aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocGreedy.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/RegAllocGreedy.cpp')
-rw-r--r--lib/CodeGen/RegAllocGreedy.cpp1179
1 files changed, 612 insertions, 567 deletions
diff --git a/lib/CodeGen/RegAllocGreedy.cpp b/lib/CodeGen/RegAllocGreedy.cpp
index 406485aaf496..7c461d8ea787 100644
--- a/lib/CodeGen/RegAllocGreedy.cpp
+++ b/lib/CodeGen/RegAllocGreedy.cpp
@@ -14,7 +14,8 @@
#define DEBUG_TYPE "regalloc"
#include "AllocationOrder.h"
-#include "LiveIntervalUnion.h"
+#include "InterferenceCache.h"
+#include "LiveDebugVariables.h"
#include "LiveRangeEdit.h"
#include "RegAllocBase.h"
#include "Spiller.h"
@@ -49,14 +50,16 @@ using namespace llvm;
STATISTIC(NumGlobalSplits, "Number of split global live ranges");
STATISTIC(NumLocalSplits, "Number of split local live ranges");
-STATISTIC(NumReassigned, "Number of interferences reassigned");
STATISTIC(NumEvicted, "Number of interferences evicted");
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
createGreedyRegisterAllocator);
namespace {
-class RAGreedy : public MachineFunctionPass, public RegAllocBase {
+class RAGreedy : public MachineFunctionPass,
+ public RegAllocBase,
+ private LiveRangeEdit::Delegate {
+
// context
MachineFunction *MF;
BitVector ReservedRegs;
@@ -72,14 +75,73 @@ class RAGreedy : public MachineFunctionPass, public RegAllocBase {
// state
std::auto_ptr<Spiller> SpillerInstance;
- std::auto_ptr<SplitAnalysis> SA;
std::priority_queue<std::pair<unsigned, unsigned> > Queue;
- IndexedMap<unsigned, VirtReg2IndexFunctor> Generation;
+
+ // Live ranges pass through a number of stages as we try to allocate them.
+ // Some of the stages may also create new live ranges:
+ //
+ // - Region splitting.
+ // - Per-block splitting.
+ // - Local splitting.
+ // - Spilling.
+ //
+ // Ranges produced by one of the stages skip the previous stages when they are
+ // dequeued. This improves performance because we can skip interference checks
+ // that are unlikely to give any results. It also guarantees that the live
+ // range splitting algorithm terminates, something that is otherwise hard to
+ // ensure.
+ enum LiveRangeStage {
+ RS_New, ///< Never seen before.
+ RS_First, ///< First time in the queue.
+ RS_Second, ///< Second time in the queue.
+ RS_Global, ///< Produced by global splitting.
+ RS_Local, ///< Produced by local splitting.
+ RS_Spill ///< Produced by spilling.
+ };
+
+ IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage;
+
+ LiveRangeStage getStage(const LiveInterval &VirtReg) const {
+ return LiveRangeStage(LRStage[VirtReg.reg]);
+ }
+
+ template<typename Iterator>
+ void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
+ LRStage.resize(MRI->getNumVirtRegs());
+ for (;Begin != End; ++Begin) {
+ unsigned Reg = (*Begin)->reg;
+ if (LRStage[Reg] == RS_New)
+ LRStage[Reg] = NewStage;
+ }
+ }
// splitting state.
+ std::auto_ptr<SplitAnalysis> SA;
+ std::auto_ptr<SplitEditor> SE;
- /// All basic blocks where the current register is live.
- SmallVector<SpillPlacement::BlockConstraint, 8> SpillConstraints;
+ /// Cached per-block interference maps
+ InterferenceCache IntfCache;
+
+ /// All basic blocks where the current register has uses.
+ SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
+
+ /// Global live range splitting candidate info.
+ struct GlobalSplitCandidate {
+ unsigned PhysReg;
+ BitVector LiveBundles;
+ SmallVector<unsigned, 8> ActiveBlocks;
+
+ void reset(unsigned Reg) {
+ PhysReg = Reg;
+ LiveBundles.clear();
+ ActiveBlocks.clear();
+ }
+ };
+
+ /// Candidate info for for each PhysReg in AllocationOrder.
+ /// This vector never shrinks, but grows to the size of the largest register
+ /// class.
+ SmallVector<GlobalSplitCandidate, 32> GlobalCand;
/// For every instruction in SA->UseSlots, store the previous non-copy
/// instruction.
@@ -108,42 +170,50 @@ public:
static char ID;
private:
- bool checkUncachedInterference(LiveInterval&, unsigned);
- LiveInterval *getSingleInterference(LiveInterval&, unsigned);
- bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
- float calcInterferenceWeight(LiveInterval&, unsigned);
- float calcInterferenceInfo(LiveInterval&, unsigned);
- float calcGlobalSplitCost(const BitVector&);
- void splitAroundRegion(LiveInterval&, unsigned, const BitVector&,
+ void LRE_WillEraseInstruction(MachineInstr*);
+ bool LRE_CanEraseVirtReg(unsigned);
+ void LRE_WillShrinkVirtReg(unsigned);
+ void LRE_DidCloneVirtReg(unsigned, unsigned);
+
+ float calcSpillCost();
+ bool addSplitConstraints(InterferenceCache::Cursor, float&);
+ void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
+ void growRegion(GlobalSplitCandidate &Cand, InterferenceCache::Cursor);
+ float calcGlobalSplitCost(GlobalSplitCandidate&, InterferenceCache::Cursor);
+ void splitAroundRegion(LiveInterval&, GlobalSplitCandidate&,
SmallVectorImpl<LiveInterval*>&);
void calcGapWeights(unsigned, SmallVectorImpl<float>&);
SlotIndex getPrevMappedIndex(const MachineInstr*);
void calcPrevSlots();
unsigned nextSplitPoint(unsigned);
- bool canEvictInterference(LiveInterval&, unsigned, unsigned, float&);
+ bool canEvictInterference(LiveInterval&, unsigned, float&);
- unsigned tryReassign(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ unsigned tryAssign(LiveInterval&, AllocationOrder&,
+ SmallVectorImpl<LiveInterval*>&);
unsigned tryEvict(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
+ SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
unsigned trySplit(LiveInterval&, AllocationOrder&,
SmallVectorImpl<LiveInterval*>&);
- unsigned trySpillInterferences(LiveInterval&, AllocationOrder&,
- SmallVectorImpl<LiveInterval*>&);
};
} // end anonymous namespace
char RAGreedy::ID = 0;
+// Hysteresis to use when comparing floats.
+// This helps stabilize decisions based on float comparisons.
+const float Hysteresis = 0.98f;
+
+
FunctionPass* llvm::createGreedyRegisterAllocator() {
return new RAGreedy();
}
-RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
+RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_New) {
+ initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
@@ -166,6 +236,8 @@ void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
+ AU.addRequired<LiveDebugVariables>();
+ AU.addPreserved<LiveDebugVariables>();
if (StrongPHIElim)
AU.addRequiredID(StrongPHIEliminationID);
AU.addRequiredTransitive<RegisterCoalescer>();
@@ -185,9 +257,49 @@ void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
}
+
+//===----------------------------------------------------------------------===//
+// LiveRangeEdit delegate methods
+//===----------------------------------------------------------------------===//
+
+void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) {
+ // LRE itself will remove from SlotIndexes and parent basic block.
