diff options
Diffstat (limited to 'docs/tutorial/LangImpl7.html')
| -rw-r--r-- | docs/tutorial/LangImpl7.html | 2164 | 
1 files changed, 0 insertions, 2164 deletions
| diff --git a/docs/tutorial/LangImpl7.html b/docs/tutorial/LangImpl7.html deleted file mode 100644 index 4d5a4aa7e84a..000000000000 --- a/docs/tutorial/LangImpl7.html +++ /dev/null @@ -1,2164 +0,0 @@ -<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" -                      "http://www.w3.org/TR/html4/strict.dtd"> - -<html> -<head> -  <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA -         construction</title> -  <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> -  <meta name="author" content="Chris Lattner"> -  <link rel="stylesheet" href="../_static/llvm.css" type="text/css"> -</head> - -<body> - -<h1>Kaleidoscope: Extending the Language: Mutable Variables</h1> - -<ul> -<li><a href="index.html">Up to Tutorial Index</a></li> -<li>Chapter 7 -  <ol> -    <li><a href="#intro">Chapter 7 Introduction</a></li> -    <li><a href="#why">Why is this a hard problem?</a></li> -    <li><a href="#memory">Memory in LLVM</a></li> -    <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li> -    <li><a href="#adjustments">Adjusting Existing Variables for -     Mutation</a></li> -    <li><a href="#assignment">New Assignment Operator</a></li> -    <li><a href="#localvars">User-defined Local Variables</a></li> -    <li><a href="#code">Full Code Listing</a></li> -  </ol> -</li> -<li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM - tidbits</li> -</ul> - -<div class="doc_author"> -  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> -</div> - -<!-- *********************************************************************** --> -<h2><a name="intro">Chapter 7 Introduction</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language -with LLVM</a>" tutorial.  In chapters 1 through 6, we've built a very -respectable, albeit simple, <a  -href="http://en.wikipedia.org/wiki/Functional_programming">functional -programming language</a>.  In our journey, we learned some parsing techniques, -how to build and represent an AST, how to build LLVM IR, and how to optimize -the resultant code as well as JIT compile it.</p> - -<p>While Kaleidoscope is interesting as a functional language, the fact that it -is functional makes it "too easy" to generate LLVM IR for it.  In particular, a  -functional language makes it very easy to build LLVM IR directly in <a  -href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>. -Since LLVM requires that the input code be in SSA form, this is a very nice -property and it is often unclear to newcomers how to generate code for an -imperative language with mutable variables.</p> - -<p>The short (and happy) summary of this chapter is that there is no need for -your front-end to build SSA form: LLVM provides highly tuned and well tested -support for this, though the way it works is a bit unexpected for some.</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="why">Why is this a hard problem?</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p> -To understand why mutable variables cause complexities in SSA construction,  -consider this extremely simple C example: -</p> - -<div class="doc_code"> -<pre> -int G, H; -int test(_Bool Condition) { -  int X; -  if (Condition) -    X = G; -  else -    X = H; -  return X; -} -</pre> -</div> - -<p>In this case, we have the variable "X", whose value depends on the path  -executed in the program.  Because there are two different possible values for X -before the return instruction, a PHI node is inserted to merge the two values. -The LLVM IR that we want for this example looks like this:</p> - -<div class="doc_code"> -<pre> -@G = weak global i32 0   ; type of @G is i32* -@H = weak global i32 0   ; type of @H is i32* - -define i32 @test(i1 %Condition) { -entry: -  br i1 %Condition, label %cond_true, label %cond_false - -cond_true: -  %X.0 = load i32* @G -  br label %cond_next - -cond_false: -  %X.1 = load i32* @H -  br label %cond_next - -cond_next: -  %X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] -  ret i32 %X.2 -} -</pre> -</div> - -<p>In this example, the loads from the G and H global variables are explicit in -the LLVM IR, and they live in the then/else branches of the if statement -(cond_true/cond_false).  In order to merge the incoming values, the X.2 phi node -in the cond_next block selects the right value to use based on where control  -flow is coming from: if control flow comes from the cond_false block, X.2 gets -the value of X.1.  Alternatively, if control flow comes from cond_true, it gets -the value of X.0.  The intent of this chapter is not to explain the details of -SSA form.  For more information, see one of the many <a  -href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online  -references</a>.</p> - -<p>The question for this article is "who places the phi nodes when lowering  -assignments to mutable variables?".  The issue here is that LLVM  -<em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it. -However, SSA construction requires non-trivial algorithms and data structures, -so it is inconvenient and wasteful for every front-end to have to reproduce this -logic.</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="memory">Memory in LLVM</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>The 'trick' here is that while LLVM does require all register values to be -in SSA form, it does not require (or permit) memory objects to be in SSA form. -In the example above, note that the loads from G and H are direct accesses to -G and H: they are not renamed or versioned.  This differs from some other -compiler systems, which do try to version memory objects.  In LLVM, instead of -encoding dataflow analysis of memory into the LLVM IR, it is handled with <a  -href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on -demand.</p> - -<p> -With this in mind, the high-level idea is that we want to make a stack variable -(which lives in memory, because it is on the stack) for each mutable object in -a function.  To take advantage of this trick, we need to talk about how LLVM -represents stack variables. -</p> - -<p>In LLVM, all memory accesses are explicit with load/store instructions, and -it is carefully designed not to have (or need) an "address-of" operator.  Notice -how the type of the @G/@H global variables is actually "i32*" even though the  -variable is defined as "i32".  What this means is that @G defines <em>space</em> -for an i32 in the global data area, but its <em>name</em> actually refers to the -address for that space.  Stack variables work the same way, except that instead of  -being declared with global variable definitions, they are declared with the  -<a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p> - -<div class="doc_code"> -<pre> -define i32 @example() { -entry: -  %X = alloca i32           ; type of %X is i32*. -  ... -  %tmp = load i32* %X       ; load the stack value %X from the stack. -  %tmp2 = add i32 %tmp, 1   ; increment it -  store i32 %tmp2, i32* %X  ; store it back -  ... -</pre> -</div> - -<p>This code shows an example of how you can declare and manipulate a stack -variable in the LLVM IR.  Stack memory allocated with the alloca instruction is -fully general: you can pass the address of the stack slot to functions, you can -store it in other variables, etc.  In our example above, we could rewrite the -example to use the alloca technique to avoid using a PHI node:</p> - -<div class="doc_code"> -<pre> -@G = weak global i32 0   ; type of @G is i32* -@H = weak global i32 0   ; type of @H is i32* - -define i32 @test(i1 %Condition) { -entry: -  %X = alloca i32           ; type of %X is i32*. -  br i1 %Condition, label %cond_true, label %cond_false - -cond_true: -  %X.0 = load i32* @G -  store i32 %X.0, i32* %X   ; Update X -  br label %cond_next - -cond_false: -  %X.1 = load i32* @H -  store i32 %X.1, i32* %X   ; Update X -  br label %cond_next - -cond_next: -  %X.2 = load i32* %X       ; Read X -  ret i32 %X.2 -} -</pre> -</div> - -<p>With this, we have discovered a way to handle arbitrary mutable variables -without the need to create Phi nodes at all:</p> - -<ol> -<li>Each mutable variable becomes a stack allocation.</li> -<li>Each read of the variable becomes a load from the stack.</li> -<li>Each update of the variable becomes a store to the stack.</li> -<li>Taking the address of a variable just uses the stack address directly.