aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/AArch64/AArch64ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/AArch64/AArch64ISelLowering.cpp')
-rw-r--r--lib/Target/AArch64/AArch64ISelLowering.cpp338
1 files changed, 227 insertions, 111 deletions
diff --git a/lib/Target/AArch64/AArch64ISelLowering.cpp b/lib/Target/AArch64/AArch64ISelLowering.cpp
index 849058bdfbdb..0d3289ac84c3 100644
--- a/lib/Target/AArch64/