diff options
Diffstat (limited to 'gnu/gcc2/lib/optabs.c')
| -rw-r--r-- | gnu/gcc2/lib/optabs.c | 3614 |
1 files changed, 0 insertions, 3614 deletions
diff --git a/gnu/gcc2/lib/optabs.c b/gnu/gcc2/lib/optabs.c deleted file mode 100644 index 9f37c5233a4a..000000000000 --- a/gnu/gcc2/lib/optabs.c +++ /dev/null @@ -1,3614 +0,0 @@ -/* Expand the basic unary and binary arithmetic operations, for GNU compiler. - Copyright (C) 1987, 1988, 1992 Free Software Foundation, Inc. - -This file is part of GNU CC. - -GNU CC is free software; you can redistribute it and/or modify -it under the terms of the GNU General Public License as published by -the Free Software Foundation; either version 2, or (at your option) -any later version. - -GNU CC is distributed in the hope that it will be useful, -but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with GNU CC; see the file COPYING. If not, write to -the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ - - -#include "config.h" -#include "rtl.h" -#include "tree.h" -#include "flags.h" -#include "insn-flags.h" -#include "insn-codes.h" -#include "expr.h" -#include "insn-config.h" -#include "recog.h" -#include "reload.h" -#include <ctype.h> - -/* Each optab contains info on how this target machine - can perform a particular operation - for all sizes and kinds of operands. - - The operation to be performed is often specified - by passing one of these optabs as an argument. - - See expr.h for documentation of these optabs. */ - -optab add_optab; -optab sub_optab; -optab smul_optab; -optab smul_widen_optab; -optab umul_widen_optab; -optab sdiv_optab; -optab sdivmod_optab; -optab udiv_optab; -optab udivmod_optab; -optab smod_optab; -optab umod_optab; -optab flodiv_optab; -optab ftrunc_optab; -optab and_optab; -optab ior_optab; -optab xor_optab; -optab ashl_optab; -optab lshr_optab; -optab lshl_optab; -optab ashr_optab; -optab rotl_optab; -optab rotr_optab; -optab smin_optab; -optab smax_optab; -optab umin_optab; -optab umax_optab; - -optab mov_optab; -optab movstrict_optab; - -optab neg_optab; -optab abs_optab; -optab one_cmpl_optab; -optab ffs_optab; -optab sqrt_optab; -optab sin_optab; -optab cos_optab; - -optab cmp_optab; -optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */ -optab tst_optab; - -optab strlen_optab; - -/* Tables of patterns for extending one integer mode to another. */ -enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2]; - -/* Tables of patterns for converting between fixed and floating point. */ -enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; -enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; -enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2]; - -/* SYMBOL_REF rtx's for the library functions that are called - implicitly and not via optabs. */ - -rtx extendsfdf2_libfunc; -rtx extendsfxf2_libfunc; -rtx extendsftf2_libfunc; -rtx extenddfxf2_libfunc; -rtx extenddftf2_libfunc; - -rtx truncdfsf2_libfunc; -rtx truncxfsf2_libfunc; -rtx trunctfsf2_libfunc; -rtx truncxfdf2_libfunc; -rtx trunctfdf2_libfunc; - -rtx memcpy_libfunc; -rtx bcopy_libfunc; -rtx memcmp_libfunc; -rtx bcmp_libfunc; -rtx memset_libfunc; -rtx bzero_libfunc; - -rtx eqsf2_libfunc; -rtx nesf2_libfunc; -rtx gtsf2_libfunc; -rtx gesf2_libfunc; -rtx ltsf2_libfunc; -rtx lesf2_libfunc; - -rtx eqdf2_libfunc; -rtx nedf2_libfunc; -rtx gtdf2_libfunc; -rtx gedf2_libfunc; -rtx ltdf2_libfunc; -rtx ledf2_libfunc; - -rtx eqxf2_libfunc; -rtx nexf2_libfunc; -rtx gtxf2_libfunc; -rtx gexf2_libfunc; -rtx ltxf2_libfunc; -rtx lexf2_libfunc; - -rtx eqtf2_libfunc; -rtx netf2_libfunc; -rtx gttf2_libfunc; -rtx getf2_libfunc; -rtx lttf2_libfunc; -rtx letf2_libfunc; - -rtx floatsisf_libfunc; -rtx floatdisf_libfunc; -rtx floattisf_libfunc; - -rtx floatsidf_libfunc; -rtx floatdidf_libfunc; -rtx floattidf_libfunc; - -rtx floatsixf_libfunc; -rtx floatdixf_libfunc; -rtx floattixf_libfunc; - -rtx floatsitf_libfunc; -rtx floatditf_libfunc; -rtx floattitf_libfunc; - -rtx fixsfsi_libfunc; -rtx fixsfdi_libfunc; -rtx fixsfti_libfunc; - -rtx fixdfsi_libfunc; -rtx fixdfdi_libfunc; -rtx fixdfti_libfunc; - -rtx fixxfsi_libfunc; -rtx fixxfdi_libfunc; -rtx fixxfti_libfunc; - -rtx fixtfsi_libfunc; -rtx fixtfdi_libfunc; -rtx fixtfti_libfunc; - -rtx fixunssfsi_libfunc; -rtx fixunssfdi_libfunc; -rtx fixunssfti_libfunc; - -rtx fixunsdfsi_libfunc; -rtx fixunsdfdi_libfunc; -rtx fixunsdfti_libfunc; - -rtx fixunsxfsi_libfunc; -rtx fixunsxfdi_libfunc; -rtx fixunsxfti_libfunc; - -rtx fixunstfsi_libfunc; -rtx fixunstfdi_libfunc; -rtx fixunstfti_libfunc; - -/* from emit-rtl.c */ -extern rtx gen_highpart (); - -/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) - gives the gen_function to make a branch to test that condition. */ - -rtxfun bcc_gen_fctn[NUM_RTX_CODE]; - -/* Indexed by the rtx-code for a conditional (eg. EQ, LT,...) - gives the insn code to make a store-condition insn - to test that condition. */ - -enum insn_code setcc_gen_code[NUM_RTX_CODE]; - -static int add_equal_note PROTO((rtx, rtx, enum rtx_code, rtx, rtx)); -static void emit_float_lib_cmp PROTO((rtx, rtx, enum rtx_code)); -static enum insn_code can_fix_p PROTO((enum machine_mode, enum machine_mode, - int, int *)); -static enum insn_code can_float_p PROTO((enum machine_mode, enum machine_mode, - int)); -static rtx ftruncify PROTO((rtx)); -static optab init_optab PROTO((enum rtx_code)); -static void init_libfuncs PROTO((optab, int, int, char *, int)); -static void init_integral_libfuncs PROTO((optab, char *, int)); -static void init_floating_libfuncs PROTO((optab, char *, int)); -static void init_complex_libfuncs PROTO((optab, char *, int)); - -/* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to - the result of operation CODE applied to OP0 (and OP1 if it is a binary - operation). - - If the last insn does not set TARGET, don't do anything, but return 1. - - If a previous insn sets TARGET and TARGET is one of OP0 or OP1, - don't add the REG_EQUAL note but return 0. Our caller can then try - again, ensuring that TARGET is not one of the operands. */ - -static int -add_equal_note (seq, target, code, op0, op1) - rtx seq; - rtx target; - enum rtx_code code; - rtx op0, op1; -{ - rtx set; - int i; - rtx note; - - if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2' - && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<') - || GET_CODE (seq) != SEQUENCE - || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0 - || GET_CODE (target) == ZERO_EXTRACT - || (! rtx_equal_p (SET_DEST (set), target) - /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the - SUBREG. */ - && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART - || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)), - target)))) - return 1; - - /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET - besides the last insn. */ - if (reg_overlap_mentioned_p (target, op0) - || (op1 && reg_overlap_mentioned_p (target, op1))) - for (i = XVECLEN (seq, 0) - 2; i >= 0; i--) - if (reg_set_p (target, XVECEXP (seq, 0, i))) - return 0; - - if (GET_RTX_CLASS (code) == '1') - note = gen_rtx (code, GET_MODE (target), copy_rtx (op0)); - else - note = gen_rtx (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1)); - - REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)) - = gen_rtx (EXPR_LIST, REG_EQUAL, note, - REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))); - - return 1; -} - -/* Generate code to perform an operation specified by BINOPTAB - on operands OP0 and OP1, with result having machine-mode MODE. - - UNSIGNEDP is for the case where we have to widen the operands - to perform the operation. It says to use zero-extension. - - If TARGET is nonzero, the value - is generated there, if it is convenient to do so. - In all cases an rtx is returned for the locus of the value; - this may or may not be TARGET. */ - -rtx -expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods) - enum machine_mode mode; - optab binoptab; - rtx op0, op1; - rtx target; - int unsignedp; - enum optab_methods methods; -{ - enum mode_class class; - enum machine_mode wider_mode; - register rtx temp; - int commutative_op = 0; - int shift_op = (binoptab->code == ASHIFT - || binoptab->code == ASHIFTRT - || binoptab->code == LSHIFT - || binoptab->code == LSHIFTRT - || binoptab->code == ROTATE - || binoptab->code == ROTATERT); - rtx entry_last = get_last_insn (); - rtx last; - - class = GET_MODE_CLASS (mode); - - op0 = protect_from_queue (op0, 0); - op1 = protect_from_queue (op1, 0); - if (target) - target = protect_from_queue (target, 1); - - if (flag_force_mem) - { - op0 = force_not_mem (op0); - op1 = force_not_mem (op1); - } - - /* If subtracting an integer constant, convert this into an addition of - the negated constant. */ - - if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT) - { - op1 = negate_rtx (mode, op1); - binoptab = add_optab; - } - - /* If we are inside an appropriately-short loop and one operand is an - expensive constant, force it into a register. */ - if (CONSTANT_P (op0) && preserve_subexpressions_p () - && rtx_cost (op0, binoptab->code) > 2) - op0 = force_reg (mode, op0); - - if (CONSTANT_P (op1) && preserve_subexpressions_p () - && rtx_cost (op1, binoptab->code) > 2) - op1 = force_reg (shift_op ? word_mode : mode, op1); - - /* Record where to delete back to if we backtrack. */ - last = get_last_insn (); - - /* If operation is commutative, - try to make the first operand a register. - Even better, try to make it the same as the target. - Also try to make the last operand a constant. */ - if (GET_RTX_CLASS (binoptab->code) == 'c' - || binoptab == smul_widen_optab - || binoptab == umul_widen_optab) - { - commutative_op = 1; - - if (((target == 0 || GET_CODE (target) == REG) - ? ((GET_CODE (op1) == REG - && GET_CODE (op0) != REG) - || target == op1) - : rtx_equal_p (op1, target)) - || GET_CODE (op0) == CONST_INT) - { - temp = op1; - op1 = op0; - op0 = temp; - } - } - - /* If we can do it with a three-operand insn, do so. */ - - if (methods != OPTAB_MUST_WIDEN - && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - int icode = (int) binoptab->handlers[(int) mode].insn_code; - enum machine_mode mode0 = insn_operand_mode[icode][1]; - enum machine_mode mode1 = insn_operand_mode[icode][2]; - rtx pat; - rtx xop0 = op0, xop1 = op1; - - if (target) - temp = target; - else - temp = gen_reg_rtx (mode); - - /* If it is a commutative operator and the modes would match - if we would swap the operands, we can save the conversions. */ - if (commutative_op) - { - if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1 - && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0) - { - register rtx tmp; - - tmp = op0; op0 = op1; op1 = tmp; - tmp = xop0; xop0 = xop1; xop1 = tmp; - } - } - - /* In case the insn wants input operands in modes different from - the result, convert the operands. */ - - if (GET_MODE (op0) != VOIDmode - && GET_MODE (op0) != mode0) - xop0 = convert_to_mode (mode0, xop0, unsignedp); - - if (GET_MODE (xop1) != VOIDmode - && GET_MODE (xop1) != mode1) - xop1 = convert_to_mode (mode1, xop1, unsignedp); - - /* Now, if insn's predicates don't allow our operands, put them into - pseudo regs. */ - - if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) - xop0 = copy_to_mode_reg (mode0, xop0); - - if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) - xop1 = copy_to_mode_reg (mode1, xop1); - - if (! (*insn_operand_predicate[icode][0]) (temp, mode)) - temp = gen_reg_rtx (mode); - - pat = GEN_FCN (icode) (temp, xop0, xop1); - if (pat) - { - /* If PAT is a multi-insn sequence, try to add an appropriate - REG_EQUAL note to it. If we can't because TEMP conflicts with an - operand, call ourselves again, this time without a target. */ - if (GET_CODE (pat) == SEQUENCE - && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1)) - { - delete_insns_since (last); - return expand_binop (mode, binoptab, op0, op1, NULL_RTX, - unsignedp, methods); - } - - emit_insn (pat); - return temp; - } - else - delete_insns_since (last); - } - - /* If this is a multiply, see if we can do a widening operation that - takes operands of this mode and makes a wider mode. */ - - if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode - && (((unsignedp ? umul_widen_optab : smul_widen_optab) - ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code) - != CODE_FOR_nothing)) - { - temp = expand_binop (GET_MODE_WIDER_MODE (mode), - unsignedp ? umul_widen_optab : smul_widen_optab, - op0, op1, 0, unsignedp, OPTAB_DIRECT); - - if (GET_MODE_CLASS (mode) == MODE_INT) - return gen_lowpart (mode, temp); - else - return convert_to_mode (mode, temp, unsignedp); - } - - /* Look for a wider mode of the same class for which we think we - can open-code the operation. Check for a