</li> -</ol> - -<p>While this solution has solved our immediate problem, it introduced another -one: we have now apparently introduced a lot of stack traffic for very simple -and common operations, a major performance problem.  Fortunately for us, the -LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles -this case, promoting allocas like this into SSA registers, inserting Phi nodes -as appropriate.  If you run this example through the pass, for example, you'll -get:</p> - -<div class="doc_code"> -<pre> -$ <b>llvm-as < example.ll | opt -mem2reg | llvm-dis</b> -@G = weak global i32 0 -@H = weak global i32 0 - -define i32 @test(i1 %Condition) { -entry: -  br i1 %Condition, label %cond_true, label %cond_false - -cond_true: -  %X.0 = load i32* @G -  br label %cond_next - -cond_false: -  %X.1 = load i32* @H -  br label %cond_next - -cond_next: -  %X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ] -  ret i32 %X.01 -} -</pre> -</div> - -<p>The mem2reg pass implements the standard "iterated dominance frontier" -algorithm for constructing SSA form and has a number of optimizations that speed -up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing  -with mutable variables, and we highly recommend that you depend on it.  Note that -mem2reg only works on variables in certain circumstances:</p> - -<ol> -<li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it -promotes them.  It does not apply to global variables or heap allocations.</li> - -<li>mem2reg only looks for alloca instructions in the entry block of the -function.  Being in the entry block guarantees that the alloca is only executed -once, which makes analysis simpler.</li> - -<li>mem2reg only promotes allocas whose uses are direct loads and stores.  If -the address of the stack object is passed to a function, or if any funny pointer -arithmetic is involved, the alloca will not be promoted.</li> - -<li>mem2reg only works on allocas of <a  -href="../LangRef.html#t_classifications">first class</a>  -values (such as pointers, scalars and vectors), and only if the array size -of the allocation is 1 (or missing in the .ll file).  mem2reg is not capable of -promoting structs or arrays to registers.  Note that the "scalarrepl" pass is -more powerful and can promote structs, "unions", and arrays in many cases.</li> - -</ol> - -<p> -All of these properties are easy to satisfy for most imperative languages, and -we'll illustrate it below with Kaleidoscope.  The final question you may be -asking is: should I bother with this nonsense for my front-end?  Wouldn't it be -better if I just did SSA construction directly, avoiding use of the mem2reg -optimization pass?  In short, we strongly recommend that you use this technique -for building SSA form, unless there is an extremely good reason not to.  Using -this technique is:</p> - -<ul> -<li>Proven and well tested: llvm-gcc and clang both use this technique for local -mutable variables.  As such, the most common clients of LLVM are using this to -handle a bulk of their variables.  You can be sure that bugs are found fast and -fixed early.</li> - -<li>Extremely Fast: mem2reg has a number of special cases that make it fast in -common cases as well as fully general.  For example, it has fast-paths for -variables that are only used in a single block, variables that only have one -assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc. -</li> - -<li>Needed for debug info generation: <a href="../SourceLevelDebugging.html"> -Debug information in LLVM</a> relies on having the address of the variable -exposed so that debug info can be attached to it.  This technique dovetails  -very naturally with this style of debug info.</li> -</ul> - -<p>If nothing else, this makes it much easier to get your front-end up and  -running, and is very simple to implement.  Lets extend Kaleidoscope with mutable -variables now! -</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="kalvars">Mutable Variables in Kaleidoscope</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>Now that we know the sort of problem we want to tackle, lets see what this -looks like in the context of our little Kaleidoscope language.  We're going to -add two features:</p> - -<ol> -<li>The ability to mutate variables with the '=' operator.</li> -<li>The ability to define new variables.</li> -</ol> - -<p>While the first item is really what this is about, we only have variables -for incoming arguments as well as for induction variables, and redefining those only -goes so far :).  Also, the ability to define new variables is a -useful thing regardless of whether you will be mutating them.  Here's a -motivating example that shows how we could use these:</p> - -<div class="doc_code"> -<pre> -# Define ':' for sequencing: as a low-precedence operator that ignores operands -# and just returns the RHS. -def binary : 1 (x y) y; - -# Recursive fib, we could do this before. -def fib(x) -  if (x < 3) then -    1 -  else -    fib(x-1)+fib(x-2); - -# Iterative fib. -def fibi(x) -  <b>var a = 1, b = 1, c in</b> -  (for i = 3, i < x in  -     <b>c = a + b</b> : -     <b>a = b</b> : -     <b>b = c</b>) : -  b; - -# Call it.  -fibi(10); -</pre> -</div> - -<p> -In order to mutate variables, we have to change our existing variables to use -the "alloca trick".  Once we have that, we'll add our new operator, then extend -Kaleidoscope to support new variable definitions. -</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="adjustments">Adjusting Existing Variables for Mutation</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p> -The symbol table in Kaleidoscope is managed at code generation time by the  -'<tt>NamedValues</tt>' map.  This map currently keeps track of the LLVM "Value*" -that holds the double value for the named variable.  In order to support -mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds -the <em>memory location</em> of the variable in question.  Note that this  -change is a refactoring: it changes the structure of the code, but does not -(by itself) change the behavior of the compiler.  All of these changes are  -isolated in the Kaleidoscope code generator.</p> - -<p> -At this point in Kaleidoscope's development, it only supports variables for two -things: incoming arguments to functions and the induction variable of 'for' -loops.  For consistency, we'll allow mutation of these variables in addition to -other user-defined variables.  This means that these will both need memory -locations. -</p> - -<p>To start our transformation of Kaleidoscope, we'll change the NamedValues -map so that it maps to AllocaInst* instead of Value*.  Once we do this, the C++  -compiler will tell us what parts of the code we need to update:</p> - -<div class="doc_code"> -<pre> -static std::map<std::string, AllocaInst*> NamedValues; -</pre> -</div> - -<p>Also, since we will need to create these alloca's, we'll use a helper -function that ensures that the allocas are created in the entry block of the -function:</p> - -<div class="doc_code"> -<pre> -/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of -/// the function.  This is used for mutable variables etc. -static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, -                                          const std::string &VarName) { -  IRBuilder<> TmpB(&TheFunction->getEntryBlock(), -                 TheFunction->getEntryBlock().begin()); -  return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, -                           VarName.c_str()); -} -</pre> -</div> - -<p>This funny looking code creates an IRBuilder object that is pointing at -the first instruction (.begin()) of the entry block.  It then creates an alloca -with the expected name and returns it.  Because all values in Kaleidoscope are -doubles, there is no need to pass in a type to use.</p> - -<p>With this in place, the first functionality change we want to make is to -variable references.  In our new scheme, variables live on the stack, so code -generating a reference to them actually needs to produce a load from the stack -slot:</p> - -<div class="doc_code"> -<pre> -Value *VariableExprAST::Codegen() { -  // Look this variable up in the function. -  Value *V = NamedValues[Name]; -  if (V == 0) return ErrorV("Unknown variable name"); - -  <b>// Load the value. -  return Builder.CreateLoad(V, Name.c_str());</b> -} -</pre> -</div> - -<p>As you can see, this is pretty straightforward.  Now we need to update the -things that define the variables to set up the alloca.  