+ VRM->RemoveMachineInstrFromMaps(MI);
+}
+
+bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
+ if (unsigned PhysReg = VRM->getPhys(VirtReg)) {
+ unassign(LIS->getInterval(VirtReg), PhysReg);
+ return true;
+ }
+ // Unassigned virtreg is probably in the priority queue.
+ // RegAllocBase will erase it after dequeueing.
+ return false;
+}
+
+void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
+ unsigned PhysReg = VRM->getPhys(VirtReg);
+ if (!PhysReg)
+ return;
+
+ // Register is assigned, put it back on the queue for reassignment.
+ LiveInterval &LI = LIS->getInterval(VirtReg);
+ unassign(LI, PhysReg);
+ enqueue(&LI);
+}
+
+void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
+ // LRE may clone a virtual register because dead code elimination causes it to
+ // be split into connected components. Ensure that the new register gets the
+ // same stage as the parent.
+ LRStage.grow(New);
+ LRStage[New] = LRStage[Old];
+}
+
void RAGreedy::releaseMemory() {
SpillerInstance.reset(0);
- Generation.clear();
+ LRStage.clear();
+ GlobalCand.clear();
RegAllocBase::releaseMemory();
}
@@ -198,20 +310,26 @@ void RAGreedy::enqueue(LiveInterval *LI) {
const unsigned Reg = LI->reg;
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Can only enqueue virtual registers");
- const unsigned Hint = VRM->getRegAllocPref(Reg);
unsigned Prio;
- Generation.grow(Reg);
- if (++Generation[Reg] == 1)
- // 1st generation ranges are handled first, long -> short.
+ LRStage.grow(Reg);
+ if (LRStage[Reg] == RS_New)
+ LRStage[Reg] = RS_First;
+
+ if (LRStage[Reg] == RS_Second)
+ // Unsplit ranges that couldn't be allocated immediately are deferred until
+ // everything else has been allocated. Long ranges are allocated last so
+ // they are split against realistic interference.
+ Prio = (1u << 31) - Size;
+ else {
+ // Everything else is allocated in long->short order. Long ranges that don't
+ // fit should be spilled ASAP so they don't create interference.
Prio = (1u << 31) + Size;
- else
- // Repeat offenders are handled second, short -> long
- Prio = (1u << 30) - Size;
- // Boost ranges that have a physical register hint.
- if (TargetRegisterInfo::isPhysicalRegister(Hint))
- Prio |= (1u << 30);
+ // Boost ranges that have a physical register hint.
+ if (TargetRegisterInfo::isPhysicalRegister(VRM->getRegAllocPref(Reg)))
+ Prio |= (1u << 30);
+ }
Queue.push(std::make_pair(Prio, Reg));
}
@@ -224,97 +342,34 @@ LiveInterval *RAGreedy::dequeue() {
return LI;
}
+
//===----------------------------------------------------------------------===//
-// Register Reassignment
+// Direct Assignment
//===----------------------------------------------------------------------===//
-// Check interference without using the cache.
-bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg,
- unsigned PhysReg) {
- for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
- LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]);
- if (subQ.checkInterference())
- return true;
- }
- return false;
-}
-
-/// getSingleInterference - Return the single interfering virtual register
-/// assigned to PhysReg. Return 0 if more than one virtual register is
-/// interfering.
-LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg,
- unsigned PhysReg) {
- // Check physreg and aliases.
- LiveInterval *Interference = 0;
- for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
- LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
- if (Q.checkInterference()) {
- if (Interference)
- return 0;
- if (Q.collectInterferingVRegs(2) > 1)
- return 0;
- Interference = Q.interferingVRegs().front();
- }
- }
- return Interference;
-}
-
-// Attempt to reassign this virtual register to a different physical register.
-//
-// FIXME: we are not yet caching these "second-level" interferences discovered
-// in the sub-queries. These interferences can change with each call to
-// selectOrSplit. However, we could implement a "may-interfere" cache that
-// could be conservatively dirtied when we reassign or split.
-//
-// FIXME: This may result in a lot of alias queries. We could summarize alias
-// live intervals in their parent register's live union, but it's messy.
-bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
- unsigned WantedPhysReg) {
- assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) &&
- "Can only reassign virtual registers");
- assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) &&
- "inconsistent phys reg assigment");
-
- AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs);
- while (unsigned PhysReg = Order.next()) {
- // Don't reassign to a WantedPhysReg alias.
- if (TRI->regsOverlap(PhysReg, WantedPhysReg))
- continue;
-
- if (checkUncachedInterference(InterferingVReg, PhysReg))
- continue;
+/// tryAssign - Try to assign VirtReg to an available register.
+unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
+ AllocationOrder &Order,
+ SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ Order.rewind();
+ unsigned PhysReg;
+ while ((PhysReg = Order.next()))
+ if (!checkPhysRegInterference(VirtReg, PhysReg))
+ break;
+ if (!PhysReg || Order.isHint(PhysReg))
+ return PhysReg;
- // Reassign the interfering virtual reg to this physical reg.
- unsigned OldAssign = VRM->getPhys(InterferingVReg.reg);
- DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
- TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n');
- unassign(InterferingVReg, OldAssign);
- assign(InterferingVReg, PhysReg);
- ++NumReassigned;
- return true;
- }
- return false;
-}
+ // PhysReg is available. Try to evict interference from a cheaper alternative.
+ unsigned Cost = TRI->getCostPerUse(PhysReg);
-/// tryReassign - Try to reassign a single interference to a different physreg.
-/// @param VirtReg Currently unassigned virtual register.
-/// @param Order Physregs to try.
-/// @return Physreg to assign VirtReg, or 0.
-unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs){
- NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled);
+ // Most registers have 0 additional cost.
+ if (!Cost)
+ return PhysReg;
- Order.rewind();
- while (unsigned PhysReg = Order.next()) {
- LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg);
- if (!InterferingVReg)
- continue;
- if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg))
- continue;
- if (reassignVReg(*InterferingVReg, PhysReg))
- return PhysReg;
- }
- return 0;
+ DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
+ << '\n');
+ unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
+ return CheapReg ? CheapReg : PhysReg;
}
@@ -323,22 +378,24 @@ unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order,
//===----------------------------------------------------------------------===//
/// canEvict - Return true if all interferences between VirtReg and PhysReg can
-/// be evicted. Set maxWeight to the maximal spill weight of an interference.
+/// be evicted.
+/// Return false if any interference is heavier than MaxWeight.
+/// On return, set MaxWeight to the maximal spill weight of an interference.
bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
- unsigned Size, float &MaxWeight) {
+ float &MaxWeight) {
float Weight = 0;
for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) {
LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI);
- // If there is 10 or more interferences, chances are one is smaller.
- if (Q.collectInterferingVRegs(10) >= 10)
+ // If there is 10 or more interferences, chances are one is heavier.
