diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp')
| -rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp | 2174 | 
1 files changed, 2174 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp new file mode 100644 index 000000000000..ac1a1334f103 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CodeGenFunction.cpp @@ -0,0 +1,2174 @@ +//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This coordinates the per-function state used while generating code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGBlocks.h" +#include "CGCleanup.h" +#include "CGCUDARuntime.h" +#include "CGCXXABI.h" +#include "CGDebugInfo.h" +#include "CGOpenMPRuntime.h" +#include "CodeGenModule.h" +#include "CodeGenPGO.h" +#include "TargetInfo.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/StmtCXX.h" +#include "clang/AST/StmtObjC.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "clang/Frontend/CodeGenOptions.h" +#include "clang/Sema/SemaDiagnostic.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Operator.h" +using namespace clang; +using namespace CodeGen; + +/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time +/// markers. +static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, +                                      const LangOptions &LangOpts) { +  if (CGOpts.DisableLifetimeMarkers) +    return false; + +  // Disable lifetime markers in msan builds. +  // FIXME: Remove this when msan works with lifetime markers. +  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) +    return false; + +  // Asan uses markers for use-after-scope checks. +  if (CGOpts.SanitizeAddressUseAfterScope) +    return true; + +  // For now, only in optimized builds. +  return CGOpts.OptimizationLevel != 0; +} + +CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) +    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), +      Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), +              CGBuilderInserterTy(this)), +      CurFn(nullptr), ReturnValue(Address::invalid()), +      CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), +      IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), +      SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), +      BlockPointer(nullptr), LambdaThisCaptureField(nullptr), +      NormalCleanupDest(nullptr), NextCleanupDestIndex(1), +      FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), +      EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), +      DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), +      PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), +      CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), +      NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), +      CXXABIThisValue(nullptr), CXXThisValue(nullptr), +      CXXStructorImplicitParamDecl(nullptr), +      CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), +      CurLexicalScope(nullptr), TerminateLandingPad(nullptr), +      TerminateHandler(nullptr), TrapBB(nullptr), +      ShouldEmitLifetimeMarkers( +          shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { +  if (!suppressNewContext) +    CGM.getCXXABI().getMangleContext().startNewFunction(); + +  llvm::FastMathFlags FMF; +  if (CGM.getLangOpts().FastMath) +    FMF.setUnsafeAlgebra(); +  if (CGM.getLangOpts().FiniteMathOnly) { +    FMF.setNoNaNs(); +    FMF.setNoInfs(); +  } +  if (CGM.getCodeGenOpts().NoNaNsFPMath) { +    FMF.setNoNaNs(); +  } +  if (CGM.getCodeGenOpts().NoSignedZeros) { +    FMF.setNoSignedZeros(); +  } +  if (CGM.getCodeGenOpts().ReciprocalMath) { +    FMF.setAllowReciprocal(); +  } +  Builder.setFastMathFlags(FMF); +} + +CodeGenFunction::~CodeGenFunction() { +  assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); + +  // If there are any unclaimed block infos, go ahead and destroy them +  // now.  This can happen if IR-gen gets clever and skips evaluating +  // something. +  if (FirstBlockInfo) +    destroyBlockInfos(FirstBlockInfo); + +  if (getLangOpts().OpenMP && CurFn) +    CGM.getOpenMPRuntime().functionFinished(*this); +} + +CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, +                                                    LValueBaseInfo *BaseInfo) { +  return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, +                                 /*forPointee*/ true); +} + +CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, +                                                   LValueBaseInfo *BaseInfo, +                                                   bool forPointeeType) { +  // Honor alignment typedef attributes even on incomplete types. +  // We also honor them straight for C++ class types, even as pointees; +  // there's an expressivity gap here. +  if (auto TT = T->getAs<TypedefType>()) { +    if (auto Align = TT->getDecl()->getMaxAlignment()) { +      if (BaseInfo) +        *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); +      return getContext().toCharUnitsFromBits(Align); +    } +  } + +  if (BaseInfo) +    *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); + +  CharUnits Alignment; +  if (T->isIncompleteType()) { +    Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. +  } else { +    // For C++ class pointees, we don't know whether we're pointing at a +    // base or a complete object, so we generally need to use the +    // non-virtual alignment. +    const CXXRecordDecl *RD; +    if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { +      Alignment = CGM.getClassPointerAlignment(RD); +    } else { +      Alignment = getContext().getTypeAlignInChars(T); +      if (T.getQualifiers().hasUnaligned()) +        Alignment = CharUnits::One(); +    } + +    // Cap to the global maximum type alignment unless the alignment +    // was somehow explicit on the type. +    if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { +      if (Alignment.getQuantity() > MaxAlign && +          !getContext().isAlignmentRequired(T)) +        Alignment = CharUnits::fromQuantity(MaxAlign); +    } +  } +  return Alignment; +} + +LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { +  LValueBaseInfo BaseInfo; +  CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); +  return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, +                          CGM.getTBAAInfo(T)); +} + +/// Given a value of type T* that may not be to a complete object, +/// construct an l-value with the natural pointee alignment of T. +LValue +CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { +  LValueBaseInfo BaseInfo; +  CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); +  return MakeAddrLValue(Address(V, Align), T, BaseInfo); +} + + +llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { +  return CGM.getTypes().ConvertTypeForMem(T); +} + +llvm::Type *CodeGenFunction::ConvertType(QualType T) { +  return CGM.getTypes().ConvertType(T); +} + +TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { +  type = type.getCanonicalType(); +  while (true) { +    switch (type->getTypeClass()) { +#define TYPE(name, parent) +#define ABSTRACT_TYPE(name, parent) +#define NON_CANONICAL_TYPE(name, parent) case Type::name: +#define DEPENDENT_TYPE(name, parent) case Type::name: +#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: +#include "clang/AST/TypeNodes.def" +      llvm_unreachable("non-canonical or dependent type in IR-generation"); + +    case Type::Auto: +    case Type::DeducedTemplateSpecialization: +      llvm_unreachable("undeduced type in IR-generation"); + +    // Various scalar types. +    case Type::Builtin: +    case Type::Pointer: +    case Type::BlockPointer: +    case Type::LValueReference: +    case Type::RValueReference: +    case Type::MemberPointer: +    case Type::Vector: +    case Type::ExtVector: +    case Type::FunctionProto: +    case Type::FunctionNoProto: +    case Type::Enum: +    case Type::ObjCObjectPointer: +    case Type::Pipe: +      return TEK_Scalar; + +    // Complexes. +    case Type::Complex: +      return TEK_Complex; + +    // Arrays, records, and Objective-C objects. +    case Type::ConstantArray: +    case Type::IncompleteArray: +    case Type::VariableArray: +    case Type::Record: +    case Type::ObjCObject: +    case Type::ObjCInterface: +      return TEK_Aggregate; + +    // We operate on atomic values according to their underlying type. +    case Type::Atomic: +      type = cast<AtomicType>(type)->getValueType(); +      continue; +    } +    llvm_unreachable("unknown type kind!"); +  } +} + +llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { +  // For cleanliness, we try to avoid emitting the return block for +  // simple cases. +  llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + +  if (CurBB) { +    assert(!CurBB->getTerminator() && "Unexpected terminated block."); + +    // We have a valid insert point, reuse it if it is empty or there are no +    // explicit jumps to the return block. +    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { +      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); +      delete ReturnBlock.getBlock(); +    } else +      EmitBlock(ReturnBlock.getBlock()); +    return llvm::DebugLoc(); +  } + +  // Otherwise, if the return block is the target of a single direct +  // branch then we can just put the code in that block instead. This +  // cleans up functions which started with a unified return block. +  if (ReturnBlock.getBlock()->hasOneUse()) { +    llvm::BranchInst *BI = +      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); +    if (BI && BI->isUnconditional() && +        BI->getSuccessor(0) == ReturnBlock.getBlock()) { +      // Record/return the DebugLoc of the simple 'return' expression to be used +      // later by the actual 'ret' instruction. +      llvm::DebugLoc Loc = BI->getDebugLoc(); +      Builder.SetInsertPoint(BI->getParent()); +      BI->eraseFromParent(); +      delete ReturnBlock.getBlock(); +      return Loc; +    } +  } + +  // FIXME: We are at an unreachable point, there is no reason to emit the block +  // unless it has uses. However, we still need a place to put the debug +  // region.end for now. + +  EmitBlock(ReturnBlock.getBlock()); +  return llvm::DebugLoc(); +} + +static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { +  if (!BB) return; +  if (!BB->use_empty()) +    return CGF.CurFn->getBasicBlockList().push_back(BB); +  delete BB; +} + +void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { +  assert(BreakContinueStack.empty() && +         "mismatched push/pop in break/continue stack!"); + +  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 +    && NumSimpleReturnExprs == NumReturnExprs +    && ReturnBlock.getBlock()->use_empty(); +  // Usually the return expression is evaluated before the cleanup +  // code.  