We'll start with  -<tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for -the unabridged code):</p> - -<div class="doc_code"> -<pre> -  Function *TheFunction = Builder.GetInsertBlock()->getParent(); - -  <b>// Create an alloca for the variable in the entry block. -  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b> -   -    // Emit the start code first, without 'variable' in scope. -  Value *StartVal = Start->Codegen(); -  if (StartVal == 0) return 0; -   -  <b>// Store the value into the alloca. -  Builder.CreateStore(StartVal, Alloca);</b> -  ... - -  // Compute the end condition. -  Value *EndCond = End->Codegen(); -  if (EndCond == 0) return EndCond; -   -  <b>// Reload, increment, and restore the alloca.  This handles the case where -  // the body of the loop mutates the variable. -  Value *CurVar = Builder.CreateLoad(Alloca); -  Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); -  Builder.CreateStore(NextVar, Alloca);</b> -  ... -</pre> -</div> - -<p>This code is virtually identical to the code <a  -href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>.  The -big difference is that we no longer have to construct a PHI node, and we use -load/store to access the variable as needed.</p> - -<p>To support mutable argument variables, we need to also make allocas for them. -The code for this is also pretty simple:</p> - -<div class="doc_code"> -<pre> -/// CreateArgumentAllocas - Create an alloca for each argument and register the -/// argument in the symbol table so that references to it will succeed. -void PrototypeAST::CreateArgumentAllocas(Function *F) { -  Function::arg_iterator AI = F->arg_begin(); -  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { -    // Create an alloca for this variable. -    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); - -    // Store the initial value into the alloca. -    Builder.CreateStore(AI, Alloca); - -    // Add arguments to variable symbol table. -    NamedValues[Args[Idx]] = Alloca; -  } -} -</pre> -</div> - -<p>For each argument, we make an alloca, store the input value to the function -into the alloca, and register the alloca as the memory location for the -argument.  This method gets invoked by <tt>FunctionAST::Codegen</tt> right after -it sets up the entry block for the function.</p> - -<p>The final missing piece is adding the mem2reg pass, which allows us to get -good codegen once again:</p> - -<div class="doc_code"> -<pre> -    // Set up the optimizer pipeline.  Start with registering info about how the -    // target lays out data structures. -    OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); -    <b>// Promote allocas to registers. -    OurFPM.add(createPromoteMemoryToRegisterPass());</b> -    // Do simple "peephole" optimizations and bit-twiddling optzns. -    OurFPM.add(createInstructionCombiningPass()); -    // Reassociate expressions. -    OurFPM.add(createReassociatePass()); -</pre> -</div> - -<p>It is interesting to see what the code looks like before and after the -mem2reg optimization runs.  For example, this is the before/after code for our -recursive fib function.  Before the optimization:</p> - -<div class="doc_code"> -<pre> -define double @fib(double %x) { -entry: -  <b>%x1 = alloca double -  store double %x, double* %x1 -  %x2 = load double* %x1</b> -  %cmptmp = fcmp ult double %x2, 3.000000e+00 -  %booltmp = uitofp i1 %cmptmp to double -  %ifcond = fcmp one double %booltmp, 0.000000e+00 -  br i1 %ifcond, label %then, label %else - -then:		; preds = %entry -  br label %ifcont - -else:		; preds = %entry -  <b>%x3 = load double* %x1</b> -  %subtmp = fsub double %x3, 1.000000e+00 -  %calltmp = call double @fib(double %subtmp) -  <b>%x4 = load double* %x1</b> -  %subtmp5 = fsub double %x4, 2.000000e+00 -  %calltmp6 = call double @fib(double %subtmp5) -  %addtmp = fadd double %calltmp, %calltmp6 -  br label %ifcont - -ifcont:		; preds = %else, %then -  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] -  ret double %iftmp -} -</pre> -</div> - -<p>Here there is only one variable (x, the input argument) but you can still -see the extremely simple-minded code generation strategy we are using.  In the -entry block, an alloca is created, and the initial input value is stored into -it.  Each reference to the variable does a reload from the stack.  Also, note -that we didn't modify the if/then/else expression, so it still inserts a PHI -node.  While we could make an alloca for it, it is actually easier to create a  -PHI node for it, so we still just make the PHI.</p> - -<p>Here is the code after the mem2reg pass runs:</p> - -<div class="doc_code"> -<pre> -define double @fib(double %x) { -entry: -  %cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00 -  %booltmp = uitofp i1 %cmptmp to double -  %ifcond = fcmp one double %booltmp, 0.000000e+00 -  br i1 %ifcond, label %then, label %else - -then: -  br label %ifcont - -else: -  %subtmp = fsub double <b>%x</b>, 1.000000e+00 -  %calltmp = call double @fib(double %subtmp) -  %subtmp5 = fsub double <b>%x</b>, 2.000000e+00 -  %calltmp6 = call double @fib(double %subtmp5) -  %addtmp = fadd double %calltmp, %calltmp6 -  br label %ifcont - -ifcont:		; preds = %else, %then -  %iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ] -  ret double %iftmp -} -</pre> -</div> - -<p>This is a trivial case for mem2reg, since there are no redefinitions of the -variable.  The point of showing this is to calm your tension about inserting -such blatent inefficiencies :).</p> - -<p>After the rest of the optimizers run, we get:</p> - -<div class="doc_code"> -<pre> -define double @fib(double %x) { -entry: -  %cmptmp = fcmp ult double %x, 3.000000e+00 -  %booltmp = uitofp i1 %cmptmp to double -  %ifcond = fcmp ueq double %booltmp, 0.000000e+00 -  br i1 %ifcond, label %else, label %ifcont - -else: -  %subtmp = fsub double %x, 1.000000e+00 -  %calltmp = call double @fib(double %subtmp) -  %subtmp5 = fsub double %x, 2.000000e+00 -  %calltmp6 = call double @fib(double %subtmp5) -  %addtmp = fadd double %calltmp, %calltmp6 -  ret double %addtmp - -ifcont: -  ret double 1.000000e+00 -} -</pre> -</div> - -<p>Here we see that the simplifycfg pass decided to clone the return instruction -into the end of the 'else' block.  This allowed it to eliminate some branches -and the PHI node.</p> - -<p>Now that all symbol table references are updated to use stack variables,  -we'll add the assignment operator.</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="assignment">New Assignment Operator</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>With our current framework, adding a new assignment operator is really -simple.  We will parse it just like any other binary operator, but handle it -internally (instead of allowing the user to define it).  The first step is to -set a precedence:</p> - -<div class="doc_code"> -<pre> - int main() { -   // Install standard binary operators. -   // 1 is lowest precedence. -   <b>BinopPrecedence['='] = 2;</b> -   BinopPrecedence['<'] = 10; -   BinopPrecedence['+'] = 20; -   BinopPrecedence['-'] = 20; -</pre> -</div> - -<p>Now that the parser knows the precedence of the binary operator, it takes -care of all the parsing and AST generation.  We just need to implement codegen -for the assignment operator.  This looks like:</p>  - -<div class="doc_code"> -<pre> -Value *BinaryExprAST::Codegen() { -  // Special case '=' because we don't want to emit the LHS as an expression. -  if (Op == '=') { -    // Assignment requires the LHS to be an identifier. -    VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); -    if (!LHSE) -      return ErrorV("destination of '=' must be a variable"); -</pre> -</div> - -<p>Unlike the rest of the binary operators, our assignment operator doesn't -follow the "emit LHS, emit RHS, do computation" model.  As such, it is handled -as a special case before the other binary operators are handled.  The other  -strange thing is that it requires the LHS to be a variable.  It is invalid to -have "(x+1) = expr" - only things like "x = expr" are allowed. -</p> - -<div class="doc_code"> -<pre> -    // Codegen the RHS. -    Value *Val = RHS->Codegen(); -    if (Val == 0) return 0; - -    // Look up the name. -    Value *Variable = NamedValues[LHSE->getName()]; -    if (Variable == 0) return ErrorV("Unknown variable name"); - -    Builder.CreateStore(Val, Variable); -    return Val; -  } -  ...   -</pre> -</div> - -<p>Once we have the variable, codegen'ing the assignment is straightforward: -we emit the RHS of the assignment, create a store, and return the computed -value.  Returning a value allows for chained assignments like "X = (Y = Z)".