widening multiply at the - wider mode as well. */ - - if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) - && methods != OPTAB_DIRECT && methods != OPTAB_LIB) - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing - || (binoptab == smul_optab - && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode - && (((unsignedp ? umul_widen_optab : smul_widen_optab) - ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code) - != CODE_FOR_nothing))) - { - rtx xop0 = op0, xop1 = op1; - int no_extend = 0; - - /* For certain integer operations, we need not actually extend - the narrow operands, as long as we will truncate - the results to the same narrowness. Don't do this when - WIDER_MODE is wider than a word since a paradoxical SUBREG - isn't valid for such modes. */ - - if ((binoptab == ior_optab || binoptab == and_optab - || binoptab == xor_optab - || binoptab == add_optab || binoptab == sub_optab - || binoptab == smul_optab - || binoptab == ashl_optab || binoptab == lshl_optab) - && class == MODE_INT - && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD) - no_extend = 1; - - /* If an operand is a constant integer, we might as well - convert it since that is more efficient than using a SUBREG, - unlike the case for other operands. Similarly for - SUBREGs that were made due to promoted objects. */ - - if (no_extend && GET_MODE (xop0) != VOIDmode - && ! (GET_CODE (xop0) == SUBREG - && SUBREG_PROMOTED_VAR_P (xop0))) - xop0 = gen_rtx (SUBREG, wider_mode, - force_reg (GET_MODE (xop0), xop0), 0); - else - xop0 = convert_to_mode (wider_mode, xop0, unsignedp); - - if (no_extend && GET_MODE (xop1) != VOIDmode - && ! (GET_CODE (xop1) == SUBREG - && SUBREG_PROMOTED_VAR_P (xop1))) - xop1 = gen_rtx (SUBREG, wider_mode, - force_reg (GET_MODE (xop1), xop1), 0); - else - xop1 = convert_to_mode (wider_mode, xop1, unsignedp); - - temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, - unsignedp, OPTAB_DIRECT); - if (temp) - { - if (class != MODE_INT) - { - if (target == 0) - target = gen_reg_rtx (mode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (mode, temp); - } - else - delete_insns_since (last); - } - } - - /* These can be done a word at a time. */ - if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab) - && class == MODE_INT - && GET_MODE_SIZE (mode) > UNITS_PER_WORD - && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) - { - int i; - rtx insns; - rtx equiv_value; - - /* If TARGET is the same as one of the operands, the REG_EQUAL note - won't be accurate, so use a new target. */ - if (target == 0 || target == op0 || target == op1) - target = gen_reg_rtx (mode); - - start_sequence (); - - /* Do the actual arithmetic. */ - for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) - { - rtx target_piece = operand_subword (target, i, 1, mode); - rtx x = expand_binop (word_mode, binoptab, - operand_subword_force (op0, i, mode), - operand_subword_force (op1, i, mode), - target_piece, unsignedp, methods); - if (target_piece != x) - emit_move_insn (target_piece, x); - } - - insns = get_insns (); - end_sequence (); - - if (binoptab->code != UNKNOWN) - equiv_value - = gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1)); - else - equiv_value = 0; - - emit_no_conflict_block (insns, target, op0, op1, equiv_value); - return target; - } - - /* These can be done a word at a time by propagating carries. */ - if ((binoptab == add_optab || binoptab == sub_optab) - && class == MODE_INT - && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD - && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) - { - int i; - rtx carry_tmp = gen_reg_rtx (word_mode); - optab otheroptab = binoptab == add_optab ? sub_optab : add_optab; - int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD; - rtx carry_in, carry_out; - rtx xop0, xop1; - - /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG - value is one of those, use it. Otherwise, use 1 since it is the - one easiest to get. */ -#if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1 - int normalizep = STORE_FLAG_VALUE; -#else - int normalizep = 1; -#endif - - /* Prepare the operands. */ - xop0 = force_reg (mode, op0); - xop1 = force_reg (mode, op1); - - if (target == 0 || GET_CODE (target) != REG - || target == xop0 || target == xop1) - target = gen_reg_rtx (mode); - - /* Indicate for flow that the entire target reg is being set. */ - if (GET_CODE (target) == REG) - emit_insn (gen_rtx (CLOBBER, VOIDmode, target)); - - /* Do the actual arithmetic. */ - for (i = 0; i < nwords; i++) - { - int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i); - rtx target_piece = operand_subword (target, index, 1, mode); - rtx op0_piece = operand_subword_force (xop0, index, mode); - rtx op1_piece = operand_subword_force (xop1, index, mode); - rtx x; - - /* Main add/subtract of the input operands. */ - x = expand_binop (word_mode, binoptab, - op0_piece, op1_piece, - target_piece, unsignedp, methods); - if (x == 0) - break; - - if (i + 1 < nwords) - { - /* Store carry from main add/subtract. */ - carry_out = gen_reg_rtx (word_mode); - carry_out = emit_store_flag (carry_out, - binoptab == add_optab ? LTU : GTU, - x, op0_piece, - word_mode, 1, normalizep); - if (!carry_out) - break; - } - - if (i > 0) - { - /* Add/subtract previous carry to main result. */ - x = expand_binop (word_mode, - normalizep == 1 ? binoptab : otheroptab, - x, carry_in, - target_piece, 1, methods); - if (target_piece != x) - emit_move_insn (target_piece, x); - - if (i + 1 < nwords) - { - /* THIS CODE HAS NOT BEEN TESTED. */ - /* Get out carry from adding/subtracting carry in. */ - carry_tmp = emit_store_flag (carry_tmp, - binoptab == add_optab - ? LTU : GTU, - x, carry_in, - word_mode, 1, normalizep); - /* Logical-ior the two poss. carry together. */ - carry_out = expand_binop (word_mode, ior_optab, - carry_out, carry_tmp, - carry_out, 0, methods); - if (!carry_out) - break; - } - } - - carry_in = carry_out; - } - - if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD) - { - rtx temp; - - temp = emit_move_insn (target, target); - REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, - gen_rtx (binoptab->code, mode, - copy_rtx (xop0), - copy_rtx (xop1)), - REG_NOTES (temp)); - return target; - } - else - delete_insns_since (last); - } - - /* If we want to multiply two two-word values and have normal and widening - multiplies of single-word values, we can do this with three smaller - multiplications. Note that we do not make a REG_NO_CONFLICT block here - because we are not operating on one word at a time. - - The multiplication proceeds as follows: - _______________________ - [__op0_high_|__op0_low__] - _______________________ - * [__op1_high_|__op1_low__] - _______________________________________________ - _______________________ - (1) [__op0_low__*__op1_low__] - _______________________ - (2a) [__op0_low__*__op1_high_] - _______________________ - (2b) [__op0_high_*__op1_low__] - _______________________ - (3) [__op0_high_*__op1_high_] - - - This gives a 4-word result. Since we are only interested in the - lower 2 words, partial result (3) and the upper words of (2a) and - (2b) don't need to be calculated. Hence (2a) and (2b) can be - calculated using non-widening multiplication. - - (1), however, needs to be calculated with an unsigned widening - multiplication. If this operation is not directly supported we - try using a signed widening multiplication and adjust the result. - This adjustment works as follows: - - If both operands are positive then no adjustment is needed. - - If the operands have different signs, for example op0_low < 0 and - op1_low >= 0, the instruction treats the most significant bit of - op0_low as a sign bit instead of a bit with significance - 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low - with 2**BITS_PER_WORD - op0_low, and two's complements the - result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to - the result. - - Similarly, if both operands are negative, we need to add - (op0_low + op1_low) * 2**BITS_PER_WORD. - - We use a trick to adjust quickly. We logically shift op0_low right - (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to - op0_high (op1_high) before it is used to calculate 2b (2a). If no - logical shift exists, we do an arithmetic right shift and subtract - the 0 or -1. */ - - if (binoptab == smul_optab - && class == MODE_INT - && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD - && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing - && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing - && ((umul_widen_optab->handlers[(int) mode].insn_code - != CODE_FOR_nothing) - || (smul_widen_optab->handlers[(int) mode].insn_code - != CODE_FOR_nothing))) - { - int low = (WORDS_BIG_ENDIAN ? 1 : 0); - int high = (WORDS_BIG_ENDIAN ? 0 : 1); - rtx op0_high = operand_subword_force (op0, high, mode); - rtx op0_low = operand_subword_force (op0, low, mode); - rtx op1_high = operand_subword_force (op1, high, mode); - rtx op1_low = operand_subword_force (op1, low, mode); - rtx product = 0; - rtx op0_xhigh; - rtx op1_xhigh; - - /* If the target is the same as one of the inputs, don't use it. This - prevents problems with the REG_EQUAL note. */ - if (target == op0 || target == op1) - target = 0; - - /* Multiply the two lower words to get a double-word product. - If unsigned widening multiplication is available, use that; - otherwise use the signed form and compensate. */ - - if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - product = expand_binop (mode, umul_widen_optab, op0_low, op1_low, - target, 1, OPTAB_DIRECT); - - /* If we didn't succeed, delete everything we did so far. */ - if (product == 0) - delete_insns_since (last); - else - op0_xhigh = op0_high, op1_xhigh = op1_high; - } - - if (product == 0 - && smul_widen_optab->handlers[(int) mode].insn_code - != CODE_FOR_nothing) - { - rtx wordm1 = GEN_INT (BITS_PER_WORD - 1); - product = expand_binop (mode, smul_widen_optab, op0_low, op1_low, - target, 1, OPTAB_DIRECT); - op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1, - NULL_RTX, 1, OPTAB_DIRECT); - if (op0_xhigh) - op0_xhigh = expand_binop (word_mode, add_optab, op0_high, - op0_xhigh, op0_xhigh, 0, OPTAB_DIRECT); - else - { - op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1, - NULL_RTX, 0, OPTAB_DIRECT); - if (op0_xhigh) - op0_xhigh = expand_binop (word_mode, sub_optab, op0_high, - op0_xhigh, op0_xhigh, 0, - OPTAB_DIRECT); - } - - op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1, - NULL_RTX, 1, OPTAB_DIRECT); - if (op1_xhigh) - op1_xhigh = expand_binop (word_mode, add_optab, op1_high, - op1_xhigh, op1_xhigh, 0, OPTAB_DIRECT); - else - { - op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1, - NULL_RTX, 0, OPTAB_DIRECT); - if (op1_xhigh) - op1_xhigh = expand_binop (word_mode, sub_optab, op1_high, - op1_xhigh, op1_xhigh, 0, - OPTAB_DIRECT); - } - } - - /* If we have been able to directly compute the product of the - low-order words of the operands and perform any required adjustments - of the operands, we proceed by trying two more multiplications - and then computing the appropriate sum. - - We have checked above that the required addition is provided. - Full-word addition will normally always succeed, especially if - it is provided at all, so we don't worry about its failure. The - multiplication may well fail, however, so we do handle that. */ - - if (product && op0_xhigh && op1_xhigh) - { - rtx product_piece; - rtx product_high = operand_subword (product, high, 1, mode); - rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh, - NULL_RTX, 0, OPTAB_DIRECT); - - if (temp) - { - product_piece = expand_binop (word_mode, add_optab, temp, - product_high, product_high, - 0, OPTAB_LIB_WIDEN); - if (product_piece != product_high) - emit_move_insn (product_high, product_piece); - - temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh, - NULL_RTX, 0, OPTAB_DIRECT); - - product_piece = expand_binop (word_mode, add_optab, temp, - product_high, product_high, - 0, OPTAB_LIB_WIDEN); - if (product_piece != product_high) - emit_move_insn (product_high, product_piece); - - temp = emit_move_insn (product, product); - REG_NOTES (temp) = gen_rtx (EXPR_LIST, REG_EQUAL, - gen_rtx (MULT, mode, copy_rtx (op0), - copy_rtx (op1)), - REG_NOTES (temp)); - - return product; - } - } - - /* If we get here, we couldn't do it for some reason even though we - originally thought we could. Delete anything we've emitted in - trying to do it. */ - - delete_insns_since (last); - } - - /* We need to open-code the complex type operations: '+, -, * and /' */ - - /* At this point we allow operations between two similar complex - numbers, and also if one of the operands is not a complex number - but