aboutsummaryrefslogtreecommitdiff
path: root/crypto/threads_pthread.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/threads_pthread.c')
-rw-r--r--crypto/threads_pthread.c649
1 files changed, 640 insertions, 9 deletions
diff --git a/crypto/threads_pthread.c b/crypto/threads_pthread.c
index 801855c9306e..750ef201210b 100644
--- a/crypto/threads_pthread.c
+++ b/crypto/threads_pthread.c
@@ -1,5 +1,5 @@
/*
- * Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
@@ -11,7 +11,28 @@
#define OPENSSL_SUPPRESS_DEPRECATED
#include <openssl/crypto.h>
+#include <crypto/cryptlib.h>
#include "internal/cryptlib.h"
+#include "internal/rcu.h"
+#include "rcu_internal.h"
+
+#if defined(__clang__) && defined(__has_feature)
+# if __has_feature(thread_sanitizer)
+# define __SANITIZE_THREAD__
+# endif
+#endif
+
+#if defined(__SANITIZE_THREAD__)
+# include <sanitizer/tsan_interface.h>
+# define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \
+__tsan_mutex_post_unlock((x), 0)
+
+# define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \
+__tsan_mutex_post_lock((x), 0, 0)
+#else
+# define TSAN_FAKE_UNLOCK(x)
+# define TSAN_FAKE_LOCK(x)
+#endif
#if defined(__sun)
# include <atomic.h>
@@ -26,7 +47,7 @@
*
* See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
*/
-#define BROKEN_CLANG_ATOMICS
+# define BROKEN_CLANG_ATOMICS
#endif
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
@@ -34,23 +55,535 @@
# if defined(OPENSSL_SYS_UNIX)
# include <sys/types.h>
# include <unistd.h>
-#endif
+# endif
# include <assert.h>
-# ifdef PTHREAD_RWLOCK_INITIALIZER
+/*
+ * The Non-Stop KLT thread model currently seems broken in its rwlock
+ * implementation
+ */
+# if defined(PTHREAD_RWLOCK_INITIALIZER) && !defined(_KLT_MODEL_)
# define USE_RWLOCK
# endif
+/*
+ * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
+ * other compilers.
+
+ * Unfortunately, we can't do that with some "generic type", because there's no
+ * guarantee that the chosen generic type is large enough to cover all cases.
+ * Therefore, we implement fallbacks for each applicable type, with composed
+ * names that include the type they handle.
+ *
+ * (an anecdote: we previously tried to use |void *| as the generic type, with
+ * the thought that the pointer itself is the largest type. However, this is
+ * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
+ *
+ * All applicable ATOMIC_ macros take the intended type as first parameter, so
+ * they can map to the correct fallback function. In the GNU/clang case, that
+ * parameter is simply ignored.
+ */
+
+/*
+ * Internal types used with the ATOMIC_ macros, to make it possible to compose
+ * fallback function names.
+ */
+typedef void *pvoid;
+
+# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
+ && !defined(USE_ATOMIC_FALLBACKS)
+# define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
+# define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
+# define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
+# define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
+# define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
+# else
+static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
+
+# define IMPL_fallback_atomic_load_n(t) \
+ static ossl_inline t fallback_atomic_load_n_##t(t *p) \
+ { \
+ t ret; \
+ \
+ pthread_mutex_lock(&atomic_sim_lock); \
+ ret = *p; \
+ pthread_mutex_unlock(&atomic_sim_lock); \
+ return ret; \
+ }
+IMPL_fallback_atomic_load_n(uint32_t)
+IMPL_fallback_atomic_load_n(uint64_t)
+IMPL_fallback_atomic_load_n(pvoid)
+
+# define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
+
+# define IMPL_fallback_atomic_store_n(t) \
+ static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
+ { \
+ t ret; \
+ \
+ pthread_mutex_lock(&atomic_sim_lock); \
+ ret = *p; \
+ *p = v; \
+ pthread_mutex_unlock(&atomic_sim_lock); \
+ return ret; \
+ }
+IMPL_fallback_atomic_store_n(uint32_t)
+
+# define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
+
+# define IMPL_fallback_atomic_store(t) \
+ static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
+ { \
+ pthread_mutex_lock(&atomic_sim_lock); \
+ *p = *v; \
+ pthread_mutex_unlock(&atomic_sim_lock); \
+ }
+IMPL_fallback_atomic_store(pvoid)
+
+# define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
+
+/*
+ * The fallbacks that follow don't need any per type implementation, as
+ * they are designed for uint64_t only. If there comes a time when multiple
+ * types need to be covered, it's relatively easy to refactor them the same
+ * way as the fallbacks above.