</p> - -<p>Now that we have an assignment operator, we can mutate loop variables and -arguments.  For example, we can now run code like this:</p> - -<div class="doc_code"> -<pre> -# Function to print a double. -extern printd(x); - -# Define ':' for sequencing: as a low-precedence operator that ignores operands -# and just returns the RHS. -def binary : 1 (x y) y; - -def test(x) -  printd(x) : -  x = 4 : -  printd(x); - -test(123); -</pre> -</div> - -<p>When run, this example prints "123" and then "4", showing that we did -actually mutate the value!  Okay, we have now officially implemented our goal: -getting this to work requires SSA construction in the general case.  However, -to be really useful, we want the ability to define our own local variables, lets -add this next!  -</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="localvars">User-defined Local Variables</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p>Adding var/in is just like any other other extensions we made to  -Kaleidoscope: we extend the lexer, the parser, the AST and the code generator. -The first step for adding our new 'var/in' construct is to extend the lexer. -As before, this is pretty trivial, the code looks like this:</p> - -<div class="doc_code"> -<pre> -enum Token { -  ... -  <b>// var definition -  tok_var = -13</b> -... -} -... -static int gettok() { -... -    if (IdentifierStr == "in") return tok_in; -    if (IdentifierStr == "binary") return tok_binary; -    if (IdentifierStr == "unary") return tok_unary; -    <b>if (IdentifierStr == "var") return tok_var;</b> -    return tok_identifier; -... -</pre> -</div> - -<p>The next step is to define the AST node that we will construct.  For var/in, -it looks like this:</p> - -<div class="doc_code"> -<pre> -/// VarExprAST - Expression class for var/in -class VarExprAST : public ExprAST { -  std::vector<std::pair<std::string, ExprAST*> > VarNames; -  ExprAST *Body; -public: -  VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, -             ExprAST *body) -  : VarNames(varnames), Body(body) {} -   -  virtual Value *Codegen(); -}; -</pre> -</div> - -<p>var/in allows a list of names to be defined all at once, and each name can -optionally have an initializer value.  As such, we capture this information in -the VarNames vector.  Also, var/in has a body, this body is allowed to access -the variables defined by the var/in.</p> - -<p>With this in place, we can define the parser pieces.  The first thing we do is add -it as a primary expression:</p> - -<div class="doc_code"> -<pre> -/// primary -///   ::= identifierexpr -///   ::= numberexpr -///   ::= parenexpr -///   ::= ifexpr -///   ::= forexpr -<b>///   ::= varexpr</b> -static ExprAST *ParsePrimary() { -  switch (CurTok) { -  default: return Error("unknown token when expecting an expression"); -  case tok_identifier: return ParseIdentifierExpr(); -  case tok_number:     return ParseNumberExpr(); -  case '(':            return ParseParenExpr(); -  case tok_if:         return ParseIfExpr(); -  case tok_for:        return ParseForExpr(); -  <b>case tok_var:        return ParseVarExpr();</b> -  } -} -</pre> -</div> - -<p>Next we define ParseVarExpr:</p> - -<div class="doc_code"> -<pre> -/// varexpr ::= 'var' identifier ('=' expression)?  -//                    (',' identifier ('=' expression)?)* 'in' expression -static ExprAST *ParseVarExpr() { -  getNextToken();  // eat the var. - -  std::vector<std::pair<std::string, ExprAST*> > VarNames; - -  // At least one variable name is required. -  if (CurTok != tok_identifier) -    return Error("expected identifier after var"); -</pre> -</div> - -<p>The first part of this code parses the list of identifier/expr pairs into the -local <tt>VarNames</tt> vector.   - -<div class="doc_code"> -<pre> -  while (1) { -    std::string Name = IdentifierStr; -    getNextToken();  // eat identifier. - -    // Read the optional initializer. -    ExprAST *Init = 0; -    if (CurTok == '=') { -      getNextToken(); // eat the '='. -       -      Init = ParseExpression(); -      if (Init == 0) return 0; -    } -     -    VarNames.push_back(std::make_pair(Name, Init)); -     -    // End of var list, exit loop. -    if (CurTok != ',') break; -    getNextToken(); // eat the ','. -     -    if (CurTok != tok_identifier) -      return Error("expected identifier list after var"); -  } -</pre> -</div> - -<p>Once all the variables are parsed, we then parse the body and create the -AST node:</p> - -<div class="doc_code"> -<pre> -  // At this point, we have to have 'in'. -  if (CurTok != tok_in) -    return Error("expected 'in' keyword after 'var'"); -  getNextToken();  // eat 'in'. -   -  ExprAST *Body = ParseExpression(); -  if (Body == 0) return 0; -   -  return new VarExprAST(VarNames, Body); -} -</pre> -</div> - -<p>Now that we can parse and represent the code, we need to support emission of -LLVM IR for it.  This code starts out with:</p> - -<div class="doc_code"> -<pre> -Value *VarExprAST::Codegen() { -  std::vector<AllocaInst *> OldBindings; -   -  Function *TheFunction = Builder.GetInsertBlock()->getParent(); - -  // Register all variables and emit their initializer. -  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { -    const std::string &VarName = VarNames[i].first; -    ExprAST *Init = VarNames[i].second; -</pre> -</div> - -<p>Basically it loops over all the variables, installing them one at a time. -For each variable we put into the symbol table, we remember the previous value -that we replace in OldBindings.</p> - -<div class="doc_code"> -<pre> -    // Emit the initializer before adding the variable to scope, this prevents -    // the initializer from referencing the variable itself, and permits stuff -    // like this: -    //  var a = 1 in -    //    var a = a in ...   # refers to outer 'a'. -    Value *InitVal; -    if (Init) { -      InitVal = Init->Codegen(); -      if (InitVal == 0) return 0; -    } else { // If not specified, use 0.0. -      InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); -    } -     -    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); -    Builder.CreateStore(InitVal, Alloca); - -    // Remember the old variable binding so that we can restore the binding when -    // we unrecurse. -    OldBindings.push_back(NamedValues[VarName]); -     -    // Remember this binding. -    NamedValues[VarName] = Alloca; -  } -</pre> -</div> - -<p>There are more comments here than code.  The basic idea is that we emit the -initializer, create the alloca, then update the symbol table to point to it. -Once all the variables are installed in the symbol table, we evaluate the body -of the var/in expression:</p> - -<div class="doc_code"> -<pre> -  // Codegen the body, now that all vars are in scope. -  Value *BodyVal = Body->Codegen(); -  if (BodyVal == 0) return 0; -</pre> -</div> - -<p>Finally, before returning, we restore the previous variable bindings:</p> - -<div class="doc_code"> -<pre> -  // Pop all our variables from scope. -  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) -    NamedValues[VarNames[i].first] = OldBindings[i]; - -  // Return the body computation. -  return BodyVal; -} -</pre> -</div> - -<p>The end result of all of this is that we get properly scoped variable  -definitions, and we even (trivially) allow mutation of them :).</p> - -<p>With this, we completed what we set out to do.  Our nice iterative fib -example from the intro compiles and runs just fine.  The mem2reg pass optimizes -all of our stack variables into SSA registers, inserting PHI nodes where needed, -and our front-end remains simple: no "iterated dominance frontier" computation -anywhere in sight.</p> - -</div> - -<!-- *********************************************************************** --> -<h2><a name="code">Full Code Listing</a></h2> -<!-- *********************************************************************** --> - -<div> - -<p> -Here is the complete code listing for our running example, enhanced with mutable -variables and var/in support.  To build this example, use: -</p> - -<div class="doc_code"> -<pre> -# Compile -clang++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy -# Run -./toy -</pre> -</div> - -<p>Here is the code:</p> - -<div class="doc_code"> -<pre> -#include "llvm/DerivedTypes.h" -#include "llvm/ExecutionEngine/ExecutionEngine.h" -#include "llvm/ExecutionEngine/JIT.h" -#include "llvm/IRBuilder.h" -#include "llvm/LLVMContext.h" -#include "llvm/Module.h" -#include "llvm/PassManager.h" -#include "llvm/Analysis/Verifier.h" -#include "llvm/Analysis/Passes.h" -#include "llvm/DataLayout.