aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Support/Automaton.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Support/Automaton.h')
-rw-r--r--include/llvm/Support/Automaton.h253
1 files changed, 253 insertions, 0 deletions
diff --git a/include/llvm/Support/Automaton.h b/include/llvm/Support/Automaton.h
new file mode 100644
index 000000000000..7c13a698e492
--- /dev/null
+++ b/include/llvm/Support/Automaton.h
@@ -0,0 +1,253 @@
+//===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements class that drive and introspect deterministic finite-
+// state automata (DFAs) as generated by TableGen's -gen-automata backend.
+//
+// For a description of how to define an automaton, see
+// include/llvm/TableGen/Automaton.td.
+//
+// One important detail is that these deterministic automata are created from
+// (potentially) nondeterministic definitions. Therefore a unique sequence of
+// input symbols will produce one path through the DFA but multiple paths
+// through the original NFA. An automaton by default only returns "accepted" or
+// "not accepted", but frequently we want to analyze what NFA path was taken.
+// Finding a path through the NFA states that results in a DFA state can help
+// answer *what* the solution to a problem was, not just that there exists a
+// solution.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_AUTOMATON_H
+#define LLVM_SUPPORT_AUTOMATON_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Allocator.h"
+#include <deque>
+#include <map>
+#include <memory>
+#include <unordered_map>
+#include <vector>
+
+namespace llvm {
+
+using NfaPath = SmallVector<uint64_t, 4>;
+
+/// Forward define the pair type used by the automata transition info tables.
+///
+/// Experimental results with large tables have shown a significant (multiple
+/// orders of magnitude) parsing speedup by using a custom struct here with a
+/// trivial constructor rather than std::pair<uint64_t, uint64_t>.
+struct NfaStatePair {
+ uint64_t FromDfaState, ToDfaState;
+
+ bool operator<(const NfaStatePair &Other) const {
+ return std::make_tuple(FromDfaState, ToDfaState) <
+ std::make_tuple(Other.FromDfaState, Other.ToDfaState);
+ }
+};
+
+namespace internal {
+/// The internal class that maintains all possible paths through an NFA based
+/// on a path through the DFA.
+class NfaTranscriber {
+private:
+ /// Cached transition table. This is a table of NfaStatePairs that contains
+ /// zero-terminated sequences pointed to by DFA transitions.
+ ArrayRef<NfaStatePair> TransitionInfo;
+
+ /// A simple linked-list of traversed states that can have a shared tail. The
+ /// traversed path is stored in reverse order with the latest state as the
+ /// head.
+ struct PathSegment {
+ uint64_t State;
+ PathSegment *Tail;
+ };
+
+ /// We allocate segment objects frequently. Allocate them upfront and dispose
+ /// at the end of a traversal rather than hammering the system allocator.
+ SpecificBumpPtrAllocator<PathSegment> Allocator;
+
+ /// Heads of each tracked path. These are not ordered.
+ std::deque<PathSegment *> Heads;
+
+ /// The returned paths. This is populated during getPaths.
+ SmallVector<NfaPath, 4> Paths;
+
+ /// Create a new segment and return it.
+ PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
+ PathSegment *P = Allocator.Allocate();
+ *P = {State, Tail};
+ return P;
+ }
+
+ /// Pairs defines a sequence of possible NFA transitions for a single DFA
+ /// transition.
+ void transition(ArrayRef<NfaStatePair> Pairs) {
+ // Iterate over all existing heads. We will mutate the Heads deque during
+ // iteration.
+ unsigned NumHeads = Heads.size();
+ for (unsigned I = 0; I < NumHeads; ++I) {
+ PathSegment *Head = Heads[I];
+ // The sequence of pairs is sorted. Select the set of pairs that
+ // transition from the current head state.
+ auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
+ auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
+ // For every transition from the current head state, add a new path
+ // segment.
+ for (; PI != PE; ++PI)
+ if (PI->FromDfaState == Head->State)
+ Heads.push_back(makePathSegment(PI->ToDfaState, Head));
+ }
+ // Now we've iterated over all the initial heads and added new ones,
+ // dispose of the original heads.
+ Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
+ }
+
+public:
+ NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
+ : TransitionInfo(TransitionInfo) {
+ reset();
+ }
+
+ void reset() {
+ Paths.clear();
+ Heads.clear();
+ Allocator.DestroyAll();
+ // The initial NFA state is 0.