+ */
+
+static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
+{
+ uint64_t ret;
+
+ pthread_mutex_lock(&atomic_sim_lock);
+ *p += v;
+ ret = *p;
+ pthread_mutex_unlock(&atomic_sim_lock);
+ return ret;
+}
+
+# define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
+
+static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
+{
+ uint64_t ret;
+
+ pthread_mutex_lock(&atomic_sim_lock);
+ *p -= v;
+ ret = *p;
+ pthread_mutex_unlock(&atomic_sim_lock);
+ return ret;
+}
+
+# define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
+# endif
+
+/*
+ * This is the core of an rcu lock. It tracks the readers and writers for the
+ * current quiescence point for a given lock. Users is the 64 bit value that
+ * stores the READERS/ID as defined above
+ *
+ */
+struct rcu_qp {
+ uint64_t users;
+};
+
+struct thread_qp {
+ struct rcu_qp *qp;
+ unsigned int depth;
+ CRYPTO_RCU_LOCK *lock;
+};
+
+# define MAX_QPS 10
+/*
+ * This is the per thread tracking data
+ * that is assigned to each thread participating
+ * in an rcu qp
+ *
+ * qp points to the qp that it last acquired
+ *
+ */
+struct rcu_thr_data {
+ struct thread_qp thread_qps[MAX_QPS];
+};
+
+/*
+ * This is the internal version of a CRYPTO_RCU_LOCK
+ * it is cast from CRYPTO_RCU_LOCK
+ */
+struct rcu_lock_st {
+ /* Callbacks to call for next ossl_synchronize_rcu */
+ struct rcu_cb_item *cb_items;
+
+ /* The context we are being created against */
+ OSSL_LIB_CTX *ctx;
+
+ /* Array of quiescent points for synchronization */
+ struct rcu_qp *qp_group;
+
+ /* rcu generation counter for in-order retirement */
+ uint32_t id_ctr;
+
+ /* Number of elements in qp_group array */
+ uint32_t group_count;
+
+ /* Index of the current qp in the qp_group array */
+ uint32_t reader_idx;
+
+ /* value of the next id_ctr value to be retired */
+ uint32_t next_to_retire;
+
+ /* index of the next free rcu_qp in the qp_group */
+ uint32_t current_alloc_idx;
+
+ /* number of qp's in qp_group array currently being retired */
+ uint32_t writers_alloced;
+
+ /* lock protecting write side operations */
+ pthread_mutex_t write_lock;
+
+ /* lock protecting updates to writers_alloced/current_alloc_idx */
+ pthread_mutex_t alloc_lock;
+
+ /* signal to wake threads waiting on alloc_lock */
+ pthread_cond_t alloc_signal;
+
+ /* lock to enforce in-order retirement */
+ pthread_mutex_t prior_lock;
+
+ /* signal to wake threads waiting on prior_lock */
+ pthread_cond_t prior_signal;
+};
+
+/* Read side acquisition of the current qp */
+static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
+{
+ uint32_t qp_idx;
+
+ /* get the current qp index */
+ for (;;) {
+ qp_idx = ATOMIC_LOAD_N(uint32_t, &lock->reader_idx, __ATOMIC_RELAXED);
+
+ /*
+ * Notes on use of __ATOMIC_ACQUIRE
+ * We need to ensure the following:
+ * 1) That subsequent operations aren't optimized by hoisting them above