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Support/TargetSelect.h" -#include <cstdio> -#include <string> -#include <map> -#include <vector> -using namespace llvm; - -//===----------------------------------------------------------------------===// -// Lexer -//===----------------------------------------------------------------------===// - -// The lexer returns tokens [0-255] if it is an unknown character, otherwise one -// of these for known things. -enum Token { -  tok_eof = -1, - -  // commands -  tok_def = -2, tok_extern = -3, - -  // primary -  tok_identifier = -4, tok_number = -5, -   -  // control -  tok_if = -6, tok_then = -7, tok_else = -8, -  tok_for = -9, tok_in = -10, -   -  // operators -  tok_binary = -11, tok_unary = -12, -   -  // var definition -  tok_var = -13 -}; - -static std::string IdentifierStr;  // Filled in if tok_identifier -static double NumVal;              // Filled in if tok_number - -/// gettok - Return the next token from standard input. -static int gettok() { -  static int LastChar = ' '; - -  // Skip any whitespace. -  while (isspace(LastChar)) -    LastChar = getchar(); - -  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* -    IdentifierStr = LastChar; -    while (isalnum((LastChar = getchar()))) -      IdentifierStr += LastChar; - -    if (IdentifierStr == "def") return tok_def; -    if (IdentifierStr == "extern") return tok_extern; -    if (IdentifierStr == "if") return tok_if; -    if (IdentifierStr == "then") return tok_then; -    if (IdentifierStr == "else") return tok_else; -    if (IdentifierStr == "for") return tok_for; -    if (IdentifierStr == "in") return tok_in; -    if (IdentifierStr == "binary") return tok_binary; -    if (IdentifierStr == "unary") return tok_unary; -    if (IdentifierStr == "var") return tok_var; -    return tok_identifier; -  } - -  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ -    std::string NumStr; -    do { -      NumStr += LastChar; -      LastChar = getchar(); -    } while (isdigit(LastChar) || LastChar == '.'); - -    NumVal = strtod(NumStr.c_str(), 0); -    return tok_number; -  } - -  if (LastChar == '#') { -    // Comment until end of line. -    do LastChar = getchar(); -    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); -     -    if (LastChar != EOF) -      return gettok(); -  } -   -  // Check for end of file.  Don't eat the EOF. -  if (LastChar == EOF) -    return tok_eof; - -  // Otherwise, just return the character as its ascii value. -  int ThisChar = LastChar; -  LastChar = getchar(); -  return ThisChar; -} - -//===----------------------------------------------------------------------===// -// Abstract Syntax Tree (aka Parse Tree) -//===----------------------------------------------------------------------===// - -/// ExprAST - Base class for all expression nodes. -class ExprAST { -public: -  virtual ~ExprAST() {} -  virtual Value *Codegen() = 0; -}; - -/// NumberExprAST - Expression class for numeric literals like "1.0". -class NumberExprAST : public ExprAST { -  double Val; -public: -  NumberExprAST(double val) : Val(val) {} -  virtual Value *Codegen(); -}; - -/// VariableExprAST - Expression class for referencing a variable, like "a". -class VariableExprAST : public ExprAST { -  std::string Name; -public: -  VariableExprAST(const std::string &name) : Name(name) {} -  const std::string &getName() const { return Name; } -  virtual Value *Codegen(); -}; - -/// UnaryExprAST - Expression class for a unary operator. -class UnaryExprAST : public ExprAST { -  char Opcode; -  ExprAST *Operand; -public: -  UnaryExprAST(char opcode, ExprAST *operand)  -    : Opcode(opcode), Operand(operand) {} -  virtual Value *Codegen(); -}; - -/// BinaryExprAST - Expression class for a binary operator. -class BinaryExprAST : public ExprAST { -  char Op; -  ExprAST *LHS, *RHS; -public: -  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)  -    : Op(op), LHS(lhs), RHS(rhs) {} -  virtual Value *Codegen(); -}; - -/// CallExprAST - Expression class for function calls. -class CallExprAST : public ExprAST { -  std::string Callee; -  std::vector<ExprAST*> Args; -public: -  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) -    : Callee(callee), Args(args) {} -  virtual Value *Codegen(); -}; - -/// IfExprAST - Expression class for if/then/else. -class IfExprAST : public ExprAST { -  ExprAST *Cond, *Then, *Else; -public: -  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) -  : Cond(cond), Then(then), Else(_else) {} -  virtual Value *Codegen(); -}; - -/// ForExprAST - Expression class for for/in. -class ForExprAST : public ExprAST { -  std::string VarName; -  ExprAST *Start, *End, *Step, *Body; -public: -  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, -             ExprAST *step, ExprAST *body) -    : VarName(varname), Start(start), End(end), Step(step), Body(body) {} -  virtual Value *Codegen(); -}; - -/// VarExprAST - Expression class for var/in -class VarExprAST : public ExprAST { -  std::vector<std::pair<std::string, ExprAST*> > VarNames; -  ExprAST *Body; -public: -  VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, -             ExprAST *body) -  : VarNames(varnames), Body(body) {} -   -  virtual Value *Codegen(); -}; - -/// PrototypeAST - This class represents the "prototype" for a function, -/// which captures its name, and its argument names (thus implicitly the number -/// of arguments the function takes), as well as if it is an operator. -class PrototypeAST { -  std::string Name; -  std::vector<std::string> Args; -  bool isOperator; -  unsigned Precedence;  // Precedence if a binary op. -public: -  PrototypeAST(const std::string &name, const std::vector<std::string> &args, -               bool isoperator = false, unsigned prec = 0) -  : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} -   -  bool isUnaryOp() const { return isOperator && Args.size() == 1; } -  bool isBinaryOp() const { return isOperator && Args.size() == 2; } -   -  char getOperatorName() const { -    assert(isUnaryOp() || isBinaryOp()); -    return Name[Name.size()-1]; -  } -   -  unsigned getBinaryPrecedence() const { return Precedence; } -   -  Function *Codegen(); -   -  void CreateArgumentAllocas(Function *F); -}; - -/// FunctionAST - This class represents a function definition itself. -class FunctionAST { -  PrototypeAST *Proto; -  ExprAST *Body; -public: -  FunctionAST(PrototypeAST *proto, ExprAST *body) -    : Proto(proto), Body(body) {} -   -  Function *Codegen(); -}; - -//===----------------------------------------------------------------------===// -// Parser -//===----------------------------------------------------------------------===// - -/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current -/// token the parser is looking at.  getNextToken reads another token from the -/// lexer and updates CurTok with its results. -static int CurTok; -static int getNextToken() { -  return CurTok = gettok(); -} - -/// BinopPrecedence - This holds the precedence for each binary operator that is -/// defined. -static std::map<char, int> BinopPrecedence; - -/// GetTokPrecedence - Get the precedence of the pending binary operator token. -static int GetTokPrecedence() { -  if (!isascii(CurTok)) -    return -1; -   -  // Make sure it's a declared binop. -  int TokPrec = BinopPrecedence[CurTok]; -  if (TokPrec <= 0) return -1; -  return TokPrec; -} - -/// Error* - These are little helper functions for error handling. -ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} -PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } -FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } - -static ExprAST *ParseExpression(); - -/// identifierexpr -///   ::= identifier -///   ::= identifier '(' expression* ')' -static ExprAST *ParseIdentifierExpr() { -  std::string IdName = IdentifierStr; -   -  getNextToken();  // eat identifier. -   -  if (CurTok != '(') // Simple variable ref. -    return new VariableExprAST(IdName); -   -  // Call. -  getNextToken();  // eat ( -  std::vector<ExprAST*> Args; -  if (CurTok != ')') { -    while (1) { -      ExprAST *Arg = ParseExpression(); -      if (!Arg) return 0; -      Args.push_back(Arg); - -      if (CurTok == ')') break; - -      if (CurTok != ',') -        return Error("Expected ')' or ',' in argument list"); -      getNextToken(); -    } -  } - -  // Eat the ')'. -  getNextToken(); -   -  return new CallExprAST(IdName, Args); -} - -/// numberexpr ::= number -static ExprAST *ParseNumberExpr() { -  ExprAST *Result = new NumberExprAST(NumVal); -  getNextToken(); // consume the number -  return Result; -} - -/// parenexpr ::= '(' expression ')' -static ExprAST *ParseParenExpr() { -  getNextToken();  // eat (. -  ExprAST *V = ParseExpression(); -  if (!V) return 0; -   -  if (CurTok != ')') -    return Error("expected ')'"); -  getNextToken();  // eat ). -  return V; -} - -/// ifexpr ::= 'if' expression 'then' expression 'else' expression -static ExprAST *ParseIfExpr() { -  getNextToken();  // eat the if. -   -  // condition. -  ExprAST *Cond = ParseExpression(); -  if (!Cond) return 0; -   -  if (CurTok != tok_then) -    return Error("expected then"); -  getNextToken();  // eat the then -   -  ExprAST *Then = ParseExpression(); -  if (Then == 0) return 0; -   -  if (CurTok != tok_else) -    return Error("expected else"); -   -  getNextToken(); -   -  ExprAST *Else = ParseExpression(); -  if (!Else) return 0; -   -  return new IfExprAST(Cond, Then, Else); -} - -/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression -static ExprAST *ParseForExpr() { -  getNextToken();  // eat the for. - -  if (CurTok != tok_identifier) -    return Error("expected identifier after for"); -   -  std::string IdName = IdentifierStr; -  getNextToken();  // eat identifier. -   -  if (CurTok != '=') -    return Error("expected '=' after for"); -  getNextToken();  // eat '='. -   -   -  ExprAST *Start = ParseExpression(); -  if (Start == 0) return 0; -  if (CurTok != ',') -    return Error("expected ',' after for start value"); -  getNextToken(); -   -  ExprAST *End = ParseExpression(); -  if (End == 0) return 0; -   -  // The step value is optional. -  ExprAST *Step = 0; -  if (CurTok == ',') { -    getNextToken(); -    Step = ParseExpression(); -    if (Step == 0) return 0; -  } -   -  if (CurTok != tok_in) -    return Error("expected 'in' after for"); -  getNextToken();  // eat 'in'. -   -  ExprAST *Body = ParseExpression(); -  if (Body == 0) return 0; - -  return new ForExprAST(IdName, Start, End, Step, Body); -} - -/// varexpr ::= 'var' identifier ('=' expression)?  -//                    (',' identifier ('=' expression)?)* 'in' expression -static ExprAST *ParseVarExpr() { -  getNextToken();  // eat the var. - -  std::vector<std::pair<std::string, ExprAST*> > VarNames; - -  // At least one variable name is required. -  if (CurTok != tok_identifier) -    return Error("expected identifier after var"); -   -  while (1) { -    std::string Name = IdentifierStr; -    getNextToken();  // eat identifier. - -    // Read the optional initializer. -    ExprAST *Init = 0; -    if (CurTok == '=') { -      getNextToken(); // eat the '='. -       -      Init = ParseExpression(); -      if (Init == 0) return 0; -    } -     -    VarNames.push_back(std::make_pair(Name, Init)); -     -    // End of var list, exit loop. -    if (CurTok != ',') break; -    getNextToken(); // eat the ','. -     -    if (CurTok != tok_identifier) -      return Error("expected identifier list after var"); -  } -   -  // At this point, we have to have 'in'. -  if (CurTok != tok_in) -    return Error("expected 'in' keyword after 'var'"); -  getNextToken();  // eat 'in'. -   -  ExprAST *Body = ParseExpression(); -  if (Body == 0) return 0; -   -  return new VarExprAST(VarNames, Body); -} - -/// primary -///   ::= identifierexpr -///   ::= numberexpr -///   ::= parenexpr -///   ::= ifexpr -///   ::= forexpr -///   ::= varexpr -static ExprAST *ParsePrimary() { -  switch (CurTok) { -  default: return Error("unknown token when expecting an expression"); -  case tok_identifier: return ParseIdentifierExpr(); -  case tok_number:     return ParseNumberExpr(); -  case '(':            return ParseParenExpr(); -  case tok_if:         return ParseIfExpr(); -  case tok_for:        return ParseForExpr(); -  case tok_var:        return ParseVarExpr(); -  } -} - -/// unary -///   ::= primary -///   ::= '!' unary -static ExprAST *ParseUnary() { -  // If the current token is not an operator, it must be a primary expr. -  if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') -    return ParsePrimary(); -   -  // If this is a unary operator, read it. -  int Opc = CurTok; -  getNextToken(); -  if (ExprAST *Operand = ParseUnary()) -    return new UnaryExprAST(Opc, Operand); -  return 0; -} - -/// binoprhs -///   ::= ('+' unary)* -static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { -  // If this is a binop, find its precedence. -  while (1) { -    int TokPrec = GetTokPrecedence(); -     -    // If this is a binop that binds at least as tightly as the current binop, -    // consume it, otherwise we are done. -    if (TokPrec < ExprPrec) -      return LHS; -     -    // Okay, we know this is a binop. -    int BinOp = CurTok; -    getNextToken();  // eat binop -     -    // Parse the unary expression after the binary operator. -    ExprAST *RHS = ParseUnary(); -    if (!RHS) return 0; -     -    // If BinOp binds less tightly with RHS than the operator after RHS, let -    // the pending operator take RHS as its LHS. -    int NextPrec = GetTokPrecedence(); -    if (TokPrec < NextPrec) { -      RHS = ParseBinOpRHS(TokPrec+1, RHS); -      if (RHS == 0) return 0; -    } -     -    // Merge LHS/RHS. -    LHS = new BinaryExprAST(BinOp, LHS, RHS); -  } -} - -/// expression -///   ::= unary binoprhs -/// -static ExprAST *ParseExpression() { -  ExprAST *LHS = ParseUnary(); -  if (!LHS) return 0; -   -  return ParseBinOpRHS(0, LHS); -} - -/// prototype -///   ::= id '(' id* ')' -///   ::= binary LETTER number? (id, id) -///   ::= unary LETTER (id) -static PrototypeAST *ParsePrototype() { -  std::string FnName; -   -  unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. -  unsigned BinaryPrecedence = 30; -   -  switch (CurTok) { -  default: -    return ErrorP("Expected function name in prototype"); -  case tok_identifier: -    FnName = IdentifierStr; -    Kind = 0; -    getNextToken(); -    break; -  case tok_unary: -    getNextToken(); -    if (!isascii(CurTok)) -      return ErrorP("Expected unary operator"); -    FnName = "unary"; -    FnName += (char)CurTok; -    Kind = 1; -    getNextToken(); -    break; -  case tok_binary: -    getNextToken(); -    if (!isascii(CurTok)) -      return ErrorP("Expected binary operator"); -    FnName = "binary"; -    FnName += (char)CurTok; -    Kind = 2; -    getNextToken(); -     -    // Read the precedence if present. -    if (CurTok == tok_number) { -      if (NumVal < 1 || NumVal > 100) -        return ErrorP("Invalid precedecnce: must be 1..100"); -      BinaryPrecedence = (unsigned)NumVal; -      getNextToken(); -    } -    break; -  } -   -  if (CurTok != '(') -    return ErrorP("Expected '(' in prototype"); -   -  std::vector<std::string> ArgNames; -  while (getNextToken() == tok_identifier) -    ArgNames.push_back(IdentifierStr); -  if (CurTok != ')') -    return ErrorP("Expected ')' in prototype"); -   -  // success. -  getNextToken();  // eat ')'. -   -  // Verify right number of names for operator. -  if (Kind && ArgNames.size() != Kind) -    return ErrorP("Invalid number of operands for operator"); -   -  return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); -} - -/// definition ::= 'def' prototype expression -static FunctionAST *ParseDefinition() { -  getNextToken();  // eat def. -  PrototypeAST *Proto = ParsePrototype(); -  if (Proto == 0) return 0; - -  if (ExprAST *E = ParseExpression()) -    return new FunctionAST(Proto, E); -  return 0; -} - -/// toplevelexpr ::= expression -static FunctionAST *ParseTopLevelExpr() { -  if (ExprAST *E = ParseExpression()) { -    // Make an anonymous proto. -    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); -    return new FunctionAST(Proto, E); -  } -  return 0; -} - -/// external ::= 'extern' prototype -static PrototypeAST *ParseExtern() { -  getNextToken();  // eat extern. -  return ParsePrototype(); -} - -//===----------------------------------------------------------------------===// -// Code Generation -//===----------------------------------------------------------------------===// - -static Module *TheModule; -static IRBuilder<> Builder(getGlobalContext()); -static std::map<std::string, AllocaInst*> NamedValues; -static FunctionPassManager *TheFPM; - -Value *ErrorV(const char *Str) { Error(Str); return 0; } - -/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of -/// the function.  