aboutsummaryrefslogtreecommitdiff
path: root/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r--lib/Analysis/ValueTracking.cpp989
1 files changed, 549 insertions, 440 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
index 4d94f619fda1..a430f6281ef0 100644
--- a/lib/Analysis/ValueTracking.cpp
+++ b/lib/Analysis/ValueTracking.cpp
@@ -20,8 +20,10 @@
#include "llvm/GlobalAlias.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
+#include "llvm/Metadata.h"
#include "llvm/Operator.h"
#include "llvm/Target/TargetData.h"
+#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/PatternMatch.h"
@@ -41,10 +43,176 @@ static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
return TD ? TD->getPointerSizeInBits() : 0;
}
-/// ComputeMaskedBits - Determine which of the bits specified in Mask are
-/// known to be either zero or one and return them in the KnownZero/KnownOne
-/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
-/// processing.
+static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const TargetData *TD, unsigned Depth) {
+ if (!Add) {
+ if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
+ // We know that the top bits of C-X are clear if X contains less bits
+ // than C (i.e. no wrap-around can happen). For example, 20-X is
+ // positive if we can prove that X is >= 0 and < 16.
+ if (!CLHS->getValue().isNegative()) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
+ // NLZ can't be BitWidth with no sign bit
+ APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
+ llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
+
+ // If all of the MaskV bits are known to be zero, then we know the
+ // output top bits are zero, because we now know that the output is
+ // from [0-C].
+ if ((KnownZero2 & MaskV) == MaskV) {
+ unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
+ // Top bits known zero.
+ KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
+ }
+ }
+ }
+ }
+
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ // If one of the operands has trailing zeros, then the bits that the
+ // other operand has in those bit positions will be preserved in the
+ // result. For an add, this works with either operand. For a subtract,
+ // this only works if the known zeros are in the right operand.
+ APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
+ assert((LHSKnownZero & LHSKnownOne) == 0 &&
+ "Bits known to be one AND zero?");
+ unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
+
+ llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
+
+ // Determine which operand has more trailing zeros, and use that
+ // many bits from the other operand.
+ if (LHSKnownZeroOut > RHSKnownZeroOut) {
+ if (Add) {
+ APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
+ KnownZero |= KnownZero2 & Mask;
+ KnownOne |= KnownOne2 & Mask;
+ } else {
+ // If the known zeros are in the left operand for a subtract,
+ // fall back to the minimum known zeros in both operands.
+ KnownZero |= APInt::getLowBitsSet(BitWidth,
+ std::min(LHSKnownZeroOut,
+ RHSKnownZeroOut));
+ }
+ } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
+ APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
+ KnownZero |= LHSKnownZero & Mask;
+ KnownOne |= LHSKnownOne & Mask;
+ }
+
+ // Are we still trying to solve for the sign bit?
+ if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
+ if (NSW) {
+ if (Add) {
+ // Adding two positive numbers can't wrap into negative
+ if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
+ KnownZero |= APInt::getSignBit(BitWidth);
+ // and adding two negative numbers can't wrap into positive.
+ else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
+ KnownOne |= APInt::getSignBit(BitWidth);
+ } else {
+ // Subtracting a negative number from a positive one can't wrap
+ if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
+ KnownZero |= APInt::getSignBit(BitWidth);
+ // neither can subtracting a positive number from a negative one.
+ else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
+ KnownOne |= APInt::getSignBit(BitWidth);
+ }
+ }
+ }
+}
+
+static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW,
+ APInt &KnownZero, APInt &KnownOne,
+ APInt &KnownZero2, APInt &KnownOne2,
+ const TargetData *TD, unsigned Depth) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ bool isKnownNegative = false;
+ bool isKnownNonNegative = false;
+ // If the multiplication is known not to overflow, compute the sign bit.
+ if (NSW) {
+ if (Op0 == Op1) {
+ // The product of a number with itself is non-negative.
+ isKnownNonNegative = true;
+ } else {
+ bool isKnownNonNegativeOp1 = KnownZero.isNegative();
+ bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
+ bool isKnownNegativeOp1 = KnownOne.isNegative();
+ bool isKnownNegativeOp0 = KnownOne2.isNegative();
+ // The product of two numbers with the same sign is non-negative.
+ isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
+ (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
+ // The product of a negative number and a non-negative number is either
+ // negative or zero.
+ if (!isKnownNonNegative)
+ isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
+ isKnownNonZero(Op0, TD, Depth)) ||
+ (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
+ isKnownNonZero(Op1, TD, Depth));
+ }
+ }
+
+ // If low bits are zero in either operand, output low known-0 bits.
+ // Also compute a conserative estimate for high known-0 bits.
+ // More trickiness is possible, but this is sufficient for the
+ // interesting case of alignment computation.
