aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Transforms/Utils/MemorySSA.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Transforms/Utils/MemorySSA.h')
-rw-r--r--include/llvm/Transforms/Utils/MemorySSA.h1014
1 files changed, 0 insertions, 1014 deletions
diff --git a/include/llvm/Transforms/Utils/MemorySSA.h b/include/llvm/Transforms/Utils/MemorySSA.h
deleted file mode 100644
index 408c6a157cd0..000000000000
--- a/include/llvm/Transforms/Utils/MemorySSA.h
+++ /dev/null
@@ -1,1014 +0,0 @@
-//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// \file
-// \brief This file exposes an interface to building/using memory SSA to
-// walk memory instructions using a use/def graph.
-//
-// Memory SSA class builds an SSA form that links together memory access
-// instructions such as loads, stores, atomics, and calls. Additionally, it does
-// a trivial form of "heap versioning" Every time the memory state changes in
-// the program, we generate a new heap version. It generates MemoryDef/Uses/Phis
-// that are overlayed on top of the existing instructions.
-//
-// As a trivial example,
-// define i32 @main() #0 {
-// entry:
-// %call = call noalias i8* @_Znwm(i64 4) #2
-// %0 = bitcast i8* %call to i32*
-// %call1 = call noalias i8* @_Znwm(i64 4) #2
-// %1 = bitcast i8* %call1 to i32*
-// store i32 5, i32* %0, align 4
-// store i32 7, i32* %1, align 4
-// %2 = load i32* %0, align 4
-// %3 = load i32* %1, align 4
-// %add = add nsw i32 %2, %3
-// ret i32 %add
-// }
-//
-// Will become
-// define i32 @main() #0 {
-// entry:
-// ; 1 = MemoryDef(0)
-// %call = call noalias i8* @_Znwm(i64 4) #3
-// %2 = bitcast i8* %call to i32*
-// ; 2 = MemoryDef(1)
-// %call1 = call noalias i8* @_Znwm(i64 4) #3
-// %4 = bitcast i8* %call1 to i32*
-// ; 3 = MemoryDef(2)
-// store i32 5, i32* %2, align 4
-// ; 4 = MemoryDef(3)
-// store i32 7, i32* %4, align 4
-// ; MemoryUse(3)
-// %7 = load i32* %2, align 4
-// ; MemoryUse(4)
-// %8 = load i32* %4, align 4
-// %add = add nsw i32 %7, %8
-// ret i32 %add
-// }
-//
-// Given this form, all the stores that could ever effect the load at %8 can be
-// gotten by using the MemoryUse associated with it, and walking from use to def
-// until you hit the top of the function.
-//
-// Each def also has a list of users associated with it, so you can walk from
-// both def to users, and users to defs. Note that we disambiguate MemoryUses,
-// but not the RHS of MemoryDefs. You can see this above at %7, which would
-// otherwise be a MemoryUse(4). Being disambiguated means that for a given
-// store, all the MemoryUses on its use lists are may-aliases of that store (but
-// the MemoryDefs on its use list may not be).
-//
-// MemoryDefs are not disambiguated because it would require multiple reaching
-// definitions, which would require multiple phis, and multiple memoryaccesses
-// per instruction.
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
-#define LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
-
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/ilist.h"
-#include "llvm/ADT/ilist_node.h"
-#include "llvm/ADT/iterator.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/PHITransAddr.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/OperandTraits.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Use.h"
-#include "llvm/IR/User.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Pass.h"
-#include "llvm/PassAnalysisSupport.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/ErrorHandling.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <iterator>
-#include <memory>
-#include <utility>
-
-namespace llvm {
-
-class DominatorTree;
-class Function;
-class Instruction;
-class MemoryAccess;
-class LLVMContext;
-class raw_ostream;
-enum {
- // Used to signify what the default invalid ID is for MemoryAccess's
- // getID()
- INVALID_MEMORYACCESS_ID = 0
-};
-
-template <class T> class memoryaccess_def_iterator_base;
-using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
-using const_memoryaccess_def_iterator =
- memoryaccess_def_iterator_base<const MemoryAccess>;
-
-// \brief The base for all memory accesses. All memory accesses in a block are
-// linked together using an intrusive list.
