aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaLookup.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Sema/SemaLookup.cpp')
-rw-r--r--lib/Sema/SemaLookup.cpp1626
1 files changed, 1626 insertions, 0 deletions
diff --git a/lib/Sema/SemaLookup.cpp b/lib/Sema/SemaLookup.cpp
new file mode 100644
index 000000000000..6212449744ca
--- /dev/null
+++ b/lib/Sema/SemaLookup.cpp
@@ -0,0 +1,1626 @@
+//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements name lookup for C, C++, Objective-C, and
+// Objective-C++.
+//
+//===----------------------------------------------------------------------===//
+#include "Sema.h"
+#include "SemaInherit.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Basic/LangOptions.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include <set>
+#include <vector>
+#include <iterator>
+#include <utility>
+#include <algorithm>
+
+using namespace clang;
+
+typedef llvm::SmallVector<UsingDirectiveDecl*, 4> UsingDirectivesTy;
+typedef llvm::DenseSet<NamespaceDecl*> NamespaceSet;
+typedef llvm::SmallVector<Sema::LookupResult, 3> LookupResultsTy;
+
+/// UsingDirAncestorCompare - Implements strict weak ordering of
+/// UsingDirectives. It orders them by address of its common ancestor.
+struct UsingDirAncestorCompare {
+
+ /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
+ bool operator () (UsingDirectiveDecl *U, const DeclContext *Ctx) const {
+ return U->getCommonAncestor() < Ctx;
+ }
+
+ /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
+ bool operator () (const DeclContext *Ctx, UsingDirectiveDecl *U) const {
+ return Ctx < U->getCommonAncestor();
+ }
+
+ /// @brief Compares UsingDirectiveDecl common ancestors.
+ bool operator () (UsingDirectiveDecl *U1, UsingDirectiveDecl *U2) const {
+ return U1->getCommonAncestor() < U2->getCommonAncestor();
+ }
+};
+
+/// AddNamespaceUsingDirectives - Adds all UsingDirectiveDecl's to heap UDirs
+/// (ordered by common ancestors), found in namespace NS,
+/// including all found (recursively) in their nominated namespaces.
+void AddNamespaceUsingDirectives(ASTContext &Context,
+ DeclContext *NS,
+ UsingDirectivesTy &UDirs,
+ NamespaceSet &Visited) {
+ DeclContext::udir_iterator I, End;
+
+ for (llvm::tie(I, End) = NS->getUsingDirectives(Context); I !=End; ++I) {
+ UDirs.push_back(*I);
+ std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
+ NamespaceDecl *Nominated = (*I)->getNominatedNamespace();
+ if (Visited.insert(Nominated).second)
+ AddNamespaceUsingDirectives(Context, Nominated, UDirs, /*ref*/ Visited);
+ }
+}
+
+/// AddScopeUsingDirectives - Adds all UsingDirectiveDecl's found in Scope S,
+/// including all found in the namespaces they nominate.
+static void AddScopeUsingDirectives(ASTContext &Context, Scope *S,
+ UsingDirectivesTy &UDirs) {
+ NamespaceSet VisitedNS;
+
+ if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
+
+ if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Ctx))
+ VisitedNS.insert(NS);
+
+ AddNamespaceUsingDirectives(Context, Ctx, UDirs, /*ref*/ VisitedNS);
+
+ } else {
+ Scope::udir_iterator I = S->using_directives_begin(),
+ End = S->using_directives_end();
+
+ for (; I != End; ++I) {
+ UsingDirectiveDecl *UD = I->getAs<UsingDirectiveDecl>();
+ UDirs.push_back(UD);
+ std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
+
+ NamespaceDecl *Nominated = UD->getNominatedNamespace();
+ if (!VisitedNS.count(Nominated)) {
+ VisitedNS.insert(Nominated);
+ AddNamespaceUsingDirectives(Context, Nominated, UDirs,
+ /*ref*/ VisitedNS);
+ }
+ }
+ }
+}
+
+/// MaybeConstructOverloadSet - Name lookup has determined that the
+/// elements in [I, IEnd) have the name that we are looking for, and
+/// *I is a match for the namespace. This routine returns an
+/// appropriate Decl for name lookup, which may either be *I or an
+/// OverloadedFunctionDecl that represents the overloaded functions in
+/// [I, IEnd).
+///
+/// The existance of this routine is temporary; users of LookupResult
+/// should be able to handle multiple results, to deal with cases of
+/// ambiguity and overloaded functions without needing to create a
+/// Decl node.
+template<typename DeclIterator>
+static NamedDecl *
+MaybeConstructOverloadSet(ASTContext &Context,
+ DeclIterator I, DeclIterator IEnd) {
+ assert(I != IEnd && "Iterator range cannot be empty");
+ assert(!isa<OverloadedFunctionDecl>(*I) &&
+ "Cannot have an overloaded function");
+
+ if (isa<FunctionDecl>(*I)) {
+ // If we found a function, there might be more functions. If
+ // so, collect them into an overload set.
+ DeclIterator Last = I;
+ OverloadedFunctionDecl *Ovl = 0;
+ for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
+ if (!Ovl) {
+ // FIXME: We leak this overload set. Eventually, we want to stop
+ // building the declarations for these overload sets, so there will be
+ // nothing to leak.
+ Ovl = OverloadedFunctionDecl::Create(Context, (*I)->getDeclContext(),
+ (*I)->getDeclName());
+ Ovl->addOverload(cast<FunctionDecl>(*I));
+ }
+ Ovl->addOverload(cast<FunctionDecl>(*Last));
+ }
+
+ // If we had more than one function, we built an overload
+ // set. Return it.
+ if (Ovl)
+ return Ovl;
+ }
+
+ return *I;
+}
+
+/// Merges together multiple LookupResults dealing with duplicated Decl's.
+static Sema::LookupResult
+MergeLookupResults(ASTContext &Context, LookupResultsTy &Results) {
+ typedef Sema::LookupResult LResult;
+ typedef llvm::SmallPtrSet<NamedDecl*, 4> DeclsSetTy;
+
+ // Remove duplicated Decl pointing at same Decl, by storing them in
+ // associative collection. This might be case for code like:
+ //
+ // namespace A { int i; }
+ // namespace B { using namespace A; }
+ // namespace C { using namespace A; }
+ //
+ // void foo() {
+ // using namespace B;
+ // using namespace C;
+ // ++i; // finds A::i, from both namespace B and C at global scope
+ // }
+ //
+ // C++ [namespace.qual].p3:
+ // The same declaration found more than once is not an ambiguity
+ // (because it is still a unique declaration).
+ DeclsSetTy FoundDecls;
+
+ // Counter of tag names, and functions for resolving ambiguity
+ // and name hiding.
+ std::size_t TagNames = 0, Functions = 0, OrdinaryNonFunc = 0;
+
+ LookupResultsTy::iterator I = Results.begin(), End = Results.end();
+
+ // No name lookup results, return early.
+ if (I == End) return LResult::CreateLookupResult(Context, 0);
+
+ // Keep track of the tag declaration we found. We only use this if
+ // we find a single tag declaration.