+ * this operation. Specifically, we don't want the below re-load of
+ * qp_idx to get optimized away
+ * 2) We want to ensure that any updating of reader_idx on the write side
+ * of the lock is flushed from a local cpu cache so that we see any
+ * updates prior to the load. This is a non-issue on cache coherent
+ * systems like x86, but is relevant on other arches
+ */
+ ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
+ __ATOMIC_ACQUIRE);
+
+ /* if the idx hasn't changed, we're good, else try again */
+ if (qp_idx == ATOMIC_LOAD_N(uint32_t, &lock->reader_idx,
+ __ATOMIC_RELAXED))
+ break;
+
+ ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, (uint64_t)1,
+ __ATOMIC_RELAXED);
+ }
+
+ return &lock->qp_group[qp_idx];
+}
+
+static void ossl_rcu_free_local_data(void *arg)
+{
+ OSSL_LIB_CTX *ctx = arg;
+ CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
+ struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
+
+ OPENSSL_free(data);
+ CRYPTO_THREAD_set_local(lkey, NULL);
+}
+
+void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
+{
+ struct rcu_thr_data *data;
+ int i, available_qp = -1;
+ CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
+
+ /*
+ * we're going to access current_qp here so ask the
+ * processor to fetch it
+ */
+ data = CRYPTO_THREAD_get_local(lkey);
+
+ if (data == NULL) {
+ data = OPENSSL_zalloc(sizeof(*data));
+ OPENSSL_assert(data != NULL);
+ CRYPTO_THREAD_set_local(lkey, data);
+ ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
+ }
+
+ for (i = 0; i < MAX_QPS; i++) {
+ if (data->thread_qps[i].qp == NULL && available_qp == -1)
+ available_qp = i;
+ /* If we have a hold on this lock already, we're good */
+ if (data->thread_qps[i].lock == lock) {
+ data->thread_qps[i].depth++;
+ return;
+ }
+ }
+
+ /*
+ * if we get here, then we don't have a hold on this lock yet
+ */
+ assert(available_qp != -1);
+
+ data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
+ data->thread_qps[available_qp].depth = 1;
+ data->thread_qps[available_qp].lock = lock;
+}
+
+void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
+{
+ int i;
+ CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
+ struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
+ uint64_t ret;
+
+ assert(data != NULL);
+
+ for (i = 0; i < MAX_QPS; i++) {
+ if (data->thread_qps[i].lock == lock) {
+ /*
+ * we have to use __ATOMIC_RELEASE here
+ * to ensure that all preceding read instructions complete
+ * before the decrement is visible to ossl_synchronize_rcu
+ */
+ data->thread_qps[i].depth--;
+ if (data->thread_qps[i].depth == 0) {
+ ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users,
+ (uint64_t)1, __ATOMIC_RELEASE);
+ OPENSSL_assert(ret != UINT64_MAX);
+ data->thread_qps[i].qp = NULL;
+ data->thread_qps[i].lock = NULL;
+ }
+ return;
+ }
+ }
+ /*
+ * If we get here, we're trying to unlock a lock that we never acquired -
+ * that's fatal.