-class MemoryAccess : public User, public ilist_node<MemoryAccess> {
- void *operator new(size_t, unsigned) = delete;
- void *operator new(size_t) = delete;
-
-public:
- // Methods for support type inquiry through isa, cast, and
- // dyn_cast
- static inline bool classof(const MemoryAccess *) { return true; }
- static inline bool classof(const Value *V) {
- unsigned ID = V->getValueID();
- return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
- }
-
- ~MemoryAccess() override;
-
- BasicBlock *getBlock() const { return Block; }
-
- virtual void print(raw_ostream &OS) const = 0;
- virtual void dump() const;
-
- /// \brief The user iterators for a memory access
- typedef user_iterator iterator;
- typedef const_user_iterator const_iterator;
-
- /// \brief This iterator walks over all of the defs in a given
- /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
- /// MemoryUse/MemoryDef, this walks the defining access.
- memoryaccess_def_iterator defs_begin();
- const_memoryaccess_def_iterator defs_begin() const;
- memoryaccess_def_iterator defs_end();
- const_memoryaccess_def_iterator defs_end() const;
-
-protected:
- friend class MemorySSA;
- friend class MemoryUseOrDef;
- friend class MemoryUse;
- friend class MemoryDef;
- friend class MemoryPhi;
-
- /// \brief Used for debugging and tracking things about MemoryAccesses.
- /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
- virtual unsigned getID() const = 0;
-
- MemoryAccess(LLVMContext &C, unsigned Vty, BasicBlock *BB,
- unsigned NumOperands)
- : User(Type::getVoidTy(C), Vty, nullptr, NumOperands), Block(BB) {}
-
-private:
- MemoryAccess(const MemoryAccess &);
- void operator=(const MemoryAccess &);
- BasicBlock *Block;
-};
-
-inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
- MA.print(OS);
- return OS;
-}
-
-/// \brief Class that has the common methods + fields of memory uses/defs. It's
-/// a little awkward to have, but there are many cases where we want either a
-/// use or def, and there are many cases where uses are needed (defs aren't
-/// acceptable), and vice-versa.
-///
-/// This class should never be instantiated directly; make a MemoryUse or
-/// MemoryDef instead.
-class MemoryUseOrDef : public MemoryAccess {
- void *operator new(size_t, unsigned) = delete;
- void *operator new(size_t) = delete;
-
-public:
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
-
- /// \brief Get the instruction that this MemoryUse represents.
- Instruction *getMemoryInst() const { return MemoryInst; }
-
- /// \brief Get the access that produces the memory state used by this Use.
- MemoryAccess *getDefiningAccess() const { return getOperand(0); }
-
- static inline bool classof(const MemoryUseOrDef *) { return true; }
- static inline bool classof(const Value *MA) {
- return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
- }
-
-protected:
- friend class MemorySSA;
-
- MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
- Instruction *MI, BasicBlock *BB)
- : MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) {
- setDefiningAccess(DMA);
- }
-
- void setDefiningAccess(MemoryAccess *DMA) { setOperand(0, DMA); }
-
-private:
- Instruction *MemoryInst;
-};
-
-template <>
-struct OperandTraits<MemoryUseOrDef>
- : public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
-
-/// \brief Represents read-only accesses to memory
-///
-/// In particular, the set of Instructions that will be represented by
-/// MemoryUse's is exactly the set of Instructions for which
-/// AliasAnalysis::getModRefInfo returns "Ref".
