diff options
Diffstat (limited to 'crypto/ml_kem/ml_kem.c')
-rw-r--r-- | crypto/ml_kem/ml_kem.c | 2012 |
1 files changed, 2012 insertions, 0 deletions
diff --git a/crypto/ml_kem/ml_kem.c b/crypto/ml_kem/ml_kem.c new file mode 100644 index 000000000000..ec7523343584 --- /dev/null +++ b/crypto/ml_kem/ml_kem.c @@ -0,0 +1,2012 @@ +/* + * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the Apache License 2.0 (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include <openssl/byteorder.h> +#include <openssl/rand.h> +#include "crypto/ml_kem.h" +#include "internal/common.h" +#include "internal/constant_time.h" +#include "internal/sha3.h" + +#if defined(OPENSSL_CONSTANT_TIME_VALIDATION) +#include <valgrind/memcheck.h> +#endif + +#if ML_KEM_SEED_BYTES != ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES +# error "ML-KEM keygen seed length != shared secret + random bytes length" +#endif +#if ML_KEM_SHARED_SECRET_BYTES != ML_KEM_RANDOM_BYTES +# error "Invalid unequal lengths of ML-KEM shared secret and random inputs" +#endif + +#if UINT_MAX < UINT32_MAX +# error "Unsupported compiler: sizeof(unsigned int) < sizeof(uint32_t)" +#endif + +/* Handy function-like bit-extraction macros */ +#define bit0(b) ((b) & 1) +#define bitn(n, b) (((b) >> n) & 1) + +/* + * 12 bits are sufficient to losslessly represent values in [0, q-1]. + * INVERSE_DEGREE is (n/2)^-1 mod q; used in inverse NTT. + */ +#define DEGREE ML_KEM_DEGREE +#define INVERSE_DEGREE (ML_KEM_PRIME - 2 * 13) +#define LOG2PRIME 12 +#define BARRETT_SHIFT (2 * LOG2PRIME) + +#ifdef SHA3_BLOCKSIZE +# define SHAKE128_BLOCKSIZE SHA3_BLOCKSIZE(128) +#endif + +/* + * Return whether a value that can only be 0 or 1 is non-zero, in constant time + * in practice! The return value is a mask that is all ones if true, and all + * zeros otherwise (twos-complement arithmentic assumed for unsigned values). + * + * Although this is used in constant-time selects, we omit a value barrier + * here. Value barriers impede auto-vectorization (likely because it forces + * the value to transit through a general-purpose register). On AArch64, this + * is a difference of 2x. + * + * We usually add value barriers to selects because Clang turns consecutive + * selects with the same condition into a branch instead of CMOV/CSEL. This + * condition does not occur in Kyber, so omitting it seems to be safe so far, + * but see |cbd_2|, |cbd_3|, where reduction needs to be specialised to the + * sign of the input, rather than adding |q| in advance, and using the generic + * |reduce_once|. (David Benjamin, Chromium) + */ +#if 0 +# define constish_time_non_zero(b) (~constant_time_is_zero(b)); +#else +# define constish_time_non_zero(b) (0u - (b)) +#endif + +/* + * The scalar rejection-sampling buffer size needs to be a multiple of 12, but + * is otherwise arbitrary, the preferred block size matches the internal buffer + * size of SHAKE128, avoiding internal buffering and copying in SHAKE128. That + * block size of (1600 - 256)/8 bytes, or 168, just happens to divide by 12! + * + * If the blocksize is unknown, or is not divisible by 12, 168 is used as a + * fallback. + */ +#if defined(SHAKE128_BLOCKSIZE) && (SHAKE128_BLOCKSIZE) % 12 == 0 +# define SCALAR_SAMPLING_BUFSIZE (SHAKE128_BLOCKSIZE) +#else +# define SCALAR_SAMPLING_BUFSIZE 168 +#endif + +/* + * Structure of keys + */ +typedef struct ossl_ml_kem_scalar_st { + /* On every function entry and exit, 0 <= c[i] < ML_KEM_PRIME. */ + uint16_t c[ML_KEM_DEGREE]; +} scalar; + +/* Key material allocation layout */ +#define DECLARE_ML_KEM_KEYDATA(name, rank, private_sz) \ + struct name##_alloc { \ + /* Public vector |t| */ \ + scalar tbuf[(rank)]; \ + /* Pre-computed matrix |m| (FIPS 203 |A| transpose) */ \ + scalar mbuf[(rank)*(rank)] \ + /* optional private key data */ \ + private_sz \ + } + +/* Declare variant-specific public and private storage */ +#define DECLARE_ML_KEM_VARIANT_KEYDATA(bits) \ + DECLARE_ML_KEM_KEYDATA(pubkey_##bits, ML_KEM_##bits##_RANK,;); \ + DECLARE_ML_KEM_KEYDATA(prvkey_##bits, ML_KEM_##bits##_RANK,;\ + scalar sbuf[ML_KEM_##bits##_RANK]; \ + uint8_t zbuf[2 * ML_KEM_RANDOM_BYTES];) +DECLARE_ML_KEM_VARIANT_KEYDATA(512); +DECLARE_ML_KEM_VARIANT_KEYDATA(768); +DECLARE_ML_KEM_VARIANT_KEYDATA(1024); +#undef DECLARE_ML_KEM_VARIANT_KEYDATA +#undef DECLARE_ML_KEM_KEYDATA + +typedef __owur +int (*CBD_FUNC)(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1], + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key); +static void scalar_encode(uint8_t *out, const scalar *s, int bits); + +/* + * The wire-form of a losslessly encoded vector uses 12-bits per element. + * + * The wire-form public key consists of the lossless encoding of the public + * vector |t|, followed by the public seed |rho|. + * + * Our serialised private key concatenates serialisations of the private vector + * |s|, the public key, the public key hash, and the failure secret |z|. + */ +#define VECTOR_BYTES(b) ((3 * DEGREE / 2) * ML_KEM_##b##_RANK) +#define PUBKEY_BYTES(b) (VECTOR_BYTES(b) + ML_KEM_RANDOM_BYTES) +#define PRVKEY_BYTES(b) (2 * PUBKEY_BYTES(b) + ML_KEM_PKHASH_BYTES) + +/* + * Encapsulation produces a vector "u" and a scalar "v", whose coordinates + * (numbers modulo the ML-KEM prime "q") are lossily encoded using as "du" and + * "dv" bits, respectively. This encoding is the ciphertext input for + * decapsulation. + */ +#define U_VECTOR_BYTES(b) ((DEGREE / 8) * ML_KEM_##b##_DU * ML_KEM_##b##_RANK) +#define V_SCALAR_BYTES(b) ((DEGREE / 8) * ML_KEM_##b##_DV) +#define CTEXT_BYTES(b) (U_VECTOR_BYTES(b) + V_SCALAR_BYTES(b)) + +#if defined(OPENSSL_CONSTANT_TIME_VALIDATION) + +/* + * CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region + * of memory as secret. Secret data is tracked as it flows to registers and + * other parts of a memory. If secret data is used as a condition for a branch, + * or as a memory index, it will trigger warnings in valgrind. + */ +# define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len) + +/* + * CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that + * region of memory as public. Public data is not subject to constant-time + * rules. + */ +# define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len) + +#else + +# define CONSTTIME_SECRET(ptr, len) +# define CONSTTIME_DECLASSIFY(ptr, len) + +#endif + +/* + * Indices of slots in the vinfo tables below + */ +#define ML_KEM_512_VINFO 0 +#define ML_KEM_768_VINFO 1 +#define ML_KEM_1024_VINFO 2 + +/* + * Per-variant fixed parameters + */ +static const ML_KEM_VINFO vinfo_map[3] = { + { + "ML-KEM-512", + PRVKEY_BYTES(512), + sizeof(struct prvkey_512_alloc), + PUBKEY_BYTES(512), + sizeof(struct pubkey_512_alloc), + CTEXT_BYTES(512), + VECTOR_BYTES(512), + U_VECTOR_BYTES(512), + EVP_PKEY_ML_KEM_512, + ML_KEM_512_BITS, + ML_KEM_512_RANK, + ML_KEM_512_DU, + ML_KEM_512_DV, + ML_KEM_512_SECBITS + }, + { + "ML-KEM-768", + PRVKEY_BYTES(768), + sizeof(struct prvkey_768_alloc), + PUBKEY_BYTES(768), + sizeof(struct pubkey_768_alloc), + CTEXT_BYTES(768), + VECTOR_BYTES(768), + U_VECTOR_BYTES(768), + EVP_PKEY_ML_KEM_768, + ML_KEM_768_BITS, + ML_KEM_768_RANK, + ML_KEM_768_DU, + ML_KEM_768_DV, + ML_KEM_768_SECBITS + }, + { + "ML-KEM-1024", + PRVKEY_BYTES(1024), + sizeof(struct prvkey_1024_alloc), + PUBKEY_BYTES(1024), + sizeof(struct pubkey_1024_alloc), + CTEXT_BYTES(1024), + VECTOR_BYTES(1024), + U_VECTOR_BYTES(1024), + EVP_PKEY_ML_KEM_1024, + ML_KEM_1024_BITS, + ML_KEM_1024_RANK, + ML_KEM_1024_DU, + ML_KEM_1024_DV, + ML_KEM_1024_SECBITS + } +}; + +/* + * Remainders modulo `kPrime`, for sufficiently small inputs, are computed in + * constant time via Barrett reduction, and a final call to reduce_once(), + * which reduces inputs that are at most 2*kPrime and is also constant-time. + */ +static const int kPrime = ML_KEM_PRIME; +static const unsigned int kBarrettShift = BARRETT_SHIFT; +static const size_t kBarrettMultiplier = (1 << BARRETT_SHIFT) / ML_KEM_PRIME; +static const uint16_t kHalfPrime = (ML_KEM_PRIME - 1) / 2; +static const uint16_t kInverseDegree = INVERSE_DEGREE; + +/* + * Python helper: + * + * p = 3329 + * def bitreverse(i): + * ret = 0 + * for n in range(7): + * bit = i & 1 + * ret <<= 1 + * ret |= bit + * i >>= 1 + * return ret + */ + +/*- + * First precomputed array from Appendix A of FIPS 203, or else Python: + * kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)] + */ +static const uint16_t kNTTRoots[128] = { + 1, 1729, 2580, 3289, 2642, 630, 1897, 848, + 1062, 1919, 193, 797, 2786, 3260, 569, 1746, + 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, + 1426, 2094, 535, 2882, 2393, 2879, 1974, 821, + 289, 331, 3253, 1756, 1197, 2304, 2277, 2055, + 650, 1977, 2513, 632, 2865, 33, 1320, 1915, + 2319, 1435, 807, 452, 1438, 2868, 1534, 2402, + 2647, 2617, 1481, 648, 2474, 3110, 1227, 910, + 17, 2761, 583, 2649, 1637, 723, 2288, 1100, + 1409, 2662, 3281, 233, 756, 2156, 3015, 3050, + 1703, 1651, 2789, 1789, 1847, 952, 1461, 2687, + 939, 2308, 2437, 2388, 733, 2337, 268, 641, + 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, + 1063, 319, 2773, 757, 2099, 561, 2466, 2594, + 2804, 1092, 403, 1026, 1143, 2150, 2775, 886, + 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154, +}; + +/* + * InverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)] + * Listed in order of use in the inverse NTT loop (index 0 is skipped): + * + * 0, 64, 65, ..., 127, 32, 33, ..., 63, 16, 17, ..., 31, 8, 9, ... + */ +static const uint16_t kInverseNTTRoots[128] = { + 1, 1175, 2444, 394, 1219, 2300, 1455, 2117, + 1607, 2443, 554, 1179, 2186, 2303, 2926, 2237, + 525, 735, 863, 2768, 1230, 2572, 556, 3010, + 2266, 1684, 1239, 780, 2954, 109, 1292, 1031, + 1745, 2688, 3061, 992, 2596, 941, 892, 1021, + 2390, 642, 1868, 2377, 1482, 1540, 540, 1678, + 1626, 279, 314, 1173, 2573, 3096, 48, 667, + 1920, 2229, 1041, 2606, 1692, 680, 2746, 568, + 3312, 2419, 2102, 219, 855, 2681, 1848, 712, + 682, 927, 1795, 461, 1891, 2877, 2522, 1894, + 1010, 1414, 2009, 3296, 464, 2697, 816, 1352, + 2679, 1274, 1052, 1025, 2132, 1573, 76, 2998, + 3040, 2508, 1355, 450, 936, 447, 2794, 1235, + 1903, 1996, 1089, 3273, 283, 1853, 1990, 882, + 3033, 1583, 2760, 69, 543, 2532, 3136, 1410, + 2267, 2481, 1432, 2699, 687, 40, 749, 1600, +}; + +/* + * Second precomputed array from Appendix A of FIPS 203 (normalised positive), + * or else Python: + * ModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)] + */ +static const uint16_t kModRoots[128] = { + 17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, + 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, + 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, + 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, + 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992, + 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109, + 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010, + 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735, + 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179, + 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300, + 2110, 1219, 2935, 394, 885, 2444, 2154, 1175, +}; + +/* + * single_keccak hashes |inlen| bytes from |in| and writes |outlen| bytes of + * output to |out|. If the |md| specifies a fixed-output function, like + * SHA3-256, then |outlen| must be the correct length for that function. + */ +static __owur +int single_keccak(uint8_t *out, size_t outlen, const uint8_t *in, size_t inlen, + EVP_MD_CTX *mdctx) +{ + unsigned int sz = (unsigned int) outlen; + + if (!EVP_DigestUpdate(mdctx, in, inlen)) + return 0; + if (EVP_MD_xof(EVP_MD_CTX_get0_md(mdctx))) + return EVP_DigestFinalXOF(mdctx, out, outlen); + return EVP_DigestFinal_ex(mdctx, out, &sz) + && ossl_assert((size_t) sz == outlen); +} + +/* + * FIPS 203, Section 4.1, equation (4.3): PRF. Takes 32+1 input bytes, and uses + * SHAKE256 to produce the input to SamplePolyCBD_eta: FIPS 203, algorithm 8. + */ +static __owur +int prf(uint8_t *out, size_t len, const uint8_t in[ML_KEM_RANDOM_BYTES + 1], + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL) + && single_keccak(out, len, in, ML_KEM_RANDOM_BYTES + 1, mdctx); +} + +/* + * FIPS 203, Section 4.1, equation (4.4): H. SHA3-256 hash of a variable + * length input, producing 32 bytes of output. + */ +static __owur +int hash_h(uint8_t out[ML_KEM_PKHASH_BYTES], const uint8_t *in, size_t len, + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + return EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL) + && single_keccak(out, ML_KEM_PKHASH_BYTES, in, len, mdctx); +} + +/* Incremental hash_h of expanded public key */ +static int +hash_h_pubkey(uint8_t pkhash[ML_KEM_PKHASH_BYTES], + EVP_MD_CTX *mdctx, ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo = key->vinfo; + const scalar *t = key->t, *end = t + vinfo->rank; + unsigned int sz; + + if (!EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL)) + return 0; + + do { + uint8_t buf[3 * DEGREE / 2]; + + scalar_encode(buf, t++, 12); + if (!EVP_DigestUpdate(mdctx, buf, sizeof(buf))) + return 0; + } while (t < end); + + if (!EVP_DigestUpdate(mdctx, key->rho, ML_KEM_RANDOM_BYTES)) + return 0; + return EVP_DigestFinal_ex(mdctx, pkhash, &sz) + && ossl_assert(sz == ML_KEM_PKHASH_BYTES); +} + +/* + * FIPS 203, Section 4.1, equation (4.5): G. SHA3-512 hash of a variable + * length input, producing 64 bytes of output, in particular the seeds + * (d,z) for key generation. + */ +static __owur +int hash_g(uint8_t out[ML_KEM_SEED_BYTES], const uint8_t *in, size_t len, + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + return EVP_DigestInit_ex(mdctx, key->sha3_512_md, NULL) + && single_keccak(out, ML_KEM_SEED_BYTES, in, len, mdctx); +} + +/* + * FIPS 203, Section 4.1, equation (4.4): J. SHAKE256 taking a variable length + * input to compute a 32-byte implicit rejection shared secret, of the same + * length as the expected shared secret. (Computed even on success to avoid + * side-channel leaks). + */ +static __owur +int kdf(uint8_t out[ML_KEM_SHARED_SECRET_BYTES], + const uint8_t z[ML_KEM_RANDOM_BYTES], + const uint8_t *ctext, size_t len, + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL) + && EVP_DigestUpdate(mdctx, z, ML_KEM_RANDOM_BYTES) + && EVP_DigestUpdate(mdctx, ctext, len) + && EVP_DigestFinalXOF(mdctx, out, ML_KEM_SHARED_SECRET_BYTES); +} + +/* + * FIPS 203, Section 4.2.2, Algorithm 7: "SampleNTT" (steps 3-17, steps 1, 2 + * are performed by the caller). Rejection-samples a Keccak stream to get + * uniformly distributed elements in the range [0,q). This is used for matrix + * expansion and only operates on public inputs. + */ +static __owur +int sample_scalar(scalar *out, EVP_MD_CTX *mdctx) +{ + uint16_t *curr = out->c, *endout = curr + DEGREE; + uint8_t buf[SCALAR_SAMPLING_BUFSIZE], *in; + uint8_t *endin = buf + sizeof(buf); + uint16_t d; + uint8_t b1, b2, b3; + + do { + if (!EVP_DigestSqueeze(mdctx, in = buf, sizeof(buf))) + return 0; + do { + b1 = *in++; + b2 = *in++; + b3 = *in++; + + if (curr >= endout) + break; + if ((d = ((b2 & 0x0f) << 8) + b1) < kPrime) + *curr++ = d; + if (curr >= endout) + break; + if ((d = (b3 << 4) + (b2 >> 4)) < kPrime) + *curr++ = d; + } while (in < endin); + } while (curr < endout); + return 1; +} + +/*- + * reduce_once reduces 0 <= x < 2*kPrime, mod kPrime. + * + * Subtract |q| if the input is larger, without exposing a side-channel, + * avoiding the "clangover" attack. See |constish_time_non_zero| for a + * discussion on why the value barrier is by default omitted. + */ +static __owur uint16_t reduce_once(uint16_t x) +{ + const uint16_t subtracted = x - kPrime; + uint16_t mask = constish_time_non_zero(subtracted >> 15); + + return (mask & x) | (~mask & subtracted); +} + +/* + * Constant-time reduce x mod kPrime using Barrett reduction. x must be less + * than kPrime + 2 * kPrime^2. This is sufficient to reduce a product of + * two already reduced u_int16 values, in fact it is sufficient for each + * to be less than 2^12, because (kPrime * (2 * kPrime + 1)) > 2^24. + */ +static __owur uint16_t reduce(uint32_t x) +{ + uint64_t product = (uint64_t)x * kBarrettMultiplier; + uint32_t quotient = (uint32_t)(product >> kBarrettShift); + uint32_t remainder = x - quotient * kPrime; + + return reduce_once(remainder); +} + +/* Multiply a scalar by a constant. */ +static void scalar_mult_const(scalar *s, uint16_t a) +{ + uint16_t *curr = s->c, *end = curr + DEGREE, tmp; + + do { + tmp = reduce(*curr * a); + *curr++ = tmp; + } while (curr < end); +} + +/*- + * FIPS 203, Section 4.3, Algoritm 9: "NTT". + * In-place number theoretic transform of a given scalar. Note that ML-KEM's + * kPrime 3329 does not have a 512th root of unity, so this transform leaves + * off the last iteration of the usual FFT code, with the 128 relevant roots of + * unity being stored in NTTRoots. This means the output should be seen as 128 + * elements in GF(3329^2), with the coefficients of the elements being + * consecutive entries in |s->c|. + */ +static void scalar_ntt(scalar *s) +{ + const uint16_t *roots = kNTTRoots; + uint16_t *end = s->c + DEGREE; + int offset = DEGREE / 2; + + do { + uint16_t *curr = s->c, *peer; + + do { + uint16_t *pause = curr + offset, even, odd; + uint32_t zeta = *++roots; + + peer = pause; + do { + even = *curr; + odd = reduce(*peer * zeta); + *peer++ = reduce_once(even - odd + kPrime); + *curr++ = reduce_once(odd + even); + } while (curr < pause); + } while ((curr = peer) < end); + } while ((offset >>= 1) >= 2); +} + +/*- + * FIPS 203, Section 4.3, Algoritm 10: "NTT^(-1)". + * In-place inverse number theoretic transform of a given scalar, with pairs of + * entries of s->v being interpreted as elements of GF(3329^2). Just as with + * the number theoretic transform, this leaves off the first step of the normal + * iFFT to account for the fact that 3329 does not have a 512th root of unity, + * using the precomputed 128 roots of unity stored in InverseNTTRoots. + */ +static void scalar_inverse_ntt(scalar *s) +{ + const uint16_t *roots = kInverseNTTRoots; + uint16_t *end = s->c + DEGREE; + int offset = 2; + + do { + uint16_t *curr = s->c, *peer; + + do { + uint16_t *pause = curr + offset, even, odd; + uint32_t zeta = *++roots; + + peer = pause; + do { + even = *curr; + odd = *peer; + *peer++ = reduce(zeta * (even - odd + kPrime)); + *curr++ = reduce_once(odd + even); + } while (curr < pause); + } while ((curr = peer) < end); + } while ((offset <<= 1) < DEGREE); + scalar_mult_const(s, kInverseDegree); +} + +/* Addition updating the LHS scalar in-place. */ +static void scalar_add(scalar *lhs, const scalar *rhs) +{ + int i; + + for (i = 0; i < DEGREE; i++) + lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]); +} + +/* Subtraction updating the LHS scalar in-place. */ +static void scalar_sub(scalar *lhs, const scalar *rhs) +{ + int i; + + for (i = 0; i < DEGREE; i++) + lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime); +} + +/* + * Multiplying two scalars in the number theoretically transformed state. Since + * 3329 does not have a 512th root of unity, this means we have to interpret + * the 2*ith and (2*i+1)th entries of the scalar as elements of + * GF(3329)[X]/(X^2 - 17^(2*bitreverse(i)+1)). + * + * The value of 17^(2*bitreverse(i)+1) mod 3329 is stored in the precomputed + * ModRoots table. Note that our Barrett transform only allows us to multipy + * two reduced numbers together, so we need some intermediate reduction steps, + * even if an uint64_t could hold 3 multiplied numbers. + */ +static void scalar_mult(scalar *out, const scalar *lhs, + const scalar *rhs) +{ + uint16_t *curr = out->c, *end = curr + DEGREE; + const uint16_t *lc = lhs->c, *rc = rhs->c; + const uint16_t *roots = kModRoots; + + do { + uint32_t l0 = *lc++, r0 = *rc++; + uint32_t l1 = *lc++, r1 = *rc++; + uint32_t zetapow = *roots++; + + *curr++ = reduce(l0 * r0 + reduce(l1 * r1) * zetapow); + *curr++ = reduce(l0 * r1 + l1 * r0); + } while (curr < end); +} + +/* Above, but add the result to an existing scalar */ +static ossl_inline +void scalar_mult_add(scalar *out, const scalar *lhs, + const scalar *rhs) +{ + uint16_t *curr = out->c, *end = curr + DEGREE; + const uint16_t *lc = lhs->c, *rc = rhs->c; + const uint16_t *roots = kModRoots; + + do { + uint32_t l0 = *lc++, r0 = *rc++; + uint32_t l1 = *lc++, r1 = *rc++; + uint16_t *c0 = curr++; + uint16_t *c1 = curr++; + uint32_t zetapow = *roots++; + + *c0 = reduce(*c0 + l0 * r0 + reduce(l1 * r1) * zetapow); + *c1 = reduce(*c1 + l0 * r1 + l1 * r0); + } while (curr < end); +} + +/*- + * FIPS 203, Section 4.2.1, Algorithm 5: "ByteEncode_d", for 2<=d<=12. + * Here |bits| is |d|. For efficiency, we handle the d=1 case separately. + */ +static void scalar_encode(uint8_t *out, const scalar *s, int bits) +{ + const uint16_t *curr = s->c, *end = curr + DEGREE; + uint64_t accum = 0, element; + int used = 0; + + do { + element = *curr++; + if (used + bits < 64) { + accum |= element << used; + used += bits; + } else if (used + bits > 64) { + out = OPENSSL_store_u64_le(out, accum | (element << used)); + accum = element >> (64 - used); + used = (used + bits) - 64; + } else { + out = OPENSSL_store_u64_le(out, accum | (element << used)); + accum = 0; + used = 0; + } + } while (curr < end); +} + +/* + * scalar_encode_1 is |scalar_encode| specialised for |bits| == 1. + */ +static void scalar_encode_1(uint8_t out[DEGREE / 8], const scalar *s) +{ + int i, j; + uint8_t out_byte; + + for (i = 0; i < DEGREE; i += 8) { + out_byte = 0; + for (j = 0; j < 8; j++) + out_byte |= bit0(s->c[i + j]) << j; + *out = out_byte; + out++; + } +} + +/*- + * FIPS 203, Section 4.2.1, Algorithm 6: "ByteDecode_d", for 2<=d<12. + * Here |bits| is |d|. For efficiency, we handle the d=1 and d=12 cases + * separately. + * + * scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in + * |out|. + */ +static void scalar_decode(scalar *out, const uint8_t *in, int bits) +{ + uint16_t *curr = out->c, *end = curr + DEGREE; + uint64_t accum = 0; + int accum_bits = 0, todo = bits; + uint16_t bitmask = (((uint16_t) 1) << bits) - 1, mask = bitmask; + uint16_t element = 0; + + do { + if (accum_bits == 0) { + in = OPENSSL_load_u64_le(&accum, in); + accum_bits = 64; + } + if (todo == bits && accum_bits >= bits) { + /* No partial "element", and all the required bits available */ + *curr++ = ((uint16_t) accum) & mask; + accum >>= bits; + accum_bits -= bits; + } else if (accum_bits >= todo) { + /* A partial "element", and all the required bits available */ + *curr++ = element | ((((uint16_t) accum) & mask) << (bits - todo)); + accum >>= todo; + accum_bits -= todo; + element = 0; + todo = bits; + mask = bitmask; + } else { + /* + * Only some of the requisite bits accumulated, store |accum_bits| + * of these in |element|. The accumulated bitcount becomes 0, but + * as soon as we have more bits we'll want to merge accum_bits + * fewer of them into the final |element|. + * + * Note that with a 64-bit accumulator and |bits| always 12 or + * less, if we're here, the previous iteration had all the + * requisite bits, and so there are no kept bits in |element|. + */ + element = ((uint16_t) accum) & mask; + todo -= accum_bits; + mask = bitmask >> accum_bits; + accum_bits = 0; + } + } while (curr < end); +} + +static __owur +int scalar_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2]) +{ + int i; + uint16_t *c = out->c; + + for (i = 0; i < DEGREE / 2; ++i) { + uint8_t b1 = *in++; + uint8_t b2 = *in++; + uint8_t b3 = *in++; + int outOfRange1 = (*c++ = b1 | ((b2 & 0x0f) << 8)) >= kPrime; + int outOfRange2 = (*c++ = (b2 >> 4) | (b3 << 4)) >= kPrime; + + if (outOfRange1 | outOfRange2) + return 0; + } + return 1; +} + +/*- + * scalar_decode_decompress_add is a combination of decoding and decompression + * both specialised for |bits| == 1, with the result added (and sum reduced) to + * the output scalar. + * + * NOTE: this function MUST not leak an input-data-depedennt timing signal. + * A timing leak in a related function in the reference Kyber implementation + * made the "clangover" attack (CVE-2024-37880) possible, giving key recovery + * for ML-KEM-512 in minutes, provided the attacker has access to precise + * timing of a CPU performing chosen-ciphertext decap. Admittedly this is only + * a risk when private keys are reused (perhaps KEMTLS servers). + */ +static void +scalar_decode_decompress_add(scalar *out, const uint8_t in[DEGREE / 8]) +{ + static const uint16_t half_q_plus_1 = (ML_KEM_PRIME >> 1) + 1; + uint16_t *curr = out->c, *end = curr + DEGREE; + uint16_t mask; + uint8_t b; + + /* + * Add |half_q_plus_1| if the bit is set, without exposing a side-channel, + * avoiding the "clangover" attack. See |constish_time_non_zero| for a + * discussion on why the value barrier is by default omitted. + */ +#define decode_decompress_add_bit \ + mask = constish_time_non_zero(bit0(b)); \ + *curr = reduce_once(*curr + (mask & half_q_plus_1)); \ + curr++; \ + b >>= 1 + + /* Unrolled to process each byte in one iteration */ + do { + b = *in++; + decode_decompress_add_bit; + decode_decompress_add_bit; + decode_decompress_add_bit; + decode_decompress_add_bit; + + decode_decompress_add_bit; + decode_decompress_add_bit; + decode_decompress_add_bit; + decode_decompress_add_bit; + } while (curr < end); +#undef decode_decompress_add_bit +} + +/* + * FIPS 203, Section 4.2.1, Equation (4.7): Compress_d. + * + * Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping + * numbers close to each other together. The formula used is + * round(2^|bits|/kPrime*x) mod 2^|bits|. + * Uses Barrett reduction to achieve constant time. Since we need both the + * remainder (for rounding) and the quotient (as the result), we cannot use + * |reduce| here, but need to do the Barrett reduction directly. + */ +static __owur uint16_t compress(uint16_t x, int bits) +{ + uint32_t shifted = (uint32_t)x << bits; + uint64_t product = (uint64_t)shifted * kBarrettMultiplier; + uint32_t quotient = (uint32_t)(product >> kBarrettShift); + uint32_t remainder = shifted - quotient * kPrime; + + /* + * Adjust the quotient to round correctly: + * 0 <= remainder <= kHalfPrime round to 0 + * kHalfPrime < remainder <= kPrime + kHalfPrime round to 1 + * kPrime + kHalfPrime < remainder < 2 * kPrime round to 2 + */ + quotient += 1 & constant_time_lt_32(kHalfPrime, remainder); + quotient += 1 & constant_time_lt_32(kPrime + kHalfPrime, remainder); + return quotient & ((1 << bits) - 1); +} + +/* + * FIPS 203, Section 4.2.1, Equation (4.8): Decompress_d. + + * Decompresses |x| by using a close equi-distant representative. The formula + * is round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us + * to implement this logic using only bit operations. + */ +static __owur uint16_t decompress(uint16_t x, int bits) +{ + uint32_t product = (uint32_t)x * kPrime; + uint32_t power = 1 << bits; + /* This is |product| % power, since |power| is a power of 2. */ + uint32_t remainder = product & (power - 1); + /* This is |product| / power, since |power| is a power of 2. */ + uint32_t lower = product >> bits; + + /* + * The rounding logic works since the first half of numbers mod |power| + * have a 0 as first bit, and the second half has a 1 as first bit, since + * |power| is a power of 2. As a 12 bit number, |remainder| is always + * positive, so we will shift in 0s for a right shift. + */ + return lower + (remainder >> (bits - 1)); +} + +/*- + * FIPS 203, Section 4.2.1, Equation (4.7): "Compress_d". + * In-place lossy rounding of scalars to 2^d bits. + */ +static void scalar_compress(scalar *s, int bits) +{ + int i; + + for (i = 0; i < DEGREE; i++) + s->c[i] = compress(s->c[i], bits); +} + +/* + * FIPS 203, Section 4.2.1, Equation (4.8): "Decompress_d". + * In-place approximate recovery of scalars from 2^d bit compression. + */ +static void scalar_decompress(scalar *s, int bits) +{ + int i; + + for (i = 0; i < DEGREE; i++) + s->c[i] = decompress(s->c[i], bits); +} + +/* Addition updating the LHS vector in-place. */ +static void vector_add(scalar *lhs, const scalar *rhs, int rank) +{ + do { + scalar_add(lhs++, rhs++); + } while (--rank > 0); +} + +/* + * Encodes an entire vector into 32*|rank|*|bits| bytes. Note that since 256 + * (DEGREE) is divisible by 8, the individual vector entries will always fill a + * whole number of bytes, so we do not need to worry about bit packing here. + */ +static void vector_encode(uint8_t *out, const scalar *a, int bits, int rank) +{ + int stride = bits * DEGREE / 8; + + for (; rank-- > 0; out += stride) + scalar_encode(out, a++, bits); +} + +/* + * Decodes 32*|rank|*|bits| bytes from |in| into |out|. It returns early + * if any parsed value is >= |ML_KEM_PRIME|. The resulting scalars are + * then decompressed and transformed via the NTT. + * + * Note: Used only in decrypt_cpa(), which returns void and so does not check + * the return value of this function. Side-channels are fine when the input + * ciphertext to decap() is simply syntactically invalid. + */ +static void +vector_decode_decompress_ntt(scalar *out, const uint8_t *in, int bits, int rank) +{ + int stride = bits * DEGREE / 8; + + for (; rank-- > 0; in += stride, ++out) { + scalar_decode(out, in, bits); + scalar_decompress(out, bits); + scalar_ntt(out); + } +} + +/* vector_decode(), specialised to bits == 12. */ +static __owur +int vector_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2], int rank) +{ + int stride = 3 * DEGREE / 2; + + for (; rank-- > 0; in += stride) + if (!scalar_decode_12(out++, in)) + return 0; + return 1; +} + +/* In-place compression of each scalar component */ +static void vector_compress(scalar *a, int bits, int rank) +{ + do { + scalar_compress(a++, bits); + } while (--rank > 0); +} + +/* The output scalar must not overlap with the inputs */ +static void inner_product(scalar *out, const scalar *lhs, const scalar *rhs, + int rank) +{ + scalar_mult(out, lhs, rhs); + while (--rank > 0) + scalar_mult_add(out, ++lhs, ++rhs); +} + +/* + * Here, the output vector must not overlap with the inputs, the result is + * directly subjected to inverse NTT. + */ +static void +matrix_mult_intt(scalar *out, const scalar *m, const scalar *a, int rank) +{ + const scalar *ar; + int i, j; + + for (i = rank; i-- > 0; ++out) { + scalar_mult(out, m++, ar = a); + for (j = rank - 1; j > 0; --j) + scalar_mult_add(out, m++, ++ar); + scalar_inverse_ntt(out); + } +} + +/* Here, the output vector must not overlap with the inputs */ +static void +matrix_mult_transpose_add(scalar *out, const scalar *m, const scalar *a, int rank) +{ + const scalar *mc = m, *mr, *ar; + int i, j; + + for (i = rank; i-- > 0; ++out) { + scalar_mult_add(out, mr = mc++, ar = a); + for (j = rank; --j > 0; ) + scalar_mult_add(out, (mr += rank), ++ar); + } +} + +/*- + * Expands the matrix from a seed for key generation and for encaps-CPA. + * NOTE: FIPS 203 matrix "A" is the transpose of this matrix, computed + * by appending the (i,j) indices to the seed in the opposite order! + * + * Where FIPS 203 computes t = A * s + e, we use the transpose of "m". + */ +static __owur +int matrix_expand(EVP_MD_CTX *mdctx, ML_KEM_KEY *key) +{ + scalar *out = key->m; + uint8_t input[ML_KEM_RANDOM_BYTES + 2]; + int rank = key->vinfo->rank; + int i, j; + + memcpy(input, key->rho, ML_KEM_RANDOM_BYTES); + for (i = 0; i < rank; i++) { + for (j = 0; j < rank; j++) { + input[ML_KEM_RANDOM_BYTES] = i; + input[ML_KEM_RANDOM_BYTES + 1] = j; + if (!EVP_DigestInit_ex(mdctx, key->shake128_md, NULL) + || !EVP_DigestUpdate(mdctx, input, sizeof(input)) + || !sample_scalar(out++, mdctx)) + return 0; + } + } + return 1; +} + +/* + * Algorithm 7 from the spec, with eta fixed to two and the PRF call + * included. Creates binominally distributed elements by sampling 2*|eta| bits, + * and setting the coefficient to the count of the first bits minus the count of + * the second bits, resulting in a centered binomial distribution. Since eta is + * two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4, + * and 0 with probability 3/8. + */ +static __owur +int cbd_2(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1], + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + uint16_t *curr = out->c, *end = curr + DEGREE; + uint8_t randbuf[4 * DEGREE / 8], *r = randbuf; /* 64 * eta slots */ + uint16_t value, mask; + uint8_t b; + + if (!prf(randbuf, sizeof(randbuf), in, mdctx, key)) + return 0; + + do { + b = *r++; + + /* + * Add |kPrime| if |value| underflowed. See |constish_time_non_zero| + * for a discussion on why the value barrier is by default omitted. + * While this could have been written reduce_once(value + kPrime), this + * is one extra addition and small range of |value| tempts some + * versions of Clang to emit a branch. + */ + value = bit0(b) + bitn(1, b); + value -= bitn(2, b) + bitn(3, b); + mask = constish_time_non_zero(value >> 15); + *curr++ = value + (kPrime & mask); + + value = bitn(4, b) + bitn(5, b); + value -= bitn(6, b) + bitn(7, b); + mask = constish_time_non_zero(value >> 15); + *curr++ = value + (kPrime & mask); + } while (curr < end); + return 1; +} + +/* + * Algorithm 7 from the spec, with eta fixed to three and the PRF call + * included. Creates binominally distributed elements by sampling 3*|eta| bits, + * and setting the coefficient to the count of the first bits minus the count of + * the second bits, resulting in a centered binomial distribution. + */ +static __owur +int cbd_3(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1], + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + uint16_t *curr = out->c, *end = curr + DEGREE; + uint8_t randbuf[6 * DEGREE / 8], *r = randbuf; /* 64 * eta slots */ + uint8_t b1, b2, b3; + uint16_t value, mask; + + if (!prf(randbuf, sizeof(randbuf), in, mdctx, key)) + return 0; + + do { + b1 = *r++; + b2 = *r++; + b3 = *r++; + + /* + * Add |kPrime| if |value| underflowed. See |constish_time_non_zero| + * for a discussion on why the value barrier is by default omitted. + * While this could have been written reduce_once(value + kPrime), this + * is one extra addition and small range of |value| tempts some + * versions of Clang to emit a branch. + */ + value = bit0(b1) + bitn(1, b1) + bitn(2, b1); + value -= bitn(3, b1) + bitn(4, b1) + bitn(5, b1); + mask = constish_time_non_zero(value >> 15); + *curr++ = value + (kPrime & mask); + + value = bitn(6, b1) + bitn(7, b1) + bit0(b2); + value -= bitn(1, b2) + bitn(2, b2) + bitn(3, b2); + mask = constish_time_non_zero(value >> 15); + *curr++ = value + (kPrime & mask); + + value = bitn(4, b2) + bitn(5, b2) + bitn(6, b2); + value -= bitn(7, b2) + bit0(b3) + bitn(1, b3); + mask = constish_time_non_zero(value >> 15); + *curr++ = value + (kPrime & mask); + + value = bitn(2, b3) + bitn(3, b3) + bitn(4, b3); + value -= bitn(5, b3) + bitn(6, b3) + bitn(7, b3); + mask = constish_time_non_zero(value >> 15); + *curr++ = value + (kPrime & mask); + } while (curr < end); + return 1; +} + +/* + * Generates a secret vector by using |cbd| with the given seed to generate + * scalar elements and incrementing |counter| for each slot of the vector. + */ +static __owur +int gencbd_vector(scalar *out, CBD_FUNC cbd, uint8_t *counter, + const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank, + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + uint8_t input[ML_KEM_RANDOM_BYTES + 1]; + + memcpy(input, seed, ML_KEM_RANDOM_BYTES); + do { + input[ML_KEM_RANDOM_BYTES] = (*counter)++; + if (!cbd(out++, input, mdctx, key)) + return 0; + } while (--rank > 0); + return 1; +} + +/* + * As above plus NTT transform. + */ +static __owur +int gencbd_vector_ntt(scalar *out, CBD_FUNC cbd, uint8_t *counter, + const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank, + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + uint8_t input[ML_KEM_RANDOM_BYTES + 1]; + + memcpy(input, seed, ML_KEM_RANDOM_BYTES); + do { + input[ML_KEM_RANDOM_BYTES] = (*counter)++; + if (!cbd(out, input, mdctx, key)) + return 0; + scalar_ntt(out++); + } while (--rank > 0); + return 1; +} + +/* The |ETA1| value for ML-KEM-512 is 3, the rest and all ETA2 values are 2. */ +#define CBD1(evp_type) ((evp_type) == EVP_PKEY_ML_KEM_512 ? cbd_3 : cbd_2) + +/* + * FIPS 203, Section 5.2, Algorithm 14: K-PKE.Encrypt. + * + * Encrypts a message with given randomness to the ciphertext in |out|. Without + * applying the Fujisaki-Okamoto transform this would not result in a CCA + * secure scheme, since lattice schemes are vulnerable to decryption failure + * oracles. + * + * The steps are re-ordered to make more efficient/localised use of storage. + * + * Note also that the input public key is assumed to hold a precomputed matrix + * |A| (our key->m, with the public key holding an expanded (16-bit per scalar + * coefficient) key->t vector). + * + * Caller passes storage in |tmp| for for two temporary vectors. + */ +static __owur +int encrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES], + const uint8_t message[DEGREE / 8], + const uint8_t r[ML_KEM_RANDOM_BYTES], scalar *tmp, + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo = key->vinfo; + CBD_FUNC cbd_1 = CBD1(vinfo->evp_type); + int rank = vinfo->rank; + /* We can use tmp[0..rank-1] as storage for |y|, then |e1|, ... */ + scalar *y = &tmp[0], *e1 = y, *e2 = y; + /* We can use tmp[rank]..tmp[2*rank - 1] for |u| */ + scalar *u = &tmp[rank]; + scalar v; + uint8_t input[ML_KEM_RANDOM_BYTES + 1]; + uint8_t counter = 0; + int du = vinfo->du; + int dv = vinfo->dv; + + /* FIPS 203 "y" vector */ + if (!gencbd_vector_ntt(y, cbd_1, &counter, r, rank, mdctx, key)) + return 0; + /* FIPS 203 "v" scalar */ + inner_product(&v, key->t, y, rank); + scalar_inverse_ntt(&v); + /* FIPS 203 "u" vector */ + matrix_mult_intt(u, key->m, y, rank); + + /* All done with |y|, now free to reuse tmp[0] for FIPS 203 |e1| */ + if (!gencbd_vector(e1, cbd_2, &counter, r, rank, mdctx, key)) + return 0; + vector_add(u, e1, rank); + vector_compress(u, du, rank); + vector_encode(out, u, du, rank); + + /* All done with |e1|, now free to reuse tmp[0] for FIPS 203 |e2| */ + memcpy(input, r, ML_KEM_RANDOM_BYTES); + input[ML_KEM_RANDOM_BYTES] = counter; + if (!cbd_2(e2, input, mdctx, key)) + return 0; + scalar_add(&v, e2); + + /* Combine message with |v| */ + scalar_decode_decompress_add(&v, message); + scalar_compress(&v, dv); + scalar_encode(out + vinfo->u_vector_bytes, &v, dv); + return 1; +} + +/* + * FIPS 203, Section 5.3, Algorithm 15: K-PKE.Decrypt. + */ +static void +decrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES], + const uint8_t *ctext, scalar *u, const ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo = key->vinfo; + scalar v, mask; + int rank = vinfo->rank; + int du = vinfo->du; + int dv = vinfo->dv; + + vector_decode_decompress_ntt(u, ctext, du, rank); + scalar_decode(&v, ctext + vinfo->u_vector_bytes, dv); + scalar_decompress(&v, dv); + inner_product(&mask, key->s, u, rank); + scalar_inverse_ntt(&mask); + scalar_sub(&v, &mask); + scalar_compress(&v, 1); + scalar_encode_1(out, &v); +} + +/*- + * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". + * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps". + * + * Fills the |out| buffer with the |ek| output of "ML-KEM.KeyGen", or, + * equivalently, the |ek| input of "ML-KEM.Encaps", i.e. returns the + * wire-format