+ if (Q.collectInterferingVRegs(10, MaxWeight) >= 10)
return false;
- // CHeck if any interfering live range is shorter than VirtReg.
- for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
- LiveInterval *Intf = Q.interferingVRegs()[i];
+ // Check if any interfering live range is heavier than MaxWeight.
+ for (unsigned i = Q.interferingVRegs().size(); i; --i) {
+ LiveInterval *Intf = Q.interferingVRegs()[i - 1];
if (TargetRegisterInfo::isPhysicalRegister(Intf->reg))
return false;
- if (Intf->getSize() <= Size)
+ if (Intf->weight >= MaxWeight)
return false;
Weight = std::max(Weight, Intf->weight);
}
@@ -353,25 +410,28 @@ bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
/// @return Physreg to assign VirtReg, or 0.
unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs){
+ SmallVectorImpl<LiveInterval*> &NewVRegs,
+ unsigned CostPerUseLimit) {
NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
- // We can only evict interference if all interfering registers are virtual and
- // longer than VirtReg.
- const unsigned Size = VirtReg.getSize();
-
// Keep track of the lightest single interference seen so far.
- float BestWeight = 0;
+ float BestWeight = VirtReg.weight;
unsigned BestPhys = 0;
Order.rewind();
while (unsigned PhysReg = Order.next()) {
- float Weight = 0;
- if (!canEvictInterference(VirtReg, PhysReg, Size, Weight))
+ if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
+ continue;
+ // The first use of a register in a function has cost 1.
+ if (CostPerUseLimit == 1 && !MRI->isPhysRegUsed(PhysReg))
+ continue;
+
+ float Weight = BestWeight;
+ if (!canEvictInterference(VirtReg, PhysReg, Weight))
continue;
// This is an eviction candidate.
- DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = "
+ DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " interference = "
<< Weight << '\n');
if (BestPhys && Weight >= BestWeight)
continue;
@@ -406,201 +466,228 @@ unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
// Region Splitting
//===----------------------------------------------------------------------===//
-/// calcInterferenceInfo - Compute per-block outgoing and ingoing constraints
-/// when considering interference from PhysReg. Also compute an optimistic local
-/// cost of this interference pattern.
-///
-/// The final cost of a split is the local cost + global cost of preferences
-/// broken by SpillPlacement.
-///
-float RAGreedy::calcInterferenceInfo(LiveInterval &VirtReg, unsigned PhysReg) {
+/// addSplitConstraints - Fill out the SplitConstraints vector based on the
+/// interference pattern in Physreg and its aliases. Add the constraints to
+/// SpillPlacement and return the static cost of this split in Cost, assuming
+/// that all preferences in SplitConstraints are met.
+/// Return false if there are no bundles with positive bias.
+bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
+ float &Cost) {
+ ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+
// Reset interference dependent info.
- SpillConstraints.resize(SA->LiveBlocks.size());
- for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
- SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
- SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
+ SplitConstraints.resize(UseBlocks.size());
+ float StaticCost = 0;
+ for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+ const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+ SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
+
BC.Number = BI.MBB->getNumber();
- BC.Entry = (BI.Uses && BI.LiveIn) ?
- SpillPlacement::PrefReg : SpillPlacement::DontCare;
- BC.Exit = (BI.Uses && BI.LiveOut) ?
- SpillPlacement::PrefReg : SpillPlacement::DontCare;
- BI.OverlapEntry = BI.OverlapExit = false;
- }
+ Intf.moveToBlock(BC.Number);
+ BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
+ BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
- // Add interference info from each PhysReg alias.
- for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
- if (!query(VirtReg, *AI).checkInterference())
+ if (!Intf.hasInterference())
continue;
- LiveIntervalUnion::SegmentIter IntI =
- PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
- if (!IntI.valid())
- continue;
-
- // Determine which blocks have interference live in or after the last split
- // point.
- for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
- SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
- SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
- SlotIndex Start, Stop;
- tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
- // Skip interference-free blocks.
- if (IntI.start() >= Stop)
- continue;
-
- // Is the interference live-in?
- if (BI.LiveIn) {
- IntI.advanceTo(Start);
- if (!IntI.valid())
- break;
- if (IntI.start() <= Start)
- BC.Entry = SpillPlacement::MustSpill;
- }
+ // Number of spill code instructions to insert.
+ unsigned Ins = 0;
+
+ // Interference for the live-in value.
+ if (BI.LiveIn) {
+ if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
+ BC.Entry = SpillPlacement::MustSpill, ++Ins;
+ else if (Intf.first() < BI.FirstUse)
+ BC.Entry = SpillPlacement::PrefSpill, ++Ins;
+ else if (Intf.first() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
+ ++Ins;
+ }
- // Is the interference overlapping the last split point?
- if (BI.LiveOut) {
- if (IntI.stop() < BI.LastSplitPoint)
- IntI.advanceTo(BI.LastSplitPoint.getPrevSlot());
- if (!IntI.valid())
- break;
- if (IntI.start() < Stop)
- BC.Exit = SpillPlacement::MustSpill;
- }
+ // Interference for the live-out value.
+ if (BI.LiveOut) {
+ if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
+ BC.Exit = SpillPlacement::MustSpill, ++Ins;
+ else if (Intf.last() > BI.LastUse)
+ BC.Exit = SpillPlacement::PrefSpill, ++Ins;
+ else if (Intf.last() > (BI.LiveThrough ? BI.FirstUse : BI.Def))
+ ++Ins;
}
- // Rewind iterator and check other interferences.
- IntI.find(VirtReg.beginIndex());
- for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
- SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
- SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
- SlotIndex Start, Stop;
- tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
+ // Accumulate the total frequency of inserted spill code.
+ if (Ins)
+ StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
+ }
+ Cost = StaticCost;
- // Skip interference-free blocks.
- if (IntI.start() >= Stop)
- continue;
+ // Add constraints for use-blocks. Note that these are the only constraints
+ // that may add a positive bias, it is downhill from here.
+ SpillPlacer->addConstraints(SplitConstraints);
+ return SpillPlacer->scanActiveBundles();
+}
- // Handle transparent blocks with interference separately.
- // Transparent blocks never incur any fixed cost.
- if (BI.LiveThrough && !BI.Uses) {
- IntI.advanceTo(Start);
- if (!IntI.valid())
- break;
- if (IntI.start() >= Stop)
- continue;
- if (BC.Entry != SpillPlacement::MustSpill)
- BC.Entry = SpillPlacement::PrefSpill;
- if (BC.Exit != SpillPlacement::MustSpill)
- BC.Exit = SpillPlacement::PrefSpill;
- continue;
+/// addThroughConstraints - Add constraints and links to SpillPlacer from the
+/// live-through blocks in Blocks.
+void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
+ ArrayRef<unsigned> Blocks) {
+ const unsigned GroupSize = 8;
+ SpillPlacement::BlockConstraint BCS[GroupSize];
+ unsigned TBS[GroupSize];
+ unsigned B = 0, T = 0;
+
+ for (unsigned i = 0; i != Blocks.size(); ++i) {
+ unsigned Number = Blocks[i];
+ Intf.moveToBlock(Number);
+
+ if (!Intf.hasInterference()) {
+ assert(T < GroupSize && "Array overflow");
+ TBS[T] = Number;
+ if (++T == GroupSize) {
+ SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
+ T = 0;
}
+ continue;
+ }
- // Now we only have blocks with uses left.
