diff options
Diffstat (limited to 'lib/IR')
| -rw-r--r-- | lib/IR/AsmWriter.cpp | 66 | ||||
| -rw-r--r-- | lib/IR/CMakeLists.txt | 1 | ||||
| -rw-r--r-- | lib/IR/ConstantFold.cpp | 38 | ||||
| -rw-r--r-- | lib/IR/Constants.cpp | 73 | ||||
| -rw-r--r-- | lib/IR/Core.cpp | 22 | ||||
| -rw-r--r-- | lib/IR/Instruction.cpp | 11 | ||||
| -rw-r--r-- | lib/IR/Instructions.cpp | 74 | ||||
| -rw-r--r-- | lib/IR/LLVMContext.cpp | 20 | ||||
| -rw-r--r-- | lib/IR/LLVMContextImpl.cpp | 14 | ||||
| -rw-r--r-- | lib/IR/LLVMContextImpl.h | 14 | ||||
| -rw-r--r-- | lib/IR/Module.cpp | 4 | ||||
| -rw-r--r-- | lib/IR/SafepointIRVerifier.cpp | 437 | ||||
| -rw-r--r-- | lib/IR/Type.cpp | 2 | ||||
| -rw-r--r-- | lib/IR/Verifier.cpp | 96 |
14 files changed, 721 insertions, 151 deletions
diff --git a/lib/IR/AsmWriter.cpp b/lib/IR/AsmWriter.cpp index c7f112887a30..80371780fb6d 100644 --- a/lib/IR/AsmWriter.cpp +++ b/lib/IR/AsmWriter.cpp @@ -2119,6 +2119,8 @@ class AssemblyWriter { bool ShouldPreserveUseListOrder; UseListOrderStack UseListOrders; SmallVector<StringRef, 8> MDNames; + /// Synchronization scope names registered with LLVMContext. + SmallVector<StringRef, 8> SSNs; public: /// Construct an AssemblyWriter with an external SlotTracker @@ -2134,10 +2136,15 @@ public: void writeOperand(const Value *Op, bool PrintType); void writeParamOperand(const Value *Operand, AttributeSet Attrs); void writeOperandBundles(ImmutableCallSite CS); - void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope); - void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering, + void writeSyncScope(const LLVMContext &Context, + SyncScope::ID SSID); + void writeAtomic(const LLVMContext &Context, + AtomicOrdering Ordering, + SyncScope::ID SSID); + void writeAtomicCmpXchg(const LLVMContext &Context, + AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, - SynchronizationScope SynchScope); + SyncScope::ID SSID); void writeAllMDNodes(); void writeMDNode(unsigned Slot, const MDNode *Node); @@ -2199,30 +2206,42 @@ void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) { WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule); } -void AssemblyWriter::writeAtomic(AtomicOrdering Ordering, - SynchronizationScope SynchScope) { - if (Ordering == AtomicOrdering::NotAtomic) - return; +void AssemblyWriter::writeSyncScope(const LLVMContext &Context, + SyncScope::ID SSID) { + switch (SSID) { + case SyncScope::System: { + break; + } + default: { + if (SSNs.empty()) + Context.getSyncScopeNames(SSNs); - switch (SynchScope) { - case SingleThread: Out << " singlethread"; break; - case CrossThread: break; + Out << " syncscope(\""; + PrintEscapedString(SSNs[SSID], Out); + Out << "\")"; + break; + } } +} + +void AssemblyWriter::writeAtomic(const LLVMContext &Context, + AtomicOrdering Ordering, + SyncScope::ID SSID) { + if (Ordering == AtomicOrdering::NotAtomic) + return; + writeSyncScope(Context, SSID); Out << " " << toIRString(Ordering); } -void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering, +void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context, + AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, - SynchronizationScope SynchScope) { + SyncScope::ID SSID) { assert(SuccessOrdering != AtomicOrdering::NotAtomic && FailureOrdering != AtomicOrdering::NotAtomic); - switch (SynchScope) { - case SingleThread: Out << " singlethread"; break; - case CrossThread: break; - } - + writeSyncScope(Context, SSID); Out << " " << toIRString(SuccessOrdering); Out << " " << toIRString(FailureOrdering); } @@ -3215,21 +3234,22 @@ void AssemblyWriter::printInstruction(const Instruction &I) { // Print atomic ordering/alignment for memory operations if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) { if (LI->isAtomic()) - writeAtomic(LI->getOrdering(), LI->getSynchScope()); + writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID()); if (LI->getAlignment()) Out << ", align " << LI->getAlignment(); } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) { if (SI->isAtomic()) - writeAtomic(SI->getOrdering(), SI->getSynchScope()); + writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID()); if (SI->getAlignment()) Out << ", align " << SI->getAlignment(); } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) { - writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(), - CXI->getSynchScope()); + writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(), + CXI->getFailureOrdering(), CXI->getSyncScopeID()); } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) { - writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope()); + writeAtomic(RMWI->getContext(), RMWI->getOrdering(), + RMWI->getSyncScopeID()); } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) { - writeAtomic(FI->getOrdering(), FI->getSynchScope()); + writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID()); } // Print Metadata info. diff --git a/lib/IR/CMakeLists.txt b/lib/IR/CMakeLists.txt index 11259cbe1815..1cc229d68bfc 100644 --- a/lib/IR/CMakeLists.txt +++ b/lib/IR/CMakeLists.txt @@ -43,6 +43,7 @@ add_llvm_library(LLVMCore Pass.cpp PassManager.cpp PassRegistry.cpp + SafepointIRVerifier.cpp ProfileSummary.cpp Statepoint.cpp Type.cpp diff --git a/lib/IR/ConstantFold.cpp b/lib/IR/ConstantFold.cpp index 3469026ad7ed..23ccd8d4cf42 100644 --- a/lib/IR/ConstantFold.cpp +++ b/lib/IR/ConstantFold.cpp @@ -242,7 +242,7 @@ static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, // X | -1 -> -1. if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) - if (RHSC->isAllOnesValue()) + if (RHSC->isMinusOne()) return RHSC; Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); @@ -1015,33 +1015,33 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { switch (Opcode) { case Instruction::Add: - if (CI2->equalsInt(0)) return C1; // X + 0 == X + if (CI2->isZero()) return C1; // X + 0 == X break; case Instruction::Sub: - if (CI2->equalsInt(0)) return C1; // X - 0 == X + if (CI2->isZero()) return C1; // X - 0 == X break; case Instruction::Mul: - if (CI2->equalsInt(0)) return C2; // X * 0 == 0 - if (CI2->equalsInt(1)) + if (CI2->isZero()) return C2; // X * 0 == 0 + if (CI2->isOne()) return C1; // X * 1 == X break; case Instruction::UDiv: case Instruction::SDiv: - if (CI2->equalsInt(1)) + if (CI2->isOne()) return C1; // X / 1 == X - if (CI2->equalsInt(0)) + if (CI2->isZero()) return UndefValue::get(CI2->getType()); // X / 0 == undef break; case Instruction::URem: case Instruction::SRem: - if (CI2->equalsInt(1)) + if (CI2->isOne()) return Constant::getNullValue(CI2->getType()); // X % 1 == 0 - if (CI2->equalsInt(0)) + if (CI2->isZero()) return UndefValue::get(CI2->getType()); // X % 0 == undef break; case Instruction::And: if (CI2->isZero()) return C2; // X & 0 == 0 - if (CI2->isAllOnesValue()) + if (CI2->isMinusOne()) return C1; // X & -1 == X if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { @@ -1078,12 +1078,12 