-class MemoryUse final : public MemoryUseOrDef {
- void *operator new(size_t, unsigned) = delete;
-
-public:
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
-
- // allocate space for exactly one operand
- void *operator new(size_t s) { return User::operator new(s, 1); }
-
- MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
- : MemoryUseOrDef(C, DMA, MemoryUseVal, MI, BB), OptimizedID(0) {}
-
- static inline bool classof(const MemoryUse *) { return true; }
- static inline bool classof(const Value *MA) {
- return MA->getValueID() == MemoryUseVal;
- }
-
- void print(raw_ostream &OS) const override;
- void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false) {
- if (Optimized)
- OptimizedID = DMA->getID();
- MemoryUseOrDef::setDefiningAccess(DMA);
- }
- bool isOptimized() const {
- return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
- }
- /// \brief Reset the ID of what this MemoryUse was optimized to, causing it to
- /// be rewalked by the walker if necessary.
- /// This really should only be called by tests.
- void resetOptimized() { OptimizedID = INVALID_MEMORYACCESS_ID; }
-
-protected:
- friend class MemorySSA;
-
- unsigned getID() const override {
- llvm_unreachable("MemoryUses do not have IDs");
- }
-
-private:
- unsigned int OptimizedID;
-};
-
-template <>
-struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
-
-/// \brief Represents a read-write access to memory, whether it is a must-alias,
-/// or a may-alias.
-///
-/// In particular, the set of Instructions that will be represented by
-/// MemoryDef's is exactly the set of Instructions for which
-/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
-/// Note that, in order to provide def-def chains, all defs also have a use
-/// associated with them. This use points to the nearest reaching
-/// MemoryDef/MemoryPhi.
-class MemoryDef final : public MemoryUseOrDef {
- void *operator new(size_t, unsigned) = delete;
-
-public:
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
-
- // allocate space for exactly one operand
- void *operator new(size_t s) { return User::operator new(s, 1); }
-
- MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
- unsigned Ver)
- : MemoryUseOrDef(C, DMA, MemoryDefVal, MI, BB), ID(Ver) {}
-
- static inline bool classof(const MemoryDef *) { return true; }
- static inline bool classof(const Value *MA) {
- return MA->getValueID() == MemoryDefVal;
- }
-
- void print(raw_ostream &OS) const override;
-
-protected:
- friend class MemorySSA;
-
- unsigned getID() const override { return ID; }
-
-private:
- const unsigned ID;
-};
-
-template <>
-struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
-
-/// \brief Represents phi nodes for memory accesses.
-///
-/// These have the same semantic as regular phi nodes, with the exception that
-/// only one phi will ever exist in a given basic block.
-/// Guaranteeing one phi per block means guaranteeing there is only ever one
-/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
-/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
-/// a MemoryPhi's operands.
-/// That is, given
-/// if (a) {
-/// store %a
-/// store %b
-/// }
-/// it *must* be transformed into
-/// if (a) {
-/// 1 = MemoryDef(liveOnEntry)
-/// store %a
-/// 2 = MemoryDef(1)
-/// store %b
-/// }
-/// and *not*
-/// if (a) {
-/// 1 = MemoryDef(liveOnEntry)
-/// store %a
-/// 2 = MemoryDef(liveOnEntry)
-/// store %b
-/// }
-/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
-/// end of the branch, and if there are not two phi nodes, one will be
-/// disconnected completely from the SSA graph below that point.
-/// Because MemoryUse's do not generate new definitions, they do not have this
-/// issue.
-class MemoryPhi final : public MemoryAccess {
- void *operator new(size_t, unsigned) = delete;
- // allocate space for exactly zero operands
- void *operator new(size_t s) { return User::operator new(s); }
-
-public:
- /// Provide fast operand accessors
- DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
-
- MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
- : MemoryAccess(C, MemoryPhiVal, BB, 0), ID(Ver), ReservedSpace(NumPreds) {
- allocHungoffUses(ReservedSpace);
- }
-
- // Block iterator interface. This provides access to the list of incoming
- // basic blocks, which parallels the list of incoming values.