- // Check if the interference overlaps the uses.
- assert(BI.Uses && "Non-transparent block without any uses");
-
- // Check interference on entry.
- if (BI.LiveIn && BC.Entry != SpillPlacement::MustSpill) {
- IntI.advanceTo(Start);
- if (!IntI.valid())
- break;
- // Not live in, but before the first use.
- if (IntI.start() < BI.FirstUse) {
- BC.Entry = SpillPlacement::PrefSpill;
- // If the block contains a kill from an earlier split, never split
- // again in the same block.
- if (!BI.LiveThrough && !SA->isOriginalEndpoint(BI.Kill))
- BC.Entry = SpillPlacement::MustSpill;
- }
- }
+ assert(B < GroupSize && "Array overflow");
+ BCS[B].Number = Number;
+
+ // Interference for the live-in value.
+ if (Intf.first() <= Indexes->getMBBStartIdx(Number))
+ BCS[B].Entry = SpillPlacement::MustSpill;
+ else
+ BCS[B].Entry = SpillPlacement::PrefSpill;
+
+ // Interference for the live-out value.
+ if (Intf.last() >= SA->getLastSplitPoint(Number))
+ BCS[B].Exit = SpillPlacement::MustSpill;
+ else
+ BCS[B].Exit = SpillPlacement::PrefSpill;
+
+ if (++B == GroupSize) {
+ ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
+ SpillPlacer->addConstraints(Array);
+ B = 0;
+ }
+ }
- // Does interference overlap the uses in the entry segment
- // [FirstUse;Kill)?
- if (BI.LiveIn && !BI.OverlapEntry) {
- IntI.advanceTo(BI.FirstUse);
- if (!IntI.valid())
- break;
- // A live-through interval has no kill.
- // Check [FirstUse;LastUse) instead.
- if (IntI.start() < (BI.LiveThrough ? BI.LastUse : BI.Kill))
- BI.OverlapEntry = true;
- }
+ ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
+ SpillPlacer->addConstraints(Array);
+ SpillPlacer->addLinks(ArrayRef<unsigned>(TBS, T));
+}
- // Does interference overlap the uses in the exit segment [Def;LastUse)?
- if (BI.LiveOut && !BI.LiveThrough && !BI.OverlapExit) {
- IntI.advanceTo(BI.Def);
- if (!IntI.valid())
- break;
- if (IntI.start() < BI.LastUse)
- BI.OverlapExit = true;
- }
+void RAGreedy::growRegion(GlobalSplitCandidate &Cand,
+ InterferenceCache::Cursor Intf) {
+ // Keep track of through blocks that have not been added to SpillPlacer.
+ BitVector Todo = SA->getThroughBlocks();
+ SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
+ unsigned AddedTo = 0;
+#ifndef NDEBUG
+ unsigned Visited = 0;
+#endif
- // Check interference on exit.
- if (BI.LiveOut && BC.Exit != SpillPlacement::MustSpill) {
- // Check interference between LastUse and Stop.
- if (BC.Exit != SpillPlacement::PrefSpill) {
- IntI.advanceTo(BI.LastUse);
- if (!IntI.valid())
- break;
- if (IntI.start() < Stop) {
- BC.Exit = SpillPlacement::PrefSpill;
- // Avoid splitting twice in the same block.
- if (!BI.LiveThrough && !SA->isOriginalEndpoint(BI.Def))
- BC.Exit = SpillPlacement::MustSpill;
- }
- }
+ for (;;) {
+ ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
+ if (NewBundles.empty())
+ break;
+ // Find new through blocks in the periphery of PrefRegBundles.
+ for (int i = 0, e = NewBundles.size(); i != e; ++i) {
+ unsigned Bundle = NewBundles[i];
+ // Look at all blocks connected to Bundle in the full graph.
+ ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
+ for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
+ I != E; ++I) {
+ unsigned Block = *I;
+ if (!Todo.test(Block))
+ continue;
+ Todo.reset(Block);
+ // This is a new through block. Add it to SpillPlacer later.
+ ActiveBlocks.push_back(Block);
+#ifndef NDEBUG
+ ++Visited;
+#endif
}
}
+ // Any new blocks to add?
+ if (ActiveBlocks.size() > AddedTo) {
+ ArrayRef<unsigned> Add(&ActiveBlocks[AddedTo],
+ ActiveBlocks.size() - AddedTo);
+ addThroughConstraints(Intf, Add);
+ AddedTo = ActiveBlocks.size();
+ }
+ // Perhaps iterating can enable more bundles?
+ SpillPlacer->iterate();
}
+ DEBUG(dbgs() << ", v=" << Visited);
+}
- // Accumulate a local cost of this interference pattern.
- float LocalCost = 0;
- for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
- SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
- if (!BI.Uses)
- continue;
- SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
- unsigned Inserts = 0;
-
- // Do we need spill code for the entry segment?
- if (BI.LiveIn)
- Inserts += BI.OverlapEntry || BC.Entry != SpillPlacement::PrefReg;
-
- // For the exit segment?
- if (BI.LiveOut)
- Inserts += BI.OverlapExit || BC.Exit != SpillPlacement::PrefReg;
-
- // The local cost of spill code in this block is the block frequency times
- // the number of spill instructions inserted.
- if (Inserts)
- LocalCost += Inserts * SpillPlacer->getBlockFrequency(BI.MBB);
+/// calcSpillCost - Compute how expensive it would be to split the live range in
+/// SA around all use blocks instead of forming bundle regions.
+float RAGreedy::calcSpillCost() {
+ float Cost = 0;
+ const LiveInterval &LI = SA->getParent();
+ ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+ for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+ const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+ unsigned Number = BI.MBB->getNumber();
+ // We normally only need one spill instruction - a load or a store.
+ Cost += SpillPlacer->getBlockFrequency(Number);
+
+ // Unless the value is redefined in the block.
+ if (BI.LiveIn && BI.LiveOut) {
+ SlotIndex Start, Stop;
+ tie(Start, Stop) = Indexes->getMBBRange(Number);
+ LiveInterval::const_iterator I = LI.find(Start);
+ assert(I != LI.end() && "Expected live-in value");
+ // Is there a different live-out value? If so, we need an extra spill
+ // instruction.
+ if (I->end < Stop)
+ Cost += SpillPlacer->getBlockFrequency(Number);
+ }
}
- DEBUG(dbgs() << "Local cost of " << PrintReg(PhysReg, TRI) << " = "
- << LocalCost << '\n');
- return LocalCost;
+ return Cost;
}
/// calcGlobalSplitCost - Return the global split cost of following the split
/// pattern in LiveBundles. This cost should be added to the local cost of the
-/// interference pattern in SpillConstraints.
+/// interference pattern in SplitConstraints.
///
-float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
+float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
+ InterferenceCache::Cursor Intf) {
float GlobalCost = 0;
- for (unsigned i = 0, e = SpillConstraints.size(); i != e; ++i) {
- SpillPlacement::BlockConstraint &BC = SpillConstraints[i];
- unsigned Inserts = 0;
- // Broken entry preference?