+ TagDecl *TagFound = 0;
+
+ for (; I != End; ++I) {
+ switch (I->getKind()) {
+ case LResult::NotFound:
+ assert(false &&
+ "Should be always successful name lookup result here.");
+ break;
+
+ case LResult::AmbiguousReference:
+ case LResult::AmbiguousBaseSubobjectTypes:
+ case LResult::AmbiguousBaseSubobjects:
+ assert(false && "Shouldn't get ambiguous lookup here.");
+ break;
+
+ case LResult::Found: {
+ NamedDecl *ND = I->getAsDecl();
+ if (TagDecl *TD = dyn_cast<TagDecl>(ND)) {
+ TagFound = Context.getCanonicalDecl(TD);
+ TagNames += FoundDecls.insert(TagFound)? 1 : 0;
+ } else if (isa<FunctionDecl>(ND))
+ Functions += FoundDecls.insert(ND)? 1 : 0;
+ else
+ FoundDecls.insert(ND);
+ break;
+ }
+
+ case LResult::FoundOverloaded:
+ for (LResult::iterator FI = I->begin(), FEnd = I->end(); FI != FEnd; ++FI)
+ Functions += FoundDecls.insert(*FI)? 1 : 0;
+ break;
+ }
+ }
+ OrdinaryNonFunc = FoundDecls.size() - TagNames - Functions;
+ bool Ambiguous = false, NameHidesTags = false;
+
+ if (FoundDecls.size() == 1) {
+ // 1) Exactly one result.
+ } else if (TagNames > 1) {
+ // 2) Multiple tag names (even though they may be hidden by an
+ // object name).
+ Ambiguous = true;
+ } else if (FoundDecls.size() - TagNames == 1) {
+ // 3) Ordinary name hides (optional) tag.
+ NameHidesTags = TagFound;
+ } else if (Functions) {
+ // C++ [basic.lookup].p1:
+ // ... Name lookup may associate more than one declaration with
+ // a name if it finds the name to be a function name; the declarations
+ // are said to form a set of overloaded functions (13.1).
+ // Overload resolution (13.3) takes place after name lookup has succeeded.
+ //
+ if (!OrdinaryNonFunc) {
+ // 4) Functions hide tag names.
+ NameHidesTags = TagFound;
+ } else {
+ // 5) Functions + ordinary names.
+ Ambiguous = true;
+ }
+ } else {
+ // 6) Multiple non-tag names
+ Ambiguous = true;
+ }
+
+ if (Ambiguous)
+ return LResult::CreateLookupResult(Context,
+ FoundDecls.begin(), FoundDecls.size());
+ if (NameHidesTags) {
+ // There's only one tag, TagFound. Remove it.
+ assert(TagFound && FoundDecls.count(TagFound) && "No tag name found?");
+ FoundDecls.erase(TagFound);
+ }
+
+ // Return successful name lookup result.
+ return LResult::CreateLookupResult(Context,
+ MaybeConstructOverloadSet(Context,
+ FoundDecls.begin(),
+ FoundDecls.end()));
+}
+
+// Retrieve the set of identifier namespaces that correspond to a
+// specific kind of name lookup.
+inline unsigned
+getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
+ bool CPlusPlus) {
+ unsigned IDNS = 0;
+ switch (NameKind) {
+ case Sema::LookupOrdinaryName:
+ case Sema::LookupOperatorName:
+ case Sema::LookupRedeclarationWithLinkage:
+ IDNS = Decl::IDNS_Ordinary;
+ if (CPlusPlus)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
+ break;
+
+ case Sema::LookupTagName:
+ IDNS = Decl::IDNS_Tag;
+ break;
+
+ case Sema::LookupMemberName:
+ IDNS = Decl::IDNS_Member;
+ if (CPlusPlus)
+ IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
+ break;
+
+ case Sema::LookupNestedNameSpecifierName:
+ case Sema::LookupNamespaceName:
+ IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
+ break;
+
+ case Sema::LookupObjCProtocolName:
+ IDNS = Decl::IDNS_ObjCProtocol;
+ break;
+
+ case Sema::LookupObjCImplementationName:
+ IDNS = Decl::IDNS_ObjCImplementation;
+ break;
+
+ case Sema::LookupObjCCategoryImplName:
+ IDNS = Decl::IDNS_ObjCCategoryImpl;
+ break;
+ }
+ return IDNS;
+}
+
+Sema::LookupResult
+Sema::LookupResult::CreateLookupResult(ASTContext &Context, NamedDecl *D) {
+ if (ObjCCompatibleAliasDecl *Alias
+ = dyn_cast_or_null<ObjCCompatibleAliasDecl>(D))
+ D = Alias->getClassInterface();
+
+ LookupResult Result;
+ Result.StoredKind = (D && isa<OverloadedFunctionDecl>(D))?
+ OverloadedDeclSingleDecl : SingleDecl;
+ Result.First = reinterpret_cast<uintptr_t>(D);
+ Result.Last = 0;
+ Result.Context = &Context;
+ return Result;
+}
+
+/// @brief Moves the name-lookup results from Other to this LookupResult.
+Sema::LookupResult
+Sema::LookupResult::CreateLookupResult(ASTContext &Context,
+ IdentifierResolver::iterator F,
+ IdentifierResolver::iterator L) {
+ LookupResult Result;
+ Result.Context = &Context;
+
+ if (F != L && isa<FunctionDecl>(*F)) {
+ IdentifierResolver::iterator Next = F;
+ ++Next;
+ if (Next != L && isa<FunctionDecl>(*Next)) {
+ Result.StoredKind = OverloadedDeclFromIdResolver;
+ Result.First = F.getAsOpaqueValue();
+ Result.Last = L.getAsOpaqueValue();
+ return Result;
+ }
+ }
+
+ Decl *D = *F;
+ if (ObjCCompatibleAliasDecl *Alias
+ = dyn_cast_or_null<ObjCCompatibleAliasDecl>(D))
+ D = Alias->getClassInterface();
+
+ Result.StoredKind = SingleDecl;
+ Result.First = reinterpret_cast<uintptr_t>(D);
+ Result.Last = 0;
+ return Result;
+}
+
+Sema::LookupResult
+Sema::LookupResult::CreateLookupResult(ASTContext &Context,
+ DeclContext::lookup_iterator F,
+ DeclContext::lookup_iterator L) {
+ LookupResult Result;
+ Result.Context = &Context;
+
+ if (F != L && isa<FunctionDecl>(*F)) {
+ DeclContext::lookup_iterator Next = F;
+ ++Next;
+ if (Next != L && isa<FunctionDecl>(*Next)) {
+ Result.StoredKind = OverloadedDeclFromDeclContext;
+ Result.First = reinterpret_cast<uintptr_t>(F);
+ Result.Last = reinterpret_cast<uintptr_t>(L);
+ return Result;
+ }
+ }
+
+ Decl *D = *F;
+ if (ObjCCompatibleAliasDecl *Alias
+ = dyn_cast_or_null<ObjCCompatibleAliasDecl>(D))
+ D = Alias->getClassInterface();
+
+ Result.StoredKind = SingleDecl;
+ Result.First = reinterpret_cast<uintptr_t>(D);
+ Result.Last = 0;
+ return Result;
+}
+
+/// @brief Determine the result of name lookup.
+Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const {
+ switch (StoredKind) {
+ case SingleDecl:
+ return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound;
+
+ case OverloadedDeclSingleDecl:
+ case OverloadedDeclFromIdResolver:
+ case OverloadedDeclFromDeclContext:
+ return FoundOverloaded;
+
+ case AmbiguousLookupStoresBasePaths:
+ return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects;
+
+ case AmbiguousLookupStoresDecls:
+ return AmbiguousReference;
+ }
+
+ // We can't ever get here.