If the function contains only a simple return statement, +  // such as a constant, the location before the cleanup code becomes +  // the last useful breakpoint in the function, because the simple +  // return expression will be evaluated after the cleanup code. To be +  // safe, set the debug location for cleanup code to the location of +  // the return statement.  Otherwise the cleanup code should be at the +  // end of the function's lexical scope. +  // +  // If there are multiple branches to the return block, the branch +  // instructions will get the location of the return statements and +  // all will be fine. +  if (CGDebugInfo *DI = getDebugInfo()) { +    if (OnlySimpleReturnStmts) +      DI->EmitLocation(Builder, LastStopPoint); +    else +      DI->EmitLocation(Builder, EndLoc); +  } + +  // Pop any cleanups that might have been associated with the +  // parameters.  Do this in whatever block we're currently in; it's +  // important to do this before we enter the return block or return +  // edges will be *really* confused. +  bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; +  bool HasOnlyLifetimeMarkers = +      HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); +  bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; +  if (HasCleanups) { +    // Make sure the line table doesn't jump back into the body for +    // the ret after it's been at EndLoc. +    if (CGDebugInfo *DI = getDebugInfo()) +      if (OnlySimpleReturnStmts) +        DI->EmitLocation(Builder, EndLoc); + +    PopCleanupBlocks(PrologueCleanupDepth); +  } + +  // Emit function epilog (to return). +  llvm::DebugLoc Loc = EmitReturnBlock(); + +  if (ShouldInstrumentFunction()) +    EmitFunctionInstrumentation("__cyg_profile_func_exit"); + +  // Emit debug descriptor for function end. +  if (CGDebugInfo *DI = getDebugInfo()) +    DI->EmitFunctionEnd(Builder, CurFn); + +  // Reset the debug location to that of the simple 'return' expression, if any +  // rather than that of the end of the function's scope '}'. +  ApplyDebugLocation AL(*this, Loc); +  EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); +  EmitEndEHSpec(CurCodeDecl); + +  assert(EHStack.empty() && +         "did not remove all scopes from cleanup stack!"); + +  // If someone did an indirect goto, emit the indirect goto block at the end of +  // the function. +  if (IndirectBranch) { +    EmitBlock(IndirectBranch->getParent()); +    Builder.ClearInsertionPoint(); +  } + +  // If some of our locals escaped, insert a call to llvm.localescape in the +  // entry block. +  if (!EscapedLocals.empty()) { +    // Invert the map from local to index into a simple vector. There should be +    // no holes. +    SmallVector<llvm::Value *, 4> EscapeArgs; +    EscapeArgs.resize(EscapedLocals.size()); +    for (auto &Pair : EscapedLocals) +      EscapeArgs[Pair.second] = Pair.first; +    llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( +        &CGM.getModule(), llvm::Intrinsic::localescape); +    CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); +  } + +  // Remove the AllocaInsertPt instruction, which is just a convenience for us. +  llvm::Instruction *Ptr = AllocaInsertPt; +  AllocaInsertPt = nullptr; +  Ptr->eraseFromParent(); + +  // If someone took the address of a label but never did an indirect goto, we +  // made a zero entry PHI node, which is illegal, zap it now. +  if (IndirectBranch) { +    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); +    if (PN->getNumIncomingValues() == 0) { +      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); +      PN->eraseFromParent(); +    } +  } + +  EmitIfUsed(*this, EHResumeBlock); +  EmitIfUsed(*this, TerminateLandingPad); +  EmitIfUsed(*this, TerminateHandler); +  EmitIfUsed(*this, UnreachableBlock); + +  if (CGM.getCodeGenOpts().EmitDeclMetadata) +    EmitDeclMetadata(); + +  for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator +           I = DeferredReplacements.begin(), +           E = DeferredReplacements.end(); +       I != E; ++I) { +    I->first->replaceAllUsesWith(I->second); +    I->first->eraseFromParent(); +  } +} + +/// ShouldInstrumentFunction - Return true if the current function should be +/// instrumented with __cyg_profile_func_* calls +bool CodeGenFunction::ShouldInstrumentFunction() { +  if (!CGM.getCodeGenOpts().InstrumentFunctions) +    return false; +  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) +    return false; +  return true; +} + +/// ShouldXRayInstrument - Return true if the current function should be +/// instrumented with XRay nop sleds. +bool CodeGenFunction::ShouldXRayInstrumentFunction() const { +  return CGM.getCodeGenOpts().XRayInstrumentFunctions; +} + +/// EmitFunctionInstrumentation - Emit LLVM code to call the specified +/// instrumentation function with the current function and the call site, if +/// function instrumentation is enabled. +void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { +  auto NL = ApplyDebugLocation::CreateArtificial(*this); +  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); +  llvm::PointerType *PointerTy = Int8PtrTy; +  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; +  llvm::FunctionType *FunctionTy = +    llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); + +  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); +  llvm::CallInst *CallSite = Builder.CreateCall( +    CGM.getIntrinsic(llvm::Intrinsic::returnaddress), +    llvm::ConstantInt::get(Int32Ty, 0), +    "callsite"); + +  llvm::Value *args[] = { +    llvm::ConstantExpr::getBitCast(CurFn, PointerTy), +    CallSite +  }; + +  EmitNounwindRuntimeCall(F, args); +} + +static void removeImageAccessQualifier(std::string& TyName) { +  std::string ReadOnlyQual("__read_only"); +  std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); +  if (ReadOnlyPos != std::string::npos) +    // "+ 1" for the space after access qualifier. +    TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); +  else { +    std::string WriteOnlyQual("__write_only"); +    std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); +    if (WriteOnlyPos != std::string::npos) +      TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); +    else { +      std::string ReadWriteQual("__read_write"); +      std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); +      if (ReadWritePos != std::string::npos) +        TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); +    } +  } +} + +// Returns the address space id that should be produced to the +// kernel_arg_addr_space metadata. This is always fixed to the ids +// as specified in the SPIR 2.0 specification in order to differentiate +// for example in clGetKernelArgInfo() implementation between the address +// spaces with targets without unique mapping to the OpenCL address spaces +// (basically all single AS CPUs). +static unsigned ArgInfoAddressSpace(unsigned LangAS) { +  switch (LangAS) { +  case LangAS::opencl_global:   return 1; +  case LangAS::opencl_constant: return 2; +  case LangAS::opencl_local:    return 3; +  case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs. +  default: +    return 0; // Assume private. +  } +} + +// OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument +// information in the program executable. The argument information stored +// includes the argument name, its type, the address and access qualifiers used. +static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, +                                 CodeGenModule &CGM, llvm::LLVMContext &Context, +                                 CGBuilderTy &Builder, ASTContext &ASTCtx) { +  // Create MDNodes that represent the kernel arg metadata. +  // Each MDNode is a list in the form of "key", N number of values which is +  // the same number of values as their are kernel arguments. + +  const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); + +  // MDNode for the kernel argument address space qualifiers. +  SmallVector<llvm::Metadata *, 8> addressQuals; + +  // MDNode for the kernel argument access qualifiers (images only). +  SmallVector<llvm::Metadata *, 8> accessQuals; + +  // MDNode for the kernel argument type names. +  SmallVector<llvm::Metadata *, 8> argTypeNames; + +  // MDNode for the kernel argument base type names. +  SmallVector<llvm::Metadata *, 8> argBaseTypeNames; + +  // MDNode for the kernel argument type qualifiers. +  SmallVector<llvm::Metadata *, 8> argTypeQuals; + +  // MDNode for the kernel argument names. +  SmallVector<llvm::Metadata *, 8> argNames; + +  for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { +    const ParmVarDecl *parm = FD->getParamDecl(i); +    QualType ty = parm->getType(); +    std::string typeQuals; + +    if (ty->isPointerType()) { +      QualType pointeeTy = ty->getPointeeType(); + +      // Get address qualifier. +      addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( +        ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); + +      // Get argument type name. +      std::string typeName = +          pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; + +      // Turn "unsigned type" to "utype" +      std::string::size_type pos = typeName.find("unsigned"); +      if (pointeeTy.isCanonical() && pos != std::string::npos) +        typeName.erase(pos+1, 8); + +      argTypeNames.push_back(llvm::MDString::get(Context, typeName)); + +      std::string baseTypeName = +          pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( +              Policy) + +          "*"; + +      // Turn "unsigned type" to "utype" +      pos = baseTypeName.find("unsigned"); +      if (pos != std::string::npos) +        