- Inserts += LiveBundles[Bundles->getBundle(BC.Number, 0)] !=
- (BC.Entry == SpillPlacement::PrefReg);
- // Broken exit preference?
- Inserts += LiveBundles[Bundles->getBundle(BC.Number, 1)] !=
- (BC.Exit == SpillPlacement::PrefReg);
- if (Inserts)
- GlobalCost +=
- Inserts * SpillPlacer->getBlockFrequency(SA->LiveBlocks[i].MBB);
+ const BitVector &LiveBundles = Cand.LiveBundles;
+ ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+ for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+ const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
+ SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
+ bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
+ bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
+ unsigned Ins = 0;
+
+ if (BI.LiveIn)
+ Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
+ if (BI.LiveOut)
+ Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
+ if (Ins)
+ GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
+ }
+
+ for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
+ unsigned Number = Cand.ActiveBlocks[i];
+ bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
+ bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
+ if (!RegIn && !RegOut)
+ continue;
+ if (RegIn && RegOut) {
+ // We need double spill code if this block has interference.
+ Intf.moveToBlock(Number);
+ if (Intf.hasInterference())
+ GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
+ continue;
+ }
+ // live-in / stack-out or stack-in live-out.
+ GlobalCost += SpillPlacer->getBlockFrequency(Number);
}
- DEBUG(dbgs() << "Global cost = " << GlobalCost << '\n');
return GlobalCost;
}
@@ -611,113 +698,74 @@ float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) {
/// avoiding interference. The 'stack' interval is the complement constructed by
/// SplitEditor. It will contain the rest.
///
-void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
- const BitVector &LiveBundles,
+void RAGreedy::splitAroundRegion(LiveInterval &VirtReg,
+ GlobalSplitCandidate &Cand,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
+ const BitVector &LiveBundles = Cand.LiveBundles;
+
DEBUG({
- dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI)
+ dbgs() << "Splitting around region for " << PrintReg(Cand.PhysReg, TRI)
<< " with bundles";
for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i))
dbgs() << " EB#" << i;
dbgs() << ".\n";
});
- // First compute interference ranges in the live blocks.
- typedef std::pair<SlotIndex, SlotIndex> IndexPair;
- SmallVector<IndexPair, 8> InterferenceRanges;
- InterferenceRanges.resize(SA->LiveBlocks.size());
- for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
- if (!query(VirtReg, *AI).checkInterference())
- continue;
- LiveIntervalUnion::SegmentIter IntI =
- PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex());
- if (!IntI.valid())
- continue;
- for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
- const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
- IndexPair &IP = InterferenceRanges[i];
- SlotIndex Start, Stop;
- tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
- // Skip interference-free blocks.
- if (IntI.start() >= Stop)
- continue;
-
- // First interference in block.
- if (BI.LiveIn) {
- IntI.advanceTo(Start);
- if (!IntI.valid())
- break;
- if (IntI.start() >= Stop)
- continue;
- if (!IP.first.isValid() || IntI.start() < IP.first)
- IP.first = IntI.start();
- }
-
- // Last interference in block.
- if (BI.LiveOut) {
- IntI.advanceTo(Stop);
- if (!IntI.valid() || IntI.start() >= Stop)
- --IntI;
- if (IntI.stop() <= Start)
- continue;
- if (!IP.second.isValid() || IntI.stop() > IP.second)
- IP.second = IntI.stop();
- }
- }
- }
-
- SmallVector<LiveInterval*, 4> SpillRegs;
- LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
- SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit);
+ InterferenceCache::Cursor Intf(IntfCache, Cand.PhysReg);
+ LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
+ SE->reset(LREdit);
// Create the main cross-block interval.
- SE.openIntv();
+ const unsigned MainIntv = SE->openIntv();
// First add all defs that are live out of a block.
- for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
- SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
+ ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
+ for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+ const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
+ // Create separate intervals for isolated blocks with multiple uses.
+ if (!RegIn && !RegOut && BI.FirstUse != BI.LastUse) {
+ DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
+ SE->splitSingleBlock(BI);
+ SE->selectIntv(MainIntv);
+ continue;
+ }
+
// Should the register be live out?
if (!BI.LiveOut || !RegOut)
continue;
- IndexPair &IP = InterferenceRanges[i];
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
-
+ Intf.moveToBlock(BI.MBB->getNumber());
DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#"
<< Bundles->getBundle(BI.MBB->getNumber(), 1)
- << " intf [" << IP.first << ';' << IP.second << ')');
+ << " [" << Start << ';'
+ << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
+ << ") intf [" << Intf.first() << ';' << Intf.last() << ')');
// The interference interval should either be invalid or overlap MBB.
- assert((!IP.first.isValid() || IP.first < Stop) && "Bad interference");
- assert((!IP.second.isValid() || IP.second > Start) && "Bad interference");
+ assert((!Intf.hasInterference() || Intf.first() < Stop)
+ && "Bad interference");
+ assert((!Intf.hasInterference() || Intf.last() > Start)
+ && "Bad interference");
// Check interference leaving the block.
- if (!IP.second.isValid()) {
+ if (!Intf.hasInterference()) {
// Block is interference-free.
DEBUG(dbgs() << ", no interference");
- if (!BI.Uses) {
- assert(BI.LiveThrough && "No uses, but not live through block?");
- // Block is live-through without interference.
- DEBUG(dbgs() << ", no uses"
- << (RegIn ? ", live-through.\n" : ", stack in.\n"));
- if (!RegIn)
- SE.enterIntvAtEnd(*BI.MBB);
- continue;
- }
if (!BI.LiveThrough) {
DEBUG(dbgs() << ", not live-through.\n");
- SE.useIntv(SE.enterIntvBefore(BI.Def), Stop);
+ SE->useIntv(SE->enterIntvBefore(BI.Def), Stop);
continue;
}
if (!RegIn) {
// Block is live-through, but entry bundle is on the stack.
// Reload just before the first use.
DEBUG(dbgs() << ", not live-in, enter before first use.\n");
- SE.useIntv(SE.enterIntvBefore(BI.FirstUse), Stop);
+ SE->useIntv(SE->enterIntvBefore(BI.FirstUse), Stop);
continue;
}
DEBUG(dbgs() << ", live-through.\n");
@@ -725,53 +773,45 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
}
// Block has interference.
- DEBUG(dbgs() << ", interference to " << IP.second);
+ DEBUG(dbgs() << ", interference to " << Intf.last());
- if (!BI.LiveThrough && IP.second <= BI.Def) {
+ if (!BI.LiveThrough && Intf.last() <= BI.Def) {
// The interference doesn't reach the outgoing segment.
DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n');
- SE.useIntv(BI.Def, Stop);
+ SE->useIntv(BI.Def, Stop);
continue;
}
-
- if (!BI.Uses) {
- // No uses in block, avoid interference by reloading as late as possible.
