aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Support/GenericIteratedDominanceFrontier.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Support/GenericIteratedDominanceFrontier.h')
-rw-r--r--include/llvm/Support/GenericIteratedDominanceFrontier.h209
1 files changed, 209 insertions, 0 deletions
diff --git a/include/llvm/Support/GenericIteratedDominanceFrontier.h b/include/llvm/Support/GenericIteratedDominanceFrontier.h
new file mode 100644
index 000000000000..25eb7cd7b6d5
--- /dev/null
+++ b/include/llvm/Support/GenericIteratedDominanceFrontier.h
@@ -0,0 +1,209 @@
+//===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// Compute iterated dominance frontiers using a linear time algorithm.
+///
+/// The algorithm used here is based on:
+///
+/// Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
+/// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
+/// Programming Languages
+/// POPL '95. ACM, New York, NY, 62-73.
+///
+/// It has been modified to not explicitly use the DJ graph data structure and
+/// to directly compute pruned SSA using per-variable liveness information.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_GENERIC_IDF_H
+#define LLVM_SUPPORT_GENERIC_IDF_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/GenericDomTree.h"
+#include <queue>
+
+namespace llvm {
+
+namespace IDFCalculatorDetail {
+
+/// Generic utility class used for getting the children of a basic block.
+/// May be specialized if, for example, one wouldn't like to return nullpointer
+/// successors.
+template <class NodeTy, bool IsPostDom> struct ChildrenGetterTy {
+ using NodeRef = typename GraphTraits<NodeTy>::NodeRef;
+ using ChildrenTy = SmallVector<NodeRef, 8>;
+
+ ChildrenTy get(const NodeRef &N);
+};
+
+} // end of namespace IDFCalculatorDetail
+
+/// Determine the iterated dominance frontier, given a set of defining
+/// blocks, and optionally, a set of live-in blocks.
+///
+/// In turn, the results can be used to place phi nodes.
+///
+/// This algorithm is a linear time computation of Iterated Dominance Frontiers,
+/// pruned using the live-in set.
+/// By default, liveness is not used to prune the IDF computation.
+/// The template parameters should be of a CFG block type.
+template <class NodeTy, bool IsPostDom> class IDFCalculatorBase {
+public:
+ using OrderedNodeTy =
+ typename std::conditional<IsPostDom, Inverse<NodeTy *>, NodeTy *>::type;
+ using ChildrenGetterTy =
+ IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>;
+
+ IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT) : DT(DT) {}
+
+ IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT,
+ const ChildrenGetterTy &C)
+ : DT(DT), ChildrenGetter(C) {}
+
+ /// Give the IDF calculator the set of blocks in which the value is
+ /// defined. This is equivalent to the set of starting blocks it should be
+ /// calculating the IDF for (though later gets pruned based on liveness).
+ ///
+ /// Note: This set *must* live for the entire lifetime of the IDF calculator.
+ void setDefiningBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
+ DefBlocks = &Blocks;
+ }
+
+ /// Give the IDF calculator the set of blocks in which the value is
+ /// live on entry to the block. This is used to prune the IDF calculation to
+ /// not include blocks where any phi insertion would be dead.
+ ///
+ /// Note: This set *must* live for the entire lifetime of the IDF calculator.
+ void setLiveInBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
+ LiveInBlocks = &Blocks;
+ useLiveIn = true;
+ }
+
+ /// Reset the live-in block set to be empty, and tell the IDF
+ /// calculator to not use liveness anymore.
+ void resetLiveInBlocks() {
+ LiveInBlocks = nullptr;
+ useLiveIn = false;
+ }
+
+ /// Calculate iterated dominance frontiers
+ ///
+ /// This uses the linear-time phi algorithm based on DJ-graphs mentioned in
+ /// the file-level comment. It performs DF->IDF pruning using the live-in
+ /// set, to avoid computing the IDF for blocks where an inserted PHI node
+ /// would be dead.