baseTypeName.erase(pos+1, 8); + +      argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); + +      // Get argument type qualifiers: +      if (ty.isRestrictQualified()) +        typeQuals = "restrict"; +      if (pointeeTy.isConstQualified() || +          (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) +        typeQuals += typeQuals.empty() ? "const" : " const"; +      if (pointeeTy.isVolatileQualified()) +        typeQuals += typeQuals.empty() ? "volatile" : " volatile"; +    } else { +      uint32_t AddrSpc = 0; +      bool isPipe = ty->isPipeType(); +      if (ty->isImageType() || isPipe) +        AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); + +      addressQuals.push_back( +          llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); + +      // Get argument type name. +      std::string typeName; +      if (isPipe) +        typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() +                     .getAsString(Policy); +      else +        typeName = ty.getUnqualifiedType().getAsString(Policy); + +      // Turn "unsigned type" to "utype" +      std::string::size_type pos = typeName.find("unsigned"); +      if (ty.isCanonical() && pos != std::string::npos) +        typeName.erase(pos+1, 8); + +      std::string baseTypeName; +      if (isPipe) +        baseTypeName = ty.getCanonicalType()->getAs<PipeType>() +                          ->getElementType().getCanonicalType() +                          .getAsString(Policy); +      else +        baseTypeName = +          ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); + +      // Remove access qualifiers on images +      // (as they are inseparable from type in clang implementation, +      // but OpenCL spec provides a special query to get access qualifier +      // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): +      if (ty->isImageType()) { +        removeImageAccessQualifier(typeName); +        removeImageAccessQualifier(baseTypeName); +      } + +      argTypeNames.push_back(llvm::MDString::get(Context, typeName)); + +      // Turn "unsigned type" to "utype" +      pos = baseTypeName.find("unsigned"); +      if (pos != std::string::npos) +        baseTypeName.erase(pos+1, 8); + +      argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); + +      if (isPipe) +        typeQuals = "pipe"; +    } + +    argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); + +    // Get image and pipe access qualifier: +    if (ty->isImageType()|| ty->isPipeType()) { +      const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); +      if (A && A->isWriteOnly()) +        accessQuals.push_back(llvm::MDString::get(Context, "write_only")); +      else if (A && A->isReadWrite()) +        accessQuals.push_back(llvm::MDString::get(Context, "read_write")); +      else +        accessQuals.push_back(llvm::MDString::get(Context, "read_only")); +    } else +      accessQuals.push_back(llvm::MDString::get(Context, "none")); + +    // Get argument name. +    argNames.push_back(llvm::MDString::get(Context, parm->getName())); +  } + +  Fn->setMetadata("kernel_arg_addr_space", +                  llvm::MDNode::get(Context, addressQuals)); +  Fn->setMetadata("kernel_arg_access_qual", +                  llvm::MDNode::get(Context, accessQuals)); +  Fn->setMetadata("kernel_arg_type", +                  llvm::MDNode::get(Context, argTypeNames)); +  Fn->setMetadata("kernel_arg_base_type", +                  llvm::MDNode::get(Context, argBaseTypeNames)); +  Fn->setMetadata("kernel_arg_type_qual", +                  llvm::MDNode::get(Context, argTypeQuals)); +  if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) +    Fn->setMetadata("kernel_arg_name", +                    llvm::MDNode::get(Context, argNames)); +} + +void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, +                                               llvm::Function *Fn) +{ +  if (!FD->hasAttr<OpenCLKernelAttr>()) +    return; + +  llvm::LLVMContext &Context = getLLVMContext(); + +  GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); + +  if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { +    QualType HintQTy = A->getTypeHint(); +    const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); +    bool IsSignedInteger = +        HintQTy->isSignedIntegerType() || +        (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(llvm::UndefValue::get( +            CGM.getTypes().ConvertType(A->getTypeHint()))), +        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( +            llvm::IntegerType::get(Context, 32), +            llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; +    Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); +  } + +  if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; +    Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); +  } + +  if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; +    Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); +  } + +  if (const OpenCLIntelReqdSubGroupSizeAttr *A = +          FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { +    llvm::Metadata *AttrMDArgs[] = { +        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; +    Fn->setMetadata("intel_reqd_sub_group_size", +                    llvm::MDNode::get(Context, AttrMDArgs)); +  } +} + +/// Determine whether the function F ends with a return stmt. +static bool endsWithReturn(const Decl* F) { +  const Stmt *Body = nullptr; +  if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) +    Body = FD->getBody(); +  else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) +    Body = OMD->getBody(); + +  if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { +    auto LastStmt = CS->body_rbegin(); +    if (LastStmt != CS->body_rend()) +      return isa<ReturnStmt>(*LastStmt); +  } +  return false; +} + +static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { +  Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); +  Fn->removeFnAttr(llvm::Attribute::SanitizeThread); +} + +void CodeGenFunction::StartFunction(GlobalDecl GD, +                                    QualType RetTy, +                                    llvm::Function *Fn, +                                    const CGFunctionInfo &FnInfo, +                                    const FunctionArgList &Args, +                                    SourceLocation Loc, +                                    SourceLocation StartLoc) { +  assert(!CurFn && +         "Do not use a CodeGenFunction object for more than one function"); + +  const Decl *D = GD.getDecl(); + +  DidCallStackSave = false; +  CurCodeDecl = D; +  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) +    if (FD->usesSEHTry()) +      CurSEHParent = FD; +  CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); +  FnRetTy = RetTy; +  CurFn = Fn; +  CurFnInfo = &FnInfo; +  assert(CurFn->isDeclaration() && "Function already has body?"); + +  if (CGM.isInSanitizerBlacklist(Fn, Loc)) +    SanOpts.clear(); + +  if (D) { +    // Apply the no_sanitize* attributes to SanOpts. +    for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) +      SanOpts.Mask &= ~Attr->getMask(); +  } + +  // Apply sanitizer attributes to the function. +  if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) +    Fn->addFnAttr(llvm::Attribute::SanitizeAddress); +  if (SanOpts.has(SanitizerKind::Thread)) +    Fn->addFnAttr(llvm::Attribute::SanitizeThread); +  if (SanOpts.has(SanitizerKind::Memory)) +    Fn->addFnAttr(llvm::Attribute::SanitizeMemory); +  if (SanOpts.has(SanitizerKind::SafeStack)) +    Fn->addFnAttr(llvm::Attribute::SafeStack); + +  // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, +  // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. +  if (SanOpts.has(SanitizerKind::Thread)) { +    if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { +      IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); +      if (OMD->getMethodFamily() == OMF_dealloc || +          OMD->getMethodFamily() == OMF_initialize || +          (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { +        markAsIgnoreThreadCheckingAtRuntime(Fn); +      } +    } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { +      IdentifierInfo *II = FD->getIdentifier(); +      if (II && II->isStr("__destroy_helper_block_")) +        markAsIgnoreThreadCheckingAtRuntime(Fn); +    } +  } + +  // Apply xray attributes to the function (as a string, for now) +  if (D && ShouldXRayInstrumentFunction()) { +    if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { +      if (XRayAttr->alwaysXRayInstrument()) +        Fn->addFnAttr("function-instrument", "xray-always"); +      if (XRayAttr->neverXRayInstrument()) +        Fn->addFnAttr("function-instrument", "xray-never"); +      if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { +        Fn->addFnAttr("xray-log-args", +                      llvm::utostr(LogArgs->getArgumentCount())); +      } +    } else { +      if (!CGM.imbueXRayAttrs(Fn, Loc)) +        Fn->addFnAttr( +            "xray-instruction-threshold", +            llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); +    } +  } + +  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) +    if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) +      CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); + +  // Add no-jump-tables value. +  Fn->addFnAttr("no-jump-tables", +                llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); + +  if (getLangOpts().OpenCL) { +    // Add metadata for a kernel function. +    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) +      EmitOpenCLKernelMetadata(FD, Fn); +  } + +  // If we are checking function types, emit a function type signature as +  // prologue data. +  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { +    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { +      if (llvm::Constant *PrologueSig = +              CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { +        llvm::Constant *FTRTTIConst = +            CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); +        llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; +        llvm::Constant *PrologueStructConst = +            llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); +        Fn->setPrologueData(PrologueStructConst); +      } +    } +  } + +  // If we're checking nullability, we need to know whether we can check the +  // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. +  if (SanOpts.has(SanitizerKind::NullabilityReturn)) { +    auto Nullability = FnRetTy->getNullability(getContext()); +    if (Nullability && *Nullability == NullabilityKind::NonNull) { +      if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && +            CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) +        RetValNullabilityPrecondition = +            llvm::ConstantInt::getTrue(getLLVMContext()); +    } +  } + +  // If we're in C++ mode and the function name is "main", it is guaranteed +  // to be norecurse by the standard (3.6.1.3 "The function main shall not be +  // used within a program"). +  if (getLangOpts().CPlusPlus) +    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) +      if (FD->isMain()) +        Fn->addFnAttr(llvm::Attribute::NoRecurse); + +  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); + +  // Create a marker to make it easy to insert allocas into the entryblock +  // later.  