rather of MODE_FLOAT or MODE_INT. However, the caller - must make sure that the MODE of the non-complex operand matches - the SUBMODE of the complex operand. */ - - if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT) - { - rtx real0 = (rtx) 0; - rtx imag0 = (rtx) 0; - rtx real1 = (rtx) 0; - rtx imag1 = (rtx) 0; - rtx realr; - rtx imagr; - rtx res; - rtx seq; - rtx equiv_value; - - /* Find the correct mode for the real and imaginary parts */ - enum machine_mode submode - = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT, - class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT, - 0); - - if (submode == BLKmode) - abort (); - - if (! target) - target = gen_reg_rtx (mode); - - start_sequence (); - - realr = gen_realpart (submode, target); - imagr = gen_imagpart (submode, target); - - if (GET_MODE (op0) == mode) - { - real0 = gen_realpart (submode, op0); - imag0 = gen_imagpart (submode, op0); - } - else - real0 = op0; - - if (GET_MODE (op1) == mode) - { - real1 = gen_realpart (submode, op1); - imag1 = gen_imagpart (submode, op1); - } - else - real1 = op1; - - if (! real0 || ! real1 || ! (imag0 || imag1)) - abort (); - - switch (binoptab->code) - { - case PLUS: - /* (a+ib) + (c+id) = (a+c) + i(b+d) */ - case MINUS: - /* (a+ib) - (c+id) = (a-c) + i(b-d) */ - res = expand_binop (submode, binoptab, real0, real1, - realr, unsignedp, methods); - if (res != realr) - emit_move_insn (realr, res); - - if (imag0 && imag1) - res = expand_binop (submode, binoptab, imag0, imag1, - imagr, unsignedp, methods); - else if (imag0) - res = imag0; - else if (binoptab->code == MINUS) - res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp); - else - res = imag1; - - if (res != imagr) - emit_move_insn (imagr, res); - break; - - case MULT: - /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */ - - if (imag0 && imag1) - { - /* Don't fetch these from memory more than once. */ - real0 = force_reg (submode, real0); - real1 = force_reg (submode, real1); - imag0 = force_reg (submode, imag0); - imag1 = force_reg (submode, imag1); - - res = expand_binop (submode, sub_optab, - expand_binop (submode, binoptab, real0, - real1, 0, unsignedp, methods), - expand_binop (submode, binoptab, imag0, - imag1, 0, unsignedp, methods), - realr, unsignedp, methods); - - if (res != realr) - emit_move_insn (realr, res); - - res = expand_binop (submode, add_optab, - expand_binop (submode, binoptab, - real0, imag1, - 0, unsignedp, methods), - expand_binop (submode, binoptab, - real1, imag0, - 0, unsignedp, methods), - imagr, unsignedp, methods); - if (res != imagr) - emit_move_insn (imagr, res); - } - else - { - /* Don't fetch these from memory more than once. */ - real0 = force_reg (submode, real0); - real1 = force_reg (submode, real1); - - res = expand_binop (submode, binoptab, real0, real1, - realr, unsignedp, methods); - if (res != realr) - emit_move_insn (realr, res); - - if (imag0) - res = expand_binop (submode, binoptab, - real1, imag0, imagr, unsignedp, methods); - else - res = expand_binop (submode, binoptab, - real0, imag1, imagr, unsignedp, methods); - if (res != imagr) - emit_move_insn (imagr, res); - } - break; - - case DIV: - /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */ - - if (! imag1) - { /* (a+ib) / (c+i0) = (a/c) + i(b/c) */ - - /* Don't fetch these from memory more than once. */ - real1 = force_reg (submode, real1); - - /* Simply divide the real and imaginary parts by `c' */ - res = expand_binop (submode, binoptab, real0, real1, - realr, unsignedp, methods); - if (res != realr) - emit_move_insn (realr, res); - - res = expand_binop (submode, binoptab, imag0, real1, - imagr, unsignedp, methods); - if (res != imagr) - emit_move_insn (imagr, res); - } - else /* Divisor is of complex type */ - { /* X/(a+ib) */ - - rtx divisor; - rtx real_t; - rtx imag_t; - - optab mulopt = unsignedp ? umul_widen_optab : smul_optab; - - /* Don't fetch these from memory more than once. */ - real0 = force_reg (submode, real0); - real1 = force_reg (submode, real1); - if (imag0) - imag0 = force_reg (submode, imag0); - imag1 = force_reg (submode, imag1); - - /* Divisor: c*c + d*d */ - divisor = expand_binop (submode, add_optab, - expand_binop (submode, mulopt, - real1, real1, - 0, unsignedp, methods), - expand_binop (submode, mulopt, - imag1, imag1, - 0, unsignedp, methods), - 0, unsignedp, methods); - - if (! imag0) /* ((a)(c-id))/divisor */ - { /* (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)) */ - /* Calculate the dividend */ - real_t = expand_binop (submode, mulopt, real0, real1, - 0, unsignedp, methods); - - imag_t - = expand_unop (submode, neg_optab, - expand_binop (submode, mulopt, real0, imag1, - 0, unsignedp, methods), - 0, unsignedp); - } - else /* ((a+ib)(c-id))/divider */ - { - /* Calculate the dividend */ - real_t = expand_binop (submode, add_optab, - expand_binop (submode, mulopt, - real0, real1, - 0, unsignedp, methods), - expand_binop (submode, mulopt, - imag0, imag1, - 0, unsignedp, methods), - 0, unsignedp, methods); - - imag_t = expand_binop (submode, sub_optab, - expand_binop (submode, mulopt, - imag0, real1, - 0, unsignedp, methods), - expand_binop (submode, mulopt, - real0, imag1, - 0, unsignedp, methods), - 0, unsignedp, methods); - - } - - res = expand_binop (submode, binoptab, real_t, divisor, - realr, unsignedp, methods); - if (res != realr) - emit_move_insn (realr, res); - - res = expand_binop (submode, binoptab, imag_t, divisor, - imagr, unsignedp, methods); - if (res != imagr) - emit_move_insn (imagr, res); - } - break; - - default: - abort (); - } - - seq = get_insns (); - end_sequence (); - - if (binoptab->code != UNKNOWN) - equiv_value - = gen_rtx (binoptab->code, mode, copy_rtx (op0), copy_rtx (op1)); - else - equiv_value = 0; - - emit_no_conflict_block (seq, target, op0, op1, equiv_value); - - return target; - } - - /* It can't be open-coded in this mode. - Use a library call if one is available and caller says that's ok. */ - - if (binoptab->handlers[(int) mode].libfunc - && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN)) - { - rtx insns; - rtx funexp = binoptab->handlers[(int) mode].libfunc; - rtx op1x = op1; - enum machine_mode op1_mode = mode; - - start_sequence (); - - if (shift_op) - { - op1_mode = word_mode; - /* Specify unsigned here, - since negative shift counts are meaningless. */ - op1x = convert_to_mode (word_mode, op1, 1); - } - - /* Pass 1 for NO_QUEUE so we don't lose any increments - if the libcall is cse'd or moved. */ - emit_library_call (binoptab->handlers[(int) mode].libfunc, - 1, mode, 2, op0, mode, op1x, op1_mode); - - insns = get_insns (); - end_sequence (); - - target = gen_reg_rtx (mode); - emit_libcall_block (insns, target, hard_libcall_value (mode), - gen_rtx (binoptab->code, mode, op0, op1)); - - return target; - } - - delete_insns_since (last); - - /* It can't be done in this mode. Can we do it in a wider mode? */ - - if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN - || methods == OPTAB_MUST_WIDEN)) - { - /* Caller says, don't even try. */ - delete_insns_since (entry_last); - return 0; - } - - /* Compute the value of METHODS to pass to recursive calls. - Don't allow widening to be tried recursively. */ - - methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT); - - /* Look for a wider mode of the same class for which it appears we can do - the operation. */ - - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) - { - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if ((binoptab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - || (methods == OPTAB_LIB - && binoptab->handlers[(int) wider_mode].libfunc)) - { - rtx xop0 = op0, xop1 = op1; - int no_extend = 0; - - /* For certain integer operations, we need not actually extend - the narrow operands, as long as we will truncate - the results to the same narrowness. Don't do this when - WIDER_MODE is wider than a word since a paradoxical SUBREG - isn't valid for such modes. */ - - if ((binoptab == ior_optab || binoptab == and_optab - || binoptab == xor_optab - || binoptab == add_optab || binoptab == sub_optab - || binoptab == smul_optab - || binoptab == ashl_optab || binoptab == lshl_optab) - && class == MODE_INT - && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD) - no_extend = 1; - - /* If an operand is a constant integer, we might as well - convert it since that is more efficient than using a SUBREG, - unlike the case for other operands. Similarly for - SUBREGs that were made due to promoted objects.*/ - - if (no_extend && GET_MODE (xop0) != VOIDmode - && ! (GET_CODE (xop0) == SUBREG - && SUBREG_PROMOTED_VAR_P (xop0))) - xop0 = gen_rtx (SUBREG, wider_mode, - force_reg (GET_MODE (xop0), xop0), 0); - else - xop0 = convert_to_mode (wider_mode, xop0, unsignedp); - - if (no_extend && GET_MODE (xop1) != VOIDmode - && ! (GET_CODE (xop1) == SUBREG - && SUBREG_PROMOTED_VAR_P (xop1))) - xop1 = gen_rtx (SUBREG, wider_mode, - force_reg (GET_MODE (xop1), xop1), 0); - else - xop1 = convert_to_mode (wider_mode, xop1, unsignedp); - - temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX, - unsignedp, methods); - if (temp) - { - if (class != MODE_INT) - { - if (target == 0) - target = gen_reg_rtx (mode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (mode, temp); - } - else - delete_insns_since (last); - } - } - } - - delete_insns_since (entry_last); - return 0; -} - -/* Expand a binary operator which has both signed and unsigned forms. - UOPTAB is the optab for unsigned operations, and SOPTAB is for - signed operations. - - If we widen unsigned operands, we may use a signed wider operation instead - of an unsigned wider operation, since the result would be the same. */ - -rtx -sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods) - enum machine_mode mode; - optab uoptab, soptab; - rtx op0, op1, target; - int unsignedp; - enum optab_methods methods; -{ - register rtx temp; - optab direct_optab = unsignedp ? uoptab : soptab; - struct optab wide_soptab; - - /* Do it without widening, if possible. */ - temp = expand_binop (mode, direct_optab, op0, op1, target, - unsignedp, OPTAB_DIRECT); - if (temp || methods == OPTAB_DIRECT) - return temp; - - /* Try widening to a signed int. Make a fake signed optab that - hides any signed insn for direct use. */ - wide_soptab = *soptab; - wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing; - wide_soptab.handlers[(int) mode].libfunc = 0; - - temp = expand_binop (mode, &wide_soptab, op0, op1, target, - unsignedp, OPTAB_WIDEN); - - /* For unsigned operands, try widening to an unsigned int. */ - if (temp == 0 && unsignedp) - temp = expand_binop (mode, uoptab, op0, op1, target, - unsignedp, OPTAB_WIDEN); - if (temp || methods == OPTAB_WIDEN) - return temp; - - /* Use the right width lib call if that exists. */ - temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB); - if (temp || methods == OPTAB_LIB) - return temp; - - /* Must widen and use a lib call, use either signed or unsigned. */ - temp = expand_binop (mode, &wide_soptab, op0, op1, target, - unsignedp, methods); - if (temp != 0) - return temp; - if (unsignedp) - return expand_binop (mode, uoptab, op0, op1, target, - unsignedp, methods); - return 0; -} - -/* Generate code to perform an operation specified by BINOPTAB - on operands OP0 and OP1, with two results to TARG1 and TARG2. - We assume that the order of the operands for the instruction - is TARG0, OP0, OP1, TARG1, which would fit a pattern like - [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))]. - - Either TARG0 or TARG1 may be zero, but what that means is that - that result is not actually wanted. We will generate it into - a dummy pseudo-reg and discard it. They may not both be zero. - - Returns 1 if this operation can be performed; 0 if not. */ - -int -expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp) - optab binoptab; - rtx op0, op1; - rtx targ0, targ1; - int unsignedp; -{ - enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1); - enum mode_class class; - enum machine_mode wider_mode; - rtx entry_last = get_last_insn (); - rtx last; - - class = GET_MODE_CLASS (mode); - - op0 = protect_from_queue (op0, 0); - op1 = protect_from_queue (op1, 0); - - if (flag_force_mem) - { - op0 = force_not_mem (op0); - op1 = force_not_mem (op1); - } - - /* If we are inside an appropriately-short loop and one operand is an - expensive constant, force it into a register. */ - if (CONSTANT_P (op0) && preserve_subexpressions_p () - && rtx_cost (op0, binoptab->code) > 2) - op0 = force_reg (mode, op0); - - if (CONSTANT_P (op1) && preserve_subexpressions_p () - && rtx_cost (op1, binoptab->code) > 2) - op1 = force_reg (mode, op1); - - if (targ0) - targ0 = protect_from_queue (targ0, 1); - else - targ0 = gen_reg_rtx (mode); - if (targ1) - targ1 = protect_from_queue (targ1, 1); - else - targ1 = gen_reg_rtx (mode); - - /* Record where to go back to if we fail. */ - last = get_last_insn (); - - if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - int icode = (int) binoptab->handlers[(int) mode].insn_code; - enum machine_mode mode0 = insn_operand_mode[icode][1]; - enum machine_mode mode1 = insn_operand_mode[icode][2]; - rtx pat; - rtx xop0 = op0, xop1 = op1; - - /* In case this insn wants input operands in modes different from the - result, convert the operands. */ - if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0) - xop0 = convert_to_mode (mode0, xop0, unsignedp); - - if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1) - xop1 = convert_to_mode (mode1, xop1, unsignedp); - - /* Now, if insn doesn't accept these operands, put them into pseudos. */ - if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) - xop0 = copy_to_mode_reg (mode0, xop0); - - if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)) - xop1 = copy_to_mode_reg (mode1, xop1); - - /* We could handle this, but we should always be called with a pseudo - for our targets and all insns should take them as outputs. */ - if (! (*insn_operand_predicate[icode][0]) (targ0, mode) - || ! (*insn_operand_predicate[icode][3]) (targ1, mode)) - abort (); - - pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1); - if (pat) - { - emit_insn (pat); - return 1; - } - else - delete_insns_since (last); - } - - /* It can't be done in this mode. Can we do it in a wider mode? */ - - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) - { - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if (binoptab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - { - register rtx t0 = gen_reg_rtx (wider_mode); - register rtx t1 = gen_reg_rtx (wider_mode); - - if (expand_twoval_binop (binoptab, - convert_to_mode (wider_mode, op0, - unsignedp), - convert_to_mode (wider_mode, op1, - unsignedp), - t0, t1, unsignedp)) - { - convert_move (targ0, t0, unsignedp); - convert_move (targ1, t1, unsignedp); - return 1; - } - else - delete_insns_since (last); - } - } - } - - delete_insns_since (entry_last); - return 0; -} - -/* Generate code to perform an operation specified by UNOPTAB - on operand OP0, with result having machine-mode MODE. - - UNSIGNEDP is for the case where we have to widen the operands - to perform the operation. It says to use zero-extension. - - If TARGET is nonzero, the value - is generated there, if it is convenient to do so. - In all cases an rtx is returned for the locus of the value; - this may or may not be TARGET. */ - -rtx -expand_unop (mode, unoptab, op0, target, unsignedp) - enum machine_mode mode; - optab unoptab; - rtx op0; - rtx target; - int unsignedp; -{ - enum mode_class class; - enum machine_mode wider_mode; - register rtx temp; - rtx last = get_last_insn (); - rtx pat; - - class = GET_MODE_CLASS (mode); - - op0 = protect_from_queue (op0, 0); - - if (flag_force_mem) - { - op0 = force_not_mem (op0); - } - - if (target) - target = protect_from_queue (target, 1); - - if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - int icode = (int) unoptab->handlers[(int) mode].insn_code; - enum machine_mode mode0 = insn_operand_mode[icode][1]; - rtx xop0 = op0; - - if (target) - temp = target; - else - temp = gen_reg_rtx (mode); - - if (GET_MODE (xop0) != VOIDmode - && GET_MODE (xop0) != mode0) - xop0 = convert_to_mode (mode0, xop0, unsignedp); - - /* Now, if insn doesn't accept our operand, put it into a pseudo. */ - - if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) - xop0 = copy_to_mode_reg (mode0, xop0); - - if (! (*insn_operand_predicate[icode][0]) (temp, mode)) - temp = gen_reg_rtx (mode); - - pat = GEN_FCN (icode) (temp, xop0); - if (pat) - { - if (GET_CODE (pat) == SEQUENCE - && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX)) - { - delete_insns_since (last); - return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp); - } - - emit_insn (pat); - - return temp; - } - else - delete_insns_since (last); - } - - /* It can't be done in this mode. Can we open-code it in a wider mode? */ - - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) - { - rtx xop0 = op0; - - /* For certain operations, we need not actually extend - the narrow operand, as long as we will truncate the - results to the same narrowness. But it is faster to - convert a SUBREG due to mode promotion. */ - - if ((unoptab == neg_optab || unoptab == one_cmpl_optab) - && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD - && class == MODE_INT - && ! (GET_CODE (xop0) == SUBREG - && SUBREG_PROMOTED_VAR_P (xop0))) - xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); - else - xop0 = convert_to_mode (wider_mode, xop0, unsignedp); - - temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, - unsignedp); - - if (temp) - { - if (class != MODE_INT) - { - if (target == 0) - target = gen_reg_rtx (mode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (mode, temp); - } - else - delete_insns_since (last); - } - } - - /* These can be done a word at a time. */ - if (unoptab == one_cmpl_optab - && class == MODE_INT - && GET_MODE_SIZE (mode) > UNITS_PER_WORD - && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing) - { - int i; - rtx insns; - - if (target == 0 || target == op0) - target = gen_reg_rtx (mode); - - start_sequence (); - - /* Do the actual arithmetic. */ - for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++) - { - rtx target_piece = operand_subword (target, i, 1, mode); - rtx x = expand_unop (word_mode, unoptab, - operand_subword_force (op0, i, mode), - target_piece, unsignedp); - if (target_piece != x) - emit_move_insn (target_piece, x); - } - - insns = get_insns (); - end_sequence (); - - emit_no_conflict_block (insns, target, op0, NULL_RTX, - gen_rtx (unoptab->code, mode, copy_rtx (op0))); - return target; - } - - /* Open-code the complex negation operation. */ - else if (unoptab == neg_optab - && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)) - { - rtx target_piece; - rtx x; - rtx seq; - - /* Find the correct mode for the real and imaginary parts */ - enum machine_mode submode - = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT, - class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT, - 0); - - if (submode == BLKmode) - abort (); - - if (target == 0) - target = gen_reg_rtx (mode); - - start_sequence (); - - target_piece = gen_imagpart (submode, target); - x = expand_unop (submode, unoptab, - gen_imagpart (submode, op0), - target_piece, unsignedp); - if (target_piece != x) - emit_move_insn (target_piece, x); - - target_piece = gen_realpart (submode, target); - x = expand_unop (submode, unoptab, - gen_realpart (submode, op0), - target_piece, unsignedp); - if (target_piece != x) - emit_move_insn (target_piece, x); - - seq = get_insns (); - end_sequence (); - - emit_no_conflict_block (seq, target, op0, 0, - gen_rtx (unoptab->code, mode, copy_rtx (op0))); - return target; - } - - /* Now try a library call in this mode. */ - if (unoptab->handlers[(int) mode].libfunc) - { - rtx insns; - rtx funexp = unoptab->handlers[(int) mode].libfunc; - - start_sequence (); - - /* Pass 1 for NO_QUEUE so we don't lose any increments - if the libcall is cse'd or moved. */ - emit_library_call (unoptab->handlers[(int) mode].libfunc, - 1, mode, 1, op0, mode); - insns = get_insns (); - end_sequence (); - - target = gen_reg_rtx (mode); - emit_libcall_block (insns, target, hard_libcall_value (mode), - gen_rtx (unoptab->code, mode, op0)); - - return target; - } - - /* It can't be done in this mode. Can we do it in a wider mode? */ - - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) - { - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if ((unoptab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - || unoptab->handlers[(int) wider_mode].libfunc) - { - rtx xop0 = op0; - - /* For certain operations, we need not actually extend - the narrow operand, as long as we will truncate the - results to the same narrowness. */ - - if ((unoptab == neg_optab || unoptab == one_cmpl_optab) - && GET_MODE_SIZE (wider_mode) <= UNITS_PER_WORD - && class == MODE_INT - && ! (GET_CODE (xop0) == SUBREG - && SUBREG_PROMOTED_VAR_P (xop0))) - xop0 = gen_rtx (SUBREG, wider_mode, force_reg (mode, xop0), 0); - else - xop0 = convert_to_mode (wider_mode, xop0, unsignedp); - - temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX, - unsignedp); - - if (temp) - { - if (class != MODE_INT) - { - if (target == 0) - target = gen_reg_rtx (mode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (mode, temp); - } - else - delete_insns_since (last); - } - } - } - - return 0; -} - -/* Emit code to compute the absolute value of OP0, with result to - TARGET if convenient. (TARGET may be 0.) The return value says - where the result actually is to be found. - - MODE is the mode of the operand; the mode of the result is - different but can be deduced from MODE. - - UNSIGNEDP is relevant for complex integer modes. */ - -rtx -expand_complex_abs (mode, op0, target, unsignedp) - enum machine_mode mode; - rtx op0; - rtx target; - int unsignedp; -{ - enum mode_class class = GET_MODE_CLASS (mode); - enum machine_mode wider_mode; - register rtx temp; - rtx entry_last = get_last_insn (); - rtx last; - rtx pat; - - /* Find the correct mode for the real and imaginary parts. */ - enum machine_mode submode - = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT, - class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT, - 0); - - if (submode == BLKmode) - abort (); - - op0 = protect_from_queue (op0, 0); - - if (flag_force_mem) - { - op0 = force_not_mem (op0); - } - - last = get_last_insn (); - - if (target) - target = protect_from_queue (target, 1); - - if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - int icode = (int) abs_optab->handlers[(int) mode].insn_code; - enum machine_mode mode0 = insn_operand_mode[icode][1]; - rtx xop0 = op0; - - if (target) - temp = target; - else - temp = gen_reg_rtx (submode); - - if (GET_MODE (xop0) != VOIDmode - && GET_MODE (xop0) != mode0) - xop0 = convert_to_mode (mode0, xop0, unsignedp); - - /* Now, if insn doesn't accept our operand, put it into a pseudo. */ - - if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)) - xop0 = copy_to_mode_reg (mode0, xop0); - - if (! (*insn_operand_predicate[icode][0]) (temp, submode)) - temp = gen_reg_rtx (submode); - - pat = GEN_FCN (icode) (temp, xop0); - if (pat) - { - if (GET_CODE (pat) == SEQUENCE - && ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX)) - { - delete_insns_since (last); - return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp); - } - - emit_insn (pat); - - return temp; - } - else - delete_insns_since (last); - } - - /* It can't be done in this mode. Can we open-code it in a wider mode? */ - - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing) - { - rtx xop0 = op0; - - xop0 = convert_to_mode (wider_mode, xop0, unsignedp); - temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp); - - if (temp) - { - if (class != MODE_COMPLEX_INT) - { - if (target == 0) - target = gen_reg_rtx (submode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (submode, temp); - } - else - delete_insns_since (last); - } - } - - /* Open-code the complex absolute-value operation - if we can open-code sqrt. Otherwise it's not worth while. */ - if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing) - { - rtx real, imag, total; - - real = gen_realpart (submode, op0); - imag = gen_imagpart (submode, op0); - /* Square both parts. */ - real = expand_mult (mode, real, real, NULL_RTX, 0); - imag = expand_mult (mode, imag, imag, NULL_RTX, 0); - /* Sum the parts. */ - total = expand_binop (submode, add_optab, real, imag, 0, - 0, OPTAB_LIB_WIDEN); - /* Get sqrt in TARGET. Set TARGET to where the result is. */ - target = expand_unop (submode, sqrt_optab, total, target, 0); - if (target == 0) - delete_insns_since (last); - else - return target; - } - - /* Now try a library call in this mode. */ - if (abs_optab->handlers[(int) mode].libfunc) - { - rtx insns; - rtx funexp = abs_optab->handlers[(int) mode].libfunc; - - start_sequence (); - - /* Pass 1 for NO_QUEUE so we don't lose any increments - if the libcall is cse'd or moved. */ - emit_library_call (abs_optab->handlers[(int) mode].libfunc, - 1, mode, 1, op0, mode); - insns = get_insns (); - end_sequence (); - - target = gen_reg_rtx (submode); - emit_libcall_block (insns, target, hard_libcall_value (submode), - gen_rtx (abs_optab->code, mode, op0)); - - return target; - } - - /* It can't be done in this mode. Can we do it in a wider mode? */ - - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if ((abs_optab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - || abs_optab->handlers[(int) wider_mode].libfunc) - { - rtx xop0 = op0; - - xop0 = convert_to_mode (wider_mode, xop0, unsignedp); - - temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp); - - if (temp) - { - if (class != MODE_COMPLEX_INT) - { - if (target == 0) - target = gen_reg_rtx (submode); - convert_move (target, temp, 0); - return target; - } - else - return gen_lowpart (submode, temp); - } - else - delete_insns_since (last); - } - } - - delete_insns_since (entry_last); - return 0; -} - -/* Generate an instruction whose insn-code is INSN_CODE, - with two operands: an output TARGET and an input OP0. - TARGET *must* be nonzero, and the output is always stored there. - CODE is an rtx code such that (CODE OP0) is an rtx that describes - the value that is stored into TARGET. */ - -void -emit_unop_insn (icode, target, op0, code) - int icode; - rtx target; - rtx op0; - enum rtx_code code; -{ - register rtx temp; - enum machine_mode mode0 = insn_operand_mode[icode][1]; - rtx pat; - - temp = target = protect_from_queue (target, 1); - - op0 = protect_from_queue (op0, 0); - - if (flag_force_mem) - op0 = force_not_mem (op0); - - /* Now, if insn does not accept our operands, put them into pseudos. */ - - if (! (*insn_operand_predicate[icode][1]) (op0, mode0)) - op0 = copy_to_mode_reg (mode0, op0); - - if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp)) - || (flag_force_mem && GET_CODE (temp) == MEM)) - temp = gen_reg_rtx (GET_MODE (temp)); - - pat = GEN_FCN (icode) (temp, op0); - - if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN) - add_equal_note (pat, temp, code, op0, NULL_RTX); - - emit_insn (pat); - - if (temp != target) - emit_move_insn (target, temp); -} - -/* Emit code to perform a series of operations on a multi-word quantity, one - word at a time. - - Such a block is preceded by a CLOBBER of the output, consists of multiple - insns, each setting one word of the output, and followed by a SET copying - the output to itself. - - Each of the insns setting words of the output receives a REG_NO_CONFLICT - note indicating that it doesn't conflict with the (also multi-word) - inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL - notes. - - INSNS is a block of code generated to perform the operation, not including - the CLOBBER and final copy. All insns that compute intermediate values - are first emitted, followed by the block as described above. Only - INSNs are allowed in the block; no library calls or jumps may be - present. - - TARGET, OP0, and OP1 are the output and inputs of the operations, - respectively. OP1 may be zero for a unary operation. - - EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note - on the last insn. - - If TARGET is not a register, INSNS is simply emitted with no special - processing. - - The final insn emitted is returned. */ - -rtx -emit_no_conflict_block (insns, target, op0, op1, equiv) - rtx insns; - rtx target; - rtx op0, op1; - rtx equiv; -{ - rtx prev, next, first, last, insn; - - if (GET_CODE (target) != REG || reload_in_progress) - return emit_insns (insns); - - /* First emit all insns that do not store into words of the output and remove - these from the list. */ - for (insn = insns; insn; insn = next) - { - rtx set = 0; - int i; - - next = NEXT_INSN (insn); - - if (GET_CODE (insn) != INSN) - abort (); - - if (GET_CODE (PATTERN (insn)) == SET) - set = PATTERN (insn); - else if (GET_CODE (PATTERN (insn)) == PARALLEL) - { - for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) - if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET) - { - set = XVECEXP (PATTERN (insn), 0, i); - break; - } - } - - if (set == 0) - abort (); - - if (! reg_overlap_mentioned_p (target, SET_DEST (set))) - { - if (PREV_INSN (insn)) - NEXT_INSN (PREV_INSN (insn)) = next; - else - insns = next; - - if (next) - PREV_INSN (next) = PREV_INSN (insn); - - add_insn (insn); - } - } - - prev = get_last_insn (); - - /* Now write the CLOBBER of the output, followed by the setting of each - of the words, followed by the final copy. */ - if (target != op0 && target != op1) - emit_insn (gen_rtx (CLOBBER, VOIDmode, target)); - - for (insn = insns; insn; insn = next) - { - next = NEXT_INSN (insn); - add_insn (insn); - - if (op1 && GET_CODE (op1) == REG) - REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op1, - REG_NOTES (insn)); - - if (op0 && GET_CODE (op0) == REG) - REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_NO_CONFLICT, op0, - REG_NOTES (insn)); - } - - if (mov_optab->handlers[(int) GET_MODE (target)].insn_code - != CODE_FOR_nothing) - { - last = emit_move_insn (target, target); - if (equiv) - REG_NOTES (last) - = gen_rtx (EXPR_LIST, REG_EQUAL, equiv, REG_NOTES (last)); - } - else - last = get_last_insn (); - - if (prev == 0) - first = get_insns (); - else - first = NEXT_INSN (prev); - - /* Encapsulate the block so it gets manipulated as a unit. */ - REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, - REG_NOTES (first)); - REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); - - return last; -} - -/* Emit code to make a call to a constant function or a library call. - - INSNS is a list containing all insns emitted in the call. - These insns leave the result in RESULT. Our block is to copy RESULT - to TARGET, which is logically equivalent to EQUIV. - - We first emit any insns that set a pseudo on the assumption that these are - loading constants into registers; doing so allows them to be safely cse'ed - between blocks. Then we emit all the other insns in the block, followed by - an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL - note with an operand of EQUIV. - - Moving assignments to pseudos outside of the block is done to improve - the generated code, but is not required to generate correct code, - hence being unable to move an assignment is not grounds for not making - a libcall block. There are two reasons why it is safe to leave these - insns inside the block: First, we know that these pseudos cannot be - used in generated RTL outside the block since they are created for - temporary purposes within the block. Second, CSE will not record the - values of anything set inside a libcall block, so we know they must - be dead at the end of the block. - - Except for the first group of insns (the ones setting pseudos), the - block is delimited by REG_RETVAL and REG_LIBCALL notes. */ - -void -emit_libcall_block (insns, target, result, equiv) - rtx insns; - rtx target; - rtx result; - rtx equiv; -{ - rtx prev, next, first, last, insn; - - /* First emit all insns that set pseudos. Remove them from the list as - we go. Avoid insns that set pseudo which were referenced in previous - insns. These can be generated by move_by_pieces, for example, - to update an address. */ - - for (insn = insns; insn; insn = next) - { - rtx set = single_set (insn); - - next = NEXT_INSN (insn); - - if (set != 0 && GET_CODE (SET_DEST (set)) == REG - && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER - && (insn == insns - || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns)) - && ! reg_used_between_p (SET_DEST (set), insns, insn)))) - { - if (PREV_INSN (insn)) - NEXT_INSN (PREV_INSN (insn)) = next; - else - insns = next; - - if (next) - PREV_INSN (next) = PREV_INSN (insn); - - add_insn (insn); - } - } - - prev = get_last_insn (); - - /* Write the remaining insns followed by the final copy. */ - - for (insn = insns; insn; insn = next) - { - next = NEXT_INSN (insn); - - add_insn (insn); - } - - last = emit_move_insn (target, result); - REG_NOTES (last) = gen_rtx (EXPR_LIST, - REG_EQUAL, copy_rtx (equiv), REG_NOTES (last)); - - if (prev == 0) - first = get_insns (); - else - first = NEXT_INSN (prev); - - /* Encapsulate the block so it gets manipulated as a unit. */ - REG_NOTES (first) = gen_rtx (INSN_LIST, REG_LIBCALL, last, - REG_NOTES (first)); - REG_NOTES (last) = gen_rtx (INSN_LIST, REG_RETVAL, first, REG_NOTES (last)); -} - -/* Generate code to store zero in X. */ - -void -emit_clr_insn (x) - rtx x; -{ - emit_move_insn (x, const0_rtx); -} - -/* Generate code to store 1 in X - assuming it contains zero beforehand. */ - -void -emit_0_to_1_insn (x) - rtx x; -{ - emit_move_insn (x, const1_rtx); -} - -/* Generate code to compare X with Y - so that the condition codes are set. - - MODE is the mode of the inputs (in case they are const_int). - UNSIGNEDP nonzero says that X and Y are unsigned; - this matters if they need to be widened. - - If they have mode BLKmode, then SIZE specifies the size of both X and Y, - and ALIGN specifies the known shared alignment of X and Y. - - COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). - It is ignored for fixed-point and block comparisons; - it is used only for floating-point comparisons. */ - -void -emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align) - rtx x, y; - enum rtx_code comparison; - rtx size; - enum machine_mode mode; - int unsignedp; - int align; -{ - enum mode_class class; - enum machine_mode wider_mode; - - class = GET_MODE_CLASS (mode); - - /* They could both be VOIDmode if both args are immediate constants, - but we should fold that at an earlier stage. - With no special code here, this will call abort, - reminding the programmer to implement such folding. */ - - if (mode != BLKmode && flag_force_mem) - { - x = force_not_mem (x); - y = force_not_mem (y); - } - - /* If we are inside an appropriately-short loop and one operand is an - expensive constant, force it into a register. */ - if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2) - x = force_reg (mode, x); - - if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2) - y = force_reg (mode, y); - - /* Don't let both operands fail to indicate the mode. */ - if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode) - x = force_reg (mode, x); - - /* Handle all BLKmode compares. */ - - if (mode == BLKmode) - { - emit_queue (); - x = protect_from_queue (x, 0); - y = protect_from_queue (y, 0); - - if (size == 0) - abort (); -#ifdef HAVE_cmpstrqi - if (HAVE_cmpstrqi - && GET_CODE (size) == CONST_INT - && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode))) - { - enum machine_mode result_mode - = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0]; - rtx result = gen_reg_rtx (result_mode); - emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align))); - emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, - result_mode, 0, 0); - } - else -#endif -#ifdef HAVE_cmpstrhi - if (HAVE_cmpstrhi - && GET_CODE (size) == CONST_INT - && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode))) - { - enum machine_mode result_mode - = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0]; - rtx result = gen_reg_rtx (result_mode); - emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align))); - emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, - result_mode, 0, 0); - } - else -#endif -#ifdef HAVE_cmpstrsi - if (HAVE_cmpstrsi) - { - enum machine_mode result_mode - = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0]; - rtx result = gen_reg_rtx (result_mode); - size = protect_from_queue (size, 0); - emit_insn (gen_cmpstrsi (result, x, y, - convert_to_mode (SImode, size, 1), - GEN_INT (align))); - emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX, - result_mode, 0, 0); - } - else -#endif - { -#ifdef TARGET_MEM_FUNCTIONS - emit_library_call (memcmp_libfunc, 0, - TYPE_MODE (integer_type_node), 3, - XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, - size, Pmode); -#else - emit_library_call (bcmp_libfunc, 0, - TYPE_MODE (integer_type_node), 3, - XEXP (x, 0), Pmode, XEXP (y, 0), Pmode, - size, Pmode); -#endif - emit_cmp_insn (hard_libcall_value (TYPE_MODE (integer_type_node)), - const0_rtx, comparison, NULL_RTX, - TYPE_MODE (integer_type_node), 0, 0); - } - return; - } - - /* Handle some compares against zero. */ - - if (y == CONST0_RTX (mode) - && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - int icode = (int) tst_optab->handlers[(int) mode].insn_code; - - emit_queue (); - x = protect_from_queue (x, 0); - y = protect_from_queue (y, 0); - - /* Now, if insn does accept these operands, put them into pseudos. */ - if (! (*insn_operand_predicate[icode][0]) - (x, insn_operand_mode[icode][0])) - x = copy_to_mode_reg (insn_operand_mode[icode][0], x); - - emit_insn (GEN_FCN (icode) (x)); - return; - } - - /* Handle compares for which there is a directly suitable insn. */ - - if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing) - { - int icode = (int) cmp_optab->handlers[(int) mode].insn_code; - - emit_queue (); - x = protect_from_queue (x, 0); - y = protect_from_queue (y, 0); - - /* Now, if insn doesn't accept these operands, put them