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, } break; case Instruction::Or: - if (CI2->equalsInt(0)) return C1; // X | 0 == X - if (CI2->isAllOnesValue()) + if (CI2->isZero()) return C1; // X | 0 == X + if (CI2->isMinusOne()) return C2; // X | -1 == -1 break; case Instruction::Xor: - if (CI2->equalsInt(0)) return C1; // X ^ 0 == X + if (CI2->isZero()) return C1; // X ^ 0 == X if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { switch (CE1->getOpcode()) { @@ -1091,7 +1091,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, case Instruction::ICmp: case Instruction::FCmp: // cmp pred ^ true -> cmp !pred - assert(CI2->equalsInt(1)); + assert(CI2->isOne()); CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); pred = CmpInst::getInversePredicate(pred); return ConstantExpr::getCompare(pred, CE1->getOperand(0), @@ -1126,18 +1126,18 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, case Instruction::Mul: return ConstantInt::get(CI1->getContext(), C1V * C2V); case Instruction::UDiv: - assert(!CI2->isNullValue() && "Div by zero handled above"); + assert(!CI2->isZero() && "Div by zero handled above"); return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); case Instruction::SDiv: - assert(!CI2->isNullValue() && "Div by zero handled above"); + assert(!CI2->isZero() && "Div by zero handled above"); if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); case Instruction::URem: - assert(!CI2->isNullValue() && "Div by zero handled above"); + assert(!CI2->isZero() && "Div by zero handled above"); return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); case Instruction::SRem: - assert(!CI2->isNullValue() && "Div by zero handled above"); + assert(!CI2->isZero() && "Div by zero handled above"); if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); @@ -1170,7 +1170,7 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, case Instruction::LShr: case Instruction::AShr: case Instruction::Shl: - if (CI1->equalsInt(0)) return C1; + if (CI1->isZero()) return C1; break; default: break; diff --git a/lib/IR/Constants.cpp b/lib/IR/Constants.cpp index d387a6f0ecb9..e31779c83e3a 100644 --- a/lib/IR/Constants.cpp +++ b/lib/IR/Constants.cpp @@ -512,7 +512,7 @@ ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { } Constant *ConstantInt::getTrue(Type *Ty) { - assert(Ty->getScalarType()->isIntegerTy(1) && "Type not i1 or vector of i1."); + assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); if (auto *VTy = dyn_cast<VectorType>(Ty)) return ConstantVector::getSplat(VTy->getNumElements(), TrueC); @@ -520,7 +520,7 @@ Constant *ConstantInt::getTrue(Type *Ty) { } Constant *ConstantInt::getFalse(Type *Ty) { - assert(Ty->getScalarType()->isIntegerTy(1) && "Type not i1 or vector of i1."); + assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); if (auto *VTy = dyn_cast<VectorType>(Ty)) return ConstantVector::getSplat(VTy->getNumElements(), FalseC); @@ -1635,9 +1635,9 @@ Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, bool OnlyIfReduced) { - assert(C->getType()->getScalarType()->isPointerTy() && + assert(C->getType()->isPtrOrPtrVectorTy() && "PtrToInt source must be pointer or pointer vector"); - assert(DstTy->getScalarType()->isIntegerTy() && + assert(DstTy->isIntOrIntVectorTy() && "PtrToInt destination must be integer or integer vector"); assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); if (isa<VectorType>(C->getType())) @@ -1648,9 +1648,9 @@ Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, bool OnlyIfReduced) { - assert(C->getType()->getScalarType()->isIntegerTy() && + assert(C->getType()->isIntOrIntVectorTy() && "IntToPtr source must be integer or integer vector"); - assert(DstTy->getScalarType()->isPointerTy() && + assert(DstTy->isPtrOrPtrVectorTy() && "IntToPtr destination must be a pointer or pointer vector"); assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); if (isa<VectorType>(C->getType())) @@ -1914,8 +1914,8 @@ Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced) { assert(LHS->getType() == RHS->getType()); - assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && - pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); + assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) && + "Invalid ICmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... @@ -1939,7 +1939,8 @@ Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced) { assert(LHS->getType() == RHS->getType()); - assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); + assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) && + "Invalid FCmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... @@ -2379,32 +2380,32 @@ void ConstantDataSequential::destroyConstantImpl() { Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); + return getImpl(StringRef(Data, Elts.size() * 1), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); + return getImpl(StringRef(Data, Elts.size() * 2), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); + return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); + return getImpl(StringRef(Data, Elts.size() * 8), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); + return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); + return getImpl(StringRef(Data, Elts.size() * 8), Ty); } /// getFP() constructors - Return a constant with array type with an element @@ -2416,27 +2417,26 @@ Constant *ConstantDataArray::getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts) { Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty); + return getImpl(StringRef(Data, Elts.size() * 2), Ty); } Constant *ConstantDataArray::getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts) { Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty); + return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataArray::getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts) { Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); + return getImpl(StringRef(Data, Elts.size() * 8), Ty); } Constant *ConstantDataArray::getString(LLVMContext &Context, StringRef Str, bool AddNull) { if (!AddNull) { const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); - return get(Context, makeArrayRef(const_cast<uint8_t *>(Data), - Str.size())); + return get(Context, makeArrayRef(Data, Str.size())); } SmallVector<uint8_t, 64> ElementVals; @@ -2451,32 +2451,32 @@ Constant *ConstantDataArray::getString(LLVMContext &Context, Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); + return getImpl(StringRef(Data, Elts.size() * 1), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); + return getImpl(StringRef(Data, Elts.size() * 2), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); + return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); + return getImpl(StringRef(Data, Elts.size() * 8), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); + return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); + return