureFirstInfo = false; +        continue; +      } +    } +  } + +  /// \brief Return the adjusted map modifiers if the declaration a capture +  /// refers to appears in a first-private clause. This is expected to be used +  /// only with directives that start with 'target'. +  unsigned adjustMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap, +                                               unsigned CurrentModifiers) { +    assert(Cap.capturesVariable() && "Expected capture by reference only!"); + +    // A first private variable captured by reference will use only the +    // 'private ptr' and 'map to' flag. Return the right flags if the captured +    // declaration is known as first-private in this handler. +    if (FirstPrivateDecls.count(Cap.getCapturedVar())) +      return MappableExprsHandler::OMP_MAP_PRIVATE_PTR | +             MappableExprsHandler::OMP_MAP_TO; + +    // We didn't modify anything. +    return CurrentModifiers; +  } + +public: +  MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF) +      : CurDir(Dir), CGF(CGF) { +    // Extract firstprivate clause information. +    for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>()) +      for (const auto *D : C->varlists()) +        FirstPrivateDecls.insert( +            cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl()); +    // Extract device pointer clause information. +    for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>()) +      for (auto L : C->component_lists()) +        DevPointersMap[L.first].push_back(L.second); +  } + +  /// \brief Generate all the base pointers, section pointers, sizes and map +  /// types for the extracted mappable expressions. Also, for each item that +  /// relates with a device pointer, a pair of the relevant declaration and +  /// index where it occurs is appended to the device pointers info array. +  void generateAllInfo(MapBaseValuesArrayTy &BasePointers, +                       MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, +                       MapFlagsArrayTy &Types) const { +    BasePointers.clear(); +    Pointers.clear(); +    Sizes.clear(); +    Types.clear(); + +    struct MapInfo { +      /// Kind that defines how a device pointer has to be returned. +      enum ReturnPointerKind { +        // Don't have to return any pointer. +        RPK_None, +        // Pointer is the base of the declaration. +        RPK_Base, +        // Pointer is a member of the base declaration - 'this' +        RPK_Member, +        // Pointer is a reference and a member of the base declaration - 'this' +        RPK_MemberReference, +      }; +      OMPClauseMappableExprCommon::MappableExprComponentListRef Components; +      OpenMPMapClauseKind MapType; +      OpenMPMapClauseKind MapTypeModifier; +      ReturnPointerKind ReturnDevicePointer; + +      MapInfo() +          : MapType(OMPC_MAP_unknown), MapTypeModifier(OMPC_MAP_unknown), +            ReturnDevicePointer(RPK_None) {} +      MapInfo( +          OMPClauseMappableExprCommon::MappableExprComponentListRef Components, +          OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapTypeModifier, +          ReturnPointerKind ReturnDevicePointer) +          : Components(Components), MapType(MapType), +            MapTypeModifier(MapTypeModifier), +            ReturnDevicePointer(ReturnDevicePointer) {} +    }; + +    // We have to process the component lists that relate with the same +    // declaration in a single chunk so that we can generate the map flags +    // correctly. Therefore, we organize all lists in a map. +    llvm::DenseMap<const ValueDecl *, SmallVector<MapInfo, 8>> Info; + +    // Helper function to fill the information map for the different supported +    // clauses. +    auto &&InfoGen = [&Info]( +        const ValueDecl *D, +        OMPClauseMappableExprCommon::MappableExprComponentListRef L, +        OpenMPMapClauseKind MapType, OpenMPMapClauseKind MapModifier, +        MapInfo::ReturnPointerKind ReturnDevicePointer) { +      const ValueDecl *VD = +          D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; +      Info[VD].push_back({L, MapType, MapModifier, ReturnDevicePointer}); +    }; + +    // FIXME: MSVC 2013 seems to require this-> to find member CurDir. +    for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) +      for (auto L : C->component_lists()) +        InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifier(), +                MapInfo::RPK_None); +    for (auto *C : this->CurDir.getClausesOfKind<OMPToClause>()) +      for (auto L : C->component_lists()) +        InfoGen(L.first, L.second, OMPC_MAP_to, OMPC_MAP_unknown, +                MapInfo::RPK_None); +    for (auto *C : this->CurDir.getClausesOfKind<OMPFromClause>()) +      for (auto L : C->component_lists()) +        InfoGen(L.first, L.second, OMPC_MAP_from, OMPC_MAP_unknown, +                MapInfo::RPK_None); + +    // Look at the use_device_ptr clause information and mark the existing map +    // entries as such. If there is no map information for an entry in the +    // use_device_ptr list, we create one with map type 'alloc' and zero size +    // section. It is the user fault if that was not mapped before. +    // FIXME: MSVC 2013 seems to require this-> to find member CurDir. +    for (auto *C : this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) +      for (auto L : C->component_lists()) { +        assert(!L.second.empty() && "Not expecting empty list of components!"); +        const ValueDecl *VD = L.second.back().getAssociatedDeclaration(); +        VD = cast<ValueDecl>(VD->getCanonicalDecl()); +        auto *IE = L.second.back().getAssociatedExpression(); +        // If the first component is a member expression, we have to look into +        // 'this', which maps to null in the map of map information. Otherwise +        // look directly for the information. +        auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD); + +        // We potentially have map information for this declaration already. +        // Look for the first set of components that refer to it. +        if (It != Info.end()) { +          auto CI = std::find_if( +              It->second.begin(), It->second.end(), [VD](const MapInfo &MI) { +                return MI.Components.back().getAssociatedDeclaration() == VD; +              }); +          // If we found a map entry, signal that the pointer has to be returned +          // and move on to the next declaration. +          if (CI != It->second.end()) { +            CI->ReturnDevicePointer = isa<MemberExpr>(IE) +                                          ? (VD->getType()->isReferenceType() +                                                 ? MapInfo::RPK_MemberReference +                                                 : MapInfo::RPK_Member) +                                          : MapInfo::RPK_Base; +            continue; +          } +        } + +        // We didn't find any match in our map information - generate a zero +        // size array section. +        // FIXME: MSVC 2013 seems to require this-> to find member CGF. +        llvm::Value *Ptr = +            this->CGF +                .EmitLoadOfLValue(this->CGF.EmitLValue(IE), SourceLocation()) +                .getScalarVal(); +        BasePointers.push_back({Ptr, VD}); +        Pointers.push_back(Ptr); +        