of an ML-KEM public key. + */ +static void encode_pubkey(uint8_t *out, const ML_KEM_KEY *key) +{ + const uint8_t *rho = key->rho; + const ML_KEM_VINFO *vinfo = key->vinfo; + + vector_encode(out, key->t, 12, vinfo->rank); + memcpy(out + vinfo->vector_bytes, rho, ML_KEM_RANDOM_BYTES); +} + +/*- + * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". + * + * Fills the |out| buffer with the |dk| output of "ML-KEM.KeyGen". + * This matches the input format of parse_prvkey() below. + */ +static void encode_prvkey(uint8_t *out, const ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo = key->vinfo; + + vector_encode(out, key->s, 12, vinfo->rank); + out += vinfo->vector_bytes; + encode_pubkey(out, key); + out += vinfo->pubkey_bytes; + memcpy(out, key->pkhash, ML_KEM_PKHASH_BYTES); + out += ML_KEM_PKHASH_BYTES; + memcpy(out, key->z, ML_KEM_RANDOM_BYTES); +} + +/*- + * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". + * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps". + * + * This function parses the |in| buffer as the |ek| output of "ML-KEM.KeyGen", + * or, equivalently, the |ek| input of "ML-KEM.Encaps", i.e. decodes the + * wire-format of the ML-KEM public key. + */ +static int parse_pubkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo = key->vinfo; + + /* Decode and check |t| */ + if (!vector_decode_12(key->t, in, vinfo->rank)) + return 0; + /* Save the matrix |m| recovery seed |rho| */ + memcpy(key->rho, in + vinfo->vector_bytes, ML_KEM_RANDOM_BYTES); + /* + * Pre-compute the public key hash, needed for both encap and decap. + * Also pre-compute the matrix expansion, stored with the public key. + */ + return hash_h(key->pkhash, in, vinfo->pubkey_bytes, mdctx, key) + && matrix_expand(mdctx, key); +} + +/* + * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen". + * + * Parses the |in| buffer as a |dk| output of "ML-KEM.KeyGen". + * This matches the output format of encode_prvkey() above. + */ +static int parse_prvkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo = key->vinfo; + + /* Decode and check |s|. */ + if (!vector_decode_12(key->s, in, vinfo->rank)) + return 0; + in += vinfo->vector_bytes; + + if (!parse_pubkey(in, mdctx, key)) + return 0; + in += vinfo->pubkey_bytes; + + /* Check public key hash. */ + if (memcmp(key->pkhash, in, ML_KEM_PKHASH_BYTES) != 0) + return 0; + in += ML_KEM_PKHASH_BYTES; + + memcpy(key->z, in, ML_KEM_RANDOM_BYTES); + return 1; +} + +/* + * FIPS 203, Section 6.1, Algorithm 16: "ML-KEM.KeyGen_internal". + * + * The implementation of Section 5.1, Algorithm 13, "K-PKE.KeyGen(d)" is + * inlined. + * + * The caller MUST pass a pre-allocated digest context that is not shared with + * any concurrent computation. + * + * This function optionally outputs the serialised wire-form |ek| public key + * into the provided |pubenc| buffer, and generates the content of the |rho|, + * |pkhash|, |t|, |m|, |s| and |z| components of the private |key| (which must + * have preallocated space for these). + * + * Keys are computed from a 32-byte random |d| plus the 1 byte rank for + * domain separation. These are concatenated and hashed to produce a pair of + * 32-byte seeds public "rho", used to generate the matrix, and private "sigma", + * used to generate the secret vector |s|. + * + * The second random input |z| is copied verbatim into the Fujisaki-Okamoto + * (FO) transform "implicit-rejection" secret (the |z| component of the private + * key), which thwarts chosen-ciphertext attacks, provided decap() runs in + * constant time, with no side channel leaks, on all well-formed (valid length, + * and correctly encoded) ciphertext inputs. + */ +static __owur +int genkey(const uint8_t seed[ML_KEM_SEED_BYTES], + EVP_MD_CTX *mdctx, uint8_t *pubenc, ML_KEM_KEY *key) +{ + uint8_t hashed[2 * ML_KEM_RANDOM_BYTES]; + const uint8_t *const sigma = hashed + ML_KEM_RANDOM_BYTES; + uint8_t augmented_seed[ML_KEM_RANDOM_BYTES + 1]; + const ML_KEM_VINFO *vinfo = key->vinfo; + CBD_FUNC cbd_1 = CBD1(vinfo->evp_type); + int rank = vinfo->rank; + uint8_t counter = 0; + int ret = 0; + + /* + * Use the "d" seed salted with the rank to derive the public and private + * seeds rho and sigma. + */ + memcpy(augmented_seed, seed, ML_KEM_RANDOM_BYTES); + augmented_seed[ML_KEM_RANDOM_BYTES] = (uint8_t) rank; + if (!hash_g(hashed, augmented_seed, sizeof(augmented_seed), mdctx, key)) + goto end; + memcpy(key->rho, hashed, ML_KEM_RANDOM_BYTES); + /* The |rho| matrix seed is public */ + CONSTTIME_DECLASSIFY(key->rho, ML_KEM_RANDOM_BYTES); + + /* FIPS 203 |e| vector is initial value of key->t */ + if (!matrix_expand(mdctx, key) + || !gencbd_vector_ntt(key->s, cbd_1, &counter, sigma, rank, mdctx, key) + || !gencbd_vector_ntt(key->t, cbd_1, &counter, sigma, rank, mdctx, key)) + goto end; + + /* To |e| we now add the product of transpose |m| and |s|, giving |t|. */ + matrix_mult_transpose_add(key->t, key->m, key->s, rank); + /* The |t| vector is public */ + CONSTTIME_DECLASSIFY(key->t, vinfo->rank * sizeof(scalar)); + + if (pubenc == NULL) { + /* Incremental digest of public key without in-full serialisation. */ + if (!hash_h_pubkey(key->pkhash, mdctx, key)) + goto end; + } else { + encode_pubkey(pubenc, key); + if (!hash_h(key->pkhash, pubenc, vinfo->pubkey_bytes, mdctx, key)) + goto end; + } + + /* Save |z| portion of seed for "implicit rejection" on failure. */ + memcpy(key->z, seed + ML_KEM_RANDOM_BYTES, ML_KEM_RANDOM_BYTES); + + /* Optionally save the |d| portion of the seed */ + key->d = key->z + ML_KEM_RANDOM_BYTES; + if (key->prov_flags & ML_KEM_KEY_RETAIN_SEED) { + memcpy(key->d, seed, ML_KEM_RANDOM_BYTES); + } else { + OPENSSL_cleanse(key->d, ML_KEM_RANDOM_BYTES); + key->d = NULL; + } + + ret = 1; + end: + OPENSSL_cleanse((void *)augmented_seed, ML_KEM_RANDOM_BYTES); + OPENSSL_cleanse((void *)sigma, ML_KEM_RANDOM_BYTES); + return ret; +} + +/*- + * FIPS 203, Section 6.2, Algorithm 17: "ML-KEM.Encaps_internal". + * This is the deterministic version with randomness supplied externally. + * + * The caller must pass space for two vectors in |tmp|. + * The |ctext| buffer have space for the ciphertext of the ML-KEM variant + * of the provided key. + */ +static +int encap(uint8_t *ctext, uint8_t secret[ML_KEM_SHARED_SECRET_BYTES], + const uint8_t entropy[ML_KEM_RANDOM_BYTES], + scalar *tmp, EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + uint8_t input[ML_KEM_RANDOM_BYTES + ML_KEM_PKHASH_BYTES]; + uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES]; + uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES; + int ret; + + memcpy(input, entropy, ML_KEM_RANDOM_BYTES); + memcpy(input + ML_KEM_RANDOM_BYTES, key->pkhash, ML_KEM_PKHASH_BYTES); + ret = hash_g(Kr, input, sizeof(input), mdctx, key) + && encrypt_cpa(ctext, entropy, r, tmp, mdctx, key); + + if (ret) + memcpy(secret, Kr, ML_KEM_SHARED_SECRET_BYTES); + OPENSSL_cleanse((void *)input, sizeof(input)); + return ret; +} + +/* + * FIPS 203, Section 6.3, Algorithm 18: ML-KEM.Decaps_internal + * + * Barring failure of the supporting SHA3/SHAKE primitives, this is fully + * deterministic, the randomness for the FO transform is extracted during + * private key generation. + * + * The caller must pass space for two vectors in |tmp|. + * The |ctext| and |tmp_ctext| buffers must each have space for the ciphertext + * of the key's ML-KEM variant. + */ +static +int decap(uint8_t secret[ML_KEM_SHARED_SECRET_BYTES], + const uint8_t *ctext, uint8_t *tmp_ctext, scalar *tmp, + EVP_MD_CTX *mdctx, const ML_KEM_KEY *key) +{ + uint8_t decrypted[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_PKHASH_BYTES]; + uint8_t failure_key[ML_KEM_RANDOM_BYTES]; + uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES]; + uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES; + const uint8_t *pkhash = key->pkhash; + const ML_KEM_VINFO *vinfo = key->vinfo; + int