getImpl(StringRef(Data, Elts.size() * 8), Ty); } /// getFP() constructors - Return a constant with vector type with an element @@ -2488,19 +2488,19 @@ Constant *ConstantDataVector::getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts) { Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty); + return getImpl(StringRef(Data, Elts.size() * 2), Ty); } Constant *ConstantDataVector::getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts) { Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty); + return getImpl(StringRef(Data, Elts.size() * 4), Ty); } Constant *ConstantDataVector::getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts) { Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); - return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty); + return getImpl(StringRef(Data, Elts.size() * 8), Ty); } Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { @@ -2555,13 +2555,13 @@ uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { switch (getElementType()->getIntegerBitWidth()) { default: llvm_unreachable("Invalid bitwidth for CDS"); case 8: - return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); + return *reinterpret_cast<const uint8_t *>(EltPtr); case 16: - return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); + return *reinterpret_cast<const uint16_t *>(EltPtr); case 32: - return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); + return *reinterpret_cast<const uint32_t *>(EltPtr); case 64: - return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); + return *reinterpret_cast<const uint64_t *>(EltPtr); } } @@ -2589,16 +2589,13 @@ APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { assert(getElementType()->isFloatTy() && "Accessor can only be used when element is a 'float'"); - const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); - return *const_cast<float *>(EltPtr); + return *reinterpret_cast<const float *>(getElementPointer(Elt)); } double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { assert(getElementType()->isDoubleTy() && "Accessor can only be used when element is a 'float'"); - const double *EltPtr = - reinterpret_cast<const double *>(getElementPointer(Elt)); - return *const_cast<double *>(EltPtr); + return *reinterpret_cast<const double *>(getElementPointer(Elt)); } Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { diff --git a/lib/IR/Core.cpp b/lib/IR/Core.cpp index 4ff0261a7f08..2165ae5a9470 100644 --- a/lib/IR/Core.cpp +++ b/lib/IR/Core.cpp @@ -50,6 +50,7 @@ void llvm::initializeCore(PassRegistry &Registry) { initializePrintModulePassWrapperPass(Registry); initializePrintFunctionPassWrapperPass(Registry); initializePrintBasicBlockPassPass(Registry); + initializeSafepointIRVerifierPass(Registry); initializeVerifierLegacyPassPass(Registry); } @@ -2755,11 +2756,14 @@ static LLVMAtomicOrdering mapToLLVMOrdering(AtomicOrdering Ordering) { llvm_unreachable("Invalid AtomicOrdering value!"); } +// TODO: Should this and other atomic instructions support building with +// "syncscope"? LLVMValueRef LLVMBuildFence(LLVMBuilderRef B, LLVMAtomicOrdering Ordering, LLVMBool isSingleThread, const char *Name) { return wrap( unwrap(B)->CreateFence(mapFromLLVMOrdering(Ordering), - isSingleThread ? SingleThread : CrossThread, + isSingleThread ? SyncScope::SingleThread + : SyncScope::System, Name)); } @@ -3041,7 +3045,8 @@ LLVMValueRef LLVMBuildAtomicRMW(LLVMBuilderRef B,LLVMAtomicRMWBinOp op, case LLVMAtomicRMWBinOpUMin: intop = AtomicRMWInst::UMin; break; } return wrap(unwrap(B)->CreateAtomicRMW(intop, unwrap(PTR), unwrap(Val), - mapFromLLVMOrdering(ordering), singleThread ? SingleThread : CrossThread)); + mapFromLLVMOrdering(ordering), singleThread ? SyncScope::SingleThread + : SyncScope::System)); } LLVMValueRef LLVMBuildAtomicCmpXchg(LLVMBuilderRef B, LLVMValueRef Ptr, @@ -3053,7 +3058,7 @@ LLVMValueRef LLVMBuildAtomicCmpXchg(LLVMBuilderRef B, LLVMValueRef Ptr, return wrap(unwrap(B)->CreateAtomicCmpXchg(unwrap(Ptr), unwrap(Cmp), unwrap(New), mapFromLLVMOrdering(SuccessOrdering), mapFromLLVMOrdering(FailureOrdering), - singleThread ? SingleThread : CrossThread)); + singleThread ? SyncScope::SingleThread : SyncScope::System)); } @@ -3061,17 +3066,18 @@ LLVMBool LLVMIsAtomicSingleThread(LLVMValueRef AtomicInst) { Value *P = unwrap<Value>(AtomicInst); if (AtomicRMWInst *I = dyn_cast<AtomicRMWInst>(P)) - return I->getSynchScope() == SingleThread; - return cast<AtomicCmpXchgInst>(P)->getSynchScope() == SingleThread; + return I->getSyncScopeID() == SyncScope::SingleThread; + return cast<AtomicCmpXchgInst>(P)->getSyncScopeID() == + SyncScope::SingleThread; } void LLVMSetAtomicSingleThread(LLVMValueRef AtomicInst, LLVMBool NewValue) { Value *P = unwrap<Value>(AtomicInst); - SynchronizationScope Sync = NewValue ? SingleThread : CrossThread; + SyncScope::ID SSID = NewValue ? SyncScope::SingleThread : SyncScope::System; if (AtomicRMWInst *I = dyn_cast<AtomicRMWInst>(P)) - return I->setSynchScope(Sync); - return cast<AtomicCmpXchgInst>(P)->setSynchScope(Sync); + return I->setSyncScopeID(SSID); + return cast<AtomicCmpXchgInst>(P)->setSyncScopeID(SSID); } LLVMAtomicOrdering LLVMGetCmpXchgSuccessOrdering(LLVMValueRef CmpXchgInst) { diff --git a/lib/IR/Instruction.cpp b/lib/IR/Instruction.cpp index 3dd653d2d047..365cb019aec4 100644 --- a/lib/IR/Instruction.cpp +++ b/lib/IR/Instruction.cpp @@ -362,13 +362,13 @@ static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2, (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() || IgnoreAlignment) && LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() && - LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope(); + LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID(); if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() || IgnoreAlignment) && SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() && - SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope(); + SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID(); if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); if (const CallInst *CI = dyn_cast<CallInst>(I1)) @@ -386,7 +386,7 @@ static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2, return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices(); if (const FenceInst *FI = dyn_cast<FenceInst>(I1)) return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() && - FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope(); + FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID(); if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1)) return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() && CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() && @@ -394,12 +394,13 @@ static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2, cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() && CXI->getFailureOrdering() == cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() && - CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope(); + CXI->getSyncScopeID() == + cast<AtomicCmpXchgInst>(I2)->getSyncScopeID(); if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1)) return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() && RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() && RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() && - RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope(); + RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID(); return true; } diff --git a/lib/IR/Instructions.cpp b/lib/IR/Instructions.cpp index a79b00be4ffe..2c49564e328b 100644 --- a/lib/IR/Instructions.cpp +++ b/lib/IR/Instructions.cpp @@ -1304,34 +1304,34 @@ LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, Instruction *InsertBef) : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, - CrossThread, InsertBef) {} + SyncScope::System, InsertBef) {} LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, BasicBlock *InsertAE) : LoadInst(Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, - CrossThread, InsertAE) {} + SyncScope::System, InsertAE) {} LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, AtomicOrdering Order, - SynchronizationScope SynchScope, Instruction *InsertBef) + SyncScope::ID SSID, Instruction *InsertBef) : UnaryInstruction(Ty, Load, Ptr, InsertBef) { assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); setVolatile(isVolatile); setAlignment(Align); - setAtomic(Order, SynchScope); + setAtomic(Order, SSID); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, AtomicOrdering Order, - SynchronizationScope SynchScope, + SyncScope::ID SSID, BasicBlock *InsertAE) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(Align); - setAtomic(Order, SynchScope); + setAtomic(Order, SSID); AssertOK(); setName(Name); } @@ -1419,16 +1419,16 @@ StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, Instruction *InsertBefore) : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, - CrossThread, InsertBefore) {} + SyncScope::System, InsertBefore) {} StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd) : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, - CrossThread, InsertAtEnd) {} + SyncScope::System, InsertAtEnd) {} StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, AtomicOrdering Order, - SynchronizationScope SynchScope, + SyncScope::ID SSID, Instruction *InsertBefore) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), @@ -1438,13 +1438,13 @@ StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Op<1>() = addr; setVolatile(isVolatile); setAlignment(Align); - setAtomic(Order, SynchScope); + setAtomic(Order, SSID); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, AtomicOrdering Order, - SynchronizationScope SynchScope, + SyncScope::ID SSID, BasicBlock *InsertAtEnd) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), @@ -1454,7 +1454,7 @@ StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Op<1>() = addr; setVolatile(isVolatile); setAlignment(Align); - setAtomic(Order, SynchScope); + setAtomic(Order, SSID); AssertOK(); } @@ -1474,13 +1474,13 @@ void StoreInst::setAlignment(unsigned Align) { void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, - SynchronizationScope SynchScope) { + SyncScope::ID SSID) { Op<0>() = Ptr; Op<1>() = Cmp; Op<2>() = NewVal; setSuccessOrdering(SuccessOrdering); setFailureOrdering(FailureOrdering); - setSynchScope(SynchScope); + setSyncScopeID(SSID); assert(getOperand(0) && getOperand(1) && getOperand(2) && "All operands must be non-null!"); @@ -1507,25 +1507,25 @@ void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, - SynchronizationScope SynchScope, + SyncScope::ID SSID, Instruction *InsertBefore) : Instruction( StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { - Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); + Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); } AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, - SynchronizationScope SynchScope, + SyncScope::ID SSID, BasicBlock *InsertAtEnd) : Instruction( StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { - Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope); + Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); } //===----------------------------------------------------------------------===// @@ -1534,12 +1534,12 @@ AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, - SynchronizationScope SynchScope) { + SyncScope::ID SSID) { Op<0>() = Ptr; Op<1>() = Val; setOperation(Operation); setOrdering(Ordering); - setSynchScope(SynchScope); + setSyncScopeID(SSID); assert(getOperand(0) && getOperand(1) && "All operands must be non-null!"); @@ -1554,24 +1554,24 @@ void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, - SynchronizationScope SynchScope, + SyncScope::ID SSID, Instruction *InsertBefore) : Instruction(Val->getType(), AtomicRMW, OperandTraits<AtomicRMWInst>::op_begin(this), OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) { - Init(Operation, Ptr, Val, Ordering, SynchScope); + Init(Operation, Ptr, Val, Ordering, SSID); } AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, - SynchronizationScope SynchScope, + SyncScope::ID SSID, BasicBlock *InsertAtEnd) : Instruction(Val->getType(), AtomicRMW, OperandTraits<AtomicRMWInst>::op_begin(this), OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) { - Init(Operation, Ptr, Val, Ordering, SynchScope); + Init(Operation, Ptr, Val, Ordering, SSID); } //===----------------------------------------------------------------------===// @@ -1579,19 +1579,19 @@ AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, //===----------------------------------------------------------------------===// FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, - SynchronizationScope SynchScope, + SyncScope::ID SSID, Instruction *InsertBefore) : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { setOrdering(Ordering); - setSynchScope(SynchScope); + setSyncScopeID(SSID); } FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, - SynchronizationScope SynchScope, + SyncScope::ID SSID, BasicBlock *InsertAtEnd) : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { setOrdering(Ordering); - setSynchScope(SynchScope); + setSyncScopeID(SSID); } //===----------------------------------------------------------------------===// @@ -3064,16 +3064,14 @@ CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) return false; - return SrcTy->getScalarType()->isPointerTy() && - DstTy->getScalarType()->isIntegerTy(); + return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); case Instruction::IntToPtr: if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) return false; if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) return false; - return SrcTy->getScalarType()->isIntegerTy() && - DstTy->getScalarType()->isPointerTy(); + return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); case Instruction::BitCast: { PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); @@ -3797,12 +3795,12 @@ AllocaInst *AllocaInst::cloneImpl() const { LoadInst *LoadInst::cloneImpl() const { return new LoadInst(getOperand(0), Twine(), isVolatile(), - getAlignment(), getOrdering(), getSynchScope()); + getAlignment(), getOrdering(), getSyncScopeID()); } StoreInst *StoreInst::cloneImpl() const { return new StoreInst(getOperand(0), getOperand(1), isVolatile(), - getAlignment(), getOrdering(), getSynchScope()); + getAlignment(), getOrdering(), getSyncScopeID()); } @@ -3810,7 +3808,7 @@ AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), getSuccessOrdering(), getFailureOrdering(), - getSynchScope()); + getSyncScopeID()); Result->setVolatile(isVolatile()); Result->setWeak(isWeak()); return Result; @@ -3818,14 +3816,14 @@ AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { AtomicRMWInst *AtomicRMWInst::cloneImpl() const { AtomicRMWInst *Result = - new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), - getOrdering(), getSynchScope()); + new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), + getOrdering(), getSyncScopeID()); Result->setVolatile(isVolatile()); return Result; } FenceInst *FenceInst::cloneImpl() const { - return new FenceInst(getContext(), getOrdering(), getSynchScope()); + return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); } TruncInst *TruncInst::cloneImpl() const { diff --git a/lib/IR/LLVMContext.cpp b/lib/IR/LLVMContext.cpp index 2e13f362344d..c58459d6d5f5 100644 --- a/lib/IR/LLVMContext.cpp +++ b/lib/IR/LLVMContext.cpp @@ -81,6 +81,18 @@ LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl(*this)) { assert(GCTransitionEntry->second == LLVMContext::OB_gc_transition && "gc-transition operand bundle id drifted!"); (void)GCTransitionEntry; + + SyncScope::ID SingleThreadSSID = + pImpl->getOrInsertSyncScopeID("singlethread"); + assert(SingleThreadSSID == SyncScope::SingleThread && + "singlethread synchronization scope ID drifted!"); + (void)SingleThreadSSID; + + SyncScope::ID SystemSSID = + pImpl->getOrInsertSyncScopeID(""); + assert(SystemSSID == SyncScope::System && + "system synchronization scope ID drifted!"); + (void)SystemSSID; } LLVMContext::~LLVMContext() { delete pImpl; } @@ -255,6 +267,14 @@ uint32_t LLVMContext::getOperandBundleTagID(StringRef Tag) const { return pImpl->getOperandBundleTagID(Tag); } +SyncScope::ID LLVMContext::getOrInsertSyncScopeID(StringRef SSN) { + return pImpl->getOrInsertSyncScopeID(SSN); +} + +void LLVMContext::getSyncScopeNames(SmallVectorImpl<StringRef> &SSNs) const { + pImpl->getSyncScopeNames(SSNs); +} + void LLVMContext::setGC(const Function &Fn, std::string GCName) { auto It = pImpl->GCNames.find(&Fn); diff --git a/lib/IR/LLVMContextImpl.cpp b/lib/IR/LLVMContextImpl.cpp index c19e1be44fdc..57dd08b36fe7 100644 --- a/lib/IR/LLVMContextImpl.cpp +++ b/lib/IR/LLVMContextImpl.cpp @@ -205,6 +205,20 @@ uint32_t LLVMContextImpl::getOperandBundleTagID(StringRef Tag) const { return I->second; } +SyncScope::ID LLVMContextImpl::getOrInsertSyncScopeID(StringRef SSN) { + auto NewSSID = SSC.size(); + assert(NewSSID < std::numeric_limits<SyncScope::ID>::max() && + "Hit the maximum number of synchronization scopes allowed!"); + return SSC.insert(std::make_pair(SSN, SyncScope::ID(NewSSID))).first->second; +} + +void LLVMContextImpl::getSyncScopeNames( + SmallVectorImpl<StringRef> &SSNs) const { + SSNs.resize(SSC.size()); + for (const auto &SSE : SSC) + SSNs[SSE.second] = SSE.first(); +} + /// Singleton instance of the OptBisect class. /// /// This singleton is accessed via the LLVMContext::getOptBisect() function. It diff --git a/lib/IR/LLVMContextImpl.h b/lib/IR/LLVMContextImpl.h index 395beb57fe37..e413a4f34432 100644 --- a/lib/IR/LLVMContextImpl.h +++ b/lib/IR/LLVMContextImpl.h @@ -1297,6 +1297,20 @@ public: void getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const; uint32_t getOperandBundleTagID(StringRef Tag) const; + /// A set of interned synchronization scopes. The StringMap maps + /// synchronization scope names to their respective synchronization scope IDs. + StringMap<SyncScope::ID> SSC; + + /// getOrInsertSyncScopeID - Maps synchronization scope name to + /// synchronization scope ID. Every synchronization scope registered with + /// LLVMContext has unique ID except pre-defined ones. + SyncScope::ID getOrInsertSyncScopeID(StringRef SSN); + + /// getSyncScopeNames - Populates client supplied SmallVector with + /// synchronization scope names registered with LLVMContext. Synchronization + /// scope names are ordered by increasing synchronization scope IDs. + void getSyncScopeNames(SmallVectorImpl<StringRef> &SSNs) const; + /// Maintain the GC name for each function. /// /// This saves allocating an additional word in Function for programs which diff --git a/lib/IR/Module.cpp b/lib/IR/Module.cpp index f8853ed169c5..fdc7de6eaa34 100644 --- a/lib/IR/Module.cpp +++ b/lib/IR/Module.cpp @@ -88,7 +88,7 @@ Module::~Module() { delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); } -RandomNumberGenerator *Module::createRNG(const Pass* P) const { +std::unique_ptr<RandomNumberGenerator> Module::createRNG(const Pass* P) const { SmallString<32> Salt(P->getPassName()); // This RNG is guaranteed to produce the same random stream only @@ -103,7 +103,7 @@ RandomNumberGenerator *Module::createRNG(const Pass* P) const { // store salt metadata from the Module constructor. Salt += sys::path::filename(getModuleIdentifier()); - return new RandomNumberGenerator(Salt); + return std::unique_ptr<RandomNumberGenerator>{new RandomNumberGenerator(Salt)}; } /// getNamedValue - Return the first global value in the module with diff --git a/lib/IR/SafepointIRVerifier.cpp b/lib/IR/SafepointIRVerifier.cpp new file mode 100644 index 000000000000..8b328c221da3 --- /dev/null +++ b/lib/IR/SafepointIRVerifier.cpp @@ -0,0 +1,437 @@ +//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Run a sanity check on the IR to ensure that Safepoints - if they've been +// inserted - were inserted correctly. In particular, look for use of +// non-relocated values after a safepoint. It's primary use is to check the +// correctness of safepoint insertion immediately after insertion, but it can +// also be used to verify that later transforms have not found a way to break +// safepoint semenatics. +// +// In its current form, this verify checks a property which is sufficient, but +// not neccessary for correctness. There are some cases where an unrelocated +// pointer can be used after the safepoint. Consider this example: +// +// a = ... +// b = ... +// (a',b') = safepoint(a,b) +// c = cmp eq a b +// br c, ..., .... +// +// Because it is valid to reorder 'c' above the safepoint, this is legal. In +// practice, this is a somewhat uncommon transform, but CodeGenPrep does create +// idioms like this. The verifier knows about these cases and avoids reporting +// false positives. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/SafepointIRVerifier.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "safepoint-ir-verifier" + +using namespace llvm; + +/// This option is used for writing test cases. Instead of crashing the program +/// when verification fails, report a message to the console (for FileCheck +/// usage) and continue execution as if nothing happened. +static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only", + cl::init(false)); + +static void Verify(const Function &F, const DominatorTree &DT); + +struct SafepointIRVerifier : public FunctionPass { + static char ID; // Pass identification, replacement for typeid + DominatorTree DT; + SafepointIRVerifier() : FunctionPass(ID) { + initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + DT.recalculate(F); + Verify(F, DT); + return false; // no modifications + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } + + StringRef getPassName() const override { return "safepoint verifier"; } +}; + +void llvm::verifySafepointIR(Function &F) { + SafepointIRVerifier pass; + pass.runOnFunction(F); +} + +char SafepointIRVerifier::ID = 0; + +FunctionPass *llvm::createSafepointIRVerifierPass() { + return new SafepointIRVerifier(); +} + +INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir", + "Safepoint IR Verifier", false, true) +INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir", + "Safepoint IR Verifier", false, true) + +static bool isGCPointerType(Type *T) { + if (auto *PT = dyn_cast<PointerType>(T)) + // For the sake of this example GC, we arbitrarily pick addrspace(1) as our + // GC managed heap. We know that a pointer into this heap needs to be + // updated and that no other pointer does. + return (1 == PT->getAddressSpace()); + return false; +} + +static bool containsGCPtrType(Type *Ty) { + if (isGCPointerType(Ty)) + return true; + if (VectorType *VT = dyn_cast<VectorType>(Ty)) + return isGCPointerType(VT->getScalarType()); + if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) + return containsGCPtrType(AT->getElementType()); + if (StructType *ST = dyn_cast<StructType>(Ty)) + return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), + containsGCPtrType); + return false; +} + +// Debugging aid -- prints a [Begin, End) range of values. +template<typename IteratorTy> +static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) { + OS << "[ "; + while (Begin != End) { + OS << **Begin << " "; + ++Begin; + } + OS << "]"; +} + +/// The verifier algorithm is phrased in terms of availability. The set of +/// values "available" at a given point in the control flow graph is the set of +/// correctly relocated value at that point, and is a subset of the set of +/// definitions dominating that point. + +/// State we compute and track per basic block. +struct BasicBlockState { + // Set of values available coming in, before the phi nodes + DenseSet<const Value *> AvailableIn; + + // Set of values available going out + DenseSet<const Value *> AvailableOut; + + // AvailableOut minus AvailableIn. + // All elements are Instructions + DenseSet<const Value *> Contribution; + + // True if this block contains a safepoint and thus AvailableIn does not + // contribute to AvailableOut. + bool Cleared = false; +}; + + +/// Gather all the definitions dominating the start of BB into Result. This is +/// simply the Defs introduced by every dominating basic block and the function +/// arguments. +static void GatherDominatingDefs(const BasicBlock *BB, + DenseSet<const Value *> &Result, + const DominatorTree &DT, + DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) { + DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)]; + + while (DTN->getIDom()) { + DTN = DTN->getIDom(); + const auto &Defs = BlockMap[DTN->getBlock()]->Contribution; + Result.insert(Defs.begin(), Defs.end()); + // If this block is 'Cleared', then nothing LiveIn to this block can be + // available after this block completes. Note: This turns out to be + // really important for reducing memory consuption of the initial available + // sets and thus peak memory usage by this verifier. + if (BlockMap[DTN->getBlock()]->Cleared) + return; + } + + for (const Argument &A : BB->getParent()->args()) + if (containsGCPtrType(A.getType())) + Result.insert(&A); +} + +/// Model the effect of an instruction on the set of available values. +static void TransferInstruction(const Instruction &I, bool &Cleared, + DenseSet<const Value *> &Available) { + if (isStatepoint(I)) { + Cleared = true; + Available.clear(); + } else if (containsGCPtrType(I.getType())) + Available.insert(&I); +} + +/// Compute the AvailableOut set for BB, based on the +/// BasicBlockState BBS, which is the BasicBlockState for BB. FirstPass is set +/// when the verifier runs for the first time computing the AvailableOut set +/// for BB. +static void TransferBlock(const BasicBlock *BB, + BasicBlockState &BBS, bool FirstPass) { + + const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn; + DenseSet<const Value *> &AvailableOut = BBS.AvailableOut; + + if (BBS.Cleared) { + // AvailableOut does not change no matter how the input changes, just + // leave it be. We need to force this calculation the first time so that + // we have a AvailableOut at all. + if (FirstPass) { + AvailableOut = BBS.Contribution; + } + } else { + // Otherwise, we need to reduce the AvailableOut set by things which are no + // longer in our AvailableIn + DenseSet<const Value *> Temp = BBS.Contribution; + set_union(Temp, AvailableIn); + AvailableOut = std::move(Temp); + } + + DEBUG(dbgs() << "Transfered block " << BB->getName() << " from "; + PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end()); + dbgs() << " to "; + PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end()); + dbgs() << "\n";); +} + +/// A given derived pointer can have multiple base pointers through phi/selects. +/// This type indicates when the base pointer is exclusively constant +/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively +/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is +/// NonConstant. +enum BaseType { + NonConstant = 1, // Base pointers is not exclusively constant. + ExclusivelyNull, + ExclusivelySomeConstant // Base pointers for a given derived pointer is from a + // set of constants, but they are not exclusively + // null. +}; + +/// Return the baseType for Val which states whether Val is exclusively +/// derived from constant/null, or not exclusively derived from constant. +/// Val is exclusively derived off a constant base when all operands of phi and +/// selects are derived off a constant base. +static enum BaseType getBaseType(const Value *Val) { + + SmallVector<const Value *, 32> Worklist; + DenseSet<const Value *> Visited; + bool isExclusivelyDerivedFromNull = true; + Worklist.push_back(Val); + // Strip through all the bitcasts and geps to get base pointer. Also