- typedef BasicBlock **block_iterator;
- typedef BasicBlock *const *const_block_iterator;
-
- block_iterator block_begin() {
- auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
- return reinterpret_cast<block_iterator>(Ref + 1);
- }
-
- const_block_iterator block_begin() const {
- const auto *Ref =
- reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
- return reinterpret_cast<const_block_iterator>(Ref + 1);
- }
-
- block_iterator block_end() { return block_begin() + getNumOperands(); }
-
- const_block_iterator block_end() const {
- return block_begin() + getNumOperands();
- }
-
- iterator_range<block_iterator> blocks() {
- return make_range(block_begin(), block_end());
- }
-
- iterator_range<const_block_iterator> blocks() const {
- return make_range(block_begin(), block_end());
- }
-
- op_range incoming_values() { return operands(); }
-
- const_op_range incoming_values() const { return operands(); }
-
- /// \brief Return the number of incoming edges
- unsigned getNumIncomingValues() const { return getNumOperands(); }
-
- /// \brief Return incoming value number x
- MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
- void setIncomingValue(unsigned I, MemoryAccess *V) {
- assert(V && "PHI node got a null value!");
- setOperand(I, V);
- }
- static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
- static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
-
- /// \brief Return incoming basic block number @p i.
- BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
-
- /// \brief Return incoming basic block corresponding
- /// to an operand of the PHI.
- BasicBlock *getIncomingBlock(const Use &U) const {
- assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
- return getIncomingBlock(unsigned(&U - op_begin()));
- }
-
- /// \brief Return incoming basic block corresponding
- /// to value use iterator.
- BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
- return getIncomingBlock(I.getUse());
- }
-
- void setIncomingBlock(unsigned I, BasicBlock *BB) {
- assert(BB && "PHI node got a null basic block!");
- block_begin()[I] = BB;
- }
-
- /// \brief Add an incoming value to the end of the PHI list
- void addIncoming(MemoryAccess *V, BasicBlock *BB) {
- if (getNumOperands() == ReservedSpace)
- growOperands(); // Get more space!
- // Initialize some new operands.
- setNumHungOffUseOperands(getNumOperands() + 1);
- setIncomingValue(getNumOperands() - 1, V);
- setIncomingBlock(getNumOperands() - 1, BB);
- }
-
- /// \brief Return the first index of the specified basic
- /// block in the value list for this PHI. Returns -1 if no instance.
- int getBasicBlockIndex(const BasicBlock *BB) const {
- for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
- if (block_begin()[I] == BB)
- return I;
- return -1;
- }
-
- Value *getIncomingValueForBlock(const BasicBlock *BB) const {
- int Idx = getBasicBlockIndex(BB);
- assert(Idx >= 0 && "Invalid basic block argument!");
- return getIncomingValue(Idx);
- }
-
- static inline bool classof(const MemoryPhi *) { return true; }
- static inline bool classof(const Value *V) {
- return V->getValueID() == MemoryPhiVal;
- }
-
- void print(raw_ostream &OS) const override;
-
-protected:
- friend class MemorySSA;
- /// \brief this is more complicated than the generic
- /// User::allocHungoffUses, because we have to allocate Uses for the incoming
- /// values and pointers to the incoming blocks, all in one allocation.
- void allocHungoffUses(unsigned N) {
- User::allocHungoffUses(N, /* IsPhi */ true);
- }
-
- unsigned getID() const final { return ID; }
-
-private:
- // For debugging only
- const unsigned ID;
- unsigned ReservedSpace;
-
- /// \brief This grows the operand list in response to a push_back style of
- /// operation. This grows the number of ops by 1.5 times.
- void growOperands() {
- unsigned E = getNumOperands();
- // 2 op PHI nodes are VERY common, so reserve at least enough for that.
- ReservedSpace = std::max(E + E / 2, 2u);
- growHungoffUses(ReservedSpace, /* IsPhi */ true);
- }
-};
-
-template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
-DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
-
-class MemorySSAWalker;
-
-/// \brief Encapsulates MemorySSA, including all data associated with memory
-/// accesses.
-class MemorySSA {
-public:
- MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
- ~MemorySSA();
-
- MemorySSAWalker *getWalker();
-
- /// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA
- /// access associated with it. If passed a basic block gets the memory phi
- /// node that exists for that block, if there is one. Otherwise, this will get
- /// a MemoryUseOrDef.
- MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
- MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
-
- void dump() const;
- void print(raw_ostream &) const;
-
- /// \brief Return true if \p MA represents the live on entry value
- ///
- /// Loads and stores from pointer arguments and other global values may be
- /// defined by memory operations that do not occur in the current function, so
- /// they may be live on entry to the function. MemorySSA represents such
- /// memory state by the live on entry definition, which is guaranteed to occur
- /// before any other memory access in the function.
- inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
- return MA == LiveOnEntryDef.get();
- }
-
- inline MemoryAccess *getLiveOnEntryDef() const {
- return LiveOnEntryDef.get();
- }
-
- using AccessList = iplist<MemoryAccess>;
-
- /// \brief Return the list of MemoryAccess's for a given basic block.
- ///
- /// This list is not modifiable by the user.
- const AccessList *getBlockAccesses(const BasicBlock *BB) const {
- return getWritableBlockAccesses(BB);
- }
-
- /// \brief Create an empty MemoryPhi in MemorySSA for a given basic block.
- /// Only one MemoryPhi for a block exists at a time, so this function will
- /// assert if you try to create one where it already exists.
- MemoryPhi *createMemoryPhi(BasicBlock *BB);
-
- enum InsertionPlace { Beginning, End };
-
- /// \brief Create a MemoryAccess in MemorySSA at a specified point in a block,
- /// with a specified clobbering definition.
- ///
- /// Returns the new MemoryAccess.
- /// This should be called when a memory instruction is created that is being
- /// used to replace an existing memory instruction. It will *not* create PHI
- /// nodes, or verify the clobbering definition. The insertion place is used
- /// solely to determine where in the memoryssa access lists the instruction
- /// will be placed. The caller is expected to keep ordering the same as
- /// instructions.
- /// It will return the new MemoryAccess.
- /// Note: If a MemoryAccess already exists for I, this function will make it
- /// inaccessible and it *must* have removeMemoryAccess called on it.
- MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
- const BasicBlock *BB,
- InsertionPlace Point);
- /// \brief Create a MemoryAccess in MemorySSA before or after an existing
- /// MemoryAccess.
- ///
- /// Returns the new MemoryAccess.
- /// This should be called when a memory instruction is created that is being
- /// used to replace an existing memory instruction. It will *not* create PHI
- /// nodes, or verify the clobbering definition. The clobbering definition
- /// must be non-null.
- /// Note: If a MemoryAccess already exists for I, this function will make it
- /// inaccessible and it *must* have removeMemoryAccess called on it.
- MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
- MemoryAccess *Definition,
- MemoryUseOrDef *InsertPt);
- MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
- MemoryAccess *Definition,
- MemoryAccess *InsertPt);
-
- // \brief Splice \p What to just before \p Where.
- //
- // In order to be efficient, the following conditions must be met:
- // - \p Where dominates \p What,
- // - All memory accesses in [\p Where, \p What) are no-alias with \p What.
- //
- // TODO: relax the MemoryDef requirement on Where.
- void spliceMemoryAccessAbove(MemoryDef *Where, MemoryUseOrDef *What);
-
- /// \brief Remove a MemoryAccess from MemorySSA, including updating all
- /// definitions and uses.
- /// This should be called when a memory instruction that has a MemoryAccess
- /// associated with it is erased from the program. For example, if a store or
- /// load is simply erased (not replaced), removeMemoryAccess should be called
- /// on the MemoryAccess for that store/load.
- void removeMemoryAccess(MemoryAccess *);
-
- /// \brief Given two memory accesses in the same basic block, determine
- /// whether MemoryAccess \p A dominates MemoryAccess \p B.
- bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
-
- /// \brief Given two memory accesses in potentially different blocks,
- /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
- bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
-
- /// \brief Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
- /// dominates Use \p B.
- bool dominates(const MemoryAccess *A, const Use &B) const;
-
- /// \brief Verify that MemorySSA is self consistent (IE definitions dominate
- /// all uses, uses appear in the right places). This is used by unit tests.