Sizes.push_back(llvm::Constant::getNullValue(this->CGF.SizeTy)); +        Types.push_back(OMP_MAP_RETURN_PTR | OMP_MAP_FIRST_REF); +      } + +    for (auto &M : Info) { +      // We need to know when we generate information for the first component +      // associated with a capture, because the mapping flags depend on it. +      bool IsFirstComponentList = true; +      for (MapInfo &L : M.second) { +        assert(!L.Components.empty() && +               "Not expecting declaration with no component lists."); + +        // Remember the current base pointer index. +        unsigned CurrentBasePointersIdx = BasePointers.size(); +        // FIXME: MSVC 2013 seems to require this-> to find the member method. +        this->generateInfoForComponentList(L.MapType, L.MapTypeModifier, +                                           L.Components, BasePointers, Pointers, +                                           Sizes, Types, IsFirstComponentList); + +        // If this entry relates with a device pointer, set the relevant +        // declaration and add the 'return pointer' flag. +        if (IsFirstComponentList && +            L.ReturnDevicePointer != MapInfo::RPK_None) { +          // If the pointer is not the base of the map, we need to skip the +          // base. If it is a reference in a member field, we also need to skip +          // the map of the reference. +          if (L.ReturnDevicePointer != MapInfo::RPK_Base) { +            ++CurrentBasePointersIdx; +            if (L.ReturnDevicePointer == MapInfo::RPK_MemberReference) +              ++CurrentBasePointersIdx; +          } +          assert(BasePointers.size() > CurrentBasePointersIdx && +                 "Unexpected number of mapped base pointers."); + +          auto *RelevantVD = L.Components.back().getAssociatedDeclaration(); +          assert(RelevantVD && +                 "No relevant declaration related with device pointer??"); + +          BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD); +          Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PTR; +        } +        IsFirstComponentList = false; +      } +    } +  } + +  /// \brief Generate the base pointers, section pointers, sizes and map types +  /// associated to a given capture. +  void generateInfoForCapture(const CapturedStmt::Capture *Cap, +                              llvm::Value *Arg, +                              MapBaseValuesArrayTy &BasePointers, +                              MapValuesArrayTy &Pointers, +                              MapValuesArrayTy &Sizes, +                              MapFlagsArrayTy &Types) const { +    assert(!Cap->capturesVariableArrayType() && +           "Not expecting to generate map info for a variable array type!"); + +    BasePointers.clear(); +    Pointers.clear(); +    Sizes.clear(); +    Types.clear(); + +    // We need to know when we generating information for the first component +    // associated with a capture, because the mapping flags depend on it. +    bool IsFirstComponentList = true; + +    const ValueDecl *VD = +        Cap->capturesThis() +            ? nullptr +            : cast<ValueDecl>(Cap->getCapturedVar()->getCanonicalDecl()); + +    // If this declaration appears in a is_device_ptr clause we just have to +    // pass the pointer by value. If it is a reference to a declaration, we just +    // pass its value, otherwise, if it is a member expression, we need to map +    // 'to' the field. +    if (!VD) { +      auto It = DevPointersMap.find(VD); +      if (It != DevPointersMap.end()) { +        for (auto L : It->second) { +          generateInfoForComponentList( +              /*MapType=*/OMPC_MAP_to, /*MapTypeModifier=*/OMPC_MAP_unknown, L, +              BasePointers, Pointers, Sizes, Types, IsFirstComponentList); +          IsFirstComponentList = false; +        } +        return; +      } +    } else if (DevPointersMap.count(VD)) { +      BasePointers.push_back({Arg, VD}); +      Pointers.push_back(Arg); +      Sizes.push_back(CGF.getTypeSize(CGF.getContext().VoidPtrTy)); +      Types.push_back(OMP_MAP_PRIVATE_VAL | OMP_MAP_FIRST_REF); +      return; +    } + +    // FIXME: MSVC 2013 seems to require this-> to find member CurDir. +    for (auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) +      for (auto L : C->decl_component_lists(VD)) { +        assert(L.first == VD && +               "We got information for the wrong declaration??"); +        assert(!L.second.empty() && +               "Not expecting declaration with no component lists."); +        generateInfoForComponentList(C->getMapType(), C->getMapTypeModifier(), +                                     L.second, BasePointers, Pointers, Sizes, +                                     Types, IsFirstComponentList); +        IsFirstComponentList = false; +      } + +    return; +  } + +  /// \brief Generate the default map information for a given capture \a CI, +  /// record field declaration \a RI and captured value \a CV. +  void generateDefaultMapInfo(const CapturedStmt::Capture &CI, +                              const FieldDecl &RI, llvm::Value *CV, +                              MapBaseValuesArrayTy &CurBasePointers, +                              MapValuesArrayTy &CurPointers, +                              MapValuesArrayTy &CurSizes, +                              MapFlagsArrayTy &CurMapTypes) { + +    // Do the default mapping. +    if (CI.capturesThis()) { +      CurBasePointers.push_back(CV); +      CurPointers.push_back(CV); +      const PointerType *PtrTy = cast<PointerType>(RI.getType().getTypePtr()); +      CurSizes.push_back(CGF.getTypeSize(PtrTy->getPointeeType())); +      // Default map type. +      CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM); +    } else if (CI.capturesVariableByCopy()) { +      CurBasePointers.push_back(CV); +      CurPointers.push_back(CV); +      if (!RI.getType()->isAnyPointerType()) { +        // We have to signal to the runtime captures passed by value that are +        // not pointers. +        CurMapTypes.push_back(OMP_MAP_PRIVATE_VAL); +        CurSizes.push_back(CGF.getTypeSize(RI.getType())); +      } else { +        // Pointers are implicitly mapped with a zero size and no flags +        // (other than first map that is added for all implicit maps). +        CurMapTypes.push_back(0u); +        CurSizes.push_back(llvm::Constant::getNullValue(CGF.SizeTy)); +      } +    } else { +      assert(CI.capturesVariable() && "Expected captured reference."); +      CurBasePointers.push_back(CV); +      CurPointers.push_back(CV); + +      const ReferenceType *PtrTy = +          cast<ReferenceType>(RI.getType().getTypePtr()); +      QualType ElementType = PtrTy->getPointeeType(); +      CurSizes.push_back(CGF.getTypeSize(ElementType)); +      // The default map type for a scalar/complex type is 'to' because by +      // default the value doesn't have to be retrieved. For an aggregate +      // type, the default is 'tofrom'. +      CurMapTypes.push_back(ElementType->isAggregateType() +                                ? (OMP_MAP_TO | OMP_MAP_FROM) +                                : OMP_MAP_TO); + +      // If we have a capture by reference we may need to add the private +      // pointer flag if the base declaration shows in some first-private +      // clause. +      CurMapTypes.back() = +          adjustMapModifiersForPrivateClauses(CI, CurMapTypes.back()); +    } +    // Every default map produces a single argument, so, it is always the +    // first one. +    CurMapTypes.back() |= OMP_MAP_FIRST_REF; +  } +}; + +enum OpenMPOffloadingReservedDeviceIDs { +  /// \brief Device ID if the device was not defined, runtime should get it +  /// from environment variables in the spec. +  OMP_DEVICEID_UNDEF = -1, +}; +} // anonymous namespace + +/// \brief Emit the arrays used to pass the captures and map information to the +/// offloading runtime library. If there is no map or capture information, +/// return nullptr by reference. +static void +emitOffloadingArrays(CodeGenFunction &CGF, +                     MappableExprsHandler::MapBaseValuesArrayTy &BasePointers, +                     MappableExprsHandler::MapValuesArrayTy &Pointers, +                     MappableExprsHandler::MapValuesArrayTy &Sizes, +                     MappableExprsHandler::MapFlagsArrayTy &MapTypes, +                     CGOpenMPRuntime::TargetDataInfo &Info) { +  auto &CGM = CGF.CGM; +  auto &Ctx = CGF.getContext(); + +  // Reset the array information. +  Info.clearArrayInfo(); +  Info.NumberOfPtrs = BasePointers.size(); + +  if (Info.NumberOfPtrs) { +    // Detect if we have any capture size requiring runtime evaluation of the +    // size so that a constant array could be eventually used. +    bool hasRuntimeEvaluationCaptureSize = false; +    for (auto *S : Sizes) +      if (!isa<llvm::Constant>(S)) { +        hasRuntimeEvaluationCaptureSize = true; +        break; +      } + +    llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true); +    QualType PointerArrayType = +        Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal, +                                 /*IndexTypeQuals=*/0); + +    Info.BasePointersArray = +        CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer(); +    Info.PointersArray = +        CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer(); + +    // If we don't have any VLA types or other types that require runtime +    // evaluation, we can use a constant array for the map sizes, otherwise we +    // need to fill up the arrays as we do for the pointers. +    if (hasRuntimeEvaluationCaptureSize) { +      QualType SizeArrayType = Ctx.getConstantArrayType( +          Ctx.getSizeType(), PointerNumAP, ArrayType::Normal, +          /*IndexTypeQuals=*/0); +      Info.SizesArray = +          CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer(); +    } else { +      // We expect all the sizes to be constant, so we collect them to create +      // a constant array. +      SmallVector<llvm::Constant *, 16> ConstSizes; +      for (auto S : Sizes) +        ConstSizes.push_back(cast<llvm::Constant>(S)); + +      auto *SizesArrayInit = llvm::ConstantArray::get( +          llvm::ArrayType::get(CGM.SizeTy, ConstSizes.size()), ConstSizes); +      auto *SizesArrayGbl = new llvm::GlobalVariable( +          CGM.getModule(), SizesArrayInit->getType(), +          /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, +          SizesArrayInit, ".offload_sizes"); +      SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +      Info.SizesArray = SizesArrayGbl; +    } + +    // The map types are always constant so we don't need to generate code to +    // fill arrays. Instead, we create an array constant. +    llvm::Constant *MapTypesArrayInit = +        llvm::ConstantDataArray::get(CGF.Builder.getContext(), MapTypes); +    auto *MapTypesArrayGbl = new llvm::GlobalVariable( +        CGM.getModule(), MapTypesArrayInit->getType(), +        /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, +        MapTypesArrayInit, ".offload_maptypes"); +    MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); +    Info.MapTypesArray = MapTypesArrayGbl; + +    for (unsigned i = 0; i < Info.NumberOfPtrs; ++i) { +      llvm::Value *BPVal = *BasePointers[i]; +      if (BPVal->getType()->isPointerTy()) +        BPVal = CGF.Builder.CreateBitCast(BPVal, CGM.VoidPtrTy); +      else { +        assert(BPVal->getType()->isIntegerTy() && +               "If not a pointer, the value type must be an integer."); +        BPVal = CGF.Builder.CreateIntToPtr(BPVal, CGM.VoidPtrTy); +      } +      llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32( +          llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), +          Info.BasePointersArray, 0, i); +      Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); +      CGF.Builder.CreateStore(BPVal, BPAddr); + +      if (Info.requiresDevicePointerInfo()) +        if (auto *DevVD = BasePointers[i].getDevicePtrDecl()) +          Info.CaptureDeviceAddrMap.insert(std::make_pair(DevVD, BPAddr)); + +      llvm::Value *PVal = Pointers[i]; +      if (PVal->getType()->isPointerTy()) +        PVal = CGF.Builder.CreateBitCast(PVal, CGM.VoidPtrTy); +      else { +        assert(PVal->getType()->isIntegerTy() && +               "If not a pointer, the value type must be an integer."); +        PVal = CGF.Builder.CreateIntToPtr(PVal, CGM.VoidPtrTy); +      } +      llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( +          llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), +          Info.PointersArray, 0, i); +      Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); +      CGF.Builder.CreateStore(PVal, PAddr); + +      if (hasRuntimeEvaluationCaptureSize) { +        llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32( +            llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), +            Info.SizesArray, +            /*Idx0=*/0, +            /*Idx1=*/i); +        Address SAddr(S, Ctx.getTypeAlignInChars(Ctx.getSizeType())); +        CGF.Builder.CreateStore( +            CGF.Builder.CreateIntCast(Sizes[i], CGM.SizeTy, /*isSigned=*/true), +            SAddr); +      } +    } +  } +} +/// \brief Emit the arguments to be passed to the runtime library based on the +/// arrays of pointers, sizes and map types. +static void emitOffloadingArraysArgument( +    CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg, +    llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg, +    llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) { +  auto &CGM = CGF.CGM; +  if (Info.NumberOfPtrs) { +    BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( +        llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), +        Info.BasePointersArray, +        /*Idx0=*/0, /*Idx1=*/0); +    PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( +        llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), +        Info.PointersArray, +        /*Idx0=*/0, +        /*Idx1=*/0); +    SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( +        llvm::ArrayType::get(CGM.SizeTy, Info.NumberOfPtrs), Info.SizesArray, +        /*Idx0=*/0, /*Idx1=*/0); +    MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( +        llvm::ArrayType::get(CGM.Int32Ty, Info.NumberOfPtrs), +        Info.MapTypesArray, +        /*Idx0=*/0, +        /*Idx1=*/0); +  } else { +    BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); +    PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); +    SizesArrayArg = llvm::ConstantPointerNull::get(CGM.SizeTy->getPointerTo()); +    MapTypesArrayArg = +        llvm::ConstantPointerNull::get(CGM.Int32Ty->getPointerTo()); +  } +} + +void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF, +                                     const OMPExecutableDirective &D, +                                     llvm::Value *OutlinedFn, +                                     llvm::Value *OutlinedFnID, +                                     const Expr *IfCond, const Expr *Device, +                                     ArrayRef<llvm::Value *> CapturedVars) { +  if (!CGF.HaveInsertPoint()) +    return; + +  assert(OutlinedFn && "Invalid outlined function!"); + +  auto &Ctx = CGF.getContext(); + +  // Fill up the arrays with all the captured variables. +  MappableExprsHandler::MapValuesArrayTy KernelArgs; +  MappableExprsHandler::MapBaseValuesArrayTy BasePointers; +  MappableExprsHandler::MapValuesArrayTy Pointers; +  MappableExprsHandler::MapValuesArrayTy Sizes; +  MappableExprsHandler::MapFlagsArrayTy MapTypes; + +  MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers; +  MappableExprsHandler::MapValuesArrayTy CurPointers; +  MappableExprsHandler::MapValuesArrayTy CurSizes; +  MappableExprsHandler::MapFlagsArrayTy CurMapTypes; + +  // Get mappable expression information. +  MappableExprsHandler MEHandler(D, CGF); + +  const CapturedStmt &CS = *cast<CapturedStmt>(D.getAssociatedStmt()); +  auto RI = CS.getCapturedRecordDecl()->field_begin(); +  auto CV = CapturedVars.begin(); +  for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(), +                                            CE = CS.capture_end(); +       CI != CE; ++CI, ++RI, ++CV) { +    StringRef Name; +    QualType Ty; + +    CurBasePointers.clear(); +    CurPointers.clear(); +    CurSizes.clear(); +    CurMapTypes.clear(); + +    // VLA sizes are passed to the outlined region by copy and do not have map +    // information associated. +    if (CI->capturesVariableArrayType()) { +      CurBasePointers.push_back(*CV); +      CurPointers.push_back(*CV); +      CurSizes.push_back(CGF.getTypeSize(RI->getType())); +      // Copy to the device as an argument. No need to retrieve it. +      CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_PRIVATE_VAL | +                            MappableExprsHandler::OMP_MAP_FIRST_REF); +    } else { +      // If we have any information in the map clause, we use it, otherwise we +      // just do a default mapping. +      MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers, +                                       CurSizes, CurMapTypes); +      if (CurBasePointers.empty()) +        MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers, +                                         CurPointers, CurSizes, CurMapTypes); +    } +    // We expect to have at least an element of information for this capture. +    assert(!CurBasePointers.empty() && "Non-existing map pointer for capture!"); +    assert(CurBasePointers.size() == CurPointers.size() && +           CurBasePointers.size() == CurSizes.size() && +           CurBasePointers.size() == CurMapTypes.size() && +           "Inconsistent map information sizes!"); + +    // The kernel args are always the first elements of the base pointers +    // associated with a capture. +    KernelArgs.push_back(*CurBasePointers.front()); +    // We need to append the results of this capture to what we already have. +    BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); +    Pointers.append(CurPointers.begin(), CurPointers.end()); +    Sizes.append(CurSizes.begin(), CurSizes.end()); +    MapTypes.append(CurMapTypes.begin(), CurMapTypes.end()); +  } + +  // Keep track on whether the host function has to be executed. +  auto OffloadErrorQType = +      Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true); +  auto OffloadError = CGF.MakeAddrLValue( +      CGF.CreateMemTemp(OffloadErrorQType, ".run_host_version"), +      OffloadErrorQType); +  CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), +                        OffloadError); + +  // Fill up the pointer arrays and transfer execution to the device. +  auto &&ThenGen = [&BasePointers, &Pointers, &Sizes, &MapTypes, Device, +                    OutlinedFnID, OffloadError, +                    &D](CodeGenFunction &CGF, PrePostActionTy &) { +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    // Emit the offloading arrays. +    TargetDataInfo Info; +    emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); +    emitOffloadingArraysArgument(CGF, Info.BasePointersArray, +                                 Info.PointersArray, Info.SizesArray, +                                 Info.MapTypesArray, Info); + +    // On top of the arrays that were filled up, the target offloading call +    // takes as arguments the device id as well as the host pointer. The host +    // pointer is used by the runtime library to identify the current target +    // region, so it only has to be unique and not necessarily point to +    // anything. It could be the pointer to the outlined function that +    // implements the target region, but we aren't using that so that the +    // compiler doesn't need to keep that, and could therefore inline the host +    // function if proven worthwhile during optimization. + +    // From this point on, we need to have an ID of the target region defined. +    assert(OutlinedFnID && "Invalid outlined function ID!"); + +    // Emit device ID if any. +    llvm::Value *DeviceID; +    if (Device) +      DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), +                                           CGF.Int32Ty, /*isSigned=*/true); +    else +      DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + +    // Emit the number of elements in the offloading arrays. +    llvm::Value *PointerNum = CGF.Builder.getInt32(BasePointers.size()); + +    // Return value of the runtime offloading call. +    llvm::Value *Return; + +    auto *NumTeams = emitNumTeamsForTargetDirective(RT, CGF, D); +    auto *NumThreads = emitNumThreadsForTargetDirective(RT, CGF, D); + +    // The target region is an outlined function launched by the runtime +    // via calls __tgt_target() or __tgt_target_teams(). +    // +    // __tgt_target() launches a target region with one team and one thread, +    // executing a serial region.  This master thread may in turn launch +    // more threads within its team upon encountering a parallel region, +    // however, no additional teams can be launched on the device. +    // +    // __tgt_target_teams() launches a target region with one or more teams, +    // each with one or more threads.  