+ KnownOne.clearAllBits();
+ unsigned TrailZ = KnownZero.countTrailingOnes() +
+ KnownZero2.countTrailingOnes();
+ unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
+ KnownZero2.countLeadingOnes(),
+ BitWidth) - BitWidth;
+
+ TrailZ = std::min(TrailZ, BitWidth);
+ LeadZ = std::min(LeadZ, BitWidth);
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
+ APInt::getHighBitsSet(BitWidth, LeadZ);
+
+ // Only make use of no-wrap flags if we failed to compute the sign bit
+ // directly. This matters if the multiplication always overflows, in
+ // which case we prefer to follow the result of the direct computation,
+ // though as the program is invoking undefined behaviour we can choose
+ // whatever we like here.
+ if (isKnownNonNegative && !KnownOne.isNegative())
+ KnownZero.setBit(BitWidth - 1);
+ else if (isKnownNegative && !KnownZero.isNegative())
+ KnownOne.setBit(BitWidth - 1);
+}
+
+void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned NumRanges = Ranges.getNumOperands() / 2;
+ assert(NumRanges >= 1);
+
+ // Use the high end of the ranges to find leading zeros.
+ unsigned MinLeadingZeros = BitWidth;
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
+ ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ if (Range.isWrappedSet())
+ MinLeadingZeros = 0; // -1 has no zeros
+ unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
+ MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
+ }
+
+ KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
+}
+/// ComputeMaskedBits - Determine which of the bits are known to be either zero
+/// or one and return them in the KnownZero/KnownOne bit sets.
+///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero. If we don't change it to zero, other code could
@@ -54,67 +222,75 @@ static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
///
/// This function is defined on values with integer type, values with pointer
/// type (but only if TD is non-null), and vectors of integers. In the case
-/// where V is a vector, the mask, known zero, and known one values are the
+/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
-void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
- APInt &KnownZero, APInt &KnownOne,
+void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne,
const TargetData *TD, unsigned Depth) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
- unsigned BitWidth = Mask.getBitWidth();
- assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
- && "Not integer or pointer type!");
+ unsigned BitWidth = KnownZero.getBitWidth();
+
+ assert((V->getType()->isIntOrIntVectorTy() ||
+ V->getType()->getScalarType()->isPointerTy()) &&
+ "Not integer or pointer type!");
assert((!TD ||
TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
(!V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarSizeInBits() == BitWidth) &&
- KnownZero.getBitWidth() == BitWidth &&
+ KnownZero.getBitWidth() == BitWidth &&
KnownOne.getBitWidth() == BitWidth &&
"V, Mask, KnownOne and KnownZero should have same BitWidth");
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
// We know all of the bits for a constant!
- KnownOne = CI->getValue() & Mask;
- KnownZero = ~KnownOne & Mask;
+ KnownOne = CI->getValue();
+ KnownZero = ~KnownOne;
return;
}
// Null and aggregate-zero are all-zeros.
if (isa<ConstantPointerNull>(V) ||
isa<ConstantAggregateZero>(V)) {
KnownOne.clearAllBits();
- KnownZero = Mask;
+ KnownZero = APInt::getAllOnesValue(BitWidth);
return;
}
// Handle a constant vector by taking the intersection of the known bits of
- // each element.
- if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
+ // each element. There is no real need to handle ConstantVector here, because
+ // we don't handle undef in any particularly useful way.
+ if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
+ // We know that CDS must be a vector of integers. Take the intersection of
+ // each element.
KnownZero.setAllBits(); KnownOne.setAllBits();
- for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
- APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
- ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
- TD, Depth);
- KnownZero &= KnownZero2;
- KnownOne &= KnownOne2;
+ APInt Elt(KnownZero.getBitWidth(), 0);
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ Elt = CDS->getElementAsInteger(i);
+ KnownZero &= ~Elt;
+ KnownOne &= Elt;
}
return;
}
+
// The address of an aligned GlobalValue has trailing zeros.
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
unsigned Align = GV->getAlignment();
- if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
- Type *ObjectType = GV->getType()->getElementType();
- // If the object is defined in the current Module, we'll be giving
- // it the preferred alignment. Otherwise, we have to assume that it
- // may only have the minimum ABI alignment.
- if (!GV->isDeclaration() && !GV->mayBeOverridden())
- Align = TD->getPrefTypeAlignment(ObjectType);
- else
- Align = TD->getABITypeAlignment(ObjectType);
+ if (Align == 0 && TD) {
+ if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
+ Type *ObjectType = GVar->getType()->getElementType();
+ if (ObjectType->isSized()) {
+ // If the object is defined in the current Module, we'll be giving
+ // it the preferred alignment. Otherwise, we have to assume that it
+ // may only have the minimum ABI alignment.