+ */
+ assert(0);
+}
+
+/*
+ * Write side allocation routine to get the current qp
+ * and replace it with a new one
+ */
+static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
+{
+ uint32_t current_idx;
+
+ pthread_mutex_lock(&lock->alloc_lock);
+
+ /*
+ * we need at least one qp to be available with one
+ * left over, so that readers can start working on
+ * one that isn't yet being waited on
+ */
+ while (lock->group_count - lock->writers_alloced < 2)
+ /* we have to wait for one to be free */
+ pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
+
+ current_idx = lock->current_alloc_idx;
+
+ /* Allocate the qp */
+ lock->writers_alloced++;
+
+ /* increment the allocation index */
+ lock->current_alloc_idx =
+ (lock->current_alloc_idx + 1) % lock->group_count;
+
+ *curr_id = lock->id_ctr;
+ lock->id_ctr++;
+
+ ATOMIC_STORE_N(uint32_t, &lock->reader_idx, lock->current_alloc_idx,
+ __ATOMIC_RELAXED);
+
+ /*
+ * this should make sure that the new value of reader_idx is visible in
+ * get_hold_current_qp, directly after incrementing the users count
+ */
+ ATOMIC_ADD_FETCH(&lock->qp_group[current_idx].users, (uint64_t)0,
+ __ATOMIC_RELEASE);
+
+ /* wake up any waiters */
+ pthread_cond_signal(&lock->alloc_signal);
+ pthread_mutex_unlock(&lock->alloc_lock);
+ return &lock->qp_group[current_idx];
+}
+
+static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
+{
+ pthread_mutex_lock(&lock->alloc_lock);
+ lock->writers_alloced--;
+ pthread_cond_signal(&lock->alloc_signal);
+ pthread_mutex_unlock(&lock->alloc_lock);
+}
+
+static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
+ uint32_t count)
+{
+ struct rcu_qp *new =
+ OPENSSL_zalloc(sizeof(*new) * count);
+
+ lock->group_count = count;
+ return new;
+}
+
+void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
+{
+ pthread_mutex_lock(&lock->write_lock);
+ TSAN_FAKE_UNLOCK(&lock->write_lock);
+}
+
+void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
+{
+ TSAN_FAKE_LOCK(&lock->write_lock);
+ pthread_mutex_unlock(&lock->write_lock);
+}
+
+void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
+{
+ struct rcu_qp *qp;
+ uint64_t count;
+ uint32_t curr_id;
+ struct rcu_cb_item *cb_items, *tmpcb;
+
+ pthread_mutex_lock(&lock->write_lock);
+ cb_items = lock->cb_items;
+ lock->cb_items = NULL;
+ pthread_mutex_unlock(&lock->write_lock);
+
+ qp = update_qp(lock, &curr_id);
+
+ /* retire in order */
+ pthread_mutex_lock(&lock->prior_lock);
+ while (lock->next_to_retire != curr_id)
+ pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
+
+ /*
+ * wait for the reader count to reach zero
+ * Note the use of __ATOMIC_ACQUIRE here to ensure that any
+ * prior __ATOMIC_RELEASE write operation in ossl_rcu_read_unlock
+ * is visible prior to our read
+ * however this is likely just necessary to silence a tsan warning
+ * because the read side should not do any write operation
+ * outside the atomic itself
+ */
+ do {
+ count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
+ } while (count != (uint64_t)0);
+
+ lock->next_to_retire++;
+ pthread_cond_broadcast(&lock->prior_signal);
+ pthread_mutex_unlock(&lock->prior_lock);
+
+ retire_qp(lock, qp);
+
+ /* handle any callbacks that we have */
+ while (cb_items != NULL) {
+ tmpcb = cb_items;
+ cb_items = cb_items->next;
+ tmpcb->fn(tmpcb->data);
+ OPENSSL_free(tmpcb);
+ }
+}
+
+/*
+ * Note: This call assumes its made under the protection of
+ * ossl_rcu_write_lock
+ */
+int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
+{
+ struct rcu_cb_item *new =
+ OPENSSL_zalloc(sizeof(*new));
+
+ if (new == NULL)
+ return 0;
+
+ new->data = data;
+ new->fn = cb;
+
+ new->next = lock->cb_items;
+ lock->cb_items = new;
+
+ return 1;
+}
+
+void *ossl_rcu_uptr_deref(void **p)
+{
+ return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
+}
+
+void ossl_rcu_assign_uptr(void **p, void **v)
+{
+ ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
+}
+
+CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
+{
+ struct rcu_lock_st *new;
+
+ /*
+ * We need a minimum of 2 qp's
+ */
+ if (num_writers < 2)
+ num_writers = 2;
+
+ ctx = ossl_lib_ctx_get_concrete(ctx);
+ if (ctx == NULL)
+ return 0;
+
+ new = OPENSSL_zalloc(sizeof(*new));
+ if (new == NULL)
+ return NULL;
+
+ new->ctx = ctx;
+ pthread_mutex_init(&new->write_lock, NULL);
+ pthread_mutex_init(&new->prior_lock, NULL);
+ pthread_mutex_init(&new->alloc_lock, NULL);
+ pthread_cond_init(&new->prior_signal, NULL);
+ pthread_cond_init(&new->alloc_signal, NULL);
+
+ new->qp_group = allocate_new_qp_group(new, num_writers);
+ if (new->qp_group == NULL) {
+ OPENSSL_free(new);
+ new = NULL;
+ }
+
+ return new;
+}
+
+void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
+{
+ struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
+
+ if (lock == NULL)
+ return;
+
+ /* make sure we're synchronized */
+ ossl_synchronize_rcu(rlock);
+
+ OPENSSL_free(rlock->qp_group);
+ /* There should only be a single qp left now */
+ OPENSSL_free(rlock);
+}
+
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
{
# ifdef USE_RWLOCK
CRYPTO_RWLOCK *lock;
- if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL) {
+ if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
- }
if (pthread_rwlock_init(lock, NULL) != 0) {
OPENSSL_free(lock);
@@ -60,10 +593,9 @@ CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
pthread_mutexattr_t attr;
CRYPTO_RWLOCK *lock;
- if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL) {
+ if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
- }
/*
* We don't use recursive mutexes, but try to catch errors if we do.
