diff options
Diffstat (limited to 'include/llvm/Analysis/ScalarEvolutionExpressions.h')
-rw-r--r-- | include/llvm/Analysis/ScalarEvolutionExpressions.h | 120 |
1 files changed, 101 insertions, 19 deletions
diff --git a/include/llvm/Analysis/ScalarEvolutionExpressions.h b/include/llvm/Analysis/ScalarEvolutionExpressions.h index 9cd902a120cf..2f1b1c3841f3 100644 --- a/include/llvm/Analysis/ScalarEvolutionExpressions.h +++ b/include/llvm/Analysis/ScalarEvolutionExpressions.h @@ -14,6 +14,7 @@ #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H +#include "llvm/ADT/iterator_range.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Support/ErrorHandling.h" @@ -151,8 +152,12 @@ namespace llvm { } typedef const SCEV *const *op_iterator; + typedef iterator_range<op_iterator> op_range; op_iterator op_begin() const { return Operands; } op_iterator op_end() const { return Operands + NumOperands; } + op_range operands() const { + return make_range(op_begin(), op_end()); + } Type *getType() const { return getOperand(0)->getType(); } @@ -304,17 +309,17 @@ namespace llvm { getLoop(), FlagAnyWrap); } - /// isAffine - Return true if this is an affine AddRec (i.e., it represents - /// an expressions A+B*x where A and B are loop invariant values. + /// isAffine - Return true if this represents an expression + /// A + B*x where A and B are loop invariant values. bool isAffine() const { // We know that the start value is invariant. This expression is thus // affine iff the step is also invariant. return getNumOperands() == 2; } - /// isQuadratic - Return true if this is an quadratic AddRec (i.e., it - /// represents an expressions A+B*x+C*x^2 where A, B and C are loop - /// invariant values. This corresponds to an addrec of the form {L,+,M,+,N} + /// isQuadratic - Return true if this represents an expression + /// A + B*x + C*x^2 where A, B and C are loop invariant values. + /// This corresponds to an addrec of the form {L,+,M,+,N} bool isQuadratic() const { return getNumOperands() == 3; } @@ -352,12 +357,83 @@ namespace llvm { return S->getSCEVType() == scAddRecExpr; } - /// Splits the SCEV into two vectors of SCEVs representing the subscripts - /// and sizes of an array access. Returns the remainder of the - /// delinearization that is the offset start of the array. - const SCEV *delinearize(ScalarEvolution &SE, - SmallVectorImpl<const SCEV *> &Subscripts, - SmallVectorImpl<const SCEV *> &Sizes) const; + /// Collect parametric terms occurring in step expressions. + void collectParametricTerms(ScalarEvolution &SE, + SmallVectorImpl<const SCEV *> &Terms) const; + + /// Return in Subscripts the access functions for each dimension in Sizes. + void computeAccessFunctions(ScalarEvolution &SE, + SmallVectorImpl<const SCEV *> &Subscripts, + SmallVectorImpl<const SCEV *> &Sizes) const; + + /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the + /// subscripts and sizes of an array access. + /// + /// The delinearization is a 3 step process: the first two steps compute the + /// sizes of each subscript and the third step computes the access functions + /// for the delinearized array: + /// + /// 1. Find the terms in the step functions + /// 2. Compute the array size + /// 3. Compute the access function: divide the SCEV by the array size + /// starting with the innermost dimensions found in step 2. The Quotient + /// is the SCEV to be divided in the next step of the recursion. The + /// Remainder is the subscript of the innermost dimension. Loop over all + /// array dimensions computed in step 2. + /// + /// To compute a uniform array size for several memory accesses to the same + /// object, one can collect in step 1 all the step terms for all the memory + /// accesses, and compute in step 2 a unique array shape. This guarantees + /// that the array shape will be the same across all memory accesses. + /// + /// FIXME: We could derive the result of steps 1 and 2 from a description of + /// the array shape given in metadata. + /// + /// Example: + /// + /// A[][n][m] + /// + /// for i + /// for j + /// for k + /// A[j+k][2i][5i] = + /// + /// The initial SCEV: + /// + /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k] + /// + /// 1. Find the different terms in the step functions: + /// -> [2*m, 5, n*m, n*m] + /// + /// 2. Compute the array size: sort and unique them + /// -> [n*m, 2*m, 5] + /// find the GCD of all the terms = 1 + /// divide by the GCD and erase constant terms + /// -> [n*m, 2*m] + /// GCD = m + /// divide by GCD -> [n, 2] + /// remove constant terms + /// -> [n] + /// size of the array is A[unknown][n][m] + /// + /// 3. Compute the access function + /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m + /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k + /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k + /// The remainder is the subscript of the innermost array dimension: [5i]. + /// + /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n + /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k + /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k + /// The Remainder is the subscript of the next array dimension: [2i]. + /// + /// The subscript of the outermost dimension is the Quotient: [j+k]. + /// + /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i]. + void delinearize(ScalarEvolution &SE, + SmallVectorImpl<const SCEV *> &Subscripts, + SmallVectorImpl<const SCEV *> &Sizes, + const SCEV *ElementSize) const; }; //===--------------------------------------------------------------------===// @@ -410,8 +486,8 @@ namespace llvm { friend class ScalarEvolution; // Implement CallbackVH. - virtual void deleted(); - virtual void allUsesReplacedWith(Value *New); + void deleted() override; + void allUsesReplacedWith(Value *New) override; /// SE - The parent ScalarEvolution value. This is used to update /// the parent's maps when the value associated with a SCEVUnknown @@ -563,13 +639,14 @@ namespace llvm { : public SCEVVisitor<SCEVParameterRewriter, const SCEV*> { public: static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE, - ValueToValueMap &Map) { - SCEVParameterRewriter Rewriter(SE, Map); + ValueToValueMap &Map, + bool InterpretConsts = false) { + SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts); return Rewriter.visit(Scev); } - SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M) - : SE(S), Map(M) {} + SCEVParameterRewriter(ScalarEvolution &S, ValueToValueMap &M, bool C) + : SE(S), Map(M), InterpretConsts(C) {} const SCEV *visitConstant(const SCEVConstant *Constant) { return Constant; @@ -632,8 +709,12 @@ namespace llvm { const SCEV *visitUnknown(const SCEVUnknown *Expr) { Value *V = Expr->getValue(); - if (Map.count(V)) - return SE.getUnknown(Map[V]); + if (Map.count(V)) { + Value *NV = Map[V]; + if (InterpretConsts && isa<ConstantInt>(NV)) + return SE.getConstant(cast<ConstantInt>(NV)); + return SE.getUnknown(NV); + } return Expr; } @@ -644,6 +725,7 @@ namespace llvm { private: ScalarEvolution &SE; ValueToValueMap ⤅ + bool InterpretConsts; }; typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT; |