into pseudos. */ - if (! (*insn_operand_predicate[icode][0]) - (x, insn_operand_mode[icode][0])) - x = copy_to_mode_reg (insn_operand_mode[icode][0], x); - - if (! (*insn_operand_predicate[icode][1]) - (y, insn_operand_mode[icode][1])) - y = copy_to_mode_reg (insn_operand_mode[icode][1], y); - - emit_insn (GEN_FCN (icode) (x, y)); - return; - } - - /* Try widening if we can find a direct insn that way. */ - - if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT) - { - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if (cmp_optab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - { - x = protect_from_queue (x, 0); - y = protect_from_queue (y, 0); - x = convert_to_mode (wider_mode, x, unsignedp); - y = convert_to_mode (wider_mode, y, unsignedp); - emit_cmp_insn (x, y, comparison, NULL_RTX, - wider_mode, unsignedp, align); - return; - } - } - } - - /* Handle a lib call just for the mode we are using. */ - - if (cmp_optab->handlers[(int) mode].libfunc - && class != MODE_FLOAT) - { - rtx libfunc = cmp_optab->handlers[(int) mode].libfunc; - /* If we want unsigned, and this mode has a distinct unsigned - comparison routine, use that. */ - if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc) - libfunc = ucmp_optab->handlers[(int) mode].libfunc; - - emit_library_call (libfunc, 1, - word_mode, 2, x, mode, y, mode); - - /* Integer comparison returns a result that must be compared against 1, - so that even if we do an unsigned compare afterward, - there is still a value that can represent the result "less than". */ - - emit_cmp_insn (hard_libcall_value (word_mode), const1_rtx, - comparison, NULL_RTX, word_mode, unsignedp, 0); - return; - } - - if (class == MODE_FLOAT) - emit_float_lib_cmp (x, y, comparison); - - else - abort (); -} - -/* Nonzero if a compare of mode MODE can be done straightforwardly - (without splitting it into pieces). */ - -int -can_compare_p (mode) - enum machine_mode mode; -{ - do - { - if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing) - return 1; - mode = GET_MODE_WIDER_MODE (mode); - } while (mode != VOIDmode); - - return 0; -} - -/* Emit a library call comparison between floating point X and Y. - COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */ - -static void -emit_float_lib_cmp (x, y, comparison) - rtx x, y; - enum rtx_code comparison; -{ - enum machine_mode mode = GET_MODE (x); - rtx libfunc; - - if (mode == SFmode) - switch (comparison) - { - case EQ: - libfunc = eqsf2_libfunc; - break; - - case NE: - libfunc = nesf2_libfunc; - break; - - case GT: - libfunc = gtsf2_libfunc; - break; - - case GE: - libfunc = gesf2_libfunc; - break; - - case LT: - libfunc = ltsf2_libfunc; - break; - - case LE: - libfunc = lesf2_libfunc; - break; - } - else if (mode == DFmode) - switch (comparison) - { - case EQ: - libfunc = eqdf2_libfunc; - break; - - case NE: - libfunc = nedf2_libfunc; - break; - - case GT: - libfunc = gtdf2_libfunc; - break; - - case GE: - libfunc = gedf2_libfunc; - break; - - case LT: - libfunc = ltdf2_libfunc; - break; - - case LE: - libfunc = ledf2_libfunc; - break; - } - else if (mode == XFmode) - switch (comparison) - { - case EQ: - libfunc = eqxf2_libfunc; - break; - - case NE: - libfunc = nexf2_libfunc; - break; - - case GT: - libfunc = gtxf2_libfunc; - break; - - case GE: - libfunc = gexf2_libfunc; - break; - - case LT: - libfunc = ltxf2_libfunc; - break; - - case LE: - libfunc = lexf2_libfunc; - break; - } - else if (mode == TFmode) - switch (comparison) - { - case EQ: - libfunc = eqtf2_libfunc; - break; - - case NE: - libfunc = netf2_libfunc; - break; - - case GT: - libfunc = gttf2_libfunc; - break; - - case GE: - libfunc = getf2_libfunc; - break; - - case LT: - libfunc = lttf2_libfunc; - break; - - case LE: - libfunc = letf2_libfunc; - break; - } - else - { - enum machine_mode wider_mode; - - for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode; - wider_mode = GET_MODE_WIDER_MODE (wider_mode)) - { - if ((cmp_optab->handlers[(int) wider_mode].insn_code - != CODE_FOR_nothing) - || (cmp_optab->handlers[(int) wider_mode].libfunc != 0)) - { - x = protect_from_queue (x, 0); - y = protect_from_queue (y, 0); - x = convert_to_mode (wider_mode, x, 0); - y = convert_to_mode (wider_mode, y, 0); - emit_float_lib_cmp (x, y, comparison); - return; - } - } - abort (); - } - - emit_library_call (libfunc, 1, - word_mode, 2, x, mode, y, mode); - - emit_cmp_insn (hard_libcall_value (word_mode), const0_rtx, comparison, - NULL_RTX, word_mode, 0, 0); -} - -/* Generate code to indirectly jump to a location given in the rtx LOC. */ - -void -emit_indirect_jump (loc) - rtx loc; -{ - if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0]) - (loc, Pmode))) - loc = copy_to_mode_reg (Pmode, loc); - - emit_jump_insn (gen_indirect_jump (loc)); - emit_barrier (); -} - -/* These three functions generate an insn body and return it - rather than emitting the insn. - - They do not protect from queued increments, - because they may be used 1) in protect_from_queue itself - and 2) in other passes where there is no queue. */ - -/* Generate and return an insn body to add Y to X. */ - -rtx -gen_add2_insn (x, y) - rtx x, y; -{ - int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code; - - if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) - || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) - || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) - abort (); - - return (GEN_FCN (icode) (x, x, y)); -} - -int -have_add2_insn (mode) - enum machine_mode mode; -{ - return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; -} - -/* Generate and return an insn body to subtract Y from X. */ - -rtx -gen_sub2_insn (x, y) - rtx x, y; -{ - int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code; - - if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0]) - || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1]) - || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2])) - abort (); - - return (GEN_FCN (icode) (x, x, y)); -} - -int -have_sub2_insn (mode) - enum machine_mode mode; -{ - return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing; -} - -/* Generate the body of an instruction to copy Y into X. - It may be a SEQUENCE, if one insn isn't enough. */ - -rtx -gen_move_insn (x, y) - rtx x, y; -{ - register enum machine_mode mode = GET_MODE (x); - enum insn_code insn_code; - rtx seq; - - if (mode == VOIDmode) - mode = GET_MODE (y); - - insn_code = mov_optab->handlers[(int) mode].insn_code; - - /* Handle MODE_CC modes: If we don't have a special move insn for this mode, - find a mode to do it in. If we have a movcc, use it. Otherwise, - find the MODE_INT mode of the same width. */ - - if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing) - { - enum machine_mode tmode = VOIDmode; - rtx x1 = x, y1 = y; - - if (mode != CCmode - && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing) - tmode = CCmode; - else - for (tmode = QImode; tmode != VOIDmode; - tmode = GET_MODE_WIDER_MODE (tmode)) - if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode)) - break; - - if (tmode == VOIDmode) - abort (); - - /* Get X and Y in TMODE. We can't use gen_lowpart here because it - may call change_address which is not appropriate if we were - called when a reload was in progress. We don't have to worry - about changing the address since the size in bytes is supposed to - be the same. Copy the MEM to change the mode and move any - substitutions from the old MEM to the new one. */ - - if (reload_in_progress) - { - x = gen_lowpart_common (tmode, x1); - if (x == 0 && GET_CODE (x1) == MEM) - { - x = gen_rtx (MEM, tmode, XEXP (x1, 0)); - RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1); - MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (x1); - MEM_VOLATILE_P (x) = MEM_VOLATILE_P (x1); - copy_replacements (x1, x); - } - - y = gen_lowpart_common (tmode, y1); - if (y == 0 && GET_CODE (y1) == MEM) - { - y = gen_rtx (MEM, tmode, XEXP (y1, 0)); - RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1); - MEM_IN_STRUCT_P (y) = MEM_IN_STRUCT_P (y1); - MEM_VOLATILE_P (y) = MEM_VOLATILE_P (y1); - copy_replacements (y1, y); - } - } - else - { - x = gen_lowpart (tmode, x); - y = gen_lowpart (tmode, y); - } - - insn_code = mov_optab->handlers[(int) tmode].insn_code; - return (GEN_FCN (insn_code) (x, y)); - } - - start_sequence (); - emit_move_insn_1 (x, y); - seq = gen_sequence (); - end_sequence (); - return seq; -} - -/* Return the insn code used to extend FROM_MODE to TO_MODE. - UNSIGNEDP specifies zero-extension instead of sign-extension. If - no such operation exists, CODE_FOR_nothing will be returned. */ - -enum insn_code -can_extend_p (to_mode, from_mode, unsignedp) - enum machine_mode to_mode, from_mode; - int unsignedp; -{ - return extendtab[(int) to_mode][(int) from_mode][unsignedp]; -} - -/* Generate the body of an insn to extend Y (with mode MFROM) - into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */ - -rtx -gen_extend_insn (x, y, mto, mfrom, unsignedp) - rtx x, y; - enum machine_mode mto, mfrom; - int unsignedp; -{ - return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y)); -} - -/* can_fix_p and can_float_p say whether the target machine - can directly convert a given fixed point type to - a given floating point type, or vice versa. - The returned value is the CODE_FOR_... value to use, - or CODE_FOR_nothing if these modes cannot be directly converted. - - *TRUNCP_PTR is set to 1 if it is necessary to output - an explicit FTRUNC insn before the fix insn; otherwise 0. */ - -static enum insn_code -can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr) - enum machine_mode fltmode, fixmode; - int unsignedp; - int *truncp_ptr; -{ - *truncp_ptr = 0; - if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing) - return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp]; - - if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing) - { - *truncp_ptr = 1; - return fixtab[(int) fltmode][(int) fixmode][unsignedp]; - } - return CODE_FOR_nothing; -} - -static enum insn_code -can_float_p (fltmode, fixmode, unsignedp) - enum machine_mode fixmode, fltmode; - int unsignedp; -{ - return floattab[(int) fltmode][(int) fixmode][unsignedp]; -} - -/* Generate code to convert FROM to floating point - and store in TO. FROM must be fixed point and not VOIDmode. - UNSIGNEDP nonzero means regard FROM as unsigned. - Normally this is done by correcting the final value - if it is negative. */ - -void -expand_float (to, from, unsignedp) - rtx to, from; - int unsignedp; -{ - enum insn_code icode; - register rtx target = to; - enum machine_mode fmode, imode; - - /* Crash now, because we won't be able to decide which mode to use. */ - if (GET_MODE (from) == VOIDmode) - abort (); - - /* Look for an insn to do the conversion. Do it in the specified - modes if possible; otherwise convert either input, output or both to - wider mode. If the integer mode is wider than the mode of FROM, - we can do the conversion signed even if the input is unsigned. */ - - for (imode = GET_MODE (from); imode != VOIDmode; - imode = GET_MODE_WIDER_MODE (imode)) - for (fmode = GET_MODE (to); fmode != VOIDmode; - fmode = GET_MODE_WIDER_MODE (fmode)) - { - int doing_unsigned = unsignedp; - - icode = can_float_p (fmode, imode, unsignedp); - if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp) - icode = can_float_p (fmode, imode, 0), doing_unsigned = 0; - - if (icode != CODE_FOR_nothing) - { - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (imode != GET_MODE (from)) - from = convert_to_mode (imode, from, unsignedp); - - if (fmode != GET_MODE (to)) - target = gen_reg_rtx (fmode); - - emit_unop_insn (icode, target, from, - doing_unsigned ? UNSIGNED_FLOAT : FLOAT); - - if (target != to) - convert_move (to, target, 0); - return; - } - } - -#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) - - /* Unsigned integer, and no way to convert directly. - Convert as signed, then conditionally adjust the result. */ - if (unsignedp) - { - rtx label = gen_label_rtx (); - rtx temp; - REAL_VALUE_TYPE offset; - - emit_queue (); - - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (flag_force_mem) - from = force_not_mem (from); - - /* Look for a usable floating mode FMODE wider than the source and at - least as wide as the target. Using FMODE will avoid rounding woes - with unsigned values greater than the signed maximum value. */ - for (fmode = GET_MODE (to); fmode != VOIDmode; - fmode = GET_MODE_WIDER_MODE (fmode)) - if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode) - && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing) - break; - if (fmode == VOIDmode) - { - /* There is no such mode. Pretend the target is wide enough. - This may cause rounding