+ void calculate(SmallVectorImpl<NodeTy *> &IDFBlocks);
+
+private:
+ DominatorTreeBase<NodeTy, IsPostDom> &DT;
+ ChildrenGetterTy ChildrenGetter;
+ bool useLiveIn = false;
+ const SmallPtrSetImpl<NodeTy *> *LiveInBlocks;
+ const SmallPtrSetImpl<NodeTy *> *DefBlocks;
+};
+
+//===----------------------------------------------------------------------===//
+// Implementation.
+//===----------------------------------------------------------------------===//
+
+namespace IDFCalculatorDetail {
+
+template <class NodeTy, bool IsPostDom>
+typename ChildrenGetterTy<NodeTy, IsPostDom>::ChildrenTy
+ChildrenGetterTy<NodeTy, IsPostDom>::get(const NodeRef &N) {
+ using OrderedNodeTy =
+ typename IDFCalculatorBase<NodeTy, IsPostDom>::OrderedNodeTy;
+
+ auto Children = children<OrderedNodeTy>(N);
+ return {Children.begin(), Children.end()};
+}
+
+} // end of namespace IDFCalculatorDetail
+
+template <class NodeTy, bool IsPostDom>
+void IDFCalculatorBase<NodeTy, IsPostDom>::calculate(
+ SmallVectorImpl<NodeTy *> &PHIBlocks) {
+ // Use a priority queue keyed on dominator tree level so that inserted nodes
+ // are handled from the bottom of the dominator tree upwards. We also augment
+ // the level with a DFS number to ensure that the blocks are ordered in a
+ // deterministic way.
+ using DomTreeNodePair =
+ std::pair<DomTreeNodeBase<NodeTy> *, std::pair<unsigned, unsigned>>;
+ using IDFPriorityQueue =
+ std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
+ less_second>;
+
+ IDFPriorityQueue PQ;
+
+ DT.updateDFSNumbers();
+
+ for (NodeTy *BB : *DefBlocks) {
+ if (DomTreeNodeBase<NodeTy> *Node = DT.getNode(BB))
+ PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())});
+ }
+
+ SmallVector<DomTreeNodeBase<NodeTy> *, 32> Worklist;
+ SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedPQ;
+ SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedWorklist;
+
+ while (!PQ.empty()) {
+ DomTreeNodePair RootPair = PQ.top();
+ PQ.pop();
+ DomTreeNodeBase<NodeTy> *Root = RootPair.first;
+ unsigned RootLevel = RootPair.second.first;
+
+ // Walk all dominator tree children of Root, inspecting their CFG edges with
+ // targets elsewhere on the dominator tree. Only targets whose level is at
+ // most Root's level are added to the iterated dominance frontier of the
+ // definition set.
+
+ Worklist.clear();
+ Worklist.push_back(Root);
+ VisitedWorklist.insert(Root);
+
+ while (!Worklist.empty()) {
+ DomTreeNodeBase<NodeTy> *Node = Worklist.pop_back_val();
+ NodeTy *BB = Node->getBlock();
+ // Succ is the successor in the direction we are calculating IDF, so it is
+ // successor for IDF, and predecessor for Reverse IDF.
+ auto DoWork = [&](NodeTy *Succ) {
+ DomTreeNodeBase<NodeTy> *SuccNode = DT.getNode(Succ);
+
+ const unsigned SuccLevel = SuccNode->getLevel();
+ if (SuccLevel > RootLevel)
+ return;
+
+ if (!VisitedPQ.insert(SuccNode).second)
+ return;
+
+ NodeTy *SuccBB = SuccNode->getBlock();
+ if (useLiveIn && !LiveInBlocks->count(SuccBB))
+ return;
+
+ PHIBlocks.emplace_back(SuccBB);
+ if (!DefBlocks->count(SuccBB))
+ PQ.push(std::make_pair(
+ SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn())));
+ };
+
+ for (auto Succ : ChildrenGetter.get(BB))
+ DoWork(Succ);
+
+ for (auto DomChild : *Node) {
+ if (VisitedWorklist.insert(DomChild).second)
+ Worklist.push_back(DomChild);
+ }
+ }
+ }
+}
+
+} // end of namespace llvm
+
+#endif