+ if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
+ Align = TD->getPreferredAlignment(GVar);
+ else
+ Align = TD->getABITypeAlignment(ObjectType);
+ }
+ }
}
if (Align > 0)
- KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
- CountTrailingZeros_32(Align));
+ KnownZero = APInt::getLowBitsSet(BitWidth,
+ CountTrailingZeros_32(Align));
else
KnownZero.clearAllBits();
KnownOne.clearAllBits();
@@ -126,8 +302,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (GA->mayBeOverridden()) {
KnownZero.clearAllBits(); KnownOne.clearAllBits();
} else {
- ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
- TD, Depth+1);
+ ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
}
return;
}
@@ -136,15 +311,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// Get alignment information off byval arguments if specified in the IR.
if (A->hasByValAttr())
if (unsigned Align = A->getParamAlignment())
- KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
- CountTrailingZeros_32(Align));
+ KnownZero = APInt::getLowBitsSet(BitWidth,
+ CountTrailingZeros_32(Align));
return;
}
// Start out not knowing anything.
KnownZero.clearAllBits(); KnownOne.clearAllBits();
- if (Depth == MaxDepth || Mask == 0)
+ if (Depth == MaxDepth)
return; // Limit search depth.
Operator *I = dyn_cast<Operator>(V);
@@ -153,12 +328,14 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
switch (I->getOpcode()) {
default: break;
+ case Instruction::Load:
+ if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
+ computeMaskedBitsLoad(*MD, KnownZero);
+ return;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
- APInt Mask2(Mask & ~KnownZero);
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -169,10 +346,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
return;
}
case Instruction::Or: {
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
- APInt Mask2(Mask & ~KnownOne);
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -183,9 +358,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
return;
}
case Instruction::Xor: {
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -197,55 +371,32 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
return;
}
case Instruction::Mul: {
- APInt Mask2 = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
-
- // If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conserative estimate for high known-0 bits.
- // More trickiness is possible, but this is sufficient for the
- // interesting case of alignment computation.
- KnownOne.clearAllBits();
- unsigned TrailZ = KnownZero.countTrailingOnes() +
- KnownZero2.countTrailingOnes();
- unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
- KnownZero2.countLeadingOnes(),
- BitWidth) - BitWidth;
-
- TrailZ = std::min(TrailZ, BitWidth);
- LeadZ = std::min(LeadZ, BitWidth);
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
- APInt::getHighBitsSet(BitWidth, LeadZ);
- KnownZero &= Mask;
- return;
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(I->getOperand(0),
- AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
- ComputeMaskedBits(I->getOperand(1),
- AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
+ KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
return;
}
case Instruction::Select:
- ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
+ ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
@@ -278,11 +429,9 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
else
SrcBitWidth = SrcTy->getScalarSizeInBits();
- APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
KnownZero = KnownZero.zextOrTrunc(BitWidth);
KnownOne = KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
@@ -296,8 +445,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
- ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
return;
}
break;
@@ -306,11 +454,9 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
- APInt MaskIn = Mask.trunc(SrcBitWidth);
KnownZero = KnownZero.trunc(SrcBitWidth);
KnownOne = KnownOne.trunc(SrcBitWidth);
- ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
@@ -327,9 +473,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
- APInt Mask2(Mask.lshr(ShiftAmt));
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= ShiftAmt;
KnownOne <<= ShiftAmt;
@@ -344,9 +488,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
// Unsigned shift right.
- APInt Mask2(Mask.shl(ShiftAmt));
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -362,9 +504,7 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
- APInt Mask2(Mask.shl(ShiftAmt));
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
@@ -378,100 +518,25 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
}
break;
case Instruction::Sub: {
- if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
- // We know that the top bits of C-X are clear if X contains less bits
- // than C (i.e. no wrap-around can happen). For example, 20-X is
- // positive if we can prove that X is >= 0 and < 16.
- if (!CLHS->getValue().isNegative()) {
- unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
- // NLZ can't be BitWidth with no sign bit
- APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
- TD, Depth+1);
-
- // If all of the MaskV bits are known to be zero, then we know the
- // output top bits are zero, because we now know that the output is
- // from [0-C].
- if ((KnownZero2 & MaskV) == MaskV) {
- unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
- // Top bits known zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
- }
- }
- }
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth);
+ break;
}
- // fall through
case Instruction::Add: {
- // If one of the operands has trailing zeros, then the bits that the
- // other operand has in those bit positions will be preserved in the
- // result. For an add, this works with either operand. For a subtract,
- // this only works if the known zeros are in the right operand.
- APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- APInt Mask2 = APInt::getLowBitsSet(BitWidth,
- BitWidth - Mask.countLeadingZeros());
- ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
- Depth+1);
- assert((LHSKnownZero & LHSKnownOne) == 0 &&
- "Bits known to be one AND zero?");
- unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
-
- ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
-
- // Determine which operand has more trailing zeros, and use that
- // many bits from the other operand.
- if (LHSKnownZeroOut > RHSKnownZeroOut) {
- if (I->getOpcode() == Instruction::Add) {
- APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
- KnownZero |= KnownZero2 & Mask;
- KnownOne |= KnownOne2 & Mask;
- } else {
- // If the known zeros are in the left operand for a subtract,
- // fall back to the minimum known zeros in both operands.
- KnownZero |= APInt::getLowBitsSet(BitWidth,
- std::min(LHSKnownZeroOut,
- RHSKnownZeroOut));
- }
- } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
- APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
- KnownZero |= LHSKnownZero & Mask;
- KnownOne |= LHSKnownOne & Mask;
- }
-
- // Are we still trying to solve for the sign bit?
- if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
- OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
- if (OBO->hasNoSignedWrap()) {
- if (I->getOpcode() == Instruction::Add) {
- // Adding two positive numbers can't wrap into negative
- if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
- KnownZero |= APInt::getSignBit(BitWidth);
- // and adding two negative numbers can't wrap into positive.
- else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
- KnownOne |= APInt::getSignBit(BitWidth);
- } else {
- // Subtracting a negative number from a positive one can't wrap
- if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
- KnownZero |= APInt::getSignBit(BitWidth);
- // neither can subtracting a positive number from a negative one.
- else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
- KnownOne |= APInt::getSignBit(BitWidth);
- }
- }
- }
-
- return;
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
+ KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
+ Depth);
+ break;
}
case Instruction::SRem:
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
- Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
@@ -487,19 +552,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
KnownOne |= ~LowBits;
- KnownZero &= Mask;
- KnownOne &= Mask;
-
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
}
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero.
- if (Mask.isNegative() && KnownZero.isNonNegative()) {
- APInt Mask2 = APInt::getSignBit(BitWidth);
+ if (KnownZero.isNonNegative()) {
APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
+ ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
Depth+1);
// If it's known zero, our sign bit is also zero.
if (LHSKnownZero.isNegative())
@@ -512,27 +573,24 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
APInt RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
- APInt Mask2 = LowBits & Mask;
- KnownZero |= ~LowBits & Mask;
- ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero |= ~LowBits;
+ KnownOne &= LowBits;
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
- APInt AllOnes = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
- TD, Depth+1);
- ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
- TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
KnownOne.clearAllBits();
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
+ KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
break;
}
@@ -543,17 +601,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
Align = TD->getABITypeAlignment(AI->getType()->getElementType());
if (Align > 0)
- KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
- CountTrailingZeros_32(Align));
+ KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align));
break;
}
case Instruction::GetElementPtr: {
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
- APInt LocalMask = APInt::getAllOnesValue(BitWidth);
APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
- ComputeMaskedBits(I->getOperand(0), LocalMask,
- LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
+ Depth+1);
unsigned TrailZ = LocalKnownZero.countTrailingOnes();
gep_type_iterator GTI = gep_type_begin(I);
@@ -573,17 +629,15 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (!IndexedTy->isSized()) return;
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
- LocalMask = APInt::getAllOnesValue(GEPOpiBits);
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
- ComputeMaskedBits(Index, LocalMask,
- LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
TrailZ = std::min(TrailZ,
unsigned(CountTrailingZeros_64(TypeSize) +
LocalKnownZero.countTrailingOnes()));
}
}
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
break;
}
case Instruction::PHI: {
@@ -618,17 +672,13 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
- APInt Mask2 = APInt::getAllOnesValue(BitWidth);
- ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
- Mask2 = APInt::getLowBitsSet(BitWidth,
- KnownZero2.countTrailingOnes());
+ ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1);
// We need to take the minimum number of known bits
APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
- ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
+ ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1);
- KnownZero = Mask &
- APInt::getLowBitsSet(BitWidth,
+ KnownZero = APInt::getLowBitsSet(BitWidth,
std::min(KnownZero2.countTrailingOnes(),
KnownZero3.countTrailingOnes()));
break;
@@ -657,8 +707,8 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
KnownOne2 = APInt(BitWidth, 0);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
- ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
- KnownZero2, KnownOne2, TD, MaxDepth-1);
+ ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
+ MaxDepth-1);
KnownZero &= KnownZero2;
KnownOne &= KnownOne2;
// If all bits have been ruled out, there's no need to check
@@ -673,10 +723,17 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
- case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz: {
unsigned LowBits = Log2_32(BitWidth)+1;
+ // If this call is undefined for 0, the result will be less than 2^n.