- DEBUG(dbgs() << ", no uses.\n");
- SlotIndex SegStart = SE.enterIntvAtEnd(*BI.MBB);
- assert(SegStart >= IP.second && "Couldn't avoid interference");
- continue;
- }
-
- if (IP.second.getBoundaryIndex() < BI.LastUse) {
+ SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
+ if (Intf.last().getBoundaryIndex() < BI.LastUse) {
// There are interference-free uses at the end of the block.
// Find the first use that can get the live-out register.
SmallVectorImpl<SlotIndex>::const_iterator UI =
std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
- IP.second.getBoundaryIndex());
+ Intf.last().getBoundaryIndex());
assert(UI != SA->UseSlots.end() && "Couldn't find last use");
SlotIndex Use = *UI;
assert(Use <= BI.LastUse && "Couldn't find last use");
// Only attempt a split befroe the last split point.
- if (Use.getBaseIndex() <= BI.LastSplitPoint) {
+ if (Use.getBaseIndex() <= LastSplitPoint) {
DEBUG(dbgs() << ", free use at " << Use << ".\n");
- SlotIndex SegStart = SE.enterIntvBefore(Use);
- assert(SegStart >= IP.second && "Couldn't avoid interference");
- assert(SegStart < BI.LastSplitPoint && "Impossible split point");
- SE.useIntv(SegStart, Stop);
+ SlotIndex SegStart = SE->enterIntvBefore(Use);
+ assert(SegStart >= Intf.last() && "Couldn't avoid interference");
+ assert(SegStart < LastSplitPoint && "Impossible split point");
+ SE->useIntv(SegStart, Stop);
continue;
}
}
// Interference is after the last use.
DEBUG(dbgs() << " after last use.\n");
- SlotIndex SegStart = SE.enterIntvAtEnd(*BI.MBB);
- assert(SegStart >= IP.second && "Couldn't avoid interference");
+ SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB);
+ assert(SegStart >= Intf.last() && "Couldn't avoid interference");
}
// Now all defs leading to live bundles are handled, do everything else.
- for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) {
- SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i];
+ for (unsigned i = 0; i != UseBlocks.size(); ++i) {
+ const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)];
bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)];
@@ -780,152 +820,207 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
continue;
// We have an incoming register. Check for interference.
- IndexPair &IP = InterferenceRanges[i];
SlotIndex Start, Stop;
tie(Start, Stop) = Indexes->getMBBRange(BI.MBB);
-
+ Intf.moveToBlock(BI.MBB->getNumber());
DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0)
- << " -> BB#" << BI.MBB->getNumber());
+ << " -> BB#" << BI.MBB->getNumber() << " [" << Start << ';'
+ << SA->getLastSplitPoint(BI.MBB->getNumber()) << '-' << Stop
+ << ')');
// Check interference entering the block.
- if (!IP.first.isValid()) {
+ if (!Intf.hasInterference()) {
// Block is interference-free.
DEBUG(dbgs() << ", no interference");
- if (!BI.Uses) {
- assert(BI.LiveThrough && "No uses, but not live through block?");
- // Block is live-through without interference.
- if (RegOut) {
- DEBUG(dbgs() << ", no uses, live-through.\n");
- SE.useIntv(Start, Stop);
- } else {
- DEBUG(dbgs() << ", no uses, stack-out.\n");
- SE.leaveIntvAtTop(*BI.MBB);
- }
- continue;
- }
if (!BI.LiveThrough) {
DEBUG(dbgs() << ", killed in block.\n");
- SE.useIntv(Start, SE.leaveIntvAfter(BI.Kill));
+ SE->useIntv(Start, SE->leaveIntvAfter(BI.Kill));
continue;
}
if (!RegOut) {
+ SlotIndex LastSplitPoint = SA->getLastSplitPoint(BI.MBB->getNumber());
// Block is live-through, but exit bundle is on the stack.
// Spill immediately after the last use.
- if (BI.LastUse < BI.LastSplitPoint) {
+ if (BI.LastUse < LastSplitPoint) {
DEBUG(dbgs() << ", uses, stack-out.\n");
- SE.useIntv(Start, SE.leaveIntvAfter(BI.LastUse));
+ SE->useIntv(Start, SE->leaveIntvAfter(BI.LastUse));
continue;
}
// The last use is after the last split point, it is probably an
// indirect jump.
DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point "
- << BI.LastSplitPoint << ", stack-out.\n");
- SlotIndex SegEnd = SE.leaveIntvBefore(BI.LastSplitPoint);
- SE.useIntv(Start, SegEnd);
+ << LastSplitPoint << ", stack-out.\n");
+ SlotIndex SegEnd = SE->leaveIntvBefore(LastSplitPoint);
+ SE->useIntv(Start, SegEnd);
// Run a double interval from the split to the last use.
// This makes it possible to spill the complement without affecting the
// indirect branch.
- SE.overlapIntv(SegEnd, BI.LastUse);
+ SE->overlapIntv(SegEnd, BI.LastUse);
continue;
}
// Register is live-through.
DEBUG(dbgs() << ", uses, live-through.\n");
- SE.useIntv(Start, Stop);
+ SE->useIntv(Start, Stop);
continue;
}
// Block has interference.
- DEBUG(dbgs() << ", interference from " << IP.first);
+ DEBUG(dbgs() << ", interference from " << Intf.first());
- if (!BI.LiveThrough && IP.first >= BI.Kill) {
+ if (!BI.LiveThrough && Intf.first() >= BI.Kill) {
// The interference doesn't reach the outgoing segment.
DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n');
- SE.useIntv(Start, BI.Kill);
+ SE->useIntv(Start, BI.Kill);
continue;
}
- if (!BI.Uses) {
- // No uses in block, avoid interference by spilling as soon as possible.
- DEBUG(dbgs() << ", no uses.\n");
- SlotIndex SegEnd = SE.leaveIntvAtTop(*BI.MBB);
- assert(SegEnd <= IP.first && "Couldn't avoid interference");
- continue;
- }
- if (IP.first.getBaseIndex() > BI.FirstUse) {
+ if (Intf.first().getBaseIndex() > BI.FirstUse) {
// There are interference-free uses at the beginning of the block.
// Find the last use that can get the register.
SmallVectorImpl<SlotIndex>::const_iterator UI =
std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(),
- IP.first.getBaseIndex());
+ Intf.first().getBaseIndex());
assert(UI != SA->UseSlots.begin() && "Couldn't find first use");
SlotIndex Use = (--UI)->getBoundaryIndex();
DEBUG(dbgs() << ", free use at " << *UI << ".\n");
- SlotIndex SegEnd = SE.leaveIntvAfter(Use);
- assert(SegEnd <= IP.first && "Couldn't avoid interference");
- SE.useIntv(Start, SegEnd);
+ SlotIndex SegEnd = SE->leaveIntvAfter(Use);
+ assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
+ SE->useIntv(Start, SegEnd);
continue;
}
// Interference is before the first use.
DEBUG(dbgs() << " before first use.\n");
- SlotIndex SegEnd = SE.leaveIntvAtTop(*BI.MBB);
- assert(SegEnd <= IP.first && "Couldn't avoid interference");
+ SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB);
+ assert(SegEnd <= Intf.first() && "Couldn't avoid interference");
}
- SE.closeIntv();
+ // Handle live-through blocks.