i; + uint8_t mask; + + /* + * If our KDF is unavailable, fail early! Otherwise, keep going ignoring + * any further errors, returning success, and whatever we got for a shared + * secret. The decrypt_cpa() function is just arithmetic on secret data, + * so should not be subject to failure that makes its output predictable. + * + * We guard against "should never happen" catastrophic failure of the + * "pure" function |hash_g| by overwriting the shared secret with the + * content of the failure key and returning early, if nevertheless hash_g + * fails. This is not constant-time, but a failure of |hash_g| already + * implies loss of side-channel resistance. + * + * The same action is taken, if also |encrypt_cpa| should catastrophically + * fail, due to failure of the |PRF| underlying the CBD functions. + */ + if (!kdf(failure_key, key->z, ctext, vinfo->ctext_bytes, mdctx, key)) + return 0; + decrypt_cpa(decrypted, ctext, tmp, key); + memcpy(decrypted + ML_KEM_SHARED_SECRET_BYTES, pkhash, ML_KEM_PKHASH_BYTES); + if (!hash_g(Kr, decrypted, sizeof(decrypted), mdctx, key) + || !encrypt_cpa(tmp_ctext, decrypted, r, tmp, mdctx, key)) { + memcpy(secret, failure_key, ML_KEM_SHARED_SECRET_BYTES); + OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES); + return 1; + } + mask = constant_time_eq_int_8(0, + CRYPTO_memcmp(ctext, tmp_ctext, vinfo->ctext_bytes)); + for (i = 0; i < ML_KEM_SHARED_SECRET_BYTES; i++) + secret[i] = constant_time_select_8(mask, Kr[i], failure_key[i]); + OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES); + OPENSSL_cleanse(Kr, sizeof(Kr)); + return 1; +} + +/* + * After allocating storage for public or private key data, update the key + * component pointers to reference that storage. + */ +static __owur +int add_storage(scalar *p, int private, ML_KEM_KEY *key) +{ + int rank = key->vinfo->rank; + + if (p == NULL) + return 0; + + /* + * We're adding key material, the seed buffer will now hold |rho| and + * |pkhash|. + */ + memset(key->seedbuf, 0, sizeof(key->seedbuf)); + key->rho = key->seedbuf; + key->pkhash = key->seedbuf + ML_KEM_RANDOM_BYTES; + key->d = key->z = NULL; + + /* A public key needs space for |t| and |m| */ + key->m = (key->t = p) + rank; + + /* + * A private key also needs space for |s| and |z|. + * The |z| buffer always includes additional space for |d|, but a key's |d| + * pointer is left NULL when parsed from the NIST format, which omits that + * information. Only keys generated from a (d, z) seed pair will have a + * non-NULL |d| pointer. + */ + if (private) + key->z = (uint8_t *)(rank + (key->s = key->m + rank * rank)); + return 1; +} + +/* + * After freeing the storage associated with a key that failed to be + * constructed, reset the internal pointers back to NULL. + */ +void +ossl_ml_kem_key_reset(ML_KEM_KEY *key) +{ + if (key->t == NULL) + return; + /*- + * Cleanse any sensitive data: + * - The private vector |s| is immediately followed by the FO failure + * secret |z|, and seed |d|, we can cleanse all three in one call. + * + * - Otherwise, when key->d is set, cleanse the stashed seed. + */ + if (ossl_ml_kem_have_prvkey(key)) + OPENSSL_cleanse(key->s, + key->vinfo->vector_bytes + 2 * ML_KEM_RANDOM_BYTES); + OPENSSL_free(key->t); + key->d = key->z = (uint8_t *)(key->s = key->m = key->t = NULL); +} + +/* + * ----- API exported to the provider + * + * Parameters with an implicit fixed length in the internal static API of each + * variant have an explicit checked length argument at this layer. + */ + +/* Retrieve the parameters of one of the ML-KEM variants */ +const ML_KEM_VINFO *ossl_ml_kem_get_vinfo(int evp_type) +{ + switch (evp_type) { + case EVP_PKEY_ML_KEM_512: + return &vinfo_map[ML_KEM_512_VINFO]; + case EVP_PKEY_ML_KEM_768: + return &vinfo_map[ML_KEM_768_VINFO]; + case EVP_PKEY_ML_KEM_1024: + return &vinfo_map[ML_KEM_1024_VINFO]; + } + return NULL; +} + +ML_KEM_KEY *ossl_ml_kem_key_new(OSSL_LIB_CTX *libctx, const char *properties, + int evp_type) +{ + const ML_KEM_VINFO *vinfo = ossl_ml_kem_get_vinfo(evp_type); + ML_KEM_KEY *key; + + if (vinfo == NULL) + return NULL; + + if ((key = OPENSSL_malloc(sizeof(*key))) == NULL) + return NULL; + + key->vinfo = vinfo; + key->libctx = libctx; + key->prov_flags = ML_KEM_KEY_PROV_FLAGS_DEFAULT; + key->shake128_md = EVP_MD_fetch(libctx, "SHAKE128", properties); + key->shake256_md = EVP_MD_fetch(libctx, "SHAKE256", properties); + key->sha3_256_md = EVP_MD_fetch(libctx, "SHA3-256", properties); + key->sha3_512_md = EVP_MD_fetch(libctx, "SHA3-512", properties); + key->d = key->z = key->rho = key->pkhash = key->encoded_dk = NULL; + key->s = key->m = key->t = NULL; + + if (key->shake128_md != NULL + && key->shake256_md != NULL + && key->sha3_256_md != NULL + && key->sha3_512_md != NULL) + return key; + + ossl_ml_kem_key_free(key); + return NULL; +} + +ML_KEM_KEY *ossl_ml_kem_key_dup(const ML_KEM_KEY *key, int selection) +{ + int ok = 0; + ML_KEM_KEY *ret; + + /* + * Partially decoded keys, not yet imported or loaded, should never be + * duplicated. + */ + if (ossl_ml_kem_decoded_key(key)) + return NULL; + + if (key == NULL + || (ret = OPENSSL_memdup(key, sizeof(*key))) == NULL) + return NULL; + ret->d = ret->z = ret->rho = ret->pkhash = NULL; + ret->s = ret->m = ret->t = NULL; + + /* Clear selection bits we can't fulfill */ + if (!ossl_ml_kem_have_pubkey(key)) + selection = 0; + else if (!ossl_ml_kem_have_prvkey(key)) + selection &= ~OSSL_KEYMGMT_SELECT_PRIVATE_KEY; + + switch (selection & OSSL_KEYMGMT_SELECT_KEYPAIR) { + case 0: + ok = 1; + break; + case OSSL_KEYMGMT_SELECT_PUBLIC_KEY: + ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->puballoc), 0, ret); + ret->rho = ret->seedbuf; + ret->pkhash = ret->rho + ML_KEM_RANDOM_BYTES; + break; + case OSSL_KEYMGMT_SELECT_PRIVATE_KEY: + ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->prvalloc), 1, ret); + /* Duplicated keys retain |d|, if available */ + if (key->d != NULL) + ret->d = ret->z + ML_KEM_RANDOM_BYTES; + break; + } + + if (!ok) { + OPENSSL_free(ret); + return NULL; + } + + EVP_MD_up_ref(ret->shake128_md); + EVP_MD_up_ref(ret->shake256_md); + EVP_MD_up_ref(ret->sha3_256_md); + EVP_MD_up_ref(ret->sha3_512_md); + + return ret; +} + +void ossl_ml_kem_key_free(ML_KEM_KEY *key) +{ + if (key == NULL) + return; + + EVP_MD_free(key->shake128_md); + EVP_MD_free(key->shake256_md); + EVP_MD_free(key->sha3_256_md); + EVP_MD_free(key->sha3_512_md); + + if (ossl_ml_kem_decoded_key(key)) { + OPENSSL_cleanse(key->seedbuf, sizeof(key->seedbuf)); + if (ossl_ml_kem_have_dkenc(key)) { + OPENSSL_cleanse(key->encoded_dk, key->vinfo->prvkey_bytes); + OPENSSL_free(key->encoded_dk); + } + } + ossl_ml_kem_key_reset(key); + OPENSSL_free(key); +} + +/* Serialise the public component of an ML-KEM key */ +int ossl_ml_kem_encode_public_key(uint8_t *out, size_t len, + const ML_KEM_KEY *key) +{ + if (!ossl_ml_kem_have_pubkey(key) + || len != key->vinfo->pubkey_bytes) + return 0; + encode_pubkey(out, key); + return 1; +} + +/* Serialise an ML-KEM private key */ +int ossl_ml_kem_encode_private_key(uint8_t *out, size_t len, + const ML_KEM_KEY *key) +{ + if (!ossl_ml_kem_have_prvkey(key) + || len != key->vinfo->prvkey_bytes) + return 0; + encode_prvkey(out, key); + return 1; +} + +int ossl_ml_kem_encode_seed(uint8_t *out, size_t len, + const ML_KEM_KEY *key) +{ + if (key == NULL || key->d == NULL || len != ML_KEM_SEED_BYTES) + return 0; + /* + * Both in the seed buffer, and in the allocated storage, the |d| component + * of the seed is stored last, so we must copy each separately. + */ + memcpy(out, key->d, ML_KEM_RANDOM_BYTES); + out += ML_KEM_RANDOM_BYTES; + memcpy(out, key->z, ML_KEM_RANDOM_BYTES); + return 1; +} + +/* + * Stash the seed without (yet) performing a keygen, used during decoding, to + * avoid an extra keygen if we're only going to export the key again to load + * into