+ if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
+ LowBits -= 1;
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ break;
+ }
+ case Intrinsic::ctpop: {
+ unsigned LowBits = Log2_32(BitWidth)+1;
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
break;
}
@@ -687,6 +744,34 @@ void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
}
}
break;
+ case Instruction::ExtractValue:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
+ ExtractValueInst *EVI = cast<ExtractValueInst>(I);
+ if (EVI->getNumIndices() != 1) break;
+ if (EVI->getIndices()[0] == 0) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ ComputeMaskedBitsAddSub(true, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ ComputeMaskedBitsAddSub(false, II->getArgOperand(0),
+ II->getArgOperand(1), false, KnownZero,
+ KnownOne, KnownZero2, KnownOne2, TD, Depth);
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1),
+ false, KnownZero, KnownOne,
+ KnownZero2, KnownOne2, TD, Depth);
+ break;
+ }
+ }
+ }
}
}
@@ -702,8 +787,7 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
}
APInt ZeroBits(BitWidth, 0);
APInt OneBits(BitWidth, 0);
- ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
- Depth);
+ ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth);
KnownOne = OneBits[BitWidth - 1];
KnownZero = ZeroBits[BitWidth - 1];
}
@@ -712,10 +796,15 @@ void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
-bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
- return CI->getValue().isPowerOf2();
- // TODO: Handle vector constants.
+bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
+ unsigned Depth) {
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return OrZero;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+ return CI->getValue().isPowerOf2();
+ // TODO: Handle vector constants.
+ }
// 1 << X is clearly a power of two if the one is not shifted off the end. If
// it is shifted off the end then the result is undefined.
@@ -731,21 +820,36 @@ bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
if (Depth++ == MaxDepth)
return false;
+ Value *X = 0, *Y = 0;
+ // A shift of a power of two is a power of two or zero.
+ if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
+ match(V, m_Shr(m_Value(X), m_Value()))))
+ return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
+
if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
- return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
+ return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
if (SelectInst *SI = dyn_cast<SelectInst>(V))
- return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
- isPowerOfTwo(SI->getFalseValue(), TD, Depth);
+ return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
+ isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
+
+ if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
+ // A power of two and'd with anything is a power of two or zero.
+ if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
+ isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
+ return true;
+ // X & (-X) is always a power of two or zero.
+ if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
+ return true;
+ return false;
+ }
// An exact divide or right shift can only shift off zero bits, so the result
// is a power of two only if the first operand is a power of two and not
// copying a sign bit (sdiv int_min, 2).
- if (match(V, m_LShr(m_Value(), m_Value())) ||
- match(V, m_UDiv(m_Value(), m_Value()))) {
- PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
- if (PEO->isExact())
- return isPowerOfTwo(PEO->getOperand(0), TD, Depth);
+ if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
+ match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
+ return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth);
}
return false;
@@ -767,7 +871,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
}
// The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
+ if (Depth++ >= MaxDepth)
return false;
unsigned BitWidth = getBitWidth(V->getType(), TD);
@@ -785,13 +889,13 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
// if the lowest bit is shifted off the end.
if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
// shl nuw can't remove any non-zero bits.
- BinaryOperator *BO = cast<BinaryOperator>(V);
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (BO->hasNoUnsignedWrap())
return isKnownNonZero(X, TD, Depth);
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
if (KnownOne[0])
return true;
}
@@ -799,7 +903,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
// defined if the sign bit is shifted off the end.
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
// shr exact can only shift out zero bits.
- BinaryOperator *BO = cast<BinaryOperator>(V);
+ PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, TD, Depth);
@@ -809,10 +913,8 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
return true;
}
// div exact can only produce a zero if the dividend is zero.
- else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
- BinaryOperator *BO = cast<BinaryOperator>(V);
- if (BO->isExact())
- return isKnownNonZero(X, TD, Depth);
+ else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
+ return isKnownNonZero(X, TD, Depth);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
@@ -835,20 +937,29 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
- ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
- ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth);
if ((KnownOne & Mask) != 0)
return true;
}
// The sum of a non-negative number and a power of two is not zero.
- if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
+ if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
return true;
- if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
+ if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
+ return true;
+ }
+ // X * Y.
+ else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
+ OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ // If X and Y are non-zero then so is X * Y as long as the multiplication
+ // does not overflow.
+ if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
+ isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
@@ -861,8 +972,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
if (!BitWidth) return false;
APInt KnownZero(BitWidth, 0);
APInt KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
- TD, Depth);
+ ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
return KnownOne != 0;
}
@@ -878,7 +988,7 @@ bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
const TargetData *TD, unsigned Depth) {
APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
- ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+ ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
@@ -917,30 +1027,28 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
- case Instruction::AShr:
+ case Instruction::AShr: {
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
- // ashr X, C -> adds C sign bits.