- void verifyMemorySSA() const;
-
-protected:
- // Used by Memory SSA annotater, dumpers, and wrapper pass
- friend class MemorySSAAnnotatedWriter;
- friend class MemorySSAPrinterLegacyPass;
- void verifyDefUses(Function &F) const;
- void verifyDomination(Function &F) const;
- void verifyOrdering(Function &F) const;
-
- // This is used by the use optimizer class
- AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
- auto It = PerBlockAccesses.find(BB);
- return It == PerBlockAccesses.end() ? nullptr : It->second.get();
- }
-
-private:
- class CachingWalker;
- class OptimizeUses;
-
- CachingWalker *getWalkerImpl();
- void buildMemorySSA();
- void optimizeUses();
-
- void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
- using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
-
- void
- determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
- void computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels);
- void markUnreachableAsLiveOnEntry(BasicBlock *BB);
- bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
- MemoryUseOrDef *createNewAccess(Instruction *);
- MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
- MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
- void removeFromLookups(MemoryAccess *);
-
- void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &,
- const DenseMap<const BasicBlock *, unsigned int> &);
- MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *);
- void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
- SmallPtrSet<BasicBlock *, 16> &Visited);
- AccessList *getOrCreateAccessList(const BasicBlock *);
- void renumberBlock(const BasicBlock *) const;
-
- AliasAnalysis *AA;
- DominatorTree *DT;
- Function &F;
-
- // Memory SSA mappings
- DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
- AccessMap PerBlockAccesses;
- std::unique_ptr<MemoryAccess> LiveOnEntryDef;
-
- // Domination mappings
- // Note that the numbering is local to a block, even though the map is
- // global.
- mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
- mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
-
- // Memory SSA building info
- std::unique_ptr<CachingWalker> Walker;
- unsigned NextID;
-};
-
-// This pass does eager building and then printing of MemorySSA. It is used by
-// the tests to be able to build, dump, and verify Memory SSA.
-class MemorySSAPrinterLegacyPass : public FunctionPass {
-public:
- MemorySSAPrinterLegacyPass();
-
- static char ID;
- bool runOnFunction(Function &) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
-};
-
-/// An analysis that produces \c MemorySSA for a function.
-///
-class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
- friend AnalysisInfoMixin<MemorySSAAnalysis>;
- static AnalysisKey Key;
-
-public:
- // Wrap MemorySSA result to ensure address stability of internal MemorySSA
- // pointers after construction. Use a wrapper class instead of plain
- // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
- struct Result {
- Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
- MemorySSA &getMSSA() { return *MSSA.get(); }
-
- std::unique_ptr<MemorySSA> MSSA;
- };
-
- Result run(Function &F, FunctionAnalysisManager &AM);
-};
-
-/// \brief Printer pass for \c MemorySSA.
-class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
- raw_ostream &OS;
-
-public:
- explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
-};
-
-/// \brief Verifier pass for \c MemorySSA.
-struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
- PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
-};
-
-/// \brief Legacy analysis pass which computes \c MemorySSA.
-class MemorySSAWrapperPass : public FunctionPass {
-public:
- MemorySSAWrapperPass();
-
- static char ID;
- bool runOnFunction(Function &) override;
- void releaseMemory() override;
- MemorySSA &getMSSA() { return *MSSA; }
- const MemorySSA &getMSSA() const { return *MSSA; }
-
- void getAnalysisUsage(AnalysisUsage &AU) const override;
-
- void verifyAnalysis() const override;
- void print(raw_ostream &OS, const Module *M = nullptr) const override;
-
-private:
- std::unique_ptr<MemorySSA> MSSA;
-};
-
-/// \brief This is the generic walker interface for walkers of MemorySSA.
-/// Walkers are used to be able to further disambiguate the def-use chains
-/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
-/// you.
-/// In particular, while the def-use chains provide basic information, and are
-/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
-/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
-/// information. In particular, they may want to use SCEV info to further
-/// disambiguate memory accesses, or they may want the nearest dominating
-/// may-aliasing MemoryDef for a call or a store. This API enables a
-/// standardized interface to getting and using that info.