Don't create this with the builder, because we don't want it +  // folded. +  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); +  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); + +  ReturnBlock = getJumpDestInCurrentScope("return"); + +  Builder.SetInsertPoint(EntryBB); + +  // Emit subprogram debug descriptor. +  if (CGDebugInfo *DI = getDebugInfo()) { +    // Reconstruct the type from the argument list so that implicit parameters, +    // such as 'this' and 'vtt', show up in the debug info. Preserve the calling +    // convention. +    CallingConv CC = CallingConv::CC_C; +    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) +      if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) +        CC = SrcFnTy->getCallConv(); +    SmallVector<QualType, 16> ArgTypes; +    for (const VarDecl *VD : Args) +      ArgTypes.push_back(VD->getType()); +    QualType FnType = getContext().getFunctionType( +        RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); +    DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); +  } + +  if (ShouldInstrumentFunction()) +    EmitFunctionInstrumentation("__cyg_profile_func_enter"); + +  // Since emitting the mcount call here impacts optimizations such as function +  // inlining, we just add an attribute to insert a mcount call in backend. +  // The attribute "counting-function" is set to mcount function name which is +  // architecture dependent. +  if (CGM.getCodeGenOpts().InstrumentForProfiling) { +    if (CGM.getCodeGenOpts().CallFEntry) +      Fn->addFnAttr("fentry-call", "true"); +    else +      Fn->addFnAttr("counting-function", getTarget().getMCountName()); +  } + +  if (RetTy->isVoidType()) { +    // Void type; nothing to return. +    ReturnValue = Address::invalid(); + +    // Count the implicit return. +    if (!endsWithReturn(D)) +      ++NumReturnExprs; +  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && +             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { +    // Indirect aggregate return; emit returned value directly into sret slot. +    // This reduces code size, and affects correctness in C++. +    auto AI = CurFn->arg_begin(); +    if (CurFnInfo->getReturnInfo().isSRetAfterThis()) +      ++AI; +    ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); +  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && +             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { +    // Load the sret pointer from the argument struct and return into that. +    unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); +    llvm::Function::arg_iterator EI = CurFn->arg_end(); +    --EI; +    llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); +    Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); +    ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); +  } else { +    ReturnValue = CreateIRTemp(RetTy, "retval"); + +    // Tell the epilog emitter to autorelease the result.  We do this +    // now so that various specialized functions can suppress it +    // during their IR-generation. +    if (getLangOpts().ObjCAutoRefCount && +        !CurFnInfo->isReturnsRetained() && +        RetTy->isObjCRetainableType()) +      AutoreleaseResult = true; +  } + +  EmitStartEHSpec(CurCodeDecl); + +  PrologueCleanupDepth = EHStack.stable_begin(); +  EmitFunctionProlog(*CurFnInfo, CurFn, Args); + +  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { +    CGM.getCXXABI().EmitInstanceFunctionProlog(*this); +    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); +    if (MD->getParent()->isLambda() && +        MD->getOverloadedOperator() == OO_Call) { +      // We're in a lambda; figure out the captures. +      MD->getParent()->getCaptureFields(LambdaCaptureFields, +                                        LambdaThisCaptureField); +      if (LambdaThisCaptureField) { +        // If the lambda captures the object referred to by '*this' - either by +        // value or by reference, make sure CXXThisValue points to the correct +        // object. + +        // Get the lvalue for the field (which is a copy of the enclosing object +        // or contains the address of the enclosing object). +        LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); +        if (!LambdaThisCaptureField->getType()->isPointerType()) { +          // If the enclosing object was captured by value, just use its address. +          CXXThisValue = ThisFieldLValue.getAddress().getPointer(); +        } else { +          // Load the lvalue pointed to by the field, since '*this' was captured +          // by reference. +          CXXThisValue = +              EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); +        } +      } +      for (auto *FD : MD->getParent()->fields()) { +        if (FD->hasCapturedVLAType()) { +          auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), +                                           SourceLocation()).getScalarVal(); +          auto VAT = FD->getCapturedVLAType(); +          VLASizeMap[VAT->getSizeExpr()] = ExprArg; +        } +      } +    } else { +      // Not in a lambda; just use 'this' from the method. +      // FIXME: Should we generate a new load for each use of 'this'?  The +      // fast register allocator would be happier... +      CXXThisValue = CXXABIThisValue; +    } + +    // Check the 'this' pointer once per function, if it's available. +    if (CXXThisValue) { +      SanitizerSet SkippedChecks; +      SkippedChecks.set(SanitizerKind::ObjectSize, true); +      QualType ThisTy = MD->getThisType(getContext()); +      EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy, +                    getContext().getTypeAlignInChars(ThisTy->getPointeeType()), +                    SkippedChecks); +    } +  } + +  // If any of the arguments have a variably modified type, make sure to +  // emit the type size. +  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); +       i != e; ++i) { +    const VarDecl *VD = *i; + +    // Dig out the type as written from ParmVarDecls; it's unclear whether +    // the standard (C99 6.9.1p10) requires this, but we're following the +    // precedent set by gcc. +    QualType Ty; +    if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) +      Ty = PVD->getOriginalType(); +    else +      Ty = VD->getType(); + +    if (Ty->isVariablyModifiedType()) +      EmitVariablyModifiedType(Ty); +  } +  // Emit a location at the end of the prologue. +  if (CGDebugInfo *DI = getDebugInfo()) +    DI->EmitLocation(Builder, StartLoc); +} + +void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, +                                       const Stmt *Body) { +  incrementProfileCounter(Body); +  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) +    EmitCompoundStmtWithoutScope(*S); +  else +    EmitStmt(Body); +} + +/// When instrumenting to collect profile data, the counts for some blocks +/// such as switch cases need to not include the fall-through counts, so +/// emit a branch around the instrumentation code. When not instrumenting, +/// this just calls EmitBlock(). +void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, +                                               const Stmt *S) { +  llvm::BasicBlock *SkipCountBB = nullptr; +  if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { +    // When instrumenting for profiling, the fallthrough to certain +    // statements needs to skip over the instrumentation code so that we +    // get an accurate count. +    SkipCountBB = createBasicBlock("skipcount"); +    EmitBranch(SkipCountBB); +  } +  EmitBlock(BB); +  uint64_t CurrentCount = getCurrentProfileCount(); +  incrementProfileCounter(S); +  setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); +  if (SkipCountBB) +    EmitBlock(SkipCountBB); +} + +/// Tries to mark the given function nounwind based on the +/// non-existence of any throwing calls within it.  