check for + // the exclusive value when there can be multiple base pointers (through phis + // or selects). + while(!Worklist.empty()) { + const Value *V = Worklist.pop_back_val(); + if (!Visited.insert(V).second) + continue; + + if (const auto *CI = dyn_cast<CastInst>(V)) { + Worklist.push_back(CI->stripPointerCasts()); + continue; + } + if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) { + Worklist.push_back(GEP->getPointerOperand()); + continue; + } + // Push all the incoming values of phi node into the worklist for + // processing. + if (const auto *PN = dyn_cast<PHINode>(V)) { + for (Value *InV: PN->incoming_values()) + Worklist.push_back(InV); + continue; + } + if (const auto *SI = dyn_cast<SelectInst>(V)) { + // Push in the true and false values + Worklist.push_back(SI->getTrueValue()); + Worklist.push_back(SI->getFalseValue()); + continue; + } + if (isa<Constant>(V)) { + // We found at least one base pointer which is non-null, so this derived + // pointer is not exclusively derived from null. + if (V != Constant::getNullValue(V->getType())) + isExclusivelyDerivedFromNull = false; + // Continue processing the remaining values to make sure it's exclusively + // constant. + continue; + } + // At this point, we know that the base pointer is not exclusively + // constant. + return BaseType::NonConstant; + } + // Now, we know that the base pointer is exclusively constant, but we need to + // differentiate between exclusive null constant and non-null constant. + return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull + : BaseType::ExclusivelySomeConstant; +} + +static void Verify(const Function &F, const DominatorTree &DT) { + SpecificBumpPtrAllocator<BasicBlockState> BSAllocator; + DenseMap<const BasicBlock *, BasicBlockState *> BlockMap; + + DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"); + if (PrintOnly) + dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"; + + + for (const BasicBlock &BB : F) { + BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState; + for (const auto &I : BB) + TransferInstruction(I, BBS->Cleared, BBS->Contribution); + BlockMap[&BB] = BBS; + } + + for (auto &BBI : BlockMap) { + GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap); + TransferBlock(BBI.first, *BBI.second, true); + } + + SetVector<const BasicBlock *> Worklist; + for (auto &BBI : BlockMap) + Worklist.insert(BBI.first); + + // This loop iterates the AvailableIn and AvailableOut sets to a fixed point. + // The AvailableIn and AvailableOut sets decrease as we iterate. + while (!Worklist.empty()) { + const BasicBlock *BB = Worklist.pop_back_val(); + BasicBlockState *BBS = BlockMap[BB]; + + size_t OldInCount = BBS->AvailableIn.size(); + for (const BasicBlock *PBB : predecessors(BB)) + set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut); + + if (OldInCount == BBS->AvailableIn.size()) + continue; + + assert(OldInCount > BBS->AvailableIn.size() && "invariant!"); + + size_t OldOutCount = BBS->AvailableOut.size(); + TransferBlock(BB, *BBS, false); + if (OldOutCount != BBS->AvailableOut.size()) { + assert(OldOutCount > BBS->AvailableOut.size() && "invariant!"); + Worklist.insert(succ_begin(BB), succ_end(BB)); + } + } + + // We now have all the information we need to decide if the use of a heap + // reference is legal or not, given our safepoint semantics. + + bool AnyInvalidUses = false; + + auto ReportInvalidUse = [&AnyInvalidUses](const Value &V, + const Instruction &I) { + errs() << "Illegal use of unrelocated value found!\n"; + errs() << "Def: " << V << "\n"; + errs() << "Use: " << I << "\n"; + if (!PrintOnly) + abort(); + AnyInvalidUses = true; + }; + + auto isNotExclusivelyConstantDerived = [](const Value *V) { + return getBaseType(V) == BaseType::NonConstant; + }; + + for (const BasicBlock &BB : F) { + // We destructively modify AvailableIn as we traverse the block instruction + // by instruction. + DenseSet<const Value *> &AvailableSet = BlockMap[&BB]->AvailableIn; + for (const Instruction &I : BB) { + if (const PHINode *PN = dyn_cast<PHINode>(&I)) { + if (containsGCPtrType(PN->getType())) + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + const BasicBlock *InBB = PN->getIncomingBlock(i); + const Value *InValue = PN->getIncomingValue(i); + + if (isNotExclusivelyConstantDerived(InValue) && + !BlockMap[InBB]->AvailableOut.count(InValue)) + ReportInvalidUse(*InValue, *PN); + } + } else if (isa<CmpInst>(I) && + containsGCPtrType(I.getOperand(0)->getType())) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + enum BaseType baseTyLHS = getBaseType(LHS), + baseTyRHS = getBaseType(RHS); + + // Returns true if LHS and RHS are unrelocated pointers and they are + // valid unrelocated uses. + auto hasValidUnrelocatedUse = [&AvailableSet, baseTyLHS, baseTyRHS, &LHS, &RHS] () { + // A cmp instruction has valid unrelocated pointer operands only if + // both operands are unrelocated pointers. + // In the comparison between two pointers, if one is an unrelocated + // use, the other *should be* an unrelocated use, for this + // instruction to contain valid unrelocated uses. This unrelocated + // use can be a null constant as well, or another unrelocated + // pointer. + if (AvailableSet.count(LHS) || AvailableSet.count(RHS)) + return false; + // Constant pointers (that are not exclusively null) may have + // meaning in different VMs, so we cannot reorder the compare + // against constant pointers before the safepoint. In other words, + // comparison of an unrelocated use against a non-null constant + // maybe invalid. + if ((baseTyLHS == BaseType::ExclusivelySomeConstant && + baseTyRHS == BaseType::NonConstant) || + (baseTyLHS == BaseType::NonConstant && + baseTyRHS == BaseType::ExclusivelySomeConstant)) + return false; + // All other cases are valid cases enumerated below: + // 1. Comparison between an exlusively derived null pointer and a + // constant base pointer. + // 2. Comparison between an exlusively derived null pointer and a + // non-constant unrelocated base pointer. + // 3. Comparison between 2 unrelocated pointers. + return true; + }; + if (!hasValidUnrelocatedUse()) { + // Print out all non-constant derived pointers that are unrelocated + // uses, which are invalid. + if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS)) + ReportInvalidUse(*LHS, I); + if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS)) + ReportInvalidUse(*RHS, I); + } + } else { + for (const Value *V : I.operands()) + if (containsGCPtrType(V->getType()) && + isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) + ReportInvalidUse(*V, I); + } + + bool Cleared = false; + TransferInstruction(I, Cleared, AvailableSet); + (void)Cleared; + } + } + + if (PrintOnly && !AnyInvalidUses) { + dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName() + << "\n"; + } +} diff --git a/lib/IR/Type.cpp b/lib/IR/Type.cpp index 44fe5e48c720..20e9c2b5fff2 100644 --- a/lib/IR/Type.cpp +++ b/lib/IR/Type.cpp @@ -538,7 +538,7 @@ bool CompositeType::indexValid(const Value *V) const { if (auto *STy = dyn_cast<StructType>(this)) { // Structure indexes require (vectors of) 32-bit integer constants. In the // vector case all of the indices must be equal. - if (!V->getType()->getScalarType()->isIntegerTy(32)) + if (!V->getType()->isIntOrIntVectorTy(32)) return false; const Constant *C = dyn_cast<Constant>(V); if (C && V->getType()->isVectorTy()) diff --git a/lib/IR/Verifier.cpp b/lib/IR/Verifier.cpp index 819f63520c74..454a56a76923 100644 --- a/lib/IR/Verifier.cpp +++ b/lib/IR/Verifier.cpp @@ -2504,15 +2504,13 @@ void Verifier::visitPtrToIntInst(PtrToIntInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert(SrcTy->getScalarType()->isPointerTy(), - "PtrToInt source must be pointer", &I); + Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType())) Assert(!DL.isNonIntegralPointerType(PTy), "ptrtoint not supported for non-integral pointers"); - Assert(DestTy->getScalarType()->isIntegerTy(), - "PtrToInt result must be integral", &I); + Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", &I); @@ -2531,10 +2529,9 @@ void Verifier::visitIntToPtrInst(IntToPtrInst &I) { Type *SrcTy = I.getOperand(0)->getType(); Type *DestTy = I.getType(); - Assert(SrcTy->getScalarType()->isIntegerTy(), + Assert(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I); - Assert(DestTy->getScalarType()->isPointerTy(), - "IntToPtr result must be a pointer", &I); + Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType())) Assert(!DL.isNonIntegralPointerType(PTy), @@ -2952,11 +2949,10 @@ void Verifier::visitICmpInst(ICmpInst &IC) { Assert(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type - Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(), + Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), "Invalid operand types for ICmp instruction", &IC); // Check that the predicate is valid. - Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && - IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE, + Assert(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC); visitInstruction(IC); @@ -2972,8 +2968,7 @@ void Verifier::visitFCmpInst(FCmpInst &FC) { Assert(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", &FC); // Check that the predicate is valid. - Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE && - FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE, + Assert(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC); visitInstruction(FC); @@ -3011,7 +3006,7 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP); - Assert(GEP.getType()->getScalarType()->isPointerTy() && + Assert(GEP.getType()->isPtrOrPtrVectorTy() && GEP.getResultElementType() == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); @@ -3027,7 +3022,7 @@ void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { unsigned IndexWidth = IndexTy->getVectorNumElements(); Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); } - Assert(IndexTy->getScalarType()->isIntegerTy(), + Assert(IndexTy->isIntOrIntVectorTy(), "All GEP indices should be of integer type"); } } @@ -3113,7 +3108,7 @@ void Verifier::visitLoadInst(LoadInst &LI) { ElTy, &LI); checkAtomicMemAccessSize(ElTy, &LI); } else { - Assert(LI.getSynchScope() == CrossThread, + Assert(LI.getSyncScopeID() == SyncScope::System, "Non-atomic load cannot have SynchronizationScope specified", &LI); } @@ -3142,7 +3137,7 @@ void Verifier::visitStoreInst(StoreInst &SI) { ElTy, &SI); checkAtomicMemAccessSize(ElTy, &SI); } else { - Assert(SI.getSynchScope() == CrossThread, + Assert(SI.getSyncScopeID() == SyncScope::System, "Non-atomic store cannot have SynchronizationScope specified", &SI); } visitInstruction(SI); @@ -4049,6 +4044,73 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { "incorrect alignment of the source argument", CS); break; } + case Intrinsic::memmove_element_unordered_atomic: { + auto *MI = cast<ElementUnorderedAtomicMemMoveInst>(CS.getInstruction()); + + ConstantInt *ElementSizeCI = + dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes()); + Assert(ElementSizeCI, + "element size of the element-wise unordered atomic memory " + "intrinsic must be a constant int", + CS); + const APInt &ElementSizeVal = ElementSizeCI->getValue(); + Assert(ElementSizeVal.isPowerOf2(), + "element size of the element-wise atomic memory intrinsic " + "must be a power of 2", + CS); + + if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) { + uint64_t Length = LengthCI->getZExtValue(); + uint64_t ElementSize = MI->getElementSizeInBytes(); + Assert((Length % ElementSize) == 0, + "constant length must be a multiple of the element size in the " + "element-wise atomic memory intrinsic", + CS); + } + + auto IsValidAlignment = [&](uint64_t Alignment) { + return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); + }; + uint64_t DstAlignment = CS.getParamAlignment(0), + SrcAlignment = CS.getParamAlignment(1); + Assert(IsValidAlignment(DstAlignment), + "incorrect alignment of the destination argument", CS); + Assert(IsValidAlignment(SrcAlignment), + "incorrect alignment of the source argument", CS); + break; + } + case Intrinsic::memset_element_unordered_atomic: { + auto *MI = cast<ElementUnorderedAtomicMemSetInst>(CS.getInstruction()); + + ConstantInt *ElementSizeCI = + dyn_cast<ConstantInt>(MI->getRawElementSizeInBytes()); + Assert(ElementSizeCI, + "element size of the element-wise unordered atomic memory " + "intrinsic must be a constant int", + CS); + const APInt &ElementSizeVal = ElementSizeCI->getValue(); + Assert(ElementSizeVal.isPowerOf2(), + "element size of the element-wise atomic memory intrinsic " + "must be a power of 2", + CS); + + if (auto *LengthCI = dyn_cast<ConstantInt>(MI->getLength())) { + uint64_t Length = LengthCI->getZExtValue(); + uint64_t ElementSize = MI->getElementSizeInBytes(); + Assert((Length % ElementSize) == 0, + "constant length must be a multiple of the element size in the " + "element-wise atomic memory intrinsic", + CS); + } + + auto IsValidAlignment = [&](uint64_t Alignment) { + return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment); + }; + uint64_t DstAlignment = CS.getParamAlignment(0); + Assert(IsValidAlignment(DstAlignment), + "incorrect alignment of the destination argument", CS); + break; + } case Intrinsic::gcroot: case Intrinsic::gcwrite: case Intrinsic::gcread: @@ -4253,7 +4315,7 @@ void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) { // relocated pointer. It can be casted to the correct type later if it's // desired. However, they must have the same address space and 'vectorness' GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction()); - Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(), + Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(), "gc.relocate: relocated value must be a gc pointer", CS); auto ResultType = CS.getType(); |