+ return NotFound;
+}
+
+/// @brief Converts the result of name lookup into a single (possible
+/// NULL) pointer to a declaration.
+///
+/// The resulting declaration will either be the declaration we found
+/// (if only a single declaration was found), an
+/// OverloadedFunctionDecl (if an overloaded function was found), or
+/// NULL (if no declaration was found). This conversion must not be
+/// used anywhere where name lookup could result in an ambiguity.
+///
+/// The OverloadedFunctionDecl conversion is meant as a stop-gap
+/// solution, since it causes the OverloadedFunctionDecl to be
+/// leaked. FIXME: Eventually, there will be a better way to iterate
+/// over the set of overloaded functions returned by name lookup.
+NamedDecl *Sema::LookupResult::getAsDecl() const {
+ switch (StoredKind) {
+ case SingleDecl:
+ return reinterpret_cast<NamedDecl *>(First);
+
+ case OverloadedDeclFromIdResolver:
+ return MaybeConstructOverloadSet(*Context,
+ IdentifierResolver::iterator::getFromOpaqueValue(First),
+ IdentifierResolver::iterator::getFromOpaqueValue(Last));
+
+ case OverloadedDeclFromDeclContext:
+ return MaybeConstructOverloadSet(*Context,
+ reinterpret_cast<DeclContext::lookup_iterator>(First),
+ reinterpret_cast<DeclContext::lookup_iterator>(Last));
+
+ case OverloadedDeclSingleDecl:
+ return reinterpret_cast<OverloadedFunctionDecl*>(First);
+
+ case AmbiguousLookupStoresDecls:
+ case AmbiguousLookupStoresBasePaths:
+ assert(false &&
+ "Name lookup returned an ambiguity that could not be handled");
+ break;
+ }
+
+ return 0;
+}
+
+/// @brief Retrieves the BasePaths structure describing an ambiguous
+/// name lookup, or null.
+BasePaths *Sema::LookupResult::getBasePaths() const {
+ if (StoredKind == AmbiguousLookupStoresBasePaths)
+ return reinterpret_cast<BasePaths *>(First);
+ return 0;
+}
+
+Sema::LookupResult::iterator::reference
+Sema::LookupResult::iterator::operator*() const {
+ switch (Result->StoredKind) {
+ case SingleDecl:
+ return reinterpret_cast<NamedDecl*>(Current);
+
+ case OverloadedDeclSingleDecl:
+ return *reinterpret_cast<NamedDecl**>(Current);
+
+ case OverloadedDeclFromIdResolver:
+ return *IdentifierResolver::iterator::getFromOpaqueValue(Current);
+
+ case AmbiguousLookupStoresBasePaths:
+ if (Result->Last)
+ return *reinterpret_cast<NamedDecl**>(Current);
+
+ // Fall through to handle the DeclContext::lookup_iterator we're
+ // storing.
+
+ case OverloadedDeclFromDeclContext:
+ case AmbiguousLookupStoresDecls:
+ return *reinterpret_cast<DeclContext::lookup_iterator>(Current);
+ }
+
+ return 0;
+}
+
+Sema::LookupResult::iterator& Sema::LookupResult::iterator::operator++() {
+ switch (Result->StoredKind) {
+ case SingleDecl:
+ Current = reinterpret_cast<uintptr_t>((NamedDecl*)0);
+ break;
+
+ case OverloadedDeclSingleDecl: {
+ NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
+ ++I;
+ Current = reinterpret_cast<uintptr_t>(I);
+ break;
+ }
+
+ case OverloadedDeclFromIdResolver: {
+ IdentifierResolver::iterator I
+ = IdentifierResolver::iterator::getFromOpaqueValue(Current);
+ ++I;
+ Current = I.getAsOpaqueValue();
+ break;
+ }
+
+ case AmbiguousLookupStoresBasePaths:
+ if (Result->Last) {
+ NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
+ ++I;
+ Current = reinterpret_cast<uintptr_t>(I);
+ break;
+ }
+ // Fall through to handle the DeclContext::lookup_iterator we're
+ // storing.
+
+ case OverloadedDeclFromDeclContext:
+ case AmbiguousLookupStoresDecls: {
+ DeclContext::lookup_iterator I
+ = reinterpret_cast<DeclContext::lookup_iterator>(Current);
+ ++I;
+ Current = reinterpret_cast<uintptr_t>(I);
+ break;
+ }
+ }
+
+ return *this;
+}
+
+Sema::LookupResult::iterator Sema::LookupResult::begin() {
+ switch (StoredKind) {
+ case SingleDecl:
+ case OverloadedDeclFromIdResolver:
+ case OverloadedDeclFromDeclContext:
+ case AmbiguousLookupStoresDecls:
+ return iterator(this, First);
+
+ case OverloadedDeclSingleDecl: {
+ OverloadedFunctionDecl * Ovl =
+ reinterpret_cast<OverloadedFunctionDecl*>(First);
+ return iterator(this,
+ reinterpret_cast<uintptr_t>(&(*Ovl->function_begin())));
+ }
+
+ case AmbiguousLookupStoresBasePaths:
+ if (Last)
+ return iterator(this,
+ reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_begin()));
+ else
+ return iterator(this,
+ reinterpret_cast<uintptr_t>(getBasePaths()->front().Decls.first));
+ }
+
+ // Required to suppress GCC warning.
+ return iterator();
+}
+
+Sema::LookupResult::iterator Sema::LookupResult::end() {
+ switch (StoredKind) {
+ case SingleDecl:
+ case OverloadedDeclFromIdResolver:
+ case OverloadedDeclFromDeclContext:
+ case AmbiguousLookupStoresDecls:
+ return iterator(this, Last);
+
+ case OverloadedDeclSingleDecl: {
+ OverloadedFunctionDecl * Ovl =
+ reinterpret_cast<OverloadedFunctionDecl*>(First);
+ return iterator(this,
+ reinterpret_cast<uintptr_t>(&(*Ovl->function_end())));
+ }
+
+ case AmbiguousLookupStoresBasePaths:
+ if (Last)
+ return iterator(this,
+ reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_end()));
+ else
+ return iterator(this, reinterpret_cast<uintptr_t>(
+ getBasePaths()->front().Decls.second));
+ }
+
+ // Required to suppress GCC warning.
+ return iterator();
+}
+
+void Sema::LookupResult::Destroy() {
+ if (BasePaths *Paths = getBasePaths())
+ delete Paths;
+ else if (getKind() == AmbiguousReference)
+ delete[] reinterpret_cast<NamedDecl **>(First);
+}
+
+static void
+CppNamespaceLookup(ASTContext &Context, DeclContext *NS,
+ DeclarationName Name, Sema::LookupNameKind NameKind,
+ unsigned IDNS, LookupResultsTy &Results,
+ UsingDirectivesTy *UDirs = 0) {
+
+ assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
+
+ // Perform qualified name lookup into the LookupCtx.
+ DeclContext::lookup_iterator I, E;
+ for (llvm::tie(I, E) = NS->lookup(Context, Name); I != E; ++I)
+ if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS)) {
+ Results.push_back(Sema::LookupResult::CreateLookupResult(Context, I, E));
+ break;
+ }
+
+ if (UDirs) {
+ // For each UsingDirectiveDecl, which common ancestor is equal
+ // to NS, we preform qualified name lookup into namespace nominated by it.