This call is required for target +    // constructs such as: +    //  'target teams' +    //  'target' / 'teams' +    //  'target teams distribute parallel for' +    //  'target parallel' +    // and so on. +    // +    // Note that on the host and CPU targets, the runtime implementation of +    // these calls simply call the outlined function without forking threads. +    // The outlined functions themselves have runtime calls to +    // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by +    // the compiler in emitTeamsCall() and emitParallelCall(). +    // +    // In contrast, on the NVPTX target, the implementation of +    // __tgt_target_teams() launches a GPU kernel with the requested number +    // of teams and threads so no additional calls to the runtime are required. +    if (NumTeams) { +      // If we have NumTeams defined this means that we have an enclosed teams +      // region. Therefore we also expect to have NumThreads defined. These two +      // values should be defined in the presence of a teams directive, +      // regardless of having any clauses associated. If the user is using teams +      // but no clauses, these two values will be the default that should be +      // passed to the runtime library - a 32-bit integer with the value zero. +      assert(NumThreads && "Thread limit expression should be available along " +                           "with number of teams."); +      llvm::Value *OffloadingArgs[] = { +          DeviceID,           OutlinedFnID, +          PointerNum,         Info.BasePointersArray, +          Info.PointersArray, Info.SizesArray, +          Info.MapTypesArray, NumTeams, +          NumThreads}; +      Return = CGF.EmitRuntimeCall( +          RT.createRuntimeFunction(OMPRTL__tgt_target_teams), OffloadingArgs); +    } else { +      llvm::Value *OffloadingArgs[] = { +          DeviceID,           OutlinedFnID, +          PointerNum,         Info.BasePointersArray, +          Info.PointersArray, Info.SizesArray, +          Info.MapTypesArray}; +      Return = CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target), +                                   OffloadingArgs); +    } + +    CGF.EmitStoreOfScalar(Return, OffloadError); +  }; + +  // Notify that the host version must be executed. +  auto &&ElseGen = [OffloadError](CodeGenFunction &CGF, PrePostActionTy &) { +    CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/-1u), +                          OffloadError); +  }; + +  // If we have a target function ID it means that we need to support +  // offloading, otherwise, just execute on the host. We need to execute on host +  // regardless of the conditional in the if clause if, e.g., the user do not +  // specify target triples. +  if (OutlinedFnID) { +    if (IfCond) +      emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); +    else { +      RegionCodeGenTy ThenRCG(ThenGen); +      ThenRCG(CGF); +    } +  } else { +    RegionCodeGenTy ElseRCG(ElseGen); +    ElseRCG(CGF); +  } + +  // Check the error code and execute the host version if required. +  auto OffloadFailedBlock = CGF.createBasicBlock("omp_offload.failed"); +  auto OffloadContBlock = CGF.createBasicBlock("omp_offload.cont"); +  auto OffloadErrorVal = CGF.EmitLoadOfScalar(OffloadError, SourceLocation()); +  auto Failed = CGF.Builder.CreateIsNotNull(OffloadErrorVal); +  CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); + +  CGF.EmitBlock(OffloadFailedBlock); +  CGF.Builder.CreateCall(OutlinedFn, KernelArgs); +  CGF.EmitBranch(OffloadContBlock); + +  CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true); +} + +void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S, +                                                    StringRef ParentName) { +  if (!S) +    return; + +  // Codegen OMP target directives that offload compute to the device. +  bool requiresDeviceCodegen = +      isa<OMPExecutableDirective>(S) && +      isOpenMPTargetExecutionDirective( +          cast<OMPExecutableDirective>(S)->getDirectiveKind()); + +  if (requiresDeviceCodegen) { +    auto &E = *cast<OMPExecutableDirective>(S); +    unsigned DeviceID; +    unsigned FileID; +    unsigned Line; +    getTargetEntryUniqueInfo(CGM.getContext(), E.getLocStart(), DeviceID, +                             FileID, Line); + +    // Is this a target region that should not be emitted as an entry point? If +    // so just signal we are done with this target region. +    if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID, +                                                            ParentName, Line)) +      return; + +    switch (S->getStmtClass()) { +    case Stmt::OMPTargetDirectiveClass: +      CodeGenFunction::EmitOMPTargetDeviceFunction( +          CGM, ParentName, cast<OMPTargetDirective>(*S)); +      break; +    case Stmt::OMPTargetParallelDirectiveClass: +      CodeGenFunction::EmitOMPTargetParallelDeviceFunction( +          CGM, ParentName, cast<OMPTargetParallelDirective>(*S)); +      break; +    case Stmt::OMPTargetTeamsDirectiveClass: +      CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( +          CGM, ParentName, cast<OMPTargetTeamsDirective>(*S)); +      break; +    default: +      llvm_unreachable("Unknown target directive for OpenMP device codegen."); +    } +    return; +  } + +  if (const OMPExecutableDirective *E = dyn_cast<OMPExecutableDirective>(S)) { +    if (!E->hasAssociatedStmt()) +      return; + +    scanForTargetRegionsFunctions( +        cast<CapturedStmt>(E->getAssociatedStmt())->getCapturedStmt(), +        ParentName); +    return; +  } + +  // If this is a lambda function, look into its body. +  if (auto *L = dyn_cast<LambdaExpr>(S)) +    S = L->getBody(); + +  // Keep looking for target regions recursively. +  for (auto *II : S->children()) +    scanForTargetRegionsFunctions(II, ParentName); +} + +bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) { +  auto &FD = *cast<FunctionDecl>(GD.getDecl()); + +  // If emitting code for the host, we do not process FD here. Instead we do +  // the normal code generation. +  if (!CGM.getLangOpts().OpenMPIsDevice) +    return false; + +  // Try to detect target regions in the function. +  scanForTargetRegionsFunctions(FD.getBody(), CGM.getMangledName(GD)); + +  // We should not emit any function other that the ones created during the +  // scanning. Therefore, we signal that this function is completely dealt +  // with. +  return true; +} + +bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) { +  if (!CGM.getLangOpts().OpenMPIsDevice) +    return false; + +  // Check if there are Ctors/Dtors in this declaration and look for target +  // regions in it. We use the complete variant to produce the kernel name +  // mangling. +  QualType RDTy = cast<VarDecl>(GD.getDecl())->getType(); +  if (auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { +    for (auto *Ctor : RD->ctors()) { +      StringRef ParentName = +          CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete)); +      scanForTargetRegionsFunctions(Ctor->getBody(), ParentName); +    } +    auto *Dtor = RD->getDestructor(); +    if (Dtor) { +      StringRef ParentName = +          CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete)); +      scanForTargetRegionsFunctions(Dtor->getBody(), ParentName); +    } +  } + +  // If we are in target mode we do not emit any global (declare target is not +  // implemented yet). Therefore we signal that GD was processed in this case. +  return true; +} + +bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) { +  auto *VD = GD.getDecl(); +  if (isa<FunctionDecl>(VD)) +    return emitTargetFunctions(GD); + +  return emitTargetGlobalVariable(GD); +} + +llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() { +  // If we have offloading in the current module, we need to emit the entries +  // now and register the offloading descriptor. +  createOffloadEntriesAndInfoMetadata(); + +  // Create and register the offloading binary descriptors. This is the main +  // entity that captures all the information about offloading in the current +  // compilation unit. +  return createOffloadingBinaryDescriptorRegistration(); +} + +void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF, +                                    const