problems, unfortunately. */ - fmode = GET_MODE (to); - } - - /* If we are about to do some arithmetic to correct for an - unsigned operand, do it in a pseudo-register. */ - - if (GET_MODE (to) != fmode - || GET_CODE (to) != REG || REGNO (to) <= LAST_VIRTUAL_REGISTER) - target = gen_reg_rtx (fmode); - - /* Convert as signed integer to floating. */ - expand_float (target, from, 0); - - /* If FROM is negative (and therefore TO is negative), - correct its value by 2**bitwidth. */ - - do_pending_stack_adjust (); - emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, GET_MODE (from), 0, 0); - emit_jump_insn (gen_bge (label)); - /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1). - Rather than setting up a dconst_dot_5, let's hope SCO - fixes the bug. */ - offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from))); - temp = expand_binop (fmode, add_optab, target, - immed_real_const_1 (offset, fmode), - target, 0, OPTAB_LIB_WIDEN); - if (temp != target) - emit_move_insn (target, temp); - do_pending_stack_adjust (); - emit_label (label); - } - else -#endif - - /* No hardware instruction available; call a library rotine to convert from - SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */ - { - rtx libfcn; - rtx insns; - - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode)) - from = convert_to_mode (SImode, from, unsignedp); - - if (flag_force_mem) - from = force_not_mem (from); - - if (GET_MODE (to) == SFmode) - { - if (GET_MODE (from) == SImode) - libfcn = floatsisf_libfunc; - else if (GET_MODE (from) == DImode) - libfcn = floatdisf_libfunc; - else if (GET_MODE (from) == TImode) - libfcn = floattisf_libfunc; - else - abort (); - } - else if (GET_MODE (to) == DFmode) - { - if (GET_MODE (from) == SImode) - libfcn = floatsidf_libfunc; - else if (GET_MODE (from) == DImode) - libfcn = floatdidf_libfunc; - else if (GET_MODE (from) == TImode) - libfcn = floattidf_libfunc; - else - abort (); - } - else if (GET_MODE (to) == XFmode) - { - if (GET_MODE (from) == SImode) - libfcn = floatsixf_libfunc; - else if (GET_MODE (from) == DImode) - libfcn = floatdixf_libfunc; - else if (GET_MODE (from) == TImode) - libfcn = floattixf_libfunc; - else - abort (); - } - else if (GET_MODE (to) == TFmode) - { - if (GET_MODE (from) == SImode) - libfcn = floatsitf_libfunc; - else if (GET_MODE (from) == DImode) - libfcn = floatditf_libfunc; - else if (GET_MODE (from) == TImode) - libfcn = floattitf_libfunc; - else - abort (); - } - else - abort (); - - start_sequence (); - - emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); - insns = get_insns (); - end_sequence (); - - emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), - gen_rtx (FLOAT, GET_MODE (to), from)); - } - - /* Copy result to requested destination - if we have been computing in a temp location. */ - - if (target != to) - { - if (GET_MODE (target) == GET_MODE (to)) - emit_move_insn (to, target); - else - convert_move (to, target, 0); - } -} - -/* expand_fix: generate code to convert FROM to fixed point - and store in TO. FROM must be floating point. */ - -static rtx -ftruncify (x) - rtx x; -{ - rtx temp = gen_reg_rtx (GET_MODE (x)); - return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0); -} - -void -expand_fix (to, from, unsignedp) - register rtx to, from; - int unsignedp; -{ - enum insn_code icode; - register rtx target = to; - enum machine_mode fmode, imode; - int must_trunc = 0; - rtx libfcn = 0; - - /* We first try to find a pair of modes, one real and one integer, at - least as wide as FROM and TO, respectively, in which we can open-code - this conversion. If the integer mode is wider than the mode of TO, - we can do the conversion either signed or unsigned. */ - - for (imode = GET_MODE (to); imode != VOIDmode; - imode = GET_MODE_WIDER_MODE (imode)) - for (fmode = GET_MODE (from); fmode != VOIDmode; - fmode = GET_MODE_WIDER_MODE (fmode)) - { - int doing_unsigned = unsignedp; - - icode = can_fix_p (imode, fmode, unsignedp, &must_trunc); - if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp) - icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0; - - if (icode != CODE_FOR_nothing) - { - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (fmode != GET_MODE (from)) - from = convert_to_mode (fmode, from, 0); - - if (must_trunc) - from = ftruncify (from); - - if (imode != GET_MODE (to)) - target = gen_reg_rtx (imode); - - emit_unop_insn (icode, target, from, - doing_unsigned ? UNSIGNED_FIX : FIX); - if (target != to) - convert_move (to, target, unsignedp); - return; - } - } - -#if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC) - /* For an unsigned conversion, there is one more way to do it. - If we have a signed conversion, we generate code that compares - the real value to the largest representable positive number. If if - is smaller, the conversion is done normally. Otherwise, subtract - one plus the highest signed number, convert, and add it back. - - We only need to check all real modes, since we know we didn't find - anything with a wider integer mode. */ - - if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT) - for (fmode = GET_MODE (from); fmode != VOIDmode; - fmode = GET_MODE_WIDER_MODE (fmode)) - /* Make sure we won't lose significant bits doing this. */ - if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to)) - && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, - &must_trunc)) - { - int bitsize; - REAL_VALUE_TYPE offset; - rtx limit, lab1, lab2, insn; - - bitsize = GET_MODE_BITSIZE (GET_MODE (to)); - offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1); - limit = immed_real_const_1 (offset, fmode); - lab1 = gen_label_rtx (); - lab2 = gen_label_rtx (); - - emit_queue (); - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (flag_force_mem) - from = force_not_mem (from); - - if (fmode != GET_MODE (from)) - from = convert_to_mode (fmode, from, 0); - - /* See if we need to do the subtraction. */ - do_pending_stack_adjust (); - emit_cmp_insn (from, limit, GE, NULL_RTX, GET_MODE (from), 0, 0); - emit_jump_insn (gen_bge (lab1)); - - /* If not, do the signed "fix" and branch around fixup code. */ - expand_fix (to, from, 0); - emit_jump_insn (gen_jump (lab2)); - emit_barrier (); - - /* Otherwise, subtract 2**(N-1), convert to signed number, - then add 2**(N-1). Do the addition using XOR since this - will often generate better code. */ - emit_label (lab1); - target = expand_binop (GET_MODE (from), sub_optab, from, limit, - NULL_RTX, 0, OPTAB_LIB_WIDEN); - expand_fix (to, target, 0); - target = expand_binop (GET_MODE (to), xor_optab, to, - GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)), - to, 1, OPTAB_LIB_WIDEN); - - if (target != to) - emit_move_insn (to, target); - - emit_label (lab2); - - /* Make a place for a REG_NOTE and add it. */ - insn = emit_move_insn (to, to); - REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, - gen_rtx (UNSIGNED_FIX, GET_MODE (to), - copy_rtx (from)), - REG_NOTES (insn)); - - return; - } -#endif - - /* We can't do it with an insn, so use a library call. But first ensure - that the mode of TO is at least as wide as SImode, since those are the - only library calls we know about. */ - - if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode)) - { - target = gen_reg_rtx (SImode); - - expand_fix (target, from, unsignedp); - } - else if (GET_MODE (from) == SFmode) - { - if (GET_MODE (to) == SImode) - libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc; - else if (GET_MODE (to) == DImode) - libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc; - else if (GET_MODE (to) == TImode) - libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc; - else - abort (); - } - else if (GET_MODE (from) == DFmode) - { - if (GET_MODE (to) == SImode) - libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc; - else if (GET_MODE (to) == DImode) - libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc; - else if (GET_MODE (to) == TImode) - libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc; - else - abort (); - } - else if (GET_MODE (from) == XFmode) - { - if (GET_MODE (to) == SImode) - libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc; - else if (GET_MODE (to) == DImode) - libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc; - else if (GET_MODE (to) == TImode) - libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc; - else - abort (); - } - else if (GET_MODE (from) == TFmode) - { - if (GET_MODE (to) == SImode) - libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc; - else if (GET_MODE (to) == DImode) - libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc; - else if (GET_MODE (to) == TImode) - libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc; - else - abort (); - } - else - abort (); - - if (libfcn) - { - rtx insns; - - to = protect_from_queue (to, 1); - from = protect_from_queue (from, 0); - - if (flag_force_mem) - from = force_not_mem (from); - - start_sequence (); - - emit_library_call (libfcn, 1, GET_MODE (to), 1, from, GET_MODE (from)); - insns = get_insns (); - end_sequence (); - - emit_libcall_block (insns, target, hard_libcall_value (GET_MODE (to)), - gen_rtx (unsignedp ? FIX : UNSIGNED_FIX, - GET_MODE (to), from)); - } - - if (GET_MODE (to) == GET_MODE (target)) - emit_move_insn (to, target); - else - convert_move (to, target, 0); -} - -static optab -init_optab (code) - enum rtx_code code; -{ - int i; - optab op = (optab) xmalloc (sizeof (struct optab)); - op->code = code; - for (i = 0; i < NUM_MACHINE_MODES; i++) - { - op->handlers[i].insn_code = CODE_FOR_nothing; - op->handlers[i].libfunc = 0; - } - return op; -} - -/* Initialize the libfunc fields of an entire group of entries in some - optab. Each entry is set equal to a string consisting of a leading - pair of underscores followed by a generic operation name followed by - a mode name (downshifted to lower case) followed by a single character - representing the number of operands for the given operation (which is - usually one of the characters '2', '3', or '4'). - - OPTABLE is the table in which libfunc fields are to be initialized. - FIRST_MODE is the first machine mode index in the given optab to - initialize. - LAST_MODE is the last machine mode index in the given optab to - initialize. - OPNAME is the generic (string) name of the operation. - SUFFIX is the character which specifies the number of operands for - the given generic operation. -*/ - -static void -init_libfuncs (optable, first_mode, last_mode, opname, suffix) - register optab optable; - register int first_mode; - register int last_mode; - register char *opname; - register char suffix; -{ - register int mode; - register unsigned opname_len = strlen (opname); - - for (mode = first_mode; (int) mode <= (int) last_mode; - mode = (enum machine_mode) ((int) mode + 1)) - { - register char *mname = mode_name[(int) mode]; - register unsigned mname_len = strlen (mname); - register char *libfunc_name - = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1); - register char *p; - register char *q; - - p = libfunc_name; - *p++ = '_'; - *p++ = '_'; - for (q = opname; *q; ) - *p++ = *q++; - for (q = mname; *q; q++) - *p++ = tolower (*q); - *p++ = suffix; - *p++ = '\0'; - optable->handlers[(int) mode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, libfunc_name); - } -} - -/* Initialize the libfunc fields of an entire group of entries in some - optab which correspond to all integer mode operations. The parameters - have the same meaning as similarly named ones for the `init_libfuncs' - routine. (See above). */ - -static void -init_integral_libfuncs (optable, opname, suffix) - register optab optable; - register char *opname; - register char suffix; -{ - init_libfuncs (optable, SImode, TImode, opname, suffix); -} - -/* Initialize the libfunc fields of an entire group of entries in some - optab which correspond to all real mode operations. The parameters - have the same meaning as similarly named ones for the `init_libfuncs' - routine. (See above). */ - -static void -init_floating_libfuncs (optable, opname, suffix) - register optab optable; - register char *opname; - register char suffix; -{ - init_libfuncs (optable, SFmode, TFmode, opname, suffix); -} - -/* Initialize the libfunc fields of an entire group of entries in some - optab which correspond to all complex floating modes. The parameters - have the same meaning as similarly named ones for the `init_libfuncs' - routine. (See above). */ - -static void -init_complex_libfuncs (optable, opname, suffix) - register optab optable; - register char *opname; - register char suffix; -{ - init_libfuncs (optable, SCmode, TCmode, opname, suffix); -} - -/* Call this once to initialize the contents of the optabs - appropriately