+ UsingDirectivesTy::const_iterator UI, UEnd;
+ llvm::tie(UI, UEnd) =
+ std::equal_range(UDirs->begin(), UDirs->end(), NS,
+ UsingDirAncestorCompare());
+
+ for (; UI != UEnd; ++UI)
+ CppNamespaceLookup(Context, (*UI)->getNominatedNamespace(),
+ Name, NameKind, IDNS, Results);
+ }
+}
+
+static bool isNamespaceOrTranslationUnitScope(Scope *S) {
+ if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
+ return Ctx->isFileContext();
+ return false;
+}
+
+std::pair<bool, Sema::LookupResult>
+Sema::CppLookupName(Scope *S, DeclarationName Name,
+ LookupNameKind NameKind, bool RedeclarationOnly) {
+ assert(getLangOptions().CPlusPlus &&
+ "Can perform only C++ lookup");
+ unsigned IDNS
+ = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
+ Scope *Initial = S;
+ DeclContext *OutOfLineCtx = 0;
+ IdentifierResolver::iterator
+ I = IdResolver.begin(Name),
+ IEnd = IdResolver.end();
+
+ // First we lookup local scope.
+ // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
+ // ...During unqualified name lookup (3.4.1), the names appear as if
+ // they were declared in the nearest enclosing namespace which contains
+ // both the using-directive and the nominated namespace.
+ // [Note: in this context, “contains” means “contains directly or
+ // indirectly”.
+ //
+ // For example:
+ // namespace A { int i; }
+ // void foo() {
+ // int i;
+ // {
+ // using namespace A;
+ // ++i; // finds local 'i', A::i appears at global scope
+ // }
+ // }
+ //
+ for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
+ // Check whether the IdResolver has anything in this scope.
+ for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
+ if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
+ // We found something. Look for anything else in our scope
+ // with this same name and in an acceptable identifier
+ // namespace, so that we can construct an overload set if we
+ // need to.
+ IdentifierResolver::iterator LastI = I;
+ for (++LastI; LastI != IEnd; ++LastI) {
+ if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
+ break;
+ }
+ LookupResult Result =
+ LookupResult::CreateLookupResult(Context, I, LastI);
+ return std::make_pair(true, Result);
+ }
+ }
+ if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
+ LookupResult R;
+ // Perform member lookup into struct.
+ // FIXME: In some cases, we know that every name that could be found by
+ // this qualified name lookup will also be on the identifier chain. For
+ // example, inside a class without any base classes, we never need to
+ // perform qualified lookup because all of the members are on top of the
+ // identifier chain.
+ if (isa<RecordDecl>(Ctx)) {
+ R = LookupQualifiedName(Ctx, Name, NameKind, RedeclarationOnly);
+ if (R || RedeclarationOnly)
+ return std::make_pair(true, R);
+ }
+ if (Ctx->getParent() != Ctx->getLexicalParent()
+ || isa<CXXMethodDecl>(Ctx)) {
+ // It is out of line defined C++ method or struct, we continue
+ // doing name lookup in parent context. Once we will find namespace
+ // or translation-unit we save it for possible checking
+ // using-directives later.
+ for (OutOfLineCtx = Ctx; OutOfLineCtx && !OutOfLineCtx->isFileContext();
+ OutOfLineCtx = OutOfLineCtx->getParent()) {
+ R = LookupQualifiedName(OutOfLineCtx, Name, NameKind, RedeclarationOnly);
+ if (R || RedeclarationOnly)
+ return std::make_pair(true, R);
+ }
+ }
+ }
+ }
+
+ // Collect UsingDirectiveDecls in all scopes, and recursively all
+ // nominated namespaces by those using-directives.
+ // UsingDirectives are pushed to heap, in common ancestor pointer value order.
+ // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
+ // don't build it for each lookup!
+ UsingDirectivesTy UDirs;
+ for (Scope *SC = Initial; SC; SC = SC->getParent())
+ if (SC->getFlags() & Scope::DeclScope)
+ AddScopeUsingDirectives(Context, SC, UDirs);
+
+ // Sort heapified UsingDirectiveDecls.
+ std::sort_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
+
+ // Lookup namespace scope, and global scope.
+ // Unqualified name lookup in C++ requires looking into scopes
+ // that aren't strictly lexical, and therefore we walk through the
+ // context as well as walking through the scopes.
+
+ LookupResultsTy LookupResults;
+ assert((!OutOfLineCtx || OutOfLineCtx->isFileContext()) &&
+ "We should have been looking only at file context here already.");
+ bool LookedInCtx = false;
+ LookupResult Result;
+ while (OutOfLineCtx &&
+ OutOfLineCtx != S->getEntity() &&
+ OutOfLineCtx->isNamespace()) {
+ LookedInCtx = true;
+
+ // Look into context considering using-directives.
+ CppNamespaceLookup(Context, OutOfLineCtx, Name, NameKind, IDNS,
+ LookupResults, &UDirs);
+
+ if ((Result = MergeLookupResults(Context, LookupResults)) ||
+ (RedeclarationOnly && !OutOfLineCtx->isTransparentContext()))
+ return std::make_pair(true, Result);
+
+ OutOfLineCtx = OutOfLineCtx->getParent();
+ }
+
+ for (; S; S = S->getParent()) {
+ DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
+ assert(Ctx && Ctx->isFileContext() &&
+ "We should have been looking only at file context here already.");
+
+ // Check whether the IdResolver has anything in this scope.
+ for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
+ if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
+ // We found something. Look for anything else in our scope
+ // with this same name and in an acceptable identifier
+ // namespace, so that we can construct an overload set if we
+ // need to.
+ IdentifierResolver::iterator LastI = I;
+ for (++LastI; LastI != IEnd; ++LastI) {
+ if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
+ break;
+ }
+
+ // We store name lookup result, and continue trying to look into
+ // associated context, and maybe namespaces nominated by
+ // using-directives.
+ LookupResults.push_back(
+ LookupResult::CreateLookupResult(Context, I, LastI));
+ break;
+ }
+ }
+
+ LookedInCtx = true;
+ // Look into context considering using-directives.
+ CppNamespaceLookup(Context, Ctx, Name, NameKind, IDNS,
+ LookupResults, &UDirs);
+
+ if ((Result = MergeLookupResults(Context, LookupResults)) ||
+ (RedeclarationOnly && !Ctx->isTransparentContext()))
+ return std::make_pair(true, Result);
+ }
+
+ if (!(LookedInCtx || LookupResults.empty())) {
+ // We didn't Performed lookup in Scope entity, so we return
+ // result form IdentifierResolver.
+ assert((LookupResults.size() == 1) && "Wrong size!");
+ return std::make_pair(true, LookupResults.front());
+ }
+ return std::make_pair(false, LookupResult());
+}
+
+/// @brief Perform unqualified name lookup starting from a given
+/// scope.
+///
+/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
+/// used to find names within the current scope. For example, 'x' in
+/// @code
+/// int x;
+/// int f() {
+/// return x; // unqualified name look finds 'x' in the global scope
+/// }
+/// @endcode
+///
+/// Different lookup criteria can find different names. For example, a
+/// particular scope can have both a struct and a function of the same
+/// name, and each can be found by certain lookup criteria. For more
+/// information about lookup criteria, see the documentation for the
+/// class LookupCriteria.
+///
+/// @param S The scope from which unqualified name lookup will
+/// begin. If the lookup criteria permits, name lookup may also search
+/// in the parent scopes.