-class MemorySSAWalker {
-public:
- MemorySSAWalker(MemorySSA *);
- virtual ~MemorySSAWalker() {}
-
- using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
-
- /// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this
- /// will give you the nearest dominating MemoryAccess that Mod's the location
- /// the instruction accesses (by skipping any def which AA can prove does not
- /// alias the location(s) accessed by the instruction given).
- ///
- /// Note that this will return a single access, and it must dominate the
- /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
- /// this will return the MemoryPhi, not the operand. This means that
- /// given:
- /// if (a) {
- /// 1 = MemoryDef(liveOnEntry)
- /// store %a
- /// } else {
- /// 2 = MemoryDef(liveOnEntry)
- /// store %b
- /// }
- /// 3 = MemoryPhi(2, 1)
- /// MemoryUse(3)
- /// load %a
- ///
- /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
- /// in the if (a) branch.
- MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
- MemoryAccess *MA = MSSA->getMemoryAccess(I);
- assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
- return getClobberingMemoryAccess(MA);
- }
-
- /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
- /// but takes a MemoryAccess instead of an Instruction.
- virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
-
- /// \brief Given a potentially clobbering memory access and a new location,
- /// calling this will give you the nearest dominating clobbering MemoryAccess
- /// (by skipping non-aliasing def links).
- ///
- /// This version of the function is mainly used to disambiguate phi translated
- /// pointers, where the value of a pointer may have changed from the initial
- /// memory access. Note that this expects to be handed either a MemoryUse,
- /// or an already potentially clobbering access. Unlike the above API, if
- /// given a MemoryDef that clobbers the pointer as the starting access, it
- /// will return that MemoryDef, whereas the above would return the clobber
- /// starting from the use side of the memory def.
- virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
- const MemoryLocation &) = 0;
-
- /// \brief Given a memory access, invalidate anything this walker knows about
- /// that access.
- /// This API is used by walkers that store information to perform basic cache
- /// invalidation. This will be called by MemorySSA at appropriate times for
- /// the walker it uses or returns.
- virtual void invalidateInfo(MemoryAccess *) {}
-
- virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); }
-
-protected:
- friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
- // constructor.
- MemorySSA *MSSA;
-};
-
-/// \brief A MemorySSAWalker that does no alias queries, or anything else. It
-/// simply returns the links as they were constructed by the builder.
-class DoNothingMemorySSAWalker final : public MemorySSAWalker {
-public:
- // Keep the overrides below from hiding the Instruction overload of
- // getClobberingMemoryAccess.
- using MemorySSAWalker::getClobberingMemoryAccess;
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
- MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
- const MemoryLocation &) override;
-};
-
-using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
-using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
-
-/// \brief Iterator base class used to implement const and non-const iterators
-/// over the defining accesses of a MemoryAccess.
-template <class T>
-class memoryaccess_def_iterator_base
- : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
- std::forward_iterator_tag, T, ptrdiff_t, T *,
- T *> {
- using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
-
-public:
- memoryaccess_def_iterator_base(T *Start) : Access(Start), ArgNo(0) {}
- memoryaccess_def_iterator_base() : Access(nullptr), ArgNo(0) {}
- bool operator==(const memoryaccess_def_iterator_base &Other) const {
- return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
- }
-
- // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
- // block from the operand in constant time (In a PHINode, the uselist has
- // both, so it's just subtraction). We provide it as part of the
- // iterator to avoid callers having to linear walk to get the block.
- // If the operation becomes constant time on MemoryPHI's, this bit of
- // abstraction breaking should be removed.
- BasicBlock *getPhiArgBlock() const {
- MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
- assert(MP && "Tried to get phi arg block when not iterating over a PHI");
- return MP->getIncomingBlock(ArgNo);
- }
- typename BaseT::iterator::pointer operator*() const {
- assert(Access && "Tried to access past the end of our iterator");
- // Go to the first argument for phis, and the defining access for everything
- // else.