for the current target machine. */ - -void -init_optabs () -{ - int i, j; - enum insn_code *p; - - /* Start by initializing all tables to contain CODE_FOR_nothing. */ - - for (p = fixtab[0][0]; - p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]); - p++) - *p = CODE_FOR_nothing; - - for (p = fixtrunctab[0][0]; - p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]); - p++) - *p = CODE_FOR_nothing; - - for (p = floattab[0][0]; - p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]); - p++) - *p = CODE_FOR_nothing; - - for (p = extendtab[0][0]; - p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0]; - p++) - *p = CODE_FOR_nothing; - - for (i = 0; i < NUM_RTX_CODE; i++) - setcc_gen_code[i] = CODE_FOR_nothing; - - add_optab = init_optab (PLUS); - sub_optab = init_optab (MINUS); - smul_optab = init_optab (MULT); - smul_widen_optab = init_optab (UNKNOWN); - umul_widen_optab = init_optab (UNKNOWN); - sdiv_optab = init_optab (DIV); - sdivmod_optab = init_optab (UNKNOWN); - udiv_optab = init_optab (UDIV); - udivmod_optab = init_optab (UNKNOWN); - smod_optab = init_optab (MOD); - umod_optab = init_optab (UMOD); - flodiv_optab = init_optab (DIV); - ftrunc_optab = init_optab (UNKNOWN); - and_optab = init_optab (AND); - ior_optab = init_optab (IOR); - xor_optab = init_optab (XOR); - ashl_optab = init_optab (ASHIFT); - ashr_optab = init_optab (ASHIFTRT); - lshl_optab = init_optab (LSHIFT); - lshr_optab = init_optab (LSHIFTRT); - rotl_optab = init_optab (ROTATE); - rotr_optab = init_optab (ROTATERT); - smin_optab = init_optab (SMIN); - smax_optab = init_optab (SMAX); - umin_optab = init_optab (UMIN); - umax_optab = init_optab (UMAX); - mov_optab = init_optab (UNKNOWN); - movstrict_optab = init_optab (UNKNOWN); - cmp_optab = init_optab (UNKNOWN); - ucmp_optab = init_optab (UNKNOWN); - tst_optab = init_optab (UNKNOWN); - neg_optab = init_optab (NEG); - abs_optab = init_optab (ABS); - one_cmpl_optab = init_optab (NOT); - ffs_optab = init_optab (FFS); - sqrt_optab = init_optab (SQRT); - sin_optab = init_optab (UNKNOWN); - cos_optab = init_optab (UNKNOWN); - strlen_optab = init_optab (UNKNOWN); - - for (i = 0; i < NUM_MACHINE_MODES; i++) - { - movstr_optab[i] = CODE_FOR_nothing; - -#ifdef HAVE_SECONDARY_RELOADS - reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing; -#endif - } - - /* Fill in the optabs with the insns we support. */ - init_all_optabs (); - -#ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC - /* This flag says the same insns that convert to a signed fixnum - also convert validly to an unsigned one. */ - for (i = 0; i < NUM_MACHINE_MODES; i++) - for (j = 0; j < NUM_MACHINE_MODES; j++) - fixtrunctab[i][j][1] = fixtrunctab[i][j][0]; -#endif - -#ifdef EXTRA_CC_MODES - init_mov_optab (); -#endif - - /* Initialize the optabs with the names of the library functions. */ - init_integral_libfuncs (add_optab, "add", '3'); - init_floating_libfuncs (add_optab, "add", '3'); - init_integral_libfuncs (sub_optab, "sub", '3'); - init_floating_libfuncs (sub_optab, "sub", '3'); - init_integral_libfuncs (smul_optab, "mul", '3'); - init_floating_libfuncs (smul_optab, "mul", '3'); - init_integral_libfuncs (sdiv_optab, "div", '3'); - init_integral_libfuncs (udiv_optab, "udiv", '3'); - init_integral_libfuncs (sdivmod_optab, "divmod", '4'); - init_integral_libfuncs (udivmod_optab, "udivmod", '4'); - init_integral_libfuncs (smod_optab, "mod", '3'); - init_integral_libfuncs (umod_optab, "umod", '3'); - init_floating_libfuncs (flodiv_optab, "div", '3'); - init_floating_libfuncs (ftrunc_optab, "ftrunc", '2'); - init_integral_libfuncs (and_optab, "and", '3'); - init_integral_libfuncs (ior_optab, "ior", '3'); - init_integral_libfuncs (xor_optab, "xor", '3'); - init_integral_libfuncs (ashl_optab, "ashl", '3'); - init_integral_libfuncs (ashr_optab, "ashr", '3'); - init_integral_libfuncs (lshl_optab, "lshl", '3'); - init_integral_libfuncs (lshr_optab, "lshr", '3'); - init_integral_libfuncs (rotl_optab, "rotl", '3'); - init_integral_libfuncs (rotr_optab, "rotr", '3'); - init_integral_libfuncs (smin_optab, "min", '3'); - init_floating_libfuncs (smin_optab, "min", '3'); - init_integral_libfuncs (smax_optab, "max", '3'); - init_floating_libfuncs (smax_optab, "max", '3'); - init_integral_libfuncs (umin_optab, "umin", '3'); - init_integral_libfuncs (umax_optab, "umax", '3'); - init_integral_libfuncs (neg_optab, "neg", '2'); - init_floating_libfuncs (neg_optab, "neg", '2'); - init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2'); - init_integral_libfuncs (ffs_optab, "ffs", '2'); - - /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */ - init_integral_libfuncs (cmp_optab, "cmp", '2'); - init_integral_libfuncs (ucmp_optab, "ucmp", '2'); - init_floating_libfuncs (cmp_optab, "cmp", '2'); - -#ifdef MULSI3_LIBCALL - smul_optab->handlers[(int) SImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, MULSI3_LIBCALL); -#endif -#ifdef MULDI3_LIBCALL - smul_optab->handlers[(int) DImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, MULDI3_LIBCALL); -#endif -#ifdef MULTI3_LIBCALL - smul_optab->handlers[(int) TImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, MULTI3_LIBCALL); -#endif - -#ifdef DIVSI3_LIBCALL - sdiv_optab->handlers[(int) SImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, DIVSI3_LIBCALL); -#endif -#ifdef DIVDI3_LIBCALL - sdiv_optab->handlers[(int) DImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, DIVDI3_LIBCALL); -#endif -#ifdef DIVTI3_LIBCALL - sdiv_optab->handlers[(int) TImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, DIVTI3_LIBCALL); -#endif - -#ifdef UDIVSI3_LIBCALL - udiv_optab->handlers[(int) SImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, UDIVSI3_LIBCALL); -#endif -#ifdef UDIVDI3_LIBCALL - udiv_optab->handlers[(int) DImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, UDIVDI3_LIBCALL); -#endif -#ifdef UDIVTI3_LIBCALL - udiv_optab->handlers[(int) TImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, UDIVTI3_LIBCALL); -#endif - - -#ifdef MODSI3_LIBCALL - smod_optab->handlers[(int) SImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, MODSI3_LIBCALL); -#endif -#ifdef MODDI3_LIBCALL - smod_optab->handlers[(int) DImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, MODDI3_LIBCALL); -#endif -#ifdef MODTI3_LIBCALL - smod_optab->handlers[(int) TImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, MODTI3_LIBCALL); -#endif - - -#ifdef UMODSI3_LIBCALL - umod_optab->handlers[(int) SImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, UMODSI3_LIBCALL); -#endif -#ifdef UMODDI3_LIBCALL - umod_optab->handlers[(int) DImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, UMODDI3_LIBCALL); -#endif -#ifdef UMODTI3_LIBCALL - umod_optab->handlers[(int) TImode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, UMODTI3_LIBCALL); -#endif - - /* Use cabs for DC complex abs, since systems generally have cabs. - Don't define any libcall for SCmode, so that cabs will be used. */ - abs_optab->handlers[(int) DCmode].libfunc - = gen_rtx (SYMBOL_REF, Pmode, "cabs"); - - ffs_optab->handlers[(int) mode_for_size (BITS_PER_WORD, MODE_INT, 0)] .libfunc - = gen_rtx (SYMBOL_REF, Pmode, "ffs"); - - extendsfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfdf2"); - extendsfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsfxf2"); - extendsftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extendsftf2"); - extenddfxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddfxf2"); - extenddftf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__extenddftf2"); - - truncdfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncdfsf2"); - truncxfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfsf2"); - trunctfsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfsf2"); - truncxfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__truncxfdf2"); - trunctfdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__trunctfdf2"); - - memcpy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcpy"); - bcopy_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bcopy"); - memcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memcmp"); - bcmp_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gcc_bcmp"); - memset_libfunc = gen_rtx (SYMBOL_REF, Pmode, "memset"); - bzero_libfunc = gen_rtx (SYMBOL_REF, Pmode, "bzero"); - - eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqsf2"); - nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nesf2"); - gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtsf2"); - gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gesf2"); - ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltsf2"); - lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lesf2"); - - eqdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqdf2"); - nedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nedf2"); - gtdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtdf2"); - gedf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gedf2"); - ltdf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltdf2"); - ledf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ledf2"); - - eqxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqxf2"); - nexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__nexf2"); - gtxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gtxf2"); - gexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gexf2"); - ltxf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__ltxf2"); - lexf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lexf2"); - - eqtf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__eqtf2"); - netf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__netf2"); - gttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__gttf2"); - getf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__getf2"); - lttf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__lttf2"); - letf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__letf2"); - - floatsisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsisf"); - floatdisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdisf"); - floattisf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattisf"); - - floatsidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsidf"); - floatdidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdidf"); - floattidf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattidf"); - - floatsixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsixf"); - floatdixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatdixf"); - floattixf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattixf"); - - floatsitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatsitf"); - floatditf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floatditf"); - floattitf_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__floattitf"); - - fixsfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfsi"); - fixsfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfdi"); - fixsfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixsfti"); - - fixdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfsi"); - fixdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfdi"); - fixdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixdfti"); - - fixxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfsi"); - fixxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfdi"); - fixxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixxfti"); - - fixtfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfsi"); - fixtfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfdi"); - fixtfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixtfti"); - - fixunssfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfsi"); - fixunssfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfdi"); - fixunssfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunssfti"); - - fixunsdfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfsi"); - fixunsdfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfdi"); - fixunsdfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsdfti"); - - fixunsxfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfsi"); - fixunsxfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfdi"); - fixunsxfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunsxfti"); - - fixunstfsi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfsi"); - fixunstfdi_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfdi"); - fixunstfti_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__fixunstfti"); -} - -#ifdef BROKEN_LDEXP - -/* SCO 3.2 apparently has a broken ldexp. */ - -double -ldexp(x,n) - double x; - int n; -{ - if (n > 0) - while (n--) - x *= 2; - - return x; -} -#endif /* BROKEN_LDEXP */ |