+///
+/// @param Name The name of the entity that we are searching for.
+///
+/// @param Loc If provided, the source location where we're performing
+/// name lookup. At present, this is only used to produce diagnostics when
+/// C library functions (like "malloc") are implicitly declared.
+///
+/// @returns The result of name lookup, which includes zero or more
+/// declarations and possibly additional information used to diagnose
+/// ambiguities.
+Sema::LookupResult
+Sema::LookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind,
+ bool RedeclarationOnly, bool AllowBuiltinCreation,
+ SourceLocation Loc) {
+ if (!Name) return LookupResult::CreateLookupResult(Context, 0);
+
+ if (!getLangOptions().CPlusPlus) {
+ // Unqualified name lookup in C/Objective-C is purely lexical, so
+ // search in the declarations attached to the name.
+ unsigned IDNS = 0;
+ switch (NameKind) {
+ case Sema::LookupOrdinaryName:
+ IDNS = Decl::IDNS_Ordinary;
+ break;
+
+ case Sema::LookupTagName:
+ IDNS = Decl::IDNS_Tag;
+ break;
+
+ case Sema::LookupMemberName:
+ IDNS = Decl::IDNS_Member;
+ break;
+
+ case Sema::LookupOperatorName:
+ case Sema::LookupNestedNameSpecifierName:
+ case Sema::LookupNamespaceName:
+ assert(false && "C does not perform these kinds of name lookup");
+ break;
+
+ case Sema::LookupRedeclarationWithLinkage:
+ // Find the nearest non-transparent declaration scope.
+ while (!(S->getFlags() & Scope::DeclScope) ||
+ (S->getEntity() &&
+ static_cast<DeclContext *>(S->getEntity())
+ ->isTransparentContext()))
+ S = S->getParent();
+ IDNS = Decl::IDNS_Ordinary;
+ break;
+
+ case Sema::LookupObjCProtocolName:
+ IDNS = Decl::IDNS_ObjCProtocol;
+ break;
+
+ case Sema::LookupObjCImplementationName:
+ IDNS = Decl::IDNS_ObjCImplementation;
+ break;
+
+ case Sema::LookupObjCCategoryImplName:
+ IDNS = Decl::IDNS_ObjCCategoryImpl;
+ break;
+ }
+
+ // Scan up the scope chain looking for a decl that matches this
+ // identifier that is in the appropriate namespace. This search
+ // should not take long, as shadowing of names is uncommon, and
+ // deep shadowing is extremely uncommon.
+ bool LeftStartingScope = false;
+
+ for (IdentifierResolver::iterator I = IdResolver.begin(Name),
+ IEnd = IdResolver.end();
+ I != IEnd; ++I)
+ if ((*I)->isInIdentifierNamespace(IDNS)) {
+ if (NameKind == LookupRedeclarationWithLinkage) {
+ // Determine whether this (or a previous) declaration is
+ // out-of-scope.
+ if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
+ LeftStartingScope = true;
+
+ // If we found something outside of our starting scope that
+ // does not have linkage, skip it.
+ if (LeftStartingScope && !((*I)->hasLinkage()))
+ continue;
+ }
+
+ if ((*I)->getAttr<OverloadableAttr>()) {
+ // If this declaration has the "overloadable" attribute, we
+ // might have a set of overloaded functions.
+
+ // Figure out what scope the identifier is in.
+ while (!(S->getFlags() & Scope::DeclScope) ||
+ !S->isDeclScope(DeclPtrTy::make(*I)))
+ S = S->getParent();
+
+ // Find the last declaration in this scope (with the same
+ // name, naturally).
+ IdentifierResolver::iterator LastI = I;
+ for (++LastI; LastI != IEnd; ++LastI) {
+ if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
+ break;
+ }
+
+ return LookupResult::CreateLookupResult(Context, I, LastI);
+ }
+
+ // We have a single lookup result.
+ return LookupResult::CreateLookupResult(Context, *I);
+ }
+ } else {
+ // Perform C++ unqualified name lookup.
+ std::pair<bool, LookupResult> MaybeResult =
+ CppLookupName(S, Name, NameKind, RedeclarationOnly);
+ if (MaybeResult.first)
+ return MaybeResult.second;
+ }
+
+ // If we didn't find a use of this identifier, and if the identifier
+ // corresponds to a compiler builtin, create the decl object for the builtin
+ // now, injecting it into translation unit scope, and return it.
+ if (NameKind == LookupOrdinaryName ||
+ NameKind == LookupRedeclarationWithLinkage) {
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ if (II && AllowBuiltinCreation) {
+ // If this is a builtin on this (or all) targets, create the decl.
+ if (unsigned BuiltinID = II->getBuiltinID()) {
+ // In C++, we don't have any predefined library functions like
+ // 'malloc'. Instead, we'll just error.
+ if (getLangOptions().CPlusPlus &&
+ Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return LookupResult::CreateLookupResult(Context, 0);
+
+ return LookupResult::CreateLookupResult(Context,
+ LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
+ S, RedeclarationOnly, Loc));
+ }
+ }
+ }
+ return LookupResult::CreateLookupResult(Context, 0);
+}
+
+/// @brief Perform qualified name lookup into a given context.
+///
+/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
+/// names when the context of those names is explicit specified, e.g.,
+/// "std::vector" or "x->member".
+///
+/// Different lookup criteria can find different names. For example, a
+/// particular scope can have both a struct and a function of the same
+/// name, and each can be found by certain lookup criteria. For more
+/// information about lookup criteria, see the documentation for the
+/// class LookupCriteria.
+///
+/// @param LookupCtx The context in which qualified name lookup will
+/// search. If the lookup criteria permits, name lookup may also search
+/// in the parent contexts or (for C++ classes) base classes.
+///
+/// @param Name The name of the entity that we are searching for.
+///
+/// @param Criteria The criteria that this routine will use to
+/// determine which names are visible and which names will be
+/// found. Note that name lookup will find a name that is visible by
+/// the given criteria, but the entity itself may not be semantically
+/// correct or even the kind of entity expected based on the
+/// lookup. For example, searching for a nested-name-specifier name
+/// might result in an EnumDecl, which is visible but is not permitted
+/// as a nested-name-specifier in C++03.
+///
+/// @returns The result of name lookup, which includes zero or more
+/// declarations and possibly additional information used to diagnose
+/// ambiguities.
+Sema::LookupResult
+Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
+ LookupNameKind NameKind, bool RedeclarationOnly) {
+ assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
+
+ if (!Name) return LookupResult::CreateLookupResult(Context, 0);
+
+ // If we're performing qualified name lookup (e.g., lookup into a
+ // struct), find fields as part of ordinary name lookup.
+ unsigned IDNS
+ = getIdentifierNamespacesFromLookupNameKind(NameKind,
+ getLangOptions().CPlusPlus);
+ if (NameKind == LookupOrdinaryName)
+ IDNS |= Decl::IDNS_Member;
+
+ // Perform qualified name lookup into the LookupCtx.
+ DeclContext::lookup_iterator I, E;
+ for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
+ if (isAcceptableLookupResult(*I, NameKind, IDNS))
+ return LookupResult::CreateLookupResult(Context, I, E);
+
+ // If this isn't a C++ class or we aren't allowed to look into base
+ // classes, we're done.
+ if (RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx))
+ return LookupResult::CreateLookupResult(Context, 0);
+
+ // Perform lookup into our base classes.