+ Heads.push_back(makePathSegment(0ULL, nullptr));
+ }
+
+ void transition(unsigned TransitionInfoIdx) {
+ unsigned EndIdx = TransitionInfoIdx;
+ while (TransitionInfo[EndIdx].ToDfaState != 0)
+ ++EndIdx;
+ ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
+ EndIdx - TransitionInfoIdx);
+ transition(Pairs);
+ }
+
+ ArrayRef<NfaPath> getPaths() {
+ Paths.clear();
+ for (auto *Head : Heads) {
+ NfaPath P;
+ while (Head->State != 0) {
+ P.push_back(Head->State);
+ Head = Head->Tail;
+ }
+ std::reverse(P.begin(), P.end());
+ Paths.push_back(std::move(P));
+ }
+ return Paths;
+ }
+};
+} // namespace internal
+
+/// A deterministic finite-state automaton. The automaton is defined in
+/// TableGen; this object drives an automaton defined by tblgen-emitted tables.
+///
+/// An automaton accepts a sequence of input tokens ("actions"). This class is
+/// templated on the type of these actions.
+template <typename ActionT> class Automaton {
+ /// Map from {State, Action} to {NewState, TransitionInfoIdx}.
+ /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
+ /// FIXME: This uses a std::map because ActionT can be a pair type including
+ /// an enum. In particular DenseMapInfo<ActionT> must be defined to use
+ /// DenseMap here.
+ /// This is a shared_ptr to allow very quick copy-construction of Automata; this
+ /// state is immutable after construction so this is safe.
+ using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
+ std::shared_ptr<MapTy> M;
+ /// An optional transcription object. This uses much more state than simply
+ /// traversing the DFA for acceptance, so is heap allocated.
+ std::shared_ptr<internal::NfaTranscriber> Transcriber;
+ /// The initial DFA state is 1.
+ uint64_t State = 1;
+ /// True if we should transcribe and false if not (even if Transcriber is defined).
+ bool Transcribe;
+
+public:
+ /// Create an automaton.
+ /// \param Transitions The Transitions table as created by TableGen. Note that
+ /// because the action type differs per automaton, the
+ /// table type is templated as ArrayRef<InfoT>.
+ /// \param TranscriptionTable The TransitionInfo table as created by TableGen.
+ ///
+ /// Providing the TranscriptionTable argument as non-empty will enable the
+ /// use of transcription, which analyzes the possible paths in the original
+ /// NFA taken by the DFA. NOTE: This is substantially more work than simply
+ /// driving the DFA, so unless you require the getPaths() method leave this
+ /// empty.
+ template <typename InfoT>
+ Automaton(ArrayRef<InfoT> Transitions,
+ ArrayRef<NfaStatePair> TranscriptionTable = {}) {
+ if (!TranscriptionTable.empty())
+ Transcriber =
+ std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
+ Transcribe = Transcriber != nullptr;
+ M = std::make_shared<MapTy>();
+ for (const auto &I : Transitions)
+ // Greedily read and cache the transition table.
+ M->emplace(std::make_pair(I.FromDfaState, I.Action),
+ std::make_pair(I.ToDfaState, I.InfoIdx));
+ }
+ Automaton(const Automaton &) = default;
+
+ /// Reset the automaton to its initial state.
+ void reset() {
+ State = 1;
+ if (Transcriber)
+ Transcriber->reset();
+ }
+
+ /// Enable or disable transcription. Transcription is only available if
+ /// TranscriptionTable was provided to the constructor.
+ void enableTranscription(bool Enable = true) {
+ assert(Transcriber &&
+ "Transcription is only available if TranscriptionTable was provided "
+ "to the Automaton constructor");
+ Transcribe = Enable;
+ }
+
+ /// Transition the automaton based on input symbol A. Return true if the
+ /// automaton transitioned to a valid state, false if the automaton
+ /// transitioned to an invalid state.
+ ///
+ /// If this function returns false, all methods are undefined until reset() is
+ /// called.
+ bool add(const ActionT &A) {
+ auto I = M->find({State, A});
+ if (I == M->end())
+ return false;
+ if (Transcriber && Transcribe)
+ Transcriber->transition(I->second.second);
+ State = I->second.first;
+ return true;
+ }
+
+ /// Return true if the automaton can be transitioned based on input symbol A.
+ bool canAdd(const ActionT &A) {
+ auto I = M->find({State, A});
+ return I != M->end();
+ }
+
+ /// Obtain a set of possible paths through the input nondeterministic
+ /// automaton that could be obtained from the sequence of input actions
+ /// presented to this deterministic automaton.
+ ArrayRef<NfaPath> getNfaPaths() {
+ assert(Transcriber && Transcribe &&
+ "Can only obtain NFA paths if transcribing!");
+ return Transcriber->getPaths();
+ }
+};
+
+} // namespace llvm
+
+#endif // LLVM_SUPPORT_AUTOMATON_H