+ for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
+ unsigned Number = Cand.ActiveBlocks[i];
+ bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
+ bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
+ DEBUG(dbgs() << "Live through BB#" << Number << '\n');
+ if (RegIn && RegOut) {
+ Intf.moveToBlock(Number);
+ if (!Intf.hasInterference()) {
+ SE->useIntv(Indexes->getMBBStartIdx(Number),
+ Indexes->getMBBEndIdx(Number));
+ continue;
+ }
+ }
+ MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
+ if (RegIn)
+ SE->leaveIntvAtTop(*MBB);
+ if (RegOut)
+ SE->enterIntvAtEnd(*MBB);
+ }
- // FIXME: Should we be more aggressive about splitting the stack region into
- // per-block segments? The current approach allows the stack region to
- // separate into connected components. Some components may be allocatable.
- SE.finish();
++NumGlobalSplits;
- if (VerifyEnabled) {
- MF->verify(this, "After splitting live range around region");
+ SmallVector<unsigned, 8> IntvMap;
+ SE->finish(&IntvMap);
+ LRStage.resize(MRI->getNumVirtRegs());
+ unsigned OrigBlocks = SA->getNumThroughBlocks() + SA->getUseBlocks().size();
+
+ // Sort out the new intervals created by splitting. We get four kinds:
+ // - Remainder intervals should not be split again.
+ // - Candidate intervals can be assigned to Cand.PhysReg.
+ // - Block-local splits are candidates for local splitting.
+ // - DCE leftovers should go back on the queue.
+ for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
+ unsigned Reg = LREdit.get(i)->reg;
+
+ // Ignore old intervals from DCE.
+ if (LRStage[Reg] != RS_New)
+ continue;
-#ifndef NDEBUG
- // Make sure that at least one of the new intervals can allocate to PhysReg.
- // That was the whole point of splitting the live range.
- bool found = false;
- for (LiveRangeEdit::iterator I = LREdit.begin(), E = LREdit.end(); I != E;
- ++I)
- if (!checkUncachedInterference(**I, PhysReg)) {
- found = true;
- break;
+ // Remainder interval. Don't try splitting again, spill if it doesn't
+ // allocate.
+ if (IntvMap[i] == 0) {
+ LRStage[Reg] = RS_Global;
+ continue;
+ }
+
+ // Main interval. Allow repeated splitting as long as the number of live
+ // blocks is strictly decreasing.
+ if (IntvMap[i] == MainIntv) {
+ if (SA->countLiveBlocks(LREdit.get(i)) >= OrigBlocks) {
+ DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
+ << " blocks as original.\n");
+ // Don't allow repeated splitting as a safe guard against looping.
+ LRStage[Reg] = RS_Global;
}
- assert(found && "No allocatable intervals after pointless splitting");
-#endif
+ continue;
+ }
+
+ // Other intervals are treated as new. This includes local intervals created
+ // for blocks with multiple uses, and anything created by DCE.
}
+
+ if (VerifyEnabled)
+ MF->verify(this, "After splitting live range around region");
}
unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
- BitVector LiveBundles, BestBundles;
- float BestCost = 0;
- unsigned BestReg = 0;
+ float BestCost = Hysteresis * calcSpillCost();
+ DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
+ const unsigned NoCand = ~0u;
+ unsigned BestCand = NoCand;
+
Order.rewind();
- while (unsigned PhysReg = Order.next()) {
- float Cost = calcInterferenceInfo(VirtReg, PhysReg);
- if (BestReg && Cost >= BestCost)
+ for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) {
+ if (GlobalCand.size() <= Cand)
+ GlobalCand.resize(Cand+1);
+ GlobalCand[Cand].reset(PhysReg);
+
+ SpillPlacer->prepare(GlobalCand[Cand].LiveBundles);
+ float Cost;
+ InterferenceCache::Cursor Intf(IntfCache, PhysReg);
+ if (!addSplitConstraints(Intf, Cost)) {
+ DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
+ continue;
+ }
+ DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
+ if (Cost >= BestCost) {
+ DEBUG({
+ if (BestCand == NoCand)
+ dbgs() << " worse than no bundles\n";
+ else
+ dbgs() << " worse than "
+ << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
+ });
continue;
+ }
+ growRegion(GlobalCand[Cand], Intf);
+
+ SpillPlacer->finish();
- SpillPlacer->placeSpills(SpillConstraints, LiveBundles);
// No live bundles, defer to splitSingleBlocks().
- if (!LiveBundles.any())
+ if (!GlobalCand[Cand].LiveBundles.any()) {
+ DEBUG(dbgs() << " no bundles.\n");
continue;
+ }
- Cost += calcGlobalSplitCost(LiveBundles);
- if (!BestReg || Cost < BestCost) {
- BestReg = PhysReg;
- BestCost = Cost;
- BestBundles.swap(LiveBundles);
+ Cost += calcGlobalSplitCost(GlobalCand[Cand], Intf);
+ DEBUG({
+ dbgs() << ", total = " << Cost << " with bundles";
+ for (int i = GlobalCand[Cand].LiveBundles.find_first(); i>=0;
+ i = GlobalCand[Cand].LiveBundles.find_next(i))
+ dbgs() << " EB#" << i;
+ dbgs() << ".\n";
+ });
+ if (Cost < BestCost) {
+ BestCand = Cand;
+ BestCost = Hysteresis * Cost; // Prevent rounding effects.
}
}
- if (!BestReg)
+ if (BestCand == NoCand)
return 0;
- splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs);
+ splitAroundRegion(VirtReg, GlobalCand[BestCand], NewVRegs);
return 0;
}
@@ -942,8 +1037,8 @@ unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
///
void RAGreedy::calcGapWeights(unsigned PhysReg,
SmallVectorImpl<float> &GapWeight) {
- assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
- const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
+ assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
+ const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots;
const unsigned NumGaps = Uses.size()-1;
@@ -1034,8 +1129,8 @@ unsigned RAGreedy::nextSplitPoint(unsigned i) {
///
unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
- assert(SA->LiveBlocks.size() == 1 && "Not a local interval");
- const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front();
+ assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
+ const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
// Note that it is possible to have an interval that is live-in or live-out
// while only covering a single block - A phi-def can use undef values from
@@ -1065,7 +1160,7 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
unsigned BestAfter = 0;
float BestDiff = 0;
- const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB);
+ const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
SmallVector<float, 8> GapWeight;
Order.rewind();
@@ -1130,13 +1225,13 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
PrevSlot[SplitBefore].distance(Uses[SplitAfter]));
// Would this split be possible to allocate?
// Never allocate all gaps, we wouldn't be making progress.