We believe this is +/// lightweight enough to do at -O0. +static void TryMarkNoThrow(llvm::Function *F) { +  // LLVM treats 'nounwind' on a function as part of the type, so we +  // can't do this on functions that can be overwritten. +  if (F->isInterposable()) return; + +  for (llvm::BasicBlock &BB : *F) +    for (llvm::Instruction &I : BB) +      if (I.mayThrow()) +        return; + +  F->setDoesNotThrow(); +} + +QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, +                                               FunctionArgList &Args) { +  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); +  QualType ResTy = FD->getReturnType(); + +  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); +  if (MD && MD->isInstance()) { +    if (CGM.getCXXABI().HasThisReturn(GD)) +      ResTy = MD->getThisType(getContext()); +    else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) +      ResTy = CGM.getContext().VoidPtrTy; +    CGM.getCXXABI().buildThisParam(*this, Args); +  } + +  // The base version of an inheriting constructor whose constructed base is a +  // virtual base is not passed any arguments (because it doesn't actually call +  // the inherited constructor). +  bool PassedParams = true; +  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) +    if (auto Inherited = CD->getInheritedConstructor()) +      PassedParams = +          getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); + +  if (PassedParams) { +    for (auto *Param : FD->parameters()) { +      Args.push_back(Param); +      if (!Param->hasAttr<PassObjectSizeAttr>()) +        continue; + +      auto *Implicit = ImplicitParamDecl::Create( +          getContext(), Param->getDeclContext(), Param->getLocation(), +          /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); +      SizeArguments[Param] = Implicit; +      Args.push_back(Implicit); +    } +  } + +  if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) +    CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); + +  return ResTy; +} + +static bool +shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, +                                             const ASTContext &Context) { +  QualType T = FD->getReturnType(); +  // Avoid the optimization for functions that return a record type with a +  // trivial destructor or another trivially copyable type. +  if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { +    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) +      return !ClassDecl->hasTrivialDestructor(); +  } +  return !T.isTriviallyCopyableType(Context); +} + +void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, +                                   const CGFunctionInfo &FnInfo) { +  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); +  CurGD = GD; + +  FunctionArgList Args; +  QualType ResTy = BuildFunctionArgList(GD, Args); + +  // Check if we should generate debug info for this function. +  if (FD->hasAttr<NoDebugAttr>()) +    DebugInfo = nullptr; // disable debug info indefinitely for this function + +  // The function might not have a body if we're generating thunks for a +  // function declaration. +  SourceRange BodyRange; +  if (Stmt *Body = FD->getBody()) +    BodyRange = Body->getSourceRange(); +  else +    BodyRange = FD->getLocation(); +  CurEHLocation = BodyRange.getEnd(); + +  // Use the location of the start of the function to determine where +  // the function definition is located. By default use the location +  // of the declaration as the location for the subprogram. A function +  // may lack a declaration in the source code if it is created by code +  // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). +  SourceLocation Loc = FD->getLocation(); + +  // If this is a function specialization then use the pattern body +  // as the location for the function. +  if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) +    if (SpecDecl->hasBody(SpecDecl)) +      Loc = SpecDecl->getLocation(); + +  Stmt *Body = FD->getBody(); + +  // Initialize helper which will detect jumps which can cause invalid lifetime +  // markers. +  if (Body && ShouldEmitLifetimeMarkers) +    Bypasses.Init(Body); + +  // Emit the standard function prologue. +  StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); + +  // Generate the body of the function. +  PGO.assignRegionCounters(GD, CurFn); +  if (isa<CXXDestructorDecl>(FD)) +    EmitDestructorBody(Args); +  else if (isa<CXXConstructorDecl>(FD)) +    EmitConstructorBody(Args); +  else if (getLangOpts().CUDA && +           !getLangOpts().CUDAIsDevice && +           FD->hasAttr<CUDAGlobalAttr>()) +    CGM.getCUDARuntime().emitDeviceStub(*this, Args); +  else if (isa<CXXConversionDecl>(FD) && +           cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { +    // The lambda conversion to block pointer is special; the semantics can't be +    // expressed in the AST, so IRGen needs to special-case it. +    EmitLambdaToBlockPointerBody(Args); +  } else if (isa<CXXMethodDecl>(FD) && +             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { +    // The lambda static invoker function is special, because it forwards or +    // clones the body of the function call operator (but is actually static). +    EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); +  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && +             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || +              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { +    // Implicit copy-assignment gets the same special treatment as implicit +    // copy-constructors. +    emitImplicitAssignmentOperatorBody(Args); +  } else if (Body) { +    EmitFunctionBody(Args, Body); +  } else +    llvm_unreachable("no definition for emitted function"); + +  // C++11 [stmt.return]p2: +  //   Flowing off the end of a function [...] results in undefined behavior in +  //   a value-returning function. +  // C11 6.9.1p12: +  //   If the '}' that terminates a function is reached, and the value of the +  //   function call is used by the caller, the behavior is undefined. +  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && +      !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { +    bool ShouldEmitUnreachable = +        CGM.getCodeGenOpts().StrictReturn || +        shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); +    if (SanOpts.has(SanitizerKind::Return)) { +      SanitizerScope SanScope(this); +      llvm::Value *IsFalse = Builder.getFalse(); +      EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), +                SanitizerHandler::MissingReturn, +                EmitCheckSourceLocation(FD->getLocation()), None); +    } else if (ShouldEmitUnreachable) { +      if (CGM.getCodeGenOpts().OptimizationLevel == 0) +        EmitTrapCall(llvm::Intrinsic::trap); +    } +    if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { +      Builder.CreateUnreachable(); +      Builder.ClearInsertionPoint(); +    } +  } + +  // Emit the standard function epilogue. +  FinishFunction(BodyRange.getEnd()); + +  // If we haven't marked the function nothrow through other means, do +  // a quick pass now to see if we can. +  if (!CurFn->doesNotThrow()) +    TryMarkNoThrow(CurFn); +} + +/// ContainsLabel - Return true if the statement contains a label in it.  If +/// this statement is not executed normally, it not containing a label means +/// that we can just remove the code. +bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { +  // Null statement, not a label! +  if (!S) return false; + +  // If this is a label, we have to emit the code, consider something like: +  // if (0) {  ...  foo:  bar(); }  goto foo; +  // +  // TODO: If anyone cared, we could track __label__'s, since we know that you +  // can't jump to one from outside their declared region. +  if (isa<LabelStmt>(S)) +    return true; + +  // If this is a case/default statement, and we haven't seen a switch, we have +  // to emit the code. +  if (isa<SwitchCase>(S) && !IgnoreCaseStmts) +    return true; + +  // If this is a switch statement, we want to ignore cases below it. +  if (isa<SwitchStmt>(S)) +    IgnoreCaseStmts = true; + +  // Scan subexpressions for verboten labels. +  for (const Stmt *SubStmt : S->children()) +    if (ContainsLabel(SubStmt, IgnoreCaseStmts)) +      return true; + +  return false; +} + +/// containsBreak - Return true if the statement contains a break out of it. +/// If the statement (recursively) contains a switch or loop with a break +/// inside of it, this is fine. +bool CodeGenFunction::containsBreak(const Stmt *S) { +  // Null statement, not a label! +  if (!S) return false; + +  // If this is a switch or loop that defines its own break scope, then we can +  // include it and anything inside of it. +  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || +      isa<ForStmt>(S)) +    return false; + +  if (isa<BreakStmt>(S)) +    return true; + +  // Scan subexpressions for verboten breaks. +  for (const Stmt *SubStmt : S->children()) +    if (containsBreak(SubStmt)) +      return true; + +  return false; +} + +bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { +  if (!S) return false; + +  // Some statement kinds add a scope and thus never add a decl to the current +  // scope. Note, this list is longer than the list of statements that might +  // have an unscoped decl nested within them, but this way is conservatively +  // correct even if more statement kinds are added. +  if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || +      isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || +      isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || +      isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) +    return false; + +  if (isa<DeclStmt>(S)) +    return true; + +  for (const Stmt *SubStmt : S->children()) +    if (mightAddDeclToScope(SubStmt)) +      return true; + +  return false; +} + +/// ConstantFoldsToSimpleInteger - If the specified expression does not fold +/// to a constant, or if it does but contains a label, return false.  If it +/// constant folds return true and set the boolean result in Result. +bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, +                                                   bool &ResultBool, +                                                   bool AllowLabels) { +  llvm::APSInt ResultInt; +  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) +    return false; + +  ResultBool = ResultInt.getBoolValue(); +  return true; +} + +/// ConstantFoldsToSimpleInteger - If the specified expression does not fold +/// to a constant, or if it does but contains a label, return false.  If it +/// constant folds return true and set the folded value. +bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, +                                                   llvm::APSInt &ResultInt, +                                                   bool AllowLabels) { +  // FIXME: Rename and handle conversion of other evaluatable things +  // to bool. +  llvm::APSInt Int; +  if (!Cond->EvaluateAsInt(Int, getContext())) +    return false;  // Not foldable, not integer or not fully evaluatable. + +  if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) +    return false;  // Contains a label. + +  ResultInt = Int; +  return true; +} + + + +/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if +/// statement) to the specified blocks.  