+ BasePaths Paths;
+ Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx)));
+
+ // Look for this member in our base classes
+ if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx),
+ MemberLookupCriteria(Name, NameKind, IDNS), Paths))
+ return LookupResult::CreateLookupResult(Context, 0);
+
+ // C++ [class.member.lookup]p2:
+ // [...] If the resulting set of declarations are not all from
+ // sub-objects of the same type, or the set has a nonstatic member
+ // and includes members from distinct sub-objects, there is an
+ // ambiguity and the program is ill-formed. Otherwise that set is
+ // the result of the lookup.
+ // FIXME: support using declarations!
+ QualType SubobjectType;
+ int SubobjectNumber = 0;
+ for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
+ Path != PathEnd; ++Path) {
+ const BasePathElement &PathElement = Path->back();
+
+ // Determine whether we're looking at a distinct sub-object or not.
+ if (SubobjectType.isNull()) {
+ // This is the first subobject we've looked at. Record it's type.
+ SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
+ SubobjectNumber = PathElement.SubobjectNumber;
+ } else if (SubobjectType
+ != Context.getCanonicalType(PathElement.Base->getType())) {
+ // We found members of the given name in two subobjects of
+ // different types. This lookup is ambiguous.
+ BasePaths *PathsOnHeap = new BasePaths;
+ PathsOnHeap->swap(Paths);
+ return LookupResult::CreateLookupResult(Context, PathsOnHeap, true);
+ } else if (SubobjectNumber != PathElement.SubobjectNumber) {
+ // We have a different subobject of the same type.
+
+ // C++ [class.member.lookup]p5:
+ // A static member, a nested type or an enumerator defined in
+ // a base class T can unambiguously be found even if an object
+ // has more than one base class subobject of type T.
+ Decl *FirstDecl = *Path->Decls.first;
+ if (isa<VarDecl>(FirstDecl) ||
+ isa<TypeDecl>(FirstDecl) ||
+ isa<EnumConstantDecl>(FirstDecl))
+ continue;
+
+ if (isa<CXXMethodDecl>(FirstDecl)) {
+ // Determine whether all of the methods are static.
+ bool AllMethodsAreStatic = true;
+ for (DeclContext::lookup_iterator Func = Path->Decls.first;
+ Func != Path->Decls.second; ++Func) {
+ if (!isa<CXXMethodDecl>(*Func)) {
+ assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
+ break;
+ }
+
+ if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
+ AllMethodsAreStatic = false;
+ break;
+ }
+ }
+
+ if (AllMethodsAreStatic)
+ continue;
+ }
+
+ // We have found a nonstatic member name in multiple, distinct
+ // subobjects. Name lookup is ambiguous.
+ BasePaths *PathsOnHeap = new BasePaths;
+ PathsOnHeap->swap(Paths);
+ return LookupResult::CreateLookupResult(Context, PathsOnHeap, false);
+ }
+ }
+
+ // Lookup in a base class succeeded; return these results.
+
+ // If we found a function declaration, return an overload set.
+ if (isa<FunctionDecl>(*Paths.front().Decls.first))
+ return LookupResult::CreateLookupResult(Context,
+ Paths.front().Decls.first, Paths.front().Decls.second);
+
+ // We found a non-function declaration; return a single declaration.
+ return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first);
+}
+
+/// @brief Performs name lookup for a name that was parsed in the
+/// source code, and may contain a C++ scope specifier.
+///
+/// This routine is a convenience routine meant to be called from
+/// contexts that receive a name and an optional C++ scope specifier
+/// (e.g., "N::M::x"). It will then perform either qualified or
+/// unqualified name lookup (with LookupQualifiedName or LookupName,
+/// respectively) on the given name and return those results.
+///
+/// @param S The scope from which unqualified name lookup will
+/// begin.
+///
+/// @param SS An optional C++ scope-specified, e.g., "::N::M".
+///
+/// @param Name The name of the entity that name lookup will
+/// search for.
+///
+/// @param Loc If provided, the source location where we're performing
+/// name lookup. At present, this is only used to produce diagnostics when
+/// C library functions (like "malloc") are implicitly declared.
+///
+/// @returns The result of qualified or unqualified name lookup.
+Sema::LookupResult
+Sema::LookupParsedName(Scope *S, const CXXScopeSpec *SS,
+ DeclarationName Name, LookupNameKind NameKind,
+ bool RedeclarationOnly, bool AllowBuiltinCreation,
+ SourceLocation Loc) {
+ if (SS && (SS->isSet() || SS->isInvalid())) {
+ // If the scope specifier is invalid, don't even look for
+ // anything.
+ if (SS->isInvalid())
+ return LookupResult::CreateLookupResult(Context, 0);
+
+ assert(!isUnknownSpecialization(*SS) && "Can't lookup dependent types");
+
+ if (isDependentScopeSpecifier(*SS)) {
+ // Determine whether we are looking into the current
+ // instantiation.
+ NestedNameSpecifier *NNS
+ = static_cast<NestedNameSpecifier *>(SS->getScopeRep());
+ CXXRecordDecl *Current = getCurrentInstantiationOf(NNS);
+ assert(Current && "Bad dependent scope specifier");
+
+ // We nested name specifier refers to the current instantiation,
+ // so now we will look for a member of the current instantiation
+ // (C++0x [temp.dep.type]).
+ unsigned IDNS = getIdentifierNamespacesFromLookupNameKind(NameKind, true);
+ DeclContext::lookup_iterator I, E;
+ for (llvm::tie(I, E) = Current->lookup(Context, Name); I != E; ++I)
+ if (isAcceptableLookupResult(*I, NameKind, IDNS))
+ return LookupResult::CreateLookupResult(Context, I, E);
+ }
+
+ if (RequireCompleteDeclContext(*SS))
+ return LookupResult::CreateLookupResult(Context, 0);
+
+ return LookupQualifiedName(computeDeclContext(*SS),
+ Name, NameKind, RedeclarationOnly);
+ }
+
+ return LookupName(S, Name, NameKind, RedeclarationOnly,
+ AllowBuiltinCreation, Loc);
+}
+
+
+/// @brief Produce a diagnostic describing the ambiguity that resulted
+/// from name lookup.
+///
+/// @param Result The ambiguous name lookup result.
+///
+/// @param Name The name of the entity that name lookup was
+/// searching for.
+///
+/// @param NameLoc The location of the name within the source code.
+///
+/// @param LookupRange A source range that provides more
+/// source-location information concerning the lookup itself. For
+/// example, this range might highlight a nested-name-specifier that
+/// precedes the name.
+///
+/// @returns true
+bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
+ SourceLocation NameLoc,
+ SourceRange LookupRange) {
+ assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
+
+ if (BasePaths *Paths = Result.getBasePaths()) {
+ if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) {
+ QualType SubobjectType = Paths->front().back().Base->getType();
+ Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
+ << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
+ << LookupRange;
+
+ DeclContext::lookup_iterator Found = Paths->front().Decls.first;
+ while (isa<CXXMethodDecl>(*Found) &&
+ cast<CXXMethodDecl>(*Found)->isStatic())
+ ++Found;
+
+ Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
+
+ Result.Destroy();
+ return true;
+ }
+
+ assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes &&
+ "Unhandled form of name lookup ambiguity");
+
+ Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
+ << Name << LookupRange;
+
+ std::set<Decl *> DeclsPrinted;
+ for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end();
+ Path != PathEnd; ++Path) {
+ Decl *D = *Path->Decls.first;
+ if (DeclsPrinted.insert(D).second)
+ Diag(D->getLocation(), diag::note_ambiguous_member_found);
+ }
+
+ Result.Destroy();
+ return true;
+ } else if (Result.getKind() == LookupResult::AmbiguousReference) {
+ Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
+
+ NamedDecl **DI = reinterpret_cast<NamedDecl **>(Result.First),
+ **DEnd = reinterpret_cast<NamedDecl **>(Result.Last);
+
+ for (; DI != DEnd; ++DI)
+ Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
+
+ Result.Destroy();
+ return true;
+ }
+
+ assert(false && "Unhandled form of name lookup ambiguity");
+
+ // We can't reach here.