OMPExecutableDirective &D, +                                    SourceLocation Loc, +                                    llvm::Value *OutlinedFn, +                                    ArrayRef<llvm::Value *> CapturedVars) { +  if (!CGF.HaveInsertPoint()) +    return; + +  auto *RTLoc = emitUpdateLocation(CGF, Loc); +  CodeGenFunction::RunCleanupsScope Scope(CGF); + +  // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn); +  llvm::Value *Args[] = { +      RTLoc, +      CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars +      CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())}; +  llvm::SmallVector<llvm::Value *, 16> RealArgs; +  RealArgs.append(std::begin(Args), std::end(Args)); +  RealArgs.append(CapturedVars.begin(), CapturedVars.end()); + +  auto RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams); +  CGF.EmitRuntimeCall(RTLFn, RealArgs); +} + +void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF, +                                         const Expr *NumTeams, +                                         const Expr *ThreadLimit, +                                         SourceLocation Loc) { +  if (!CGF.HaveInsertPoint()) +    return; + +  auto *RTLoc = emitUpdateLocation(CGF, Loc); + +  llvm::Value *NumTeamsVal = +      (NumTeams) +          ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams), +                                      CGF.CGM.Int32Ty, /* isSigned = */ true) +          : CGF.Builder.getInt32(0); + +  llvm::Value *ThreadLimitVal = +      (ThreadLimit) +          ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit), +                                      CGF.CGM.Int32Ty, /* isSigned = */ true) +          : CGF.Builder.getInt32(0); + +  // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit) +  llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal, +                                     ThreadLimitVal}; +  CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams), +                      PushNumTeamsArgs); +} + +void CGOpenMPRuntime::emitTargetDataCalls( +    CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, +    const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { +  if (!CGF.HaveInsertPoint()) +    return; + +  // Action used to replace the default codegen action and turn privatization +  // off. +  PrePostActionTy NoPrivAction; + +  // Generate the code for the opening of the data environment. Capture all the +  // arguments of the runtime call by reference because they are used in the +  // closing of the region. +  auto &&BeginThenGen = [&D, Device, &Info, &CodeGen](CodeGenFunction &CGF, +                                                      PrePostActionTy &) { +    // Fill up the arrays with all the mapped variables. +    MappableExprsHandler::MapBaseValuesArrayTy BasePointers; +    MappableExprsHandler::MapValuesArrayTy Pointers; +    MappableExprsHandler::MapValuesArrayTy Sizes; +    MappableExprsHandler::MapFlagsArrayTy MapTypes; + +    // Get map clause information. +    MappableExprsHandler MCHandler(D, CGF); +    MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); + +    // Fill up the arrays and create the arguments. +    emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); + +    llvm::Value *BasePointersArrayArg = nullptr; +    llvm::Value *PointersArrayArg = nullptr; +    llvm::Value *SizesArrayArg = nullptr; +    llvm::Value *MapTypesArrayArg = nullptr; +    emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, +                                 SizesArrayArg, MapTypesArrayArg, Info); + +    // Emit device ID if any. +    llvm::Value *DeviceID = nullptr; +    if (Device) +      DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), +                                           CGF.Int32Ty, /*isSigned=*/true); +    else +      DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + +    // Emit the number of elements in the offloading arrays. +    auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); + +    llvm::Value *OffloadingArgs[] = { +        DeviceID,         PointerNum,    BasePointersArrayArg, +        PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_begin), +                        OffloadingArgs); + +    // If device pointer privatization is required, emit the body of the region +    // here. It will have to be duplicated: with and without privatization. +    if (!Info.CaptureDeviceAddrMap.empty()) +      CodeGen(CGF); +  }; + +  // Generate code for the closing of the data region. +  auto &&EndThenGen = [Device, &Info](CodeGenFunction &CGF, PrePostActionTy &) { +    assert(Info.isValid() && "Invalid data environment closing arguments."); + +    llvm::Value *BasePointersArrayArg = nullptr; +    llvm::Value *PointersArrayArg = nullptr; +    llvm::Value *SizesArrayArg = nullptr; +    llvm::Value *MapTypesArrayArg = nullptr; +    emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, +                                 SizesArrayArg, MapTypesArrayArg, Info); + +    // Emit device ID if any. +    llvm::Value *DeviceID = nullptr; +    if (Device) +      DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), +                                           CGF.Int32Ty, /*isSigned=*/true); +    else +      DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + +    // Emit the number of elements in the offloading arrays. +    auto *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); + +    llvm::Value *OffloadingArgs[] = { +        DeviceID,         PointerNum,    BasePointersArrayArg, +        PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__tgt_target_data_end), +                        OffloadingArgs); +  }; + +  // If we need device pointer privatization, we need to emit the body of the +  // region with no privatization in the 'else' branch of the conditional. +  // Otherwise, we don't have to do anything. +  auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF, +                                                         PrePostActionTy &) { +    if (!Info.CaptureDeviceAddrMap.empty()) { +      CodeGen.setAction(NoPrivAction); +      CodeGen(CGF); +    } +  }; + +  // We don't have to do anything to close the region if the if clause evaluates +  // to false. +  auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; + +  if (IfCond) { +    emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen); +  } else { +    RegionCodeGenTy RCG(BeginThenGen); +    RCG(CGF); +  } + +  // If we don't require privatization of device pointers, we emit the body in +  // between the runtime calls. This avoids duplicating the body code. +  if (Info.CaptureDeviceAddrMap.empty()) { +    CodeGen.setAction(NoPrivAction); +    CodeGen(CGF); +  } + +  if (IfCond) { +    emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen); +  } else { +    RegionCodeGenTy RCG(EndThenGen); +    RCG(CGF); +  } +} + +void CGOpenMPRuntime::emitTargetDataStandAloneCall( +    CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, +    const Expr *Device) { +  if (!CGF.HaveInsertPoint()) +    return; + +  assert((isa<OMPTargetEnterDataDirective>(D) || +          isa<OMPTargetExitDataDirective>(D) || +          isa<OMPTargetUpdateDirective>(D)) && +         "Expecting either target enter, exit data, or update directives."); + +  // Generate the code for the opening of the data environment. +  auto &&ThenGen = [&D, Device](CodeGenFunction &CGF, PrePostActionTy &) { +    // Fill up the arrays with all the mapped variables. +    MappableExprsHandler::MapBaseValuesArrayTy BasePointers; +    MappableExprsHandler::MapValuesArrayTy Pointers; +    MappableExprsHandler::MapValuesArrayTy Sizes; +    MappableExprsHandler::MapFlagsArrayTy MapTypes; + +    // Get map clause information. +    MappableExprsHandler MEHandler(D, CGF); +    MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); + +    // Fill up the arrays and create the arguments. +    TargetDataInfo Info; +    emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); +    emitOffloadingArraysArgument(CGF, Info.BasePointersArray, +                                 Info.PointersArray, Info.SizesArray, +                                 Info.MapTypesArray, Info); + +    // Emit device ID if any. +    llvm::Value *DeviceID = nullptr; +    if (Device) +      DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), +                                           CGF.Int32Ty, /*isSigned=*/true); +    else +      DeviceID = CGF.Builder.getInt32(OMP_DEVICEID_UNDEF); + +    // Emit the number of elements in the offloading arrays. +    auto *PointerNum = CGF.Builder.getInt32(BasePointers.size()); + +    llvm::Value *OffloadingArgs[] = { +        DeviceID,           PointerNum,      Info.BasePointersArray, +        Info.PointersArray, Info.SizesArray, Info.MapTypesArray}; + +    auto &RT = CGF.CGM.getOpenMPRuntime(); +    // Select the right runtime function call for each expected standalone +    // directive. +    OpenMPRTLFunction RTLFn; +    switch (D.getDirectiveKind()) { +    default: +      llvm_unreachable("Unexpected standalone target data directive."); +      break; +    case OMPD_target_enter_data: +      RTLFn = OMPRTL__tgt_target_data_begin; +      break; +    case OMPD_target_exit_data: +      RTLFn = OMPRTL__tgt_target_data_end; +      break; +    case OMPD_target_update: +      RTLFn = OMPRTL__tgt_target_data_update; +      break; +    } +    CGF.EmitRuntimeCall(RT.createRuntimeFunction(RTLFn), OffloadingArgs); +  }; + +  // In the event we get an if clause, we don't have to take any action on the +  // else side. +  auto &&ElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; + +  if (IfCond) { +    emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); +  } else { +    RegionCodeGenTy ThenGenRCG(ThenGen); +    ThenGenRCG(CGF); +  } +} + +namespace { +  /// Kind of parameter in a function with 'declare simd' directive. +  enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector }; +  /// Attribute set of the parameter. +  struct ParamAttrTy { +    ParamKindTy Kind = Vector; +    llvm::APSInt StrideOrArg; +    llvm::APSInt Alignment; +  }; +} // namespace + +static unsigned evaluateCDTSize(const FunctionDecl *FD, +                                ArrayRef<ParamAttrTy> ParamAttrs) { +  // Every vector variant of a SIMD-enabled function has a vector length (VLEN). +  // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument +  // of that clause. The VLEN value must be power of 2. +  // In other case the notion of the function`s "characteristic data type" (CDT) +  // is used to compute the vector length. +  // CDT is defined in the following order: +  //   a) For non-void function, the CDT is the return type. +  //   b) If the function has any non-uniform, non-linear parameters, then the +  //   CDT is the type of the first such parameter. +  //   c) If the CDT determined by a) or b) above is struct, union, or class +  //   type which is pass-by-value (except for the type that maps to the +  //   built-in complex data type), the characteristic data type is int. +  //   d) If none of the above three cases is applicable, the CDT is int. +  // The VLEN is then determined based on the CDT and the size of vector +  // register of that ISA for which current vector version is generated. The +  // VLEN is computed using the formula below: +  //   VLEN  = sizeof(vector_register) / sizeof(CDT), +  // where vector register size specified in section 3.2.1 Registers and the +  // Stack Frame of original AMD64 ABI document. +  QualType RetType = FD->getReturnType(); +  if (RetType.isNull()) +    return 0; +  ASTContext &C = FD->getASTContext(); +  QualType CDT; +  if (!RetType.isNull() && !RetType->isVoidType()) +    CDT = RetType; +  else { +    unsigned Offset = 0; +    if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { +      if (ParamAttrs[Offset].Kind == Vector) +        CDT = C.getPointerType(C.getRecordType(MD->getParent())); +      ++Offset; +    } +    if (CDT.isNull()) { +      for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { +        if (ParamAttrs[I + Offset].Kind == Vector) { +          CDT = FD->getParamDecl(I)->getType(); +          break; +        } +      } +    } +  } +  if (CDT.isNull()) +    CDT = C.IntTy; +  CDT = CDT->getCanonicalTypeUnqualified(); +  if (CDT->isRecordType() || CDT->isUnionType()) +    CDT = C.IntTy; +  return C.getTypeSize(CDT); +} + +static void +emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn, +                           const llvm::APSInt &VLENVal, +                           ArrayRef<ParamAttrTy> ParamAttrs, +                           OMPDeclareSimdDeclAttr::BranchStateTy State) { +  struct ISADataTy { +    char ISA; +    unsigned VecRegSize; +  }; +  ISADataTy ISAData[] = { +      { +          'b', 128 +      }, // SSE +      { +          'c', 256 +      }, // AVX +      { +          'd', 256 +      }, // AVX2 +      { +          'e', 512 +      }, // AVX512 +  }; +  llvm::SmallVector<char, 2> Masked; +  switch (State) { +  case OMPDeclareSimdDeclAttr::BS_Undefined: +    Masked.push_back('N'); +    Masked.push_back('M'); +    break; +  case OMPDeclareSimdDeclAttr::BS_Notinbranch: +    Masked.push_back('N'); +    break; +  case OMPDeclareSimdDeclAttr::BS_Inbranch: +    Masked.push_back('M'); +    break; +  } +  for (auto Mask : Masked) { +    for (auto &Data : ISAData) { +      SmallString<256> Buffer; +      llvm::raw_svector_ostream Out(Buffer); +      Out << "_ZGV" << Data.ISA << Mask; +      if (!VLENVal) { +        Out << llvm::APSInt::getUnsigned(Data.VecRegSize / +                                         evaluateCDTSize(FD, ParamAttrs)); +      } else +        Out << VLENVal; +      for (auto &ParamAttr : ParamAttrs) { +        switch (ParamAttr.Kind){ +        case LinearWithVarStride: +          Out << 's' << ParamAttr.StrideOrArg; +          break; +        case Linear: +          Out << 'l'; +          if (!!ParamAttr.StrideOrArg) +            Out << ParamAttr.StrideOrArg; +          break; +        case Uniform: +          Out << 'u'; +          break; +        case Vector: +          Out << 'v'; +          break; +        } +        if (!!ParamAttr.Alignment) +          Out << 'a' << ParamAttr.Alignment; +      } +      Out << '_' << Fn->getName(); +      Fn->addFnAttr(Out.str()); +    } +  } +} + +void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD, +                                              llvm::Function *Fn) { +  ASTContext &C = CGM.getContext(); +  FD = FD->getCanonicalDecl(); +  // Map params to their positions in function decl. +  llvm::DenseMap<const Decl *, unsigned> ParamPositions; +  if (isa<CXXMethodDecl>(FD)) +    ParamPositions.insert({FD, 0}); +  unsigned ParamPos = ParamPositions.size(); +  for (auto *P : FD->parameters()) { +    ParamPositions.insert({P->getCanonicalDecl(), ParamPos}); +    ++ParamPos; +  } +  for (auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) { +    llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size()); +    // Mark uniform parameters. +    for (auto *E : Attr->uniforms()) { +      E = E->IgnoreParenImpCasts(); +      unsigned Pos; +      if (isa<CXXThisExpr>(E)) +        Pos = ParamPositions[FD]; +      else { +        auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) +                        ->getCanonicalDecl(); +        Pos = ParamPositions[PVD]; +      } +      ParamAttrs[Pos].Kind = Uniform; +    } +    // Get alignment info. +    auto NI = Attr->alignments_begin(); +    for (auto *E : Attr->aligneds()) { +      E = E->IgnoreParenImpCasts(); +      unsigned Pos; +      QualType ParmTy; +      if (isa<CXXThisExpr>(E)) { +        Pos = ParamPositions[FD]; +        ParmTy = E->getType(); +      } else { +        auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) +                        ->getCanonicalDecl(); +        Pos = ParamPositions[PVD]; +        ParmTy = PVD->getType(); +      } +      ParamAttrs[Pos].Alignment = +          (*NI) ? (*NI)->EvaluateKnownConstInt(C) +                : llvm::APSInt::getUnsigned( +                      C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy)) +                          .getQuantity()); +      ++NI; +    } +    // Mark linear parameters. +    auto SI = Attr->steps_begin(); +    auto MI = Attr->modifiers_begin(); +    for (auto *E : Attr->linears()) { +      E = E->IgnoreParenImpCasts(); +      unsigned Pos; +      if (isa<CXXThisExpr>(E)) +        Pos = ParamPositions[FD]; +      else { +        auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) +                        ->getCanonicalDecl(); +        Pos = ParamPositions[PVD]; +      } +      auto &ParamAttr = ParamAttrs[Pos]; +      ParamAttr.Kind = Linear; +      if (*SI) { +        if (!(*SI)->EvaluateAsInt(ParamAttr.StrideOrArg, C, +                                  Expr::SE_AllowSideEffects)) { +          if (auto *DRE = cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) { +            if (auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) { +              ParamAttr.Kind = LinearWithVarStride; +              ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned( +                  ParamPositions[StridePVD->getCanonicalDecl()]); +            } +          } +        } +      } +      ++SI; +      ++MI; +    } +    llvm::APSInt VLENVal; +    if (const Expr *VLEN = Attr->getSimdlen()) +      VLENVal = VLEN->EvaluateKnownConstInt(C); +    OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState(); +    if (CGM.getTriple().getArch() == llvm::Triple::x86 || +        CGM.getTriple().getArch() == llvm::Triple::x86_64) +      emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State); +  } +} + +namespace { +/// Cleanup action for doacross support. +class DoacrossCleanupTy final : public EHScopeStack::Cleanup { +public: +  static const int DoacrossFinArgs = 2; + +private: +  llvm::Value *RTLFn; +  llvm::Value *Args[DoacrossFinArgs]; + +public: +  DoacrossCleanupTy(llvm::Value *RTLFn, ArrayRef<llvm::Value *> CallArgs) +      : RTLFn(RTLFn) { +    assert(CallArgs.size() == DoacrossFinArgs); +    std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); +  } +  void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { +    if (!CGF.HaveInsertPoint()) +      return; +    CGF.EmitRuntimeCall(RTLFn, Args); +  } +}; +} // namespace + +void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF, +                                       const OMPLoopDirective &D) { +  if (!CGF.HaveInsertPoint()) +    return; + +  ASTContext &C = CGM.getContext(); +  QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); +  RecordDecl *RD; +  if (KmpDimTy.isNull()) { +    // Build struct kmp_dim {  // loop bounds info casted to kmp_int64 +    //  kmp_int64 lo; // lower +    //  kmp_int64 up; // upper +    //  kmp_int64 st; // stride +    // }; +    RD = C.buildImplicitRecord("kmp_dim"); +    RD->startDefinition(); +    addFieldToRecordDecl(C, RD, Int64Ty); +    addFieldToRecordDecl(C, RD, Int64Ty); +    addFieldToRecordDecl(C, RD, Int64Ty); +    RD->completeDefinition(); +    KmpDimTy = C.getRecordType(RD); +  } else +    RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl()); + +  Address DimsAddr = CGF.CreateMemTemp(KmpDimTy, "dims"); +  CGF.EmitNullInitialization(DimsAddr, KmpDimTy); +  enum { LowerFD = 0, UpperFD, StrideFD }; +  // Fill dims with data. +  LValue DimsLVal = CGF.MakeAddrLValue(DimsAddr, KmpDimTy); +  // dims.upper = num_iterations; +  LValue UpperLVal = +      CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), UpperFD)); +  llvm::Value *NumIterVal = CGF.EmitScalarConversion( +      CGF.EmitScalarExpr(D.getNumIterations()), D.getNumIterations()->getType(), +      Int64Ty, D.getNumIterations()->getExprLoc()); +  CGF.EmitStoreOfScalar(NumIterVal, UpperLVal); +  // dims.stride = 1; +  LValue StrideLVal = +      CGF.EmitLValueForField(DimsLVal, *std::next(RD->field_begin(), StrideFD)); +  CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1), +                        StrideLVal); + +  // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, +  // kmp_int32 num_dims, struct kmp_dim * dims); +  llvm::Value *Args[] = {emitUpdateLocation(CGF, D.getLocStart()), +                         getThreadID(CGF, D.getLocStart()), +                         llvm::ConstantInt::getSigned(CGM.Int32Ty, 1), +                         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( +                             DimsAddr.getPointer(), CGM.VoidPtrTy)}; + +  llvm::Value *RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_init); +  CGF.EmitRuntimeCall(RTLFn, Args); +  llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = { +      emitUpdateLocation(CGF, D.getLocEnd()), getThreadID(CGF, D.getLocEnd())}; +  llvm::Value *FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_fini); +  CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn, +                                             llvm::makeArrayRef(FiniArgs)); +} + +void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, +                                          const OMPDependClause *C) { +  QualType Int64Ty = +      CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); +  const Expr *CounterVal = C->getCounterValue(); +  assert(CounterVal); +  llvm::Value *CntVal = CGF.EmitScalarConversion(CGF.EmitScalarExpr(CounterVal), +                                                 CounterVal->getType(), Int64Ty, +                                                 CounterVal->getExprLoc()); +  Address CntAddr = CGF.CreateMemTemp(Int64Ty, ".cnt.addr"); +  CGF.EmitStoreOfScalar(CntVal, CntAddr, /*Volatile=*/false, Int64Ty); +  llvm::Value *Args[] = {emitUpdateLocation(CGF, C->getLocStart()), +                         getThreadID(CGF, C->getLocStart()), +                         CntAddr.getPointer()}; +  llvm::Value *RTLFn; +  if (C->getDependencyKind() == OMPC_DEPEND_source) +    RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post); +  else { +    assert(C->getDependencyKind() == OMPC_DEPEND_sink); +    RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait); +  } +  CGF.EmitRuntimeCall(RTLFn, Args); +} +  | 