- if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
- Tmp += C->getZExtValue();
+ // ashr X, C -> adds C sign bits. Vectors too.
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ Tmp += ShAmt->getZExtValue();
if (Tmp > TyBits) Tmp = TyBits;
}
- // vector ashr X, <C, C, C, C> -> adds C sign bits
- if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
- if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
- Tmp += CI->getZExtValue();
- if (Tmp > TyBits) Tmp = TyBits;
- }
- }
return Tmp;
- case Instruction::Shl:
- if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ }
+ case Instruction::Shl: {
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
- if (C->getZExtValue() >= TyBits || // Bad shift.
- C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
- return Tmp - C->getZExtValue();
+ Tmp2 = ShAmt->getZExtValue();
+ if (Tmp2 >= TyBits || // Bad shift.
+ Tmp2 >= Tmp) break; // Shifted all sign bits out.
+ return Tmp - Tmp2;
}
break;
+ }
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
@@ -971,13 +1079,11 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask = APInt::getAllOnesValue(TyBits);
- ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
- Depth+1);
+ ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
- if ((KnownZero | APInt(TyBits, 1)) == Mask)
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If we are subtracting one from a positive number, there is no carry
@@ -998,12 +1104,10 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask = APInt::getAllOnesValue(TyBits);
- ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
- TD, Depth+1);
+ ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
- if ((KnownZero | APInt(TyBits, 1)) == Mask)
+ if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
return TyBits;
// If the input is known to be positive (the sign bit is known clear),
@@ -1045,8 +1149,8 @@ unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
- APInt Mask = APInt::getAllOnesValue(TyBits);
- ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+ APInt Mask;
+ ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth);
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
@@ -1282,23 +1386,21 @@ Value *llvm::isBytewiseValue(Value *V) {
}
}
- // A ConstantArray is splatable if all its members are equal and also
- // splatable.
- if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
- if (CA->getNumOperands() == 0)
- return 0;
-
- Value *Val = isBytewiseValue(CA->getOperand(0));
+ // A ConstantDataArray/Vector is splatable if all its members are equal and
+ // also splatable.
+ if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
+ Value *Elt = CA->getElementAsConstant(0);
+ Value *Val = isBytewiseValue(Elt);
if (!Val)
return 0;
- for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
- if (CA->getOperand(I-1) != CA->getOperand(I))
+ for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
+ if (CA->getElementAsConstant(I) != Elt)
return 0;
return Val;
}
-
+
// Conceptually, we could handle things like:
// %a = zext i8 %X to i16
// %b = shl i16 %a, 8
@@ -1395,50 +1497,44 @@ static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
// Nothing to index? Just return V then (this is useful at the end of our
- // recursion)
+ // recursion).
if (idx_range.empty())
return V;
- // We have indices, so V should have an indexable type
- assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
- && "Not looking at a struct or array?");
- assert(ExtractValueInst::getIndexedType(V->getType(), idx_range)
- && "Invalid indices for type?");
- CompositeType *PTy = cast<CompositeType>(V->getType());
-
- if (isa<UndefValue>(V))
- return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
- idx_range));
- else if (isa<ConstantAggregateZero>(V))
- return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
- idx_range));
- else if (Constant *C = dyn_cast<Constant>(V)) {
- if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
- // Recursively process this constant
- return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1),
- InsertBefore);
- } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
+ // We have indices, so V should have an indexable type.
+ assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
+ "Not looking at a struct or array?");
+ assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
+ "Invalid indices for type?");
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = C->getAggregateElement(idx_range[0]);
+ if (C == 0) return 0;
+ return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
+ }
+
+ if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
// Loop the indices for the insertvalue instruction in parallel with the
// requested indices
const unsigned *req_idx = idx_range.begin();
for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
i != e; ++i, ++req_idx) {
if (req_idx == idx_range.end()) {
- if (InsertBefore)
- // The requested index identifies a part of a nested aggregate. Handle
- // this specially. For example,
- // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
- // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
- // %C = extractvalue {i32, { i32, i32 } } %B, 1
- // This can be changed into
- // %A = insertvalue {i32, i32 } undef, i32 10, 0
- // %C = insertvalue {i32, i32 } %A, i32 11, 1
- // which allows the unused 0,0 element from the nested struct to be
- // removed.
- return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
- InsertBefore);
- else
- // We can't handle this without inserting insertvalues
+ // We can't handle this without inserting insertvalues
+ if (!InsertBefore)
return 0;
+
+ // The requested index identifies a part of a nested aggregate. Handle
+ // this specially. For example,
+ // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
+ // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
+ // %C = extractvalue {i32, { i32, i32 } } %B, 1
+ // This can be changed into
+ // %A = insertvalue {i32, i32 } undef, i32 10, 0
+ // %C = insertvalue {i32, i32 } %A, i32 11, 1
+ // which allows the unused 0,0 element from the nested struct to be
+ // removed.