Based on the condition, this might try +/// to simplify the codegen of the conditional based on the branch. +/// +void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, +                                           llvm::BasicBlock *TrueBlock, +                                           llvm::BasicBlock *FalseBlock, +                                           uint64_t TrueCount) { +  Cond = Cond->IgnoreParens(); + +  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { + +    // Handle X && Y in a condition. +    if (CondBOp->getOpcode() == BO_LAnd) { +      // If we have "1 && X", simplify the code.  "0 && X" would have constant +      // folded if the case was simple enough. +      bool ConstantBool = false; +      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && +          ConstantBool) { +        // br(1 && X) -> br(X). +        incrementProfileCounter(CondBOp); +        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // If we have "X && 1", simplify the code to use an uncond branch. +      // "X && 0" would have been constant folded to 0. +      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && +          ConstantBool) { +        // br(X && 1) -> br(X). +        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // Emit the LHS as a conditional.  If the LHS conditional is false, we +      // want to jump to the FalseBlock. +      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); +      // The counter tells us how often we evaluate RHS, and all of TrueCount +      // can be propagated to that branch. +      uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); + +      ConditionalEvaluation eval(*this); +      { +        ApplyDebugLocation DL(*this, Cond); +        EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); +        EmitBlock(LHSTrue); +      } + +      incrementProfileCounter(CondBOp); +      setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); + +      // Any temporaries created here are conditional. +      eval.begin(*this); +      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); +      eval.end(*this); + +      return; +    } + +    if (CondBOp->getOpcode() == BO_LOr) { +      // If we have "0 || X", simplify the code.  "1 || X" would have constant +      // folded if the case was simple enough. +      bool ConstantBool = false; +      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && +          !ConstantBool) { +        // br(0 || X) -> br(X). +        incrementProfileCounter(CondBOp); +        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // If we have "X || 0", simplify the code to use an uncond branch. +      // "X || 1" would have been constant folded to 1. +      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && +          !ConstantBool) { +        // br(X || 0) -> br(X). +        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, +                                    TrueCount); +      } + +      // Emit the LHS as a conditional.  If the LHS conditional is true, we +      // want to jump to the TrueBlock. +      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); +      // We have the count for entry to the RHS and for the whole expression +      // being true, so we can divy up True count between the short circuit and +      // the RHS. +      uint64_t LHSCount = +          getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); +      uint64_t RHSCount = TrueCount - LHSCount; + +      ConditionalEvaluation eval(*this); +      { +        ApplyDebugLocation DL(*this, Cond); +        EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); +        EmitBlock(LHSFalse); +      } + +      incrementProfileCounter(CondBOp); +      setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); + +      // Any temporaries created here are conditional. +      eval.begin(*this); +      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); + +      eval.end(*this); + +      return; +    } +  } + +  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { +    // br(!x, t, f) -> br(x, f, t) +    if (CondUOp->getOpcode() == UO_LNot) { +      // Negate the count. +      uint64_t FalseCount = getCurrentProfileCount() - TrueCount; +      // Negate the condition and swap the destination blocks. +      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, +                                  FalseCount); +    } +  } + +  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { +    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) +    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); +    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); + +    ConditionalEvaluation cond(*this); +    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, +                         getProfileCount(CondOp)); + +    // When computing PGO branch weights, we only know the overall count for +    // the true block. This code is essentially doing tail duplication of the +    // naive code-gen, introducing new edges for which counts are not +    // available. Divide the counts proportionally between the LHS and RHS of +    // the conditional operator. +    uint64_t LHSScaledTrueCount = 0; +    if (TrueCount) { +      double LHSRatio = +          getProfileCount(CondOp) / (double)getCurrentProfileCount(); +      LHSScaledTrueCount = TrueCount * LHSRatio; +    } + +    cond.begin(*this); +    EmitBlock(LHSBlock); +    incrementProfileCounter(CondOp); +    { +      ApplyDebugLocation DL(*this, Cond); +      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, +                           LHSScaledTrueCount); +    } +    cond.end(*this); + +    cond.begin(*this); +    EmitBlock(RHSBlock); +    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, +                         TrueCount - LHSScaledTrueCount); +    cond.end(*this); + +    return; +  } + +  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { +    // Conditional operator handling can give us a throw expression as a +    // condition for a case like: +    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) +    // Fold this to: +    //   br(c, throw x, br(y, t, f)) +    EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); +    return; +  } + +  // If the branch has a condition wrapped by __builtin_unpredictable, +  // create metadata that specifies that the branch is unpredictable. +  // Don't bother if not optimizing because that metadata would not be used. +  llvm::MDNode *Unpredictable = nullptr; +  auto *Call = dyn_cast<CallExpr>(Cond); +  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { +    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); +    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { +      llvm::MDBuilder MDHelper(getLLVMContext()); +      Unpredictable = MDHelper.createUnpredictable(); +    } +  } + +  // Create branch weights based on the number of times we get here and the +  // number of times the condition should be true. +  uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); +  llvm::MDNode *Weights = +      createProfileWeights(TrueCount, CurrentCount - TrueCount); + +  // Emit the code with the fully general case. +  llvm::Value *CondV; +  { +    ApplyDebugLocation DL(*this, Cond); +    CondV = EvaluateExprAsBool(Cond); +  } +  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified stmt yet. +void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { +  CGM.ErrorUnsupported(S, Type); +} + +/// emitNonZeroVLAInit - Emit the "zero" initialization of a +/// variable-length array whose elements have a non-zero bit-pattern. +/// +/// \param baseType the inner-most element type of the array +/// \param src - a char* pointing to the bit-pattern for a single +/// base element of the array +/// \param sizeInChars - the total size of the VLA, in chars +static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, +                               Address dest, Address src, +                               llvm::Value *sizeInChars) { +  CGBuilderTy &Builder = CGF.Builder; + +  CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); +  llvm::Value *baseSizeInChars +    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); + +  Address begin = +    Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); +  llvm::Value *end = +    Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); + +  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); +  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); +  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); + +  // Make a loop over the VLA.  C99 guarantees that the VLA element +  // count must be nonzero. +  CGF.EmitBlock(loopBB); + +  llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); +  cur->addIncoming(begin.getPointer(), originBB); + +  CharUnits curAlign = +    dest.getAlignment().alignmentOfArrayElement(baseSize); + +  // memcpy the individual element bit-pattern. +  Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, +                       /*volatile*/ false); + +  // Go to the next element. +  llvm::Value *next = +    Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); + +  // Leave if that's the end of the VLA. +  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); +  Builder.CreateCondBr(done, contBB, loopBB); +  cur->addIncoming(next, loopBB); + +  CGF.EmitBlock(contBB); +} + +void +CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { +  // Ignore empty classes in C++. +  if (getLangOpts().CPlusPlus) { +    if (const RecordType *RT = Ty->getAs<RecordType>()) { +      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) +        return; +    } +  } + +  // Cast the dest ptr to the appropriate i8 pointer type. +  if (DestPtr.getElementType() != Int8Ty) +    DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); + +  // Get size and alignment info for this aggregate. +  CharUnits size = getContext().getTypeSizeInChars(Ty); + +  llvm::Value *SizeVal; +  const VariableArrayType *vla; + +  // Don't bother emitting a zero-byte memset. +  if (size.isZero()) { +    // But note that getTypeInfo returns 0 for a VLA. +    if (const VariableArrayType *vlaType = +          dyn_cast_or_null<VariableArrayType>( +                                          getContext().getAsArrayType(Ty))) { +      QualType eltType; +      llvm::Value *numElts; +      std::tie(numElts, eltType) = getVLASize(vlaType); + +      SizeVal = numElts; +      CharUnits eltSize = getContext().getTypeSizeInChars(eltType); +      if (!eltSize.isOne()) +        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); +      vla = vlaType; +    } else { +      return; +    } +  } else { +    SizeVal = CGM.getSize(size); +    vla = nullptr; +  } + +  // If the type contains a pointer to data member we can't memset it to zero. +  // Instead, create a null constant and copy it to the destination. +  // TODO: there are other patterns besides zero that we can usefully memset, +  // like -1, which happens to be the pattern used by member-pointers. +  if (!CGM.getTypes().isZeroInitializable(Ty)) { +    // For a VLA, emit a single element, then splat that over the VLA. +    if (vla) Ty = getContext().getBaseElementType(vla); + +    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); + +    llvm::GlobalVariable *NullVariable = +      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), +                               /*isConstant=*/true, +                               llvm::GlobalVariable::PrivateLinkage, +                               NullConstant, Twine()); +    CharUnits NullAlign = DestPtr.getAlignment(); +    NullVariable->setAlignment(NullAlign.getQuantity()); +    Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), +                   NullAlign); + +    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); + +    // Get and call the appropriate llvm.memcpy overload. +    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); +    return; +  } + +  // Otherwise, just memset the whole thing to zero.  This is legal +  // because in LLVM, all default initializers (other than the ones we just +  // handled above) are guaranteed to have a bit pattern of all zeros. +  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); +} + +llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { +  // Make sure that there is a block for the indirect goto. +  if (!IndirectBranch) +    GetIndirectGotoBlock(); + +  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); + +  // Make sure the indirect branch includes all of the address-taken blocks. +  IndirectBranch->addDestination(BB); +  return llvm::BlockAddress::get(CurFn, BB); +} + +llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { +  // If we already made the indirect branch for indirect goto, return its block. +  if (IndirectBranch) return IndirectBranch->getParent(); + +  CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); + +  // Create the PHI node that indirect gotos will add entries to. +  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, +                                              "indirect.goto.dest"); + +  // Create the indirect branch instruction. +  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); +  return IndirectBranch->getParent(); +} + +/// Computes the length of an array in elements, as well as the base +/// element type and a properly-typed first element pointer. +llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, +                                              QualType &baseType, +                                              Address &addr) { +  const ArrayType *arrayType = origArrayType; + +  // If it's a VLA, we have to load the stored size.  Note that +  // this is the size of the VLA in bytes, not its size in elements. +  llvm::Value *numVLAElements = nullptr; +  if (isa<VariableArrayType>(arrayType)) { +    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; + +    // Walk into all VLAs.  This doesn't require changes to addr, +    // which has type T* where T is the first non-VLA element type. +    do { +      QualType elementType = arrayType->getElementType(); +      arrayType = getContext().getAsArrayType(elementType); + +      // If we only have VLA components, 'addr' requires no adjustment. +      if (!arrayType) { +        baseType = elementType; +        return numVLAElements; +      } +    } while (isa<VariableArrayType>(arrayType)); + +    // We get out here only if we find a constant array type +    // inside the VLA. +  } + +  // We have some number of constant-length arrays, so addr should +  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks +  // down to the first element of addr. +  SmallVector<llvm::Value*, 8> gepIndices; + +  // GEP down to the array type. +  llvm::ConstantInt *zero = Builder.getInt32(0); +  gepIndices.push_back(zero); + +  uint64_t countFromCLAs = 1; +  QualType eltType; + +  llvm::ArrayType *llvmArrayType = +    dyn_cast<llvm::ArrayType>(addr.getElementType()); +  while (llvmArrayType) { +    assert(isa<ConstantArrayType>(arrayType)); +    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() +             == llvmArrayType->getNumElements()); + +    gepIndices.push_back(zero); +    countFromCLAs *= llvmArrayType->getNumElements(); +    eltType = arrayType->getElementType(); + +    llvmArrayType = +      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); +    arrayType = getContext().getAsArrayType(arrayType->getElementType()); +    assert((!llvmArrayType || arrayType) && +           "LLVM and Clang types are out-of-synch"); +  } + +  if (arrayType) { +    // From this point onwards, the Clang array type has been emitted +    // as some other type (probably a packed struct). Compute the array +    // size, and just emit the 'begin' expression as a bitcast. +    while (arrayType) { +      countFromCLAs *= +          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); +      eltType = arrayType->getElementType(); +      arrayType = getContext().getAsArrayType(eltType); +    } + +    llvm::Type *baseType = ConvertType(eltType); +    addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); +  } else { +    // Create the actual GEP. +    addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), +                                             gepIndices, "array.begin"), +                   addr.getAlignment()); +  } + +  baseType = eltType; + +  llvm::Value *numElements +    = llvm::ConstantInt::get(SizeTy, countFromCLAs); + +  // If we had any VLA dimensions, factor them in. +  if (numVLAElements) +    numElements = Builder.CreateNUWMul(numVLAElements, numElements); + +  return numElements; +} + +std::pair<llvm::Value*, QualType> +CodeGenFunction::getVLASize(QualType type) { +  const VariableArrayType *vla = getContext().getAsVariableArrayType(type); +  assert(vla && "type was not a variable array type!"); +  return getVLASize(vla); +} + +std::pair<llvm::Value*, QualType> +CodeGenFunction::getVLASize(const VariableArrayType *type) { +  // The number of elements so far; always size_t. +  llvm::Value *numElements = nullptr; + +  QualType elementType; +  do { +    elementType = type->getElementType(); +    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; +    assert(vlaSize && "no size for VLA!"); +    assert(vlaSize->getType() == SizeTy); + +    if (!numElements) { +      numElements = vlaSize; +    } else { +      // It's undefined behavior if this wraps around, so mark it that way. +      // FIXME: Teach -fsanitize=undefined to trap this. +      numElements = Builder.CreateNUWMul(numElements, vlaSize); +    } +  } while ((type = getContext().getAsVariableArrayType(elementType))); + +  return std::pair<llvm::Value*,QualType>(numElements, elementType); +} + +void CodeGenFunction::EmitVariablyModifiedType(QualType type) { +  assert(type->isVariablyModifiedType() && +         "Must pass variably modified type to EmitVLASizes!"); + +  EnsureInsertPoint(); + +  // We're going to walk down into the type and look for VLA +  // expressions. +  do { +    assert(type->isVariablyModifiedType()); + +    const Type *ty = type.getTypePtr(); +    switch (ty->getTypeClass()) { + +#define TYPE(Class, Base) +#define ABSTRACT_TYPE(Class, Base) +#define NON_CANONICAL_TYPE(Class, Base) +#define DEPENDENT_TYPE(Class, Base) case Type::Class: +#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) +#include "clang/AST/TypeNodes.def" +      llvm_unreachable("unexpected dependent type!"); + +    // These types are never variably-modified. +    case Type::Builtin: +    case Type::Complex: +    case Type::Vector: +    case Type::ExtVector: +    case Type::Record: +    case Type::Enum: +    case Type::Elaborated: +    case Type::TemplateSpecialization: +    case Type::ObjCTypeParam: +    case Type::ObjCObject: +    case Type::ObjCInterface: +    case Type::ObjCObjectPointer: +      llvm_unreachable("type class is never variably-modified!"); + +    case Type::Adjusted: +      type = cast<AdjustedType>(ty)->getAdjustedType(); +      break; + +    case Type::Decayed: +      type = cast<DecayedType>(ty)->getPointeeType(); +      break; + +    case Type::Pointer: +      type = cast<PointerType>(ty)->getPointeeType(); +      break; + +    case Type::BlockPointer: +      type = cast<BlockPointerType>(ty)->getPointeeType(); +      break; + +    case Type::LValueReference: +    case Type::RValueReference: +      type = cast<ReferenceType>(ty)->getPointeeType(); +      break; + +    case Type::MemberPointer: +      type = cast<MemberPointerType>(ty)->getPointeeType(); +      break; + +    case Type::ConstantArray: +    case Type::IncompleteArray: +      // Losing element qualification here is fine. +      type = cast<ArrayType>(ty)->getElementType(); +      break; + +    case Type::VariableArray: { +      // Losing element qualification here is fine. +      const VariableArrayType *vat = cast<VariableArrayType>(ty); + +      // Unknown size indication requires no size computation. +      // Otherwise, evaluate and record it. +      if (const Expr *size = vat->getSizeExpr()) { +        // It's possible that we might have emitted this already, +        // e.g. with a typedef and a pointer to it. +        llvm::Value *&entry = VLASizeMap[size]; +        if (!entry) { +          llvm::Value *Size = EmitScalarExpr(size); + +          // C11 6.7.6.2p5: +          //   If the size is an