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
- return MP->getIncomingValue(ArgNo);
- return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
- }
- using BaseT::operator++;
- memoryaccess_def_iterator &operator++() {
- assert(Access && "Hit end of iterator");
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
- if (++ArgNo >= MP->getNumIncomingValues()) {
- ArgNo = 0;
- Access = nullptr;
- }
- } else {
- Access = nullptr;
- }
- return *this;
- }
-
-private:
- T *Access;
- unsigned ArgNo;
-};
-
-inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
- return memoryaccess_def_iterator(this);
-}
-
-inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
- return const_memoryaccess_def_iterator(this);
-}
-
-inline memoryaccess_def_iterator MemoryAccess::defs_end() {
- return memoryaccess_def_iterator();
-}
-
-inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
- return const_memoryaccess_def_iterator();
-}
-
-/// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case,
-/// and uses in the inverse case.
-template <> struct GraphTraits<MemoryAccess *> {
- using NodeRef = MemoryAccess *;
- using ChildIteratorType = memoryaccess_def_iterator;
-
- static NodeRef getEntryNode(NodeRef N) { return N; }
- static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
- static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
-};
-
-template <> struct GraphTraits<Inverse<MemoryAccess *>> {
- using NodeRef = MemoryAccess *;
- using ChildIteratorType = MemoryAccess::iterator;
-
- static NodeRef getEntryNode(NodeRef N) { return N; }
- static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
- static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
-};
-
-/// \brief Provide an iterator that walks defs, giving both the memory access,
-/// and the current pointer location, updating the pointer location as it
-/// changes due to phi node translation.
-///
-/// This iterator, while somewhat specialized, is what most clients actually
-/// want when walking upwards through MemorySSA def chains. It takes a pair of
-/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
-/// memory location through phi nodes for the user.
-class upward_defs_iterator
- : public iterator_facade_base<upward_defs_iterator,
- std::forward_iterator_tag,
- const MemoryAccessPair> {
- using BaseT = upward_defs_iterator::iterator_facade_base;
-
-public:
- upward_defs_iterator(const MemoryAccessPair &Info)
- : DefIterator(Info.first), Location(Info.second),
- OriginalAccess(Info.first) {
- CurrentPair.first = nullptr;
-
- WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
- fillInCurrentPair();
- }
-
- upward_defs_iterator()
- : DefIterator(), Location(), OriginalAccess(), WalkingPhi(false) {
- CurrentPair.first = nullptr;
- }
-
- bool operator==(const upward_defs_iterator &Other) const {
- return DefIterator == Other.DefIterator;
- }
-
- BaseT::iterator::reference operator*() const {
- assert(DefIterator != OriginalAccess->defs_end() &&
- "Tried to access past the end of our iterator");
- return CurrentPair;
- }
-
- using BaseT::operator++;
- upward_defs_iterator &operator++() {
- assert(DefIterator != OriginalAccess->defs_end() &&
- "Tried to access past the end of the iterator");
- ++DefIterator;
- if (DefIterator != OriginalAccess->defs_end())
- fillInCurrentPair();
- return *this;
- }
-
- BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
-
-private:
- void fillInCurrentPair() {
- CurrentPair.first = *DefIterator;
- if (WalkingPhi && Location.Ptr) {
- PHITransAddr Translator(
- const_cast<Value *>(Location.Ptr),
- OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
- if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
- DefIterator.getPhiArgBlock(), nullptr,
- false))
- if (Translator.getAddr() != Location.Ptr) {
- CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
- return;
- }
- }
- CurrentPair.second = Location;
- }
-
- MemoryAccessPair CurrentPair;
- memoryaccess_def_iterator DefIterator;
- MemoryLocation Location;
- MemoryAccess *OriginalAccess;
- bool WalkingPhi;
-};
-
-inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
- return upward_defs_iterator(Pair);
-}
-
-inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
-
-// Return true when MD may alias MU, return false otherwise.
-bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
- AliasAnalysis &AA);
-
-} // end namespace llvm
-
-#endif // LLVM_TRANSFORMS_UTILS_MEMORYSSA_H