This is used for mutable variables etc. -static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, -                                          const std::string &VarName) { -  IRBuilder<> TmpB(&TheFunction->getEntryBlock(), -                 TheFunction->getEntryBlock().begin()); -  return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, -                           VarName.c_str()); -} - -Value *NumberExprAST::Codegen() { -  return ConstantFP::get(getGlobalContext(), APFloat(Val)); -} - -Value *VariableExprAST::Codegen() { -  // Look this variable up in the function. -  Value *V = NamedValues[Name]; -  if (V == 0) return ErrorV("Unknown variable name"); - -  // Load the value. -  return Builder.CreateLoad(V, Name.c_str()); -} - -Value *UnaryExprAST::Codegen() { -  Value *OperandV = Operand->Codegen(); -  if (OperandV == 0) return 0; -   -  Function *F = TheModule->getFunction(std::string("unary")+Opcode); -  if (F == 0) -    return ErrorV("Unknown unary operator"); -   -  return Builder.CreateCall(F, OperandV, "unop"); -} - -Value *BinaryExprAST::Codegen() { -  // Special case '=' because we don't want to emit the LHS as an expression. -  if (Op == '=') { -    // Assignment requires the LHS to be an identifier. -    VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); -    if (!LHSE) -      return ErrorV("destination of '=' must be a variable"); -    // Codegen the RHS. -    Value *Val = RHS->Codegen(); -    if (Val == 0) return 0; - -    // Look up the name. -    Value *Variable = NamedValues[LHSE->getName()]; -    if (Variable == 0) return ErrorV("Unknown variable name"); - -    Builder.CreateStore(Val, Variable); -    return Val; -  } -   -  Value *L = LHS->Codegen(); -  Value *R = RHS->Codegen(); -  if (L == 0 || R == 0) return 0; -   -  switch (Op) { -  case '+': return Builder.CreateFAdd(L, R, "addtmp"); -  case '-': return Builder.CreateFSub(L, R, "subtmp"); -  case '*': return Builder.CreateFMul(L, R, "multmp"); -  case '<': -    L = Builder.CreateFCmpULT(L, R, "cmptmp"); -    // Convert bool 0/1 to double 0.0 or 1.0 -    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), -                                "booltmp"); -  default: break; -  } -   -  // If it wasn't a builtin binary operator, it must be a user defined one. Emit -  // a call to it. -  Function *F = TheModule->getFunction(std::string("binary")+Op); -  assert(F && "binary operator not found!"); -   -  Value *Ops[2] = { L, R }; -  return Builder.CreateCall(F, Ops, "binop"); -} - -Value *CallExprAST::Codegen() { -  // Look up the name in the global module table. -  Function *CalleeF = TheModule->getFunction(Callee); -  if (CalleeF == 0) -    return ErrorV("Unknown function referenced"); -   -  // If argument mismatch error. -  if (CalleeF->arg_size() != Args.size()) -    return ErrorV("Incorrect # arguments passed"); - -  std::vector<Value*> ArgsV; -  for (unsigned i = 0, e = Args.size(); i != e; ++i) { -    ArgsV.push_back(Args[i]->Codegen()); -    if (ArgsV.back() == 0) return 0; -  } -   -  return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); -} - -Value *IfExprAST::Codegen() { -  Value *CondV = Cond->Codegen(); -  if (CondV == 0) return 0; -   -  // Convert condition to a bool by comparing equal to 0.0. -  CondV = Builder.CreateFCmpONE(CondV,  -                              ConstantFP::get(getGlobalContext(), APFloat(0.0)), -                                "ifcond"); -   -  Function *TheFunction = Builder.GetInsertBlock()->getParent(); -   -  // Create blocks for the then and else cases.  Insert the 'then' block at the -  // end of the function. -  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); -  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); -  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); -   -  Builder.CreateCondBr(CondV, ThenBB, ElseBB); -   -  // Emit then value. -  Builder.SetInsertPoint(ThenBB); -   -  Value *ThenV = Then->Codegen(); -  if (ThenV == 0) return 0; -   -  Builder.CreateBr(MergeBB); -  // Codegen of 'Then' can change the current block, update ThenBB for the PHI. -  ThenBB = Builder.GetInsertBlock(); -   -  // Emit else block. -  TheFunction->getBasicBlockList().push_back(ElseBB); -  Builder.SetInsertPoint(ElseBB); -   -  Value *ElseV = Else->Codegen(); -  if (ElseV == 0) return 0; -   -  Builder.CreateBr(MergeBB); -  // Codegen of 'Else' can change the current block, update ElseBB for the PHI. -  ElseBB = Builder.GetInsertBlock(); -   -  // Emit merge block. -  TheFunction->getBasicBlockList().push_back(MergeBB); -  Builder.SetInsertPoint(MergeBB); -  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, -                                  "iftmp"); -   -  PN->addIncoming(ThenV, ThenBB); -  PN->addIncoming(ElseV, ElseBB); -  return PN; -} - -Value *ForExprAST::Codegen() { -  // Output this as: -  //   var = alloca double -  //   ... -  //   start = startexpr -  //   store start -> var -  //   goto loop -  // loop:  -  //   ... -  //   bodyexpr -  //   ... -  // loopend: -  //   step = stepexpr -  //   endcond = endexpr -  // -  //   curvar = load var -  //   nextvar = curvar + step -  //   store nextvar -> var -  //   br endcond, loop, endloop -  // outloop: -   -  Function *TheFunction = Builder.GetInsertBlock()->getParent(); - -  // Create an alloca for the variable in the entry block. -  AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); -   -  // Emit the start code first, without 'variable' in scope. -  Value *StartVal = Start->Codegen(); -  if (StartVal == 0) return 0; -   -  // Store the value into the alloca. -  Builder.CreateStore(StartVal, Alloca); -   -  // Make the new basic block for the loop header, inserting after current -  // block. -  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); -   -  // Insert an explicit fall through from the current block to the LoopBB. -  Builder.CreateBr(LoopBB); - -  // Start insertion in LoopBB. -  Builder.SetInsertPoint(LoopBB); -   -  // Within the loop, the variable is defined equal to the PHI node.  If it -  // shadows an existing variable, we have to restore it, so save it now. -  AllocaInst *OldVal = NamedValues[VarName]; -  NamedValues[VarName] = Alloca; -   -  // Emit the body of the loop.  This, like any other expr, can change the -  // current BB.  Note that we ignore the value computed by the body, but don't -  // allow an error. -  if (Body->Codegen() == 0) -    return 0; -   -  // Emit the step value. -  Value *StepVal; -  if (Step) { -    StepVal = Step->Codegen(); -    if (StepVal == 0) return 0; -  } else { -    // If not specified, use 1.0. -    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); -  } -   -  // Compute the end condition. -  Value *EndCond = End->Codegen(); -  if (EndCond == 0) return EndCond; -   -  // Reload, increment, and restore the alloca.  This handles the case where -  // the body of the loop mutates the variable. -  Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); -  Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); -  Builder.CreateStore(NextVar, Alloca); -   -  // Convert condition to a bool by comparing equal to 0.0. -  EndCond = Builder.CreateFCmpONE(EndCond,  -                              ConstantFP::get(getGlobalContext(), APFloat(0.0)), -                                  "loopcond"); -   -  // Create the "after loop" block and insert it. -  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); -   -  // Insert the conditional branch into the end of LoopEndBB. -  Builder.CreateCondBr(EndCond, LoopBB, AfterBB); -   -  // Any new code will be inserted in AfterBB. -  Builder.SetInsertPoint(AfterBB); -   -  // Restore the unshadowed variable. -  if (OldVal) -    NamedValues[VarName] = OldVal; -  else -    NamedValues.erase(VarName); - -   -  // for expr always returns 0.0. -  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); -} - -Value *VarExprAST::Codegen() { -  std::vector<AllocaInst *> OldBindings; -   -  Function *TheFunction = Builder.GetInsertBlock()->getParent(); - -  // Register all variables and emit their initializer. -  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { -    const std::string &VarName = VarNames[i].first; -    ExprAST *Init = VarNames[i].second; -     -    // Emit the initializer before adding the variable to scope, this prevents -    // the initializer from referencing the variable itself, and permits stuff -    // like this: -    //  var a = 1 in -    //    var a = a in ...   # refers to outer 'a'. -    Value *InitVal; -    if (Init) { -      InitVal = Init->Codegen(); -      if (InitVal == 0) return 0; -    } else { // If not specified, use 0.0. -      InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); -    } -     -    AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); -    Builder.CreateStore(InitVal, Alloca); - -    // Remember the old variable binding so that we can restore the binding when -    // we unrecurse. -    OldBindings.push_back(NamedValues[VarName]); -     -    // Remember this binding. -    NamedValues[VarName] = Alloca; -  } -   -  // Codegen the body, now that all vars are in scope. -  Value *BodyVal = Body->Codegen(); -  if (BodyVal == 0) return 0; -   -  // Pop all our variables from scope. -  for (unsigned i = 0, e = VarNames.size(); i != e; ++i) -    NamedValues[VarNames[i].first] = OldBindings[i]; - -  // Return the body computation. -  return BodyVal; -} - -Function *PrototypeAST::Codegen() { -  // Make the function type:  double(double,double) etc. -  std::vector<Type*> Doubles(Args.size(), -                             Type::getDoubleTy(getGlobalContext())); -  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), -                                       Doubles, false); -   -  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); -   -  // If F conflicted, there was already something named 'Name'.  If it has a -  // body, don't allow redefinition or reextern. -  if (F->getName() != Name) { -    // Delete the one we just made and get the existing one. -    F->eraseFromParent(); -    F = TheModule->getFunction(Name); -     -    // If F already has a body, reject this. -    if (!F->empty()) { -      ErrorF("redefinition of function"); -      return 0; -    } -     -    // If F took a different number of args, reject. -    if (F->arg_size() != Args.size()) { -      ErrorF("redefinition of function with different # args"); -      return 0; -    } -  } -   -  // Set names for all arguments. -  unsigned Idx = 0; -  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); -       ++AI, ++Idx) -    AI->setName(Args[Idx]); -     -  return F; -} - -/// CreateArgumentAllocas - Create an alloca for each argument and register the -/// argument in the symbol table so that references to it will succeed. -void PrototypeAST::CreateArgumentAllocas(Function *F) { -  Function::arg_iterator AI = F->arg_begin(); -  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { -    // Create an alloca for this variable. -    AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); - -    // Store the initial value into the alloca. -    Builder.CreateStore(AI, Alloca); - -    // Add arguments to variable symbol table. -    NamedValues[Args[Idx]] = Alloca; -  } -} - -Function *FunctionAST::Codegen() { -  NamedValues.clear(); -   -  Function *TheFunction = Proto->Codegen(); -  if (TheFunction == 0) -    return 0; -   -  // If this is an operator, install it. -  if (Proto->isBinaryOp()) -    BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); -   -  // Create a new basic block to start insertion into. -  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); -  Builder.SetInsertPoint(BB); -   -  // Add all arguments to the symbol table and create their allocas. -  Proto->CreateArgumentAllocas(TheFunction); - -  if (Value *RetVal = Body->Codegen()) { -    // Finish off the function. -    Builder.CreateRet(RetVal); - -    // Validate the generated code, checking for consistency. -    verifyFunction(*TheFunction); - -    // Optimize the function. -    TheFPM->run(*TheFunction); -     -    return TheFunction; -  } -   -  // Error reading body, remove function. -  TheFunction->eraseFromParent(); - -  if (Proto->isBinaryOp()) -    BinopPrecedence.erase(Proto->getOperatorName()); -  return 0; -} - -//===----------------------------------------------------------------------===// -// Top-Level parsing and JIT Driver -//===----------------------------------------------------------------------===// - -static ExecutionEngine *TheExecutionEngine; - -static void HandleDefinition() { -  if (FunctionAST *F = ParseDefinition()) { -    if (Function *LF = F->Codegen()) { -      fprintf(stderr, "Read function definition:"); -      LF->dump(); -    } -  } else { -    // Skip token for error recovery. -    getNextToken(); -  } -} - -static void HandleExtern() { -  if (PrototypeAST *P = ParseExtern()) { -    if (Function *F = P->Codegen()) { -      fprintf(stderr, "Read extern: "); -      F->dump(); -    } -  } else { -    // Skip token for error recovery. -    getNextToken(); -  } -} - -static void HandleTopLevelExpression() { -  // Evaluate a top-level expression into an anonymous function. -  if (FunctionAST *F = ParseTopLevelExpr()) { -    if (Function *LF = F->Codegen()) { -      // JIT the function, returning a function pointer. -      void *FPtr = TheExecutionEngine->getPointerToFunction(LF); -       -      // Cast it to the right type (takes no arguments, returns a double) so we -      // can call it as a native function. -      double (*FP)() = (double (*)())(intptr_t)FPtr; -      fprintf(stderr, "Evaluated to %f\n", FP()); -    } -  } else { -    // Skip token for error recovery. -    getNextToken(); -  } -} - -/// top ::= definition | external | expression | ';' -static void MainLoop() { -  while (1) { -    fprintf(stderr, "ready> "); -    switch (CurTok) { -    case tok_eof:    return; -    case ';':        getNextToken(); break;  // ignore top-level semicolons. -    case tok_def:    HandleDefinition(); break; -    case tok_extern: HandleExtern(); break; -    default:         HandleTopLevelExpression(); break; -    } -  } -} - -//===----------------------------------------------------------------------===// -// "Library" functions that can be "extern'd" from user code. -//===----------------------------------------------------------------------===// - -/// putchard - putchar that takes a double and returns 0. -extern "C"  -double putchard(double X) { -  putchar((char)X); -  return 0; -} - -/// printd - printf that takes a double prints it as "%f\n", returning 0. -extern "C"  -double printd(double X) { -  printf("%f\n", X); -  return 0; -} - -//===----------------------------------------------------------------------===// -// Main driver code. -//===----------------------------------------------------------------------===// - -int main() { -  InitializeNativeTarget(); -  LLVMContext &Context = getGlobalContext(); - -  // Install standard binary operators. -  // 1 is lowest precedence. -  BinopPrecedence['='] = 2; -  BinopPrecedence['<'] = 10; -  BinopPrecedence['+'] = 20; -  BinopPrecedence['-'] = 20; -  BinopPrecedence['*'] = 40;  // highest. - -  // Prime the first token. -  fprintf(stderr, "ready> "); -  getNextToken(); - -  // Make the module, which holds all the code. -  TheModule = new Module("my cool jit", Context); - -  // Create the JIT.  This takes ownership of the module. -  std::string ErrStr; -  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); -  if (!TheExecutionEngine) { -    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); -    exit(1); -  } - -  FunctionPassManager OurFPM(TheModule); - -  // Set up the optimizer pipeline.  Start with registering info about how the -  // target lays out data structures. -  OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); -  // Provide basic AliasAnalysis support for GVN. -  OurFPM.add(createBasicAliasAnalysisPass()); -  // Promote allocas to registers. -  OurFPM.add(createPromoteMemoryToRegisterPass()); -  // Do simple "peephole" optimizations and bit-twiddling optzns. -  OurFPM.add(createInstructionCombiningPass()); -  // Reassociate expressions. -  OurFPM.add(createReassociatePass()); -  // Eliminate Common SubExpressions. -  OurFPM.add(createGVNPass()); -  // Simplify the control flow graph (deleting unreachable blocks, etc). -  OurFPM.add(createCFGSimplificationPass()); - -  OurFPM.doInitialization(); - -  // Set the global so the code gen can use this. -  TheFPM = &OurFPM; - -  // Run the main "interpreter loop" now. -  MainLoop(); - -  TheFPM = 0; - -  // Print out all of the generated code. -  TheModule->dump(); - -  return 0; -} -</pre> -</div> - -<a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a> -</div> - -<!-- *********************************************************************** --> -<hr> -<address> -  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img -  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> -  <a href="http://validator.w3.org/check/referer"><img -  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> - -  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> -  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> -  Last modified: $Date: 2012-10-08 18:39:34 +0200 (Mon, 08 Oct 2012) $ -</address> -</body> -</html> | 