another provider. + */ +ML_KEM_KEY *ossl_ml_kem_set_seed(const uint8_t *seed, size_t seedlen, ML_KEM_KEY *key) +{ + if (key == NULL + || ossl_ml_kem_have_pubkey(key) + || ossl_ml_kem_have_seed(key) + || seedlen != ML_KEM_SEED_BYTES) + return NULL; + /* + * With no public or private key material on hand, we can use the seed + * buffer for |z| and |d|, in that order. + */ + key->z = key->seedbuf; + key->d = key->z + ML_KEM_RANDOM_BYTES; + memcpy(key->d, seed, ML_KEM_RANDOM_BYTES); + seed += ML_KEM_RANDOM_BYTES; + memcpy(key->z, seed, ML_KEM_RANDOM_BYTES); + return key; +} + +/* Parse input as a public key */ +int ossl_ml_kem_parse_public_key(const uint8_t *in, size_t len, ML_KEM_KEY *key) +{ + EVP_MD_CTX *mdctx = NULL; + const ML_KEM_VINFO *vinfo; + int ret = 0; + + /* Keys with key material are immutable */ + if (key == NULL + || ossl_ml_kem_have_pubkey(key) + || ossl_ml_kem_have_dkenc(key)) + return 0; + vinfo = key->vinfo; + + if (len != vinfo->pubkey_bytes + || (mdctx = EVP_MD_CTX_new()) == NULL) + return 0; + + if (add_storage(OPENSSL_malloc(vinfo->puballoc), 0, key)) + ret = parse_pubkey(in, mdctx, key); + + if (!ret) + ossl_ml_kem_key_reset(key); + EVP_MD_CTX_free(mdctx); + return ret; +} + +/* Parse input as a new private key */ +int ossl_ml_kem_parse_private_key(const uint8_t *in, size_t len, + ML_KEM_KEY *key) +{ + EVP_MD_CTX *mdctx = NULL; + const ML_KEM_VINFO *vinfo; + int ret = 0; + + /* Keys with key material are immutable */ + if (key == NULL + || ossl_ml_kem_have_pubkey(key) + || ossl_ml_kem_have_dkenc(key)) + return 0; + vinfo = key->vinfo; + + if (len != vinfo->prvkey_bytes + || (mdctx = EVP_MD_CTX_new()) == NULL) + return 0; + + if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key)) + ret = parse_prvkey(in, mdctx, key); + + if (!ret) + ossl_ml_kem_key_reset(key); + EVP_MD_CTX_free(mdctx); + return ret; +} + +/* + * Generate a new keypair, either from the saved seed (when non-null), or from + * the RNG. + */ +int ossl_ml_kem_genkey(uint8_t *pubenc, size_t publen, ML_KEM_KEY *key) +{ + uint8_t seed[ML_KEM_SEED_BYTES]; + EVP_MD_CTX *mdctx = NULL; + const ML_KEM_VINFO *vinfo; + int ret = 0; + + if (key == NULL + || ossl_ml_kem_have_pubkey(key) + || ossl_ml_kem_have_dkenc(key)) + return 0; + vinfo = key->vinfo; + + if (pubenc != NULL && publen != vinfo->pubkey_bytes) + return 0; + + if (ossl_ml_kem_have_seed(key)) { + if (!ossl_ml_kem_encode_seed(seed, sizeof(seed), key)) + return 0; + key->d = key->z = NULL; + } else if (RAND_priv_bytes_ex(key->libctx, seed, sizeof(seed), + key->vinfo->secbits) <= 0) { + return 0; + } + + if ((mdctx = EVP_MD_CTX_new()) == NULL) + return 0; + + /* + * Data derived from (d, z) defaults secret, and to avoid side-channel + * leaks should not influence control flow. + */ + CONSTTIME_SECRET(seed, ML_KEM_SEED_BYTES); + + if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key)) + ret = genkey(seed, mdctx, pubenc, key); + OPENSSL_cleanse(seed, sizeof(seed)); + + /* Declassify secret inputs and derived outputs before returning control */ + CONSTTIME_DECLASSIFY(seed, ML_KEM_SEED_BYTES); + + EVP_MD_CTX_free(mdctx); + if (!ret) { + ossl_ml_kem_key_reset(key); + return 0; + } + + /* The public components are already declassified */ + CONSTTIME_DECLASSIFY(key->s, vinfo->rank * sizeof(scalar)); + CONSTTIME_DECLASSIFY(key->z, 2 * ML_KEM_RANDOM_BYTES); + return 1; +} + +/* + * FIPS 203, Section 6.2, Algorithm 17: ML-KEM.Encaps_internal + * This is the deterministic version with randomness supplied externally. + */ +int ossl_ml_kem_encap_seed(uint8_t *ctext, size_t clen, + uint8_t *shared_secret, size_t slen, + const uint8_t *entropy, size_t elen, + const ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo; + EVP_MD_CTX *mdctx; + int ret = 0; + + if (key == NULL || !ossl_ml_kem_have_pubkey(key)) + return 0; + vinfo = key->vinfo; + + if (ctext == NULL || clen != vinfo->ctext_bytes + || shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES + || entropy == NULL || elen != ML_KEM_RANDOM_BYTES + || (mdctx = EVP_MD_CTX_new()) == NULL) + return 0; + /* + * Data derived from the encap entropy defaults secret, and to avoid + * side-channel leaks should not influence control flow. + */ + CONSTTIME_SECRET(entropy, elen); + + /*- + * This avoids the need to handle allocation failures for two (max 2KB + * each) vectors, that are never retained on return from this function. + * We stack-allocate these. + */ +# define case_encap_seed(bits) \ + case EVP_PKEY_ML_KEM_##bits: \ + { \ + scalar tmp[2 * ML_KEM_##bits##_RANK]; \ + \ + ret = encap(ctext, shared_secret, entropy, tmp, mdctx, key); \ + OPENSSL_cleanse((void *)tmp, sizeof(tmp)); \ + break; \ + } + switch (vinfo->evp_type) { + case_encap_seed(512); + case_encap_seed(768); + case_encap_seed(1024); + } +# undef case_encap_seed + + /* Declassify secret inputs and derived outputs before returning control */ + CONSTTIME_DECLASSIFY(entropy, elen); + CONSTTIME_DECLASSIFY(ctext, clen); + CONSTTIME_DECLASSIFY(shared_secret, slen); + + EVP_MD_CTX_free(mdctx); + return ret; +} + +int ossl_ml_kem_encap_rand(uint8_t *ctext, size_t clen, + uint8_t *shared_secret, size_t slen, + const ML_KEM_KEY *key) +{ + uint8_t r[ML_KEM_RANDOM_BYTES]; + + if (key == NULL) + return 0; + + if (RAND_bytes_ex(key->libctx, r, ML_KEM_RANDOM_BYTES, + key->vinfo->secbits) < 1) + return 0; + + return ossl_ml_kem_encap_seed(ctext, clen, shared_secret, slen, + r, sizeof(r), key); +} + +int ossl_ml_kem_decap(uint8_t *shared_secret, size_t slen, + const uint8_t *ctext, size_t clen, + const ML_KEM_KEY *key) +{ + const ML_KEM_VINFO *vinfo; + EVP_MD_CTX *mdctx; + int ret = 0; +#if defined(OPENSSL_CONSTANT_TIME_VALIDATION) + int classify_bytes; +#endif + + /* Need a private key here */ + if (!ossl_ml_kem_have_prvkey(key)) + return 0; + vinfo = key->vinfo; + + if (shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES + || ctext == NULL || clen != vinfo->ctext_bytes + || (mdctx = EVP_MD_CTX_new()) == NULL) { + (void)RAND_bytes_ex(key->libctx, shared_secret, + ML_KEM_SHARED_SECRET_BYTES, vinfo->secbits); + return 0; + } +#if defined(OPENSSL_CONSTANT_TIME_VALIDATION) + /* + * Data derived from |s| and |z| defaults secret, and to avoid side-channel + * leaks should not influence control flow. + */ + classify_bytes = 2 * sizeof(scalar) + ML_KEM_RANDOM_BYTES; + CONSTTIME_SECRET(key->s, classify_bytes); +#endif + + /*- + * This avoids the need to handle allocation failures for two (max 2KB + * each) vectors and an encoded ciphertext (max 1568 bytes), that are never + * retained on return from this function. + * We stack-allocate these. + */ +# define case_decap(bits) \ + case EVP_PKEY_ML_KEM_##bits: \ + { \ + uint8_t cbuf[CTEXT_BYTES(bits)]; \ + scalar tmp[2 * ML_KEM_##bits##_RANK]; \ + \ + ret = decap(shared_secret, ctext, cbuf, tmp, mdctx, key); \ + OPENSSL_cleanse((void *)tmp, sizeof(tmp)); \ + break; \ + } + switch (vinfo->evp_type) { + case_decap(512); + case_decap(768); + case_decap(1024); + } + + /* Declassify secret inputs and derived outputs before returning control */ + CONSTTIME_DECLASSIFY(key->s, classify_bytes); + CONSTTIME_DECLASSIFY(shared_secret, slen); + EVP_MD_CTX_free(mdctx); + + return ret; +# undef case_decap +} + +int ossl_ml_kem_pubkey_cmp(const ML_KEM_KEY *key1, const ML_KEM_KEY *key2) +{ + /* + * This handles any unexpected differences in the ML-KEM variant rank, + * giving different key component structures, barring SHA3-256 hash + * collisions, the keys are the same size. + */ + if (ossl_ml_kem_have_pubkey(key1) && ossl_ml_kem_have_pubkey(key2)) + return memcmp(key1->pkhash, key2->pkhash, ML_KEM_PKHASH_BYTES) == 0; + + /* + * No match if just one of the public keys is not available, otherwise both + * are unavailable, and for now such keys are considered equal. + */ + return (ossl_ml_kem_have_pubkey(key1) ^ ossl_ml_kem_have_pubkey(key2)); +} |