- float Diff = EstWeight - MaxGap;
- DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff);
- if (Diff > 0) {
+ DEBUG(dbgs() << " w=" << EstWeight);
+ if (EstWeight * Hysteresis >= MaxGap) {
Shrink = false;
+ float Diff = EstWeight - MaxGap;
if (Diff > BestDiff) {
DEBUG(dbgs() << " (best)");
- BestDiff = Diff;
+ BestDiff = Hysteresis * Diff;
BestBefore = SplitBefore;
BestAfter = SplitAfter;
}
@@ -1181,16 +1276,15 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
<< '-' << Uses[BestAfter] << ", " << BestDiff
<< ", " << (BestAfter - BestBefore + 1) << " instrs\n");
- SmallVector<LiveInterval*, 4> SpillRegs;
- LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
- SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit);
+ LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
+ SE->reset(LREdit);
- SE.openIntv();
- SlotIndex SegStart = SE.enterIntvBefore(Uses[BestBefore]);
- SlotIndex SegStop = SE.leaveIntvAfter(Uses[BestAfter]);
- SE.useIntv(SegStart, SegStop);
- SE.closeIntv();
- SE.finish();
+ SE->openIntv();
+ SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
+ SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
+ SE->useIntv(SegStart, SegStop);
+ SE->finish();
+ setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local);
++NumLocalSplits;
return 0;
@@ -1205,16 +1299,22 @@ unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
SmallVectorImpl<LiveInterval*>&NewVRegs) {
- SA->analyze(&VirtReg);
-
// Local intervals are handled separately.
if (LIS->intervalIsInOneMBB(VirtReg)) {
NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
+ SA->analyze(&VirtReg);
return tryLocalSplit(VirtReg, Order, NewVRegs);
}
NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
+ // Don't iterate global splitting.
+ // Move straight to spilling if this range was produced by a global split.
+ if (getStage(VirtReg) >= RS_Global)
+ return 0;
+
+ SA->analyze(&VirtReg);
+
// First try to split around a region spanning multiple blocks.
unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
@@ -1223,9 +1323,10 @@ unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
// Then isolate blocks with multiple uses.
SplitAnalysis::BlockPtrSet Blocks;
if (SA->getMultiUseBlocks(Blocks)) {
- SmallVector<LiveInterval*, 4> SpillRegs;
- LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
- SplitEditor(*SA, *LIS, *VRM, *DomTree, LREdit).splitSingleBlocks(Blocks);
+ LiveRangeEdit LREdit(VirtReg, NewVRegs, this);
+ SE->reset(LREdit);
+ SE->splitSingleBlocks(Blocks);
+ setStage(NewVRegs.begin(), NewVRegs.end(), RS_Global);
if (VerifyEnabled)
MF->verify(this, "After splitting live range around basic blocks");
}
@@ -1236,68 +1337,6 @@ unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
//===----------------------------------------------------------------------===//
-// Spilling
-//===----------------------------------------------------------------------===//
-
-/// calcInterferenceWeight - Calculate the combined spill weight of
-/// interferences when assigning VirtReg to PhysReg.
-float RAGreedy::calcInterferenceWeight(LiveInterval &VirtReg, unsigned PhysReg){
- float Sum = 0;
- for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) {
- LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
- Q.collectInterferingVRegs();
- if (Q.seenUnspillableVReg())
- return HUGE_VALF;
- for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i)
- Sum += Q.interferingVRegs()[i]->weight;
- }
- return Sum;
-}
-
-/// trySpillInterferences - Try to spill interfering registers instead of the
-/// current one. Only do it if the accumulated spill weight is smaller than the
-/// current spill weight.
-unsigned RAGreedy::trySpillInterferences(LiveInterval &VirtReg,
- AllocationOrder &Order,
- SmallVectorImpl<LiveInterval*> &NewVRegs) {
- NamedRegionTimer T("Spill Interference", TimerGroupName, TimePassesIsEnabled);
- unsigned BestPhys = 0;
- float BestWeight = 0;
-
- Order.rewind();
- while (unsigned PhysReg = Order.next()) {
- float Weight = calcInterferenceWeight(VirtReg, PhysReg);
- if (Weight == HUGE_VALF || Weight >= VirtReg.weight)
- continue;
- if (!BestPhys || Weight < BestWeight)
- BestPhys = PhysReg, BestWeight = Weight;
- }
-
- // No candidates found.
- if (!BestPhys)
- return 0;
-
- // Collect all interfering registers.
- SmallVector<LiveInterval*, 8> Spills;
- for (const unsigned *AI = TRI->getOverlaps(BestPhys); *AI; ++AI) {
- LiveIntervalUnion::Query &Q = query(VirtReg, *AI);
- Spills.append(Q.interferingVRegs().begin(), Q.interferingVRegs().end());
- for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) {
- LiveInterval *VReg = Q.interferingVRegs()[i];
- unassign(*VReg, *AI);
- }
- }
-
- // Spill them all.
- DEBUG(dbgs() << "spilling " << Spills.size() << " interferences with weight "
- << BestWeight << '\n');
- for (unsigned i = 0, e = Spills.size(); i != e; ++i)
- spiller().spill(Spills[i], NewVRegs, Spills);
- return BestPhys;
-}
-
-
-//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
@@ -1305,12 +1344,7 @@ unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &NewVRegs) {
// First try assigning a free register.
AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs);
- while (unsigned PhysReg = Order.next()) {
- if (!checkPhysRegInterference(VirtReg, PhysReg))
- return PhysReg;
- }
-
- if (unsigned PhysReg = tryReassign(VirtReg, Order, NewVRegs))
+ if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
return PhysReg;
if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
@@ -1321,25 +1355,29 @@ unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
// The first time we see a live range, don't try to split or spill.
// Wait until the second time, when all smaller ranges have been allocated.
// This gives a better picture of the interference to split around.
- if (Generation[VirtReg.reg] == 1) {
+ LiveRangeStage Stage = getStage(VirtReg);
+ if (Stage == RS_First) {
+ LRStage[VirtReg.reg] = RS_Second;
+ DEBUG(dbgs() << "wait for second round\n");
NewVRegs.push_back(&VirtReg);
return 0;
}
+ assert(Stage < RS_Spill && "Cannot allocate after spilling");
+
// Try splitting VirtReg or interferences.
unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
if (PhysReg || !NewVRegs.empty())
return PhysReg;
- // Try to spill another interfering reg with less spill weight.
- PhysReg = trySpillInterferences(VirtReg, Order, NewVRegs);
- if (PhysReg)
- return PhysReg;
-
// Finally spill VirtReg itself.
NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
- SmallVector<LiveInterval*, 1> pendingSpills;
- spiller().spill(&VirtReg, NewVRegs, pendingSpills);
+ LiveRangeEdit LRE(VirtReg, NewVRegs, this);
+ spiller().spill(LRE);
+ setStage(NewVRegs.begin(), NewVRegs.end(), RS_Spill);
+
+ if (VerifyEnabled)
+ MF->verify(this, "After spilling");
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
@@ -1366,6 +1404,10 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
SpillPlacer = &getAnalysis<SpillPlacement>();
SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
+ SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
+ LRStage.clear();
+ LRStage.resize(MRI->getNumVirtRegs());
+ IntfCache.init(MF, &PhysReg2LiveUnion[0], Indexes, TRI);
allocatePhysRegs();
addMBBLiveIns(MF);
@@ -1377,6 +1419,9 @@ bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
VRM->rewrite(Indexes);
}
+ // Write out new DBG_VALUE instructions.
+ getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
+
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();