+ return true;
+}
+
+// \brief Add the associated classes and namespaces for
+// argument-dependent lookup with an argument of class type
+// (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
+ ASTContext &Context,
+ Sema::AssociatedNamespaceSet &AssociatedNamespaces,
+ Sema::AssociatedClassSet &AssociatedClasses) {
+ // C++ [basic.lookup.koenig]p2:
+ // [...]
+ // -- If T is a class type (including unions), its associated
+ // classes are: the class itself; the class of which it is a
+ // member, if any; and its direct and indirect base
+ // classes. Its associated namespaces are the namespaces in
+ // which its associated classes are defined.
+
+ // Add the class of which it is a member, if any.
+ DeclContext *Ctx = Class->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ AssociatedClasses.insert(EnclosingClass);
+
+ // Add the associated namespace for this class.
+ while (Ctx->isRecord())
+ Ctx = Ctx->getParent();
+ if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
+ AssociatedNamespaces.insert(EnclosingNamespace);
+
+ // Add the class itself. If we've already seen this class, we don't
+ // need to visit base classes.
+ if (!AssociatedClasses.insert(Class))
+ return;
+
+ // FIXME: Handle class template specializations
+
+ // Add direct and indirect base classes along with their associated
+ // namespaces.
+ llvm::SmallVector<CXXRecordDecl *, 32> Bases;
+ Bases.push_back(Class);
+ while (!Bases.empty()) {
+ // Pop this class off the stack.
+ Class = Bases.back();
+ Bases.pop_back();
+
+ // Visit the base classes.
+ for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
+ BaseEnd = Class->bases_end();
+ Base != BaseEnd; ++Base) {
+ const RecordType *BaseType = Base->getType()->getAsRecordType();
+ CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
+ if (AssociatedClasses.insert(BaseDecl)) {
+ // Find the associated namespace for this base class.
+ DeclContext *BaseCtx = BaseDecl->getDeclContext();
+ while (BaseCtx->isRecord())
+ BaseCtx = BaseCtx->getParent();
+ if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(BaseCtx))
+ AssociatedNamespaces.insert(EnclosingNamespace);
+
+ // Make sure we visit the bases of this base class.
+ if (BaseDecl->bases_begin() != BaseDecl->bases_end())
+ Bases.push_back(BaseDecl);
+ }
+ }
+ }
+}
+
+// \brief Add the associated classes and namespaces for
+// argument-dependent lookup with an argument of type T
+// (C++ [basic.lookup.koenig]p2).
+static void
+addAssociatedClassesAndNamespaces(QualType T,
+ ASTContext &Context,
+ Sema::AssociatedNamespaceSet &AssociatedNamespaces,
+ Sema::AssociatedClassSet &AssociatedClasses) {
+ // C++ [basic.lookup.koenig]p2:
+ //
+ // For each argument type T in the function call, there is a set
+ // of zero or more associated namespaces and a set of zero or more
+ // associated classes to be considered. The sets of namespaces and
+ // classes is determined entirely by the types of the function
+ // arguments (and the namespace of any template template
+ // argument). Typedef names and using-declarations used to specify
+ // the types do not contribute to this set. The sets of namespaces
+ // and classes are determined in the following way:
+ T = Context.getCanonicalType(T).getUnqualifiedType();
+
+ // -- If T is a pointer to U or an array of U, its associated
+ // namespaces and classes are those associated with U.
+ //
+ // We handle this by unwrapping pointer and array types immediately,
+ // to avoid unnecessary recursion.
+ while (true) {
+ if (const PointerType *Ptr = T->getAsPointerType())
+ T = Ptr->getPointeeType();
+ else if (const ArrayType *Ptr = Context.getAsArrayType(T))
+ T = Ptr->getElementType();
+ else
+ break;
+ }
+
+ // -- If T is a fundamental type, its associated sets of
+ // namespaces and classes are both empty.
+ if (T->getAsBuiltinType())
+ return;
+
+ // -- If T is a class type (including unions), its associated
+ // classes are: the class itself; the class of which it is a
+ // member, if any; and its direct and indirect base
+ // classes. Its associated namespaces are the namespaces in
+ // which its associated classes are defined.
+ if (const RecordType *ClassType = T->getAsRecordType())
+ if (CXXRecordDecl *ClassDecl
+ = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
+ addAssociatedClassesAndNamespaces(ClassDecl, Context,
+ AssociatedNamespaces,
+ AssociatedClasses);
+ return;
+ }
+
+ // -- If T is an enumeration type, its associated namespace is
+ // the namespace in which it is defined. If it is class
+ // member, its associated class is the member’s class; else
+ // it has no associated class.
+ if (const EnumType *EnumT = T->getAsEnumType()) {
+ EnumDecl *Enum = EnumT->getDecl();
+
+ DeclContext *Ctx = Enum->getDeclContext();
+ if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
+ AssociatedClasses.insert(EnclosingClass);
+
+ // Add the associated namespace for this class.
+ while (Ctx->isRecord())
+ Ctx = Ctx->getParent();
+ if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
+ AssociatedNamespaces.insert(EnclosingNamespace);
+
+ return;
+ }
+
+ // -- If T is a function type, its associated namespaces and
+ // classes are those associated with the function parameter
+ // types and those associated with the return type.
+ if (const FunctionType *FunctionType = T->getAsFunctionType()) {
+ // Return type
+ addAssociatedClassesAndNamespaces(FunctionType->getResultType(),
+ Context,
+ AssociatedNamespaces, AssociatedClasses);
+
+ const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FunctionType);
+ if (!Proto)
+ return;
+
+ // Argument types
+ for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
+ ArgEnd = Proto->arg_type_end();
+ Arg != ArgEnd; ++Arg)
+ addAssociatedClassesAndNamespaces(*Arg, Context,
+ AssociatedNamespaces, AssociatedClasses);
+
+ return;
+ }
+
+ // -- If T is a pointer to a member function of a class X, its
+ // associated namespaces and classes are those associated
+ // with the function parameter types and return type,
+ // together with those associated with X.
+ //
+ // -- If T is a pointer to a data member of class X, its
+ // associated namespaces and classes are those associated
+ // with the member type together with those associated with
+ // X.
+ if (const MemberPointerType *MemberPtr = T->getAsMemberPointerType()) {
+ // Handle the type that the pointer to member points to.
+ addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
+ Context,
+ AssociatedNamespaces, AssociatedClasses);
+
+ // Handle the class type into which this points.
+ if (const RecordType *Class = MemberPtr->getClass()->getAsRecordType())
+ addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
+ Context,
+ AssociatedNamespaces, AssociatedClasses);
+
+ return;
+ }
+
+ // FIXME: What about block pointers?
+ // FIXME: What about Objective-C message sends?