@@ -222,6 +754,58 @@ int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
return 1;
}
+int CRYPTO_atomic_add64(uint64_t *val, uint64_t op, uint64_t *ret,
+ CRYPTO_RWLOCK *lock)
+{
+# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
+ if (__atomic_is_lock_free(sizeof(*val), val)) {
+ *ret = __atomic_add_fetch(val, op, __ATOMIC_ACQ_REL);
+ return 1;
+ }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+ /* This will work for all future Solaris versions. */
+ if (ret != NULL) {
+ *ret = atomic_add_64_nv(val, op);
+ return 1;
+ }
+# endif
+ if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
+ return 0;
+ *val += op;
+ *ret = *val;
+
+ if (!CRYPTO_THREAD_unlock(lock))
+ return 0;
+
+ return 1;
+}
+
+int CRYPTO_atomic_and(uint64_t *val, uint64_t op, uint64_t *ret,
+ CRYPTO_RWLOCK *lock)
+{
+# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
+ if (__atomic_is_lock_free(sizeof(*val), val)) {
+ *ret = __atomic_and_fetch(val, op, __ATOMIC_ACQ_REL);
+ return 1;
+ }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+ /* This will work for all future Solaris versions. */
+ if (ret != NULL) {
+ *ret = atomic_and_64_nv(val, op);
+ return 1;
+ }
+# endif
+ if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
+ return 0;
+ *val &= op;
+ *ret = *val;
+
+ if (!CRYPTO_THREAD_unlock(lock))
+ return 0;
+
+ return 1;
+}
+
int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
CRYPTO_RWLOCK *lock)
{
@@ -250,7 +834,7 @@ int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
{
-# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
+# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
return 1;
@@ -270,6 +854,53 @@ int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
return 1;
}
+
+int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
+{
+# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
+ if (__atomic_is_lock_free(sizeof(*dst), dst)) {
+ __atomic_store(dst, &val, __ATOMIC_RELEASE);
+ return 1;
+ }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+ /* This will work for all future Solaris versions. */
+ if (dst != NULL) {
+ atomic_swap_64(dst, val);
+ return 1;
+ }
+# endif
+ if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
+ return 0;
+ *dst = val;
+ if (!CRYPTO_THREAD_unlock(lock))
+ return 0;
+
+ return 1;
+}
+
+int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
+{
+# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
+ if (__atomic_is_lock_free(sizeof(*val), val)) {
+ __atomic_load(val, ret, __ATOMIC_ACQUIRE);
+ return 1;
+ }
+# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
+ /* This will work for all future Solaris versions. */
+ if (ret != NULL) {
+ *ret = (int)atomic_or_uint_nv((unsigned int *)val, 0);
+ return 1;
+ }
+# endif
+ if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
+ return 0;
+ *ret = *val;
+ if (!CRYPTO_THREAD_unlock(lock))
+ return 0;
+
+ return 1;
+}
+
# ifndef FIPS_MODULE
int openssl_init_fork_handlers(void)
{