diff options
Diffstat (limited to 'include/llvm/CodeGen/PBQP/ReductionRules.h')
-rw-r--r-- | include/llvm/CodeGen/PBQP/ReductionRules.h | 191 |
1 files changed, 191 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/PBQP/ReductionRules.h b/include/llvm/CodeGen/PBQP/ReductionRules.h new file mode 100644 index 000000000000..a55a06033c4e --- /dev/null +++ b/include/llvm/CodeGen/PBQP/ReductionRules.h @@ -0,0 +1,191 @@ +//===----------- ReductionRules.h - Reduction Rules -------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Reduction Rules. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_REDUCTIONRULES_H +#define LLVM_REDUCTIONRULES_H + +#include "Graph.h" +#include "Math.h" +#include "Solution.h" + +namespace PBQP { + + /// \brief Reduce a node of degree one. + /// + /// Propagate costs from the given node, which must be of degree one, to its + /// neighbor. Notify the problem domain. + template <typename GraphT> + void applyR1(GraphT &G, typename GraphT::NodeId NId) { + typedef typename GraphT::NodeId NodeId; + typedef typename GraphT::EdgeId EdgeId; + typedef typename GraphT::Vector Vector; + typedef typename GraphT::Matrix Matrix; + typedef typename GraphT::RawVector RawVector; + + assert(G.getNodeDegree(NId) == 1 && + "R1 applied to node with degree != 1."); + + EdgeId EId = *G.adjEdgeIds(NId).begin(); + NodeId MId = G.getEdgeOtherNodeId(EId, NId); + + const Matrix &ECosts = G.getEdgeCosts(EId); + const Vector &XCosts = G.getNodeCosts(NId); + RawVector YCosts = G.getNodeCosts(MId); + + // Duplicate a little to avoid transposing matrices. + if (NId == G.getEdgeNode1Id(EId)) { + for (unsigned j = 0; j < YCosts.getLength(); ++j) { + PBQPNum Min = ECosts[0][j] + XCosts[0]; + for (unsigned i = 1; i < XCosts.getLength(); ++i) { + PBQPNum C = ECosts[i][j] + XCosts[i]; + if (C < Min) + Min = C; + } + YCosts[j] += Min; + } + } else { + for (unsigned i = 0; i < YCosts.getLength(); ++i) { + PBQPNum Min = ECosts[i][0] + XCosts[0]; + for (unsigned j = 1; j < XCosts.getLength(); ++j) { + PBQPNum C = ECosts[i][j] + XCosts[j]; + if (C < Min) + Min = C; + } + YCosts[i] += Min; + } + } + G.setNodeCosts(MId, YCosts); + G.disconnectEdge(EId, MId); + } + + template <typename GraphT> + void applyR2(GraphT &G, typename GraphT::NodeId NId) { + typedef typename GraphT::NodeId NodeId; + typedef typename GraphT::EdgeId EdgeId; + typedef typename GraphT::Vector Vector; + typedef typename GraphT::Matrix Matrix; + typedef typename GraphT::RawMatrix RawMatrix; + + assert(G.getNodeDegree(NId) == 2 && + "R2 applied to node with degree != 2."); + + const Vector &XCosts = G.getNodeCosts(NId); + + typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin(); + EdgeId YXEId = *AEItr, + ZXEId = *(++AEItr); + + NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId), + ZNId = G.getEdgeOtherNodeId(ZXEId, NId); + + bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId), + FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId); + + const Matrix *YXECosts = FlipEdge1 ? + new Matrix(G.getEdgeCosts(YXEId).transpose()) : + &G.getEdgeCosts(YXEId); + + const Matrix *ZXECosts = FlipEdge2 ? + new Matrix(G.getEdgeCosts(ZXEId).transpose()) : + &G.getEdgeCosts(ZXEId); + + unsigned XLen = XCosts.getLength(), + YLen = YXECosts->getRows(), + ZLen = ZXECosts->getRows(); + + RawMatrix Delta(YLen, ZLen); + + for (unsigned i = 0; i < YLen; ++i) { + for (unsigned j = 0; j < ZLen; ++j) { + PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0]; + for (unsigned k = 1; k < XLen; ++k) { + PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k]; + if (C < Min) { + Min = C; + } + } + Delta[i][j] = Min; + } + } + + if (FlipEdge1) + delete YXECosts; + + if (FlipEdge2) + delete ZXECosts; + + EdgeId YZEId = G.findEdge(YNId, ZNId); + + if (YZEId == G.invalidEdgeId()) { + YZEId = G.addEdge(YNId, ZNId, Delta); + } else { + const Matrix &YZECosts = G.getEdgeCosts(YZEId); + if (YNId == G.getEdgeNode1Id(YZEId)) { + G.setEdgeCosts(YZEId, Delta + YZECosts); + } else { + G.setEdgeCosts(YZEId, Delta.transpose() + YZECosts); + } + } + + G.disconnectEdge(YXEId, YNId); + G.disconnectEdge(ZXEId, ZNId); + + // TODO: Try to normalize newly added/modified edge. + } + + + // \brief Find a solution to a fully reduced graph by backpropagation. + // + // Given a graph and a reduction order, pop each node from the reduction + // order and greedily compute a minimum solution based on the node costs, and + // the dependent costs due to previously solved nodes. + // + // Note - This does not return the graph to its original (pre-reduction) + // state: the existing solvers destructively alter the node and edge + // costs. Given that, the backpropagate function doesn't attempt to + // replace the edges either, but leaves the graph in its reduced + // state. + template <typename GraphT, typename StackT> + Solution backpropagate(GraphT& G, StackT stack) { + typedef GraphBase::NodeId NodeId; + typedef typename GraphT::Matrix Matrix; + typedef typename GraphT::RawVector RawVector; + + Solution s; + + while (!stack.empty()) { + NodeId NId = stack.back(); + stack.pop_back(); + + RawVector v = G.getNodeCosts(NId); + + for (auto EId : G.adjEdgeIds(NId)) { + const Matrix& edgeCosts = G.getEdgeCosts(EId); + if (NId == G.getEdgeNode1Id(EId)) { + NodeId mId = G.getEdgeNode2Id(EId); + v += edgeCosts.getColAsVector(s.getSelection(mId)); + } else { + NodeId mId = G.getEdgeNode1Id(EId); + v += edgeCosts.getRowAsVector(s.getSelection(mId)); + } + } + + s.setSelection(NId, v.minIndex()); + } + + return s; + } + +} + +#endif // LLVM_REDUCTIONRULES_H |