expression that is not an integer constant +          //   expression [...] each time it is evaluated it shall have a value +          //   greater than zero. +          if (SanOpts.has(SanitizerKind::VLABound) && +              size->getType()->isSignedIntegerType()) { +            SanitizerScope SanScope(this); +            llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); +            llvm::Constant *StaticArgs[] = { +              EmitCheckSourceLocation(size->getLocStart()), +              EmitCheckTypeDescriptor(size->getType()) +            }; +            EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), +                                     SanitizerKind::VLABound), +                      SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); +          } + +          // Always zexting here would be wrong if it weren't +          // undefined behavior to have a negative bound. +          entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); +        } +      } +      type = vat->getElementType(); +      break; +    } + +    case Type::FunctionProto: +    case Type::FunctionNoProto: +      type = cast<FunctionType>(ty)->getReturnType(); +      break; + +    case Type::Paren: +    case Type::TypeOf: +    case Type::UnaryTransform: +    case Type::Attributed: +    case Type::SubstTemplateTypeParm: +    case Type::PackExpansion: +      // Keep walking after single level desugaring. +      type = type.getSingleStepDesugaredType(getContext()); +      break; + +    case Type::Typedef: +    case Type::Decltype: +    case Type::Auto: +    case Type::DeducedTemplateSpecialization: +      // Stop walking: nothing to do. +      return; + +    case Type::TypeOfExpr: +      // Stop walking: emit typeof expression. +      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); +      return; + +    case Type::Atomic: +      type = cast<AtomicType>(ty)->getValueType(); +      break; + +    case Type::Pipe: +      type = cast<PipeType>(ty)->getElementType(); +      break; +    } +  } while (type->isVariablyModifiedType()); +} + +Address CodeGenFunction::EmitVAListRef(const Expr* E) { +  if (getContext().getBuiltinVaListType()->isArrayType()) +    return EmitPointerWithAlignment(E); +  return EmitLValue(E).getAddress(); +} + +Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { +  return EmitLValue(E).getAddress(); +} + +void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, +                                              const APValue &Init) { +  assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); +  if (CGDebugInfo *Dbg = getDebugInfo()) +    if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) +      Dbg->EmitGlobalVariable(E->getDecl(), Init); +} + +CodeGenFunction::PeepholeProtection +CodeGenFunction::protectFromPeepholes(RValue rvalue) { +  // At the moment, the only aggressive peephole we do in IR gen +  // is trunc(zext) folding, but if we add more, we can easily +  // extend this protection. + +  if (!rvalue.isScalar()) return PeepholeProtection(); +  llvm::Value *value = rvalue.getScalarVal(); +  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); + +  // Just make an extra bitcast. +  assert(HaveInsertPoint()); +  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", +                                                  Builder.GetInsertBlock()); + +  PeepholeProtection protection; +  protection.Inst = inst; +  return protection; +} + +void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { +  if (!protection.Inst) return; + +  // In theory, we could try to duplicate the peepholes now, but whatever. +  protection.Inst->eraseFromParent(); +} + +llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, +                                                 llvm::Value *AnnotatedVal, +                                                 StringRef AnnotationStr, +                                                 SourceLocation Location) { +  llvm::Value *Args[4] = { +    AnnotatedVal, +    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), +    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), +    CGM.EmitAnnotationLineNo(Location) +  }; +  return Builder.CreateCall(AnnotationFn, Args); +} + +void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { +  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); +  // FIXME We create a new bitcast for every annotation because that's what +  // llvm-gcc was doing. +  for (const auto *I : D->specific_attrs<AnnotateAttr>()) +    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), +                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), +                       I->getAnnotation(), D->getLocation()); +} + +Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, +                                              Address Addr) { +  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); +  llvm::Value *V = Addr.getPointer(); +  llvm::Type *VTy = V->getType(); +  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, +                                    CGM.Int8PtrTy); + +  for (const auto *I : D->specific_attrs<AnnotateAttr>()) { +    // FIXME Always emit the cast inst so we can differentiate between +    // annotation on the first field of a struct and annotation on the struct +    // itself. +    if (VTy != CGM.Int8PtrTy) +      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); +    V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); +    V = Builder.CreateBitCast(V, VTy); +  } + +  return Address(V, Addr.getAlignment()); +} + +CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } + +CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) +    : CGF(CGF) { +  assert(!CGF->IsSanitizerScope); +  CGF->IsSanitizerScope = true; +} + +CodeGenFunction::SanitizerScope::~SanitizerScope() { +  CGF->IsSanitizerScope = false; +} + +void CodeGenFunction::InsertHelper(llvm::Instruction *I, +                                   const llvm::Twine &Name, +                                   llvm::BasicBlock *BB, +                                   llvm::BasicBlock::iterator InsertPt) const { +  LoopStack.InsertHelper(I); +  if (IsSanitizerScope) +    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); +} + +void CGBuilderInserter::InsertHelper( +    llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, +    llvm::BasicBlock::iterator InsertPt) const { +  llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); +  if (CGF) +    CGF->InsertHelper(I, Name, BB, InsertPt); +} + +static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, +                                CodeGenModule &CGM, const FunctionDecl *FD, +                                std::string &FirstMissing) { +  // If there aren't any required features listed then go ahead and return. +  if (ReqFeatures.empty()) +    return false; + +  // Now build up the set of caller features and verify that all the required +  // features are there. +  llvm::StringMap<bool> CallerFeatureMap; +  CGM.getFunctionFeatureMap(CallerFeatureMap, FD); + +  // If we have at least one of the features in the feature list return +  // true, otherwise return false. +  return std::all_of( +      ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { +        SmallVector<StringRef, 1> OrFeatures; +        Feature.split(OrFeatures, "|"); +        return std::any_of(OrFeatures.begin(), OrFeatures.end(), +                           [&](StringRef Feature) { +                             if (!CallerFeatureMap.lookup(Feature)) { +                               FirstMissing = Feature.str(); +                               return false; +                             } +                             return true; +                           }); +      }); +} + +// Emits an error if we don't have a valid set of target features for the +// called function. +void CodeGenFunction::checkTargetFeatures(const CallExpr *E, +                                          const FunctionDecl *TargetDecl) { +  // Early exit if this is an indirect call. +  if (!TargetDecl) +    return; + +  // Get the current enclosing function if it exists. If it doesn't +  // we can't check the target features anyhow. +  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); +  if (!FD) +    return; + +  // Grab the required features for the call. For a builtin this is listed in +  // the td file with the default cpu, for an always_inline function this is any +  // listed cpu and any listed features. +  unsigned BuiltinID = TargetDecl->getBuiltinID(); +  std::string MissingFeature; +  if (BuiltinID) { +    SmallVector<StringRef, 1> ReqFeatures; +    const char *FeatureList = +        CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); +    // Return if the builtin doesn't have any required features. +    if (!FeatureList || StringRef(FeatureList) == "") +      return; +    StringRef(FeatureList).split(ReqFeatures, ","); +    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) +      CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) +          << TargetDecl->getDeclName() +          << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); + +  } else if (TargetDecl->hasAttr<TargetAttr>()) { +    // Get the required features for the callee. +    SmallVector<StringRef, 1> ReqFeatures; +    llvm::StringMap<bool> CalleeFeatureMap; +    CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); +    for (const auto &F : CalleeFeatureMap) { +      // Only positive features are "required". +      if (F.getValue()) +        ReqFeatures.push_back(F.getKey()); +    } +    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) +      CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) +          << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; +  } +} + +void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { +  if (!CGM.getCodeGenOpts().SanitizeStats) +    return; + +  llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); +  IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); +  CGM.getSanStats().create(IRB, SSK); +} + +llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { +  if (CGDebugInfo *DI = getDebugInfo()) +    return DI->SourceLocToDebugLoc(Location); + +  return llvm::DebugLoc(); +}  | 
