aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/LoopUnrollAnalyzer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/LoopUnrollAnalyzer.cpp')
-rw-r--r--lib/Analysis/LoopUnrollAnalyzer.cpp210
1 files changed, 210 insertions, 0 deletions
diff --git a/lib/Analysis/LoopUnrollAnalyzer.cpp b/lib/Analysis/LoopUnrollAnalyzer.cpp
new file mode 100644
index 000000000000..f59257ab16b5
--- /dev/null
+++ b/lib/Analysis/LoopUnrollAnalyzer.cpp
@@ -0,0 +1,210 @@
+//===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements UnrolledInstAnalyzer class. It's used for predicting
+// potential effects that loop unrolling might have, such as enabling constant
+// propagation and other optimizations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopUnrollAnalyzer.h"
+#include "llvm/IR/Dominators.h"
+
+using namespace llvm;
+
+/// \brief Try to simplify instruction \param I using its SCEV expression.
+///
+/// The idea is that some AddRec expressions become constants, which then
+/// could trigger folding of other instructions. However, that only happens
+/// for expressions whose start value is also constant, which isn't always the
+/// case. In another common and important case the start value is just some
+/// address (i.e. SCEVUnknown) - in this case we compute the offset and save
+/// it along with the base address instead.
+bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
+ if (!SE.isSCEVable(I->getType()))
+ return false;
+
+ const SCEV *S = SE.getSCEV(I);
+ if (auto *SC = dyn_cast<SCEVConstant>(S)) {
+ SimplifiedValues[I] = SC->getValue();
+ return true;
+ }
+
+ auto *AR = dyn_cast<SCEVAddRecExpr>(S);
+ if (!AR || AR->getLoop() != L)
+ return false;
+
+ const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
+ // Check if the AddRec expression becomes a constant.
+ if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
+ SimplifiedValues[I] = SC->getValue();
+ return true;
+ }
+
+ // Check if the offset from the base address becomes a constant.
+ auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
+ if (!Base)
+ return false;
+ auto *Offset =
+ dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
+ if (!Offset)
+ return false;
+ SimplifiedAddress Address;
+ Address.Base = Base->getValue();
+ Address.Offset = Offset->getValue();
+ SimplifiedAddresses[I] = Address;
+ return false;
+}
+
+/// Try to simplify binary operator I.
+///
+/// TODO: Probably it's worth to hoist the code for estimating the
+/// simplifications effects to a separate class, since we have a very similar
+/// code in InlineCost already.
+bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ if (!isa<Constant>(LHS))
+ if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+ LHS = SimpleLHS;
+ if (!isa<Constant>(RHS))
+ if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+ RHS = SimpleRHS;
+
+ Value *SimpleV = nullptr;
+ const DataLayout &DL = I.getModule()->getDataLayout();
+ if (auto FI = dyn_cast<FPMathOperator>(&I))
+ SimpleV =
+ SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
+ else
+ SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
+
+ if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
+ SimplifiedValues[&I] = C;
+
+ if (SimpleV)
+ return true;
+ return Base::visitBinaryOperator(I);
+}
+
+/// Try to fold load I.
+bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
+ Value *AddrOp = I.getPointerOperand();
+
+ auto AddressIt = SimplifiedAddresses.find(AddrOp);
+ if (AddressIt == SimplifiedAddresses.end())
+ return false;
+ ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
+
+ auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
+ // We're only interested in loads that can be completely folded to a
+ // constant.
+ if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
+ return false;
+
+ ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(GV->getInitializer());
+ if (!CDS)
+ return false;
+
+ // We might have a vector load from an array. FIXME: for now we just bail
+ // out in this case, but we should be able to resolve and simplify such
+ // loads.
+ if(CDS->getElementType() != I.getType())
+ return false;
+
+ int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
+ if (SimplifiedAddrOp->getValue().getActiveBits() >= 64)
+ return false;
+ int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
+ if (Index >= CDS->getNumElements()) {
+ // FIXME: For now we conservatively ignore out of bound accesses, but
+ // we're allowed to perform the optimization in this case.
+ return false;
+ }
+
+ Constant *CV = CDS->getElementAsConstant(Index);
+ assert(CV && "Constant expected.");
+ SimplifiedValues[&I] = CV;
+
+ return true;
+}
+
+/// Try to simplify cast instruction.
+bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
+ // Propagate constants through casts.
+ Constant *COp = dyn_cast<Constant>(I.getOperand(0));
+ if (!COp)
+ COp = SimplifiedValues.lookup(I.getOperand(0));
+
+ // If we know a simplified value for this operand and cast is valid, save the
+ // result to SimplifiedValues.
+ // The cast can be invalid, because SimplifiedValues contains results of SCEV
+ // analysis, which operates on integers (and, e.g., might convert i8* null to
+ // i32 0).
+ if (COp && CastInst::castIsValid(I.getOpcode(), COp, I.getType())) {
+ if (Constant *C =
+ ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
+ SimplifiedValues[&I] = C;
+ return true;
+ }
+ }
+
+ return Base::visitCastInst(I);
+}
+
+/// Try to simplify cmp instruction.
+bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+ // First try to handle simplified comparisons.
+ if (!isa<Constant>(LHS))
+ if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
+ LHS = SimpleLHS;
+ if (!isa<Constant>(RHS))
+ if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
+ RHS = SimpleRHS;
+
+ if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
+ auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
+ if (SimplifiedLHS != SimplifiedAddresses.end()) {
+ auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
+ if (SimplifiedRHS != SimplifiedAddresses.end()) {
+ SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
+ SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
+ if (LHSAddr.Base == RHSAddr.Base) {
+ LHS = LHSAddr.Offset;
+ RHS = RHSAddr.Offset;
+ }
+ }
+ }
+ }
+
+ if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
+ if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
+ if (CLHS->getType() == CRHS->getType()) {
+ if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
+ SimplifiedValues[&I] = C;
+ return true;
+ }
+ }
+ }
+ }
+
+ return Base::visitCmpInst(I);
+}
+
+bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
+ // Run base visitor first. This way we can gather some useful for later
+ // analysis information.
+ if (Base::visitPHINode(PN))
+ return true;
+
+ // The loop induction PHI nodes are definitionally free.
+ return PN.getParent() == L->getHeader();
+}