+}
+
+/// \brief Find the associated classes and namespaces for
+/// argument-dependent lookup for a call with the given set of
+/// arguments.
+///
+/// This routine computes the sets of associated classes and associated
+/// namespaces searched by argument-dependent lookup
+/// (C++ [basic.lookup.argdep]) for a given set of arguments.
+void
+Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
+ AssociatedNamespaceSet &AssociatedNamespaces,
+ AssociatedClassSet &AssociatedClasses) {
+ AssociatedNamespaces.clear();
+ AssociatedClasses.clear();
+
+ // C++ [basic.lookup.koenig]p2:
+ // For each argument type T in the function call, there is a set
+ // of zero or more associated namespaces and a set of zero or more
+ // associated classes to be considered. The sets of namespaces and
+ // classes is determined entirely by the types of the function
+ // arguments (and the namespace of any template template
+ // argument).
+ for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
+ Expr *Arg = Args[ArgIdx];
+
+ if (Arg->getType() != Context.OverloadTy) {
+ addAssociatedClassesAndNamespaces(Arg->getType(), Context,
+ AssociatedNamespaces, AssociatedClasses);
+ continue;
+ }
+
+ // [...] In addition, if the argument is the name or address of a
+ // set of overloaded functions and/or function templates, its
+ // associated classes and namespaces are the union of those
+ // associated with each of the members of the set: the namespace
+ // in which the function or function template is defined and the
+ // classes and namespaces associated with its (non-dependent)
+ // parameter types and return type.
+ DeclRefExpr *DRE = 0;
+ if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
+ DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
+ } else
+ DRE = dyn_cast<DeclRefExpr>(Arg);
+ if (!DRE)
+ continue;
+
+ OverloadedFunctionDecl *Ovl
+ = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
+ if (!Ovl)
+ continue;
+
+ for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
+ FuncEnd = Ovl->function_end();
+ Func != FuncEnd; ++Func) {
+ FunctionDecl *FDecl = cast<FunctionDecl>(*Func);
+
+ // Add the namespace in which this function was defined. Note
+ // that, if this is a member function, we do *not* consider the
+ // enclosing namespace of its class.
+ DeclContext *Ctx = FDecl->getDeclContext();
+ if (NamespaceDecl *EnclosingNamespace = dyn_cast<NamespaceDecl>(Ctx))
+ AssociatedNamespaces.insert(EnclosingNamespace);
+
+ // Add the classes and namespaces associated with the parameter
+ // types and return type of this function.
+ addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
+ AssociatedNamespaces, AssociatedClasses);
+ }
+ }
+}
+
+/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
+/// an acceptable non-member overloaded operator for a call whose
+/// arguments have types T1 (and, if non-empty, T2). This routine
+/// implements the check in C++ [over.match.oper]p3b2 concerning
+/// enumeration types.
+static bool
+IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
+ QualType T1, QualType T2,
+ ASTContext &Context) {
+ if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
+ return true;
+
+ if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
+ return true;
+
+ const FunctionProtoType *Proto = Fn->getType()->getAsFunctionProtoType();
+ if (Proto->getNumArgs() < 1)
+ return false;
+
+ if (T1->isEnumeralType()) {
+ QualType ArgType = Proto->getArgType(0).getNonReferenceType();
+ if (Context.getCanonicalType(T1).getUnqualifiedType()
+ == Context.getCanonicalType(ArgType).getUnqualifiedType())
+ return true;
+ }
+
+ if (Proto->getNumArgs() < 2)
+ return false;
+
+ if (!T2.isNull() && T2->isEnumeralType()) {
+ QualType ArgType = Proto->getArgType(1).getNonReferenceType();
+ if (Context.getCanonicalType(T2).getUnqualifiedType()
+ == Context.getCanonicalType(ArgType).getUnqualifiedType())
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Find the protocol with the given name, if any.
+ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
+ Decl *D = LookupName(TUScope, II, LookupObjCProtocolName).getAsDecl();
+ return cast_or_null<ObjCProtocolDecl>(D);
+}
+
+/// \brief Find the Objective-C implementation with the given name, if
+/// any.
+ObjCImplementationDecl *Sema::LookupObjCImplementation(IdentifierInfo *II) {
+ Decl *D = LookupName(TUScope, II, LookupObjCImplementationName).getAsDecl();
+ return cast_or_null<ObjCImplementationDecl>(D);
+}
+
+/// \brief Find the Objective-C category implementation with the given
+/// name, if any.
+ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
+ Decl *D = LookupName(TUScope, II, LookupObjCCategoryImplName).getAsDecl();
+ return cast_or_null<ObjCCategoryImplDecl>(D);
+}
+
+void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
+ QualType T1, QualType T2,
+ FunctionSet &Functions) {
+ // C++ [over.match.oper]p3:
+ // -- The set of non-member candidates is the result of the
+ // unqualified lookup of operator@ in the context of the
+ // expression according to the usual rules for name lookup in
+ // unqualified function calls (3.4.2) except that all member
+ // functions are ignored. However, if no operand has a class
+ // type, only those non-member functions in the lookup set
+ // that have a first parameter of type T1 or “reference to
+ // (possibly cv-qualified) T1”, when T1 is an enumeration
+ // type, or (if there is a right operand) a second parameter
+ // of type T2 or “reference to (possibly cv-qualified) T2”,
+ // when T2 is an enumeration type, are candidate functions.
+ DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
+ LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
+
+ assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
+
+ if (!Operators)
+ return;
+
+ for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
+ Op != OpEnd; ++Op) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op))
+ if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
+ Functions.insert(FD); // FIXME: canonical FD
+ }
+}
+
+void Sema::ArgumentDependentLookup(DeclarationName Name,
+ Expr **Args, unsigned NumArgs,
+ FunctionSet &Functions) {
+ // Find all of the associated namespaces and classes based on the
+ // arguments we have.
+ AssociatedNamespaceSet AssociatedNamespaces;
+ AssociatedClassSet AssociatedClasses;
+ FindAssociatedClassesAndNamespaces(Args, NumArgs,
+ AssociatedNamespaces, AssociatedClasses);
+
+ // C++ [basic.lookup.argdep]p3:
+ // Let X be the lookup set produced by unqualified lookup (3.4.1)
+ // and let Y be the lookup set produced by argument dependent
+ // lookup (defined as follows). If X contains [...] then Y is
+ // empty. Otherwise Y is the set of declarations found in the
+ // namespaces associated with the argument types as described
+ // below. The set of declarations found by the lookup of the name
+ // is the union of X and Y.
+ //
+ // Here, we compute Y and add its members to the overloaded
+ // candidate set.
+ for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
+ NSEnd = AssociatedNamespaces.end();
+ NS != NSEnd; ++NS) {
+ // When considering an associated namespace, the lookup is the
+ // same as the lookup performed when the associated namespace is
+ // used as a qualifier (3.4.3.2) except that:
+ //
+ // -- Any using-directives in the associated namespace are
+ // ignored.
+ //
+ // -- FIXME: Any namespace-scope friend functions declared in
+ // associated classes are visible within their respective
+ // namespaces even if they are not visible during an ordinary
+ // lookup (11.4).
+ DeclContext::lookup_iterator I, E;
+ for (llvm::tie(I, E) = (*NS)->lookup(Context, Name); I != E; ++I) {
+ FunctionDecl *Func = dyn_cast<FunctionDecl>(*I);
+ if (!Func)
+ break;
+
+ Functions.insert(Func);
+ }
+ }
+}