+ return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
+ InsertBefore);
}
// This insert value inserts something else than what we are looking for.
@@ -1454,7 +1550,9 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
return FindInsertedValue(I->getInsertedValueOperand(),
makeArrayRef(req_idx, idx_range.end()),
InsertBefore);
- } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
+ }
+
+ if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
// If we're extracting a value from an aggregrate that was extracted from
// something else, we can extract from that something else directly instead.
// However, we will need to chain I's indices with the requested indices.
@@ -1486,7 +1584,8 @@ Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
const TargetData &TD) {
Operator *PtrOp = dyn_cast<Operator>(Ptr);
- if (PtrOp == 0) return Ptr;
+ if (PtrOp == 0 || Ptr->getType()->isVectorTy())
+ return Ptr;
// Just look through bitcasts.
if (PtrOp->getOpcode() == Instruction::BitCast)
@@ -1521,34 +1620,19 @@ Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
}
-/// GetConstantStringInfo - This function computes the length of a
+/// getConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V. If successful, it returns true
/// and returns the string in Str. If unsuccessful, it returns false.
-bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
- uint64_t Offset,
- bool StopAtNul) {
- // If V is NULL then return false;
- if (V == NULL) return false;
-
- // Look through bitcast instructions.
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
-
- // If the value is not a GEP instruction nor a constant expression with a
- // GEP instruction, then return false because ConstantArray can't occur
- // any other way
- const User *GEP = 0;
- if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
- GEP = GEPI;
- } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() == Instruction::BitCast)
- return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
- if (CE->getOpcode() != Instruction::GetElementPtr)
- return false;
- GEP = CE;
- }
+bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
+ uint64_t Offset, bool TrimAtNul) {
+ assert(V);
+
+ // Look through bitcast instructions and geps.
+ V = V->stripPointerCasts();
- if (GEP) {
+ // If the value is a GEP instructionor constant expression, treat it as an
+ // offset.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
@@ -1573,51 +1657,48 @@ bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
StartIdx = CI->getZExtValue();
else
return false;
- return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
- StopAtNul);
+ return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
}
-
+
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
- const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
- const Constant *GlobalInit = GV->getInitializer();
-
- // Handle the ConstantAggregateZero case
- if (isa<ConstantAggregateZero>(GlobalInit)) {
+
+ // Handle the all-zeros case
+ if (GV->getInitializer()->isNullValue()) {
// This is a degenerate case. The initializer is constant zero so the
// length of the string must be zero.
- Str.clear();
+ Str = "";
return true;
}
// Must be a Constant Array
- const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
+ const ConstantDataArray *Array =
+ dyn_cast<ConstantDataArray>(GV->getInitializer());
+ if (Array == 0 || !Array->isString())
return false;
// Get the number of elements in the array
- uint64_t NumElts = Array->getType()->getNumElements();
-
+ uint64_t NumElts = Array->getType()->getArrayNumElements();
+
+ // Start out with the entire array in the StringRef.
+ Str = Array->getAsString();
+
if (Offset > NumElts)
return false;
- // Traverse the constant array from 'Offset' which is the place the GEP refers
- // to in the array.
- Str.reserve(NumElts-Offset);
- for (unsigned i = Offset; i != NumElts; ++i) {
- const Constant *Elt = Array->getOperand(i);
- const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
- if (!CI) // This array isn't suitable, non-int initializer.
- return false;
- if (StopAtNul && CI->isZero())
- return true; // we found end of string, success!
- Str += (char)CI->getZExtValue();
- }
+ // Skip over 'offset' bytes.
+ Str = Str.substr(Offset);
- // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
+ if (TrimAtNul) {
+ // Trim off the \0 and anything after it. If the array is not nul
+ // terminated, we just return the whole end of string. The client may know
+ // some other way that the string is length-bound.
+ Str = Str.substr(0, Str.find('\0'));
+ }
return true;
}
@@ -1629,8 +1710,7 @@ bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
// Look through noop bitcast instructions.
- if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- return GetStringLengthH(BCI->getOperand(0), PHIs);
+ V = V->stripPointerCasts();
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
@@ -1666,75 +1746,13 @@ static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
if (Len1 != Len2) return 0;
return Len1;
}
-
- // If the value is not a GEP instruction nor a constant expression with a
- // GEP instruction, then return unknown.
- User *GEP = 0;
- if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
- GEP = GEPI;
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
- if (CE->getOpcode() != Instruction::GetElementPtr)
- return 0;
- GEP = CE;
- } else {
- return 0;
- }
-
- // Make sure the GEP has exactly three arguments.
- if (GEP->getNumOperands() != 3)
- return 0;
-
- // Check to make sure that the first operand of the GEP is an integer and
- // has value 0 so that we are sure we're indexing into the initializer.
- if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
- if (!Idx->isZero())
- return 0;
- } else
- return 0;
-
- // If the second index isn't a ConstantInt, then this is a variable index
- // into the array. If this occurs, we can't say anything meaningful about
- // the string.
- uint64_t StartIdx = 0;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
- StartIdx = CI->getZExtValue();
- else
- return 0;
-
- // The GEP instruction, constant or instruction, must reference a global
- // variable that is a constant and is initialized. The referenced constant
- // initializer is the array that we'll use for optimization.
- GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
- if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
- GV->mayBeOverridden())
+
+ // Otherwise, see if we can read the string.
+ StringRef StrData;
+ if (!getConstantStringInfo(V, StrData))
return 0;
- Constant *GlobalInit = GV->getInitializer();
-
- // Handle the ConstantAggregateZero case, which is a degenerate case. The
- // initializer is constant zero so the length of the string must be zero.
- if (isa<ConstantAggregateZero>(GlobalInit))
- return 1; // Len = 0 offset by 1.
-
- // Must be a Constant Array
- ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
- if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
- return false;
-
- // Get the number of elements in the array
- uint64_t NumElts = Array->getType()->getNumElements();
-
- // Traverse the constant array from StartIdx (derived above) which is
- // the place the GEP refers to in the array.
- for (unsigned i = StartIdx; i != NumElts; ++i) {
- Constant *Elt = Array->getOperand(i);
- ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
- if (!CI) // This array isn't suitable, non-int initializer.
- return 0;
- if (CI->isZero())
- return i-StartIdx+1; // We found end of string, success!
- }
- return 0; // The array isn't null terminated, conservatively return 'unknown'.
+ return StrData.size()+1;
}
/// GetStringLength - If we can compute the length of the string pointed to by
@@ -1793,3 +1811,94 @@ bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
}
return true;
}
+
+bool llvm::isSafeToSpeculativelyExecute(const Value *V,
+ const TargetData *TD) {
+ const Operator *Inst = dyn_cast<Operator>(V);
+ if (!Inst)
+ return false;
+
+ for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
+ if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
+ if (C->canTrap())
+ return false;
+
+ switch (Inst->getOpcode()) {
+ default:
+ return true;
+ case Instruction::UDiv:
+ case Instruction::URem:
+ // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
+ return isKnownNonZero(Inst->getOperand(1), TD);
+ case Instruction::SDiv:
+ case Instruction::SRem: {
+ Value *Op = Inst->getOperand(1);
+ // x / y is undefined if y == 0
+ if (!isKnownNonZero(Op, TD))
+ return false;
+ // x / y might be undefined if y == -1
+ unsigned BitWidth = getBitWidth(Op->getType(), TD);
+ if (BitWidth == 0)
+ return false;
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(Op, KnownZero, KnownOne, TD);
+ return !!KnownZero;
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = cast<LoadInst>(Inst);
+ if (!LI->isUnordered())
+ return false;
+ return LI->getPointerOperand()->isDereferenceablePointer();
+ }
+ case Instruction::Call: {
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
+ switch (II->getIntrinsicID()) {
+ // These synthetic intrinsics have no side-effects, and just mark
+ // information about their operands.
+ // FIXME: There are other no-op synthetic instructions that potentially
+ // should be considered at least *safe* to speculate...
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ return true;
+
+ case Intrinsic::bswap:
+ case Intrinsic::ctlz:
+ case Intrinsic::ctpop:
+ case Intrinsic::cttz:
+ case Intrinsic::objectsize:
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ return true;
+ // TODO: some fp intrinsics are marked as having the same error handling
+ // as libm. They're safe to speculate when they won't error.
+ // TODO: are convert_{from,to}_fp16 safe?
+ // TODO: can we list target-specific intrinsics here?
+ default: break;
+ }
+ }
+ return false; // The called function could have undefined behavior or
+ // side-effects, even if marked readnone nounwind.
+ }
+ case Instruction::VAArg:
+ case Instruction::Alloca:
+ case Instruction::Invoke:
+ case Instruction::PHI:
+ case Instruction::Store:
+ case Instruction::Ret:
+ case Instruction::Br:
+ case Instruction::IndirectBr:
+ case Instruction::Switch:
+ case Instruction::Unreachable:
+ case Instruction::Fence:
+ case Instruction::LandingPad:
+ case Instruction::AtomicRMW:
+ case Instruction::AtomicCmpXchg:
+ case Instruction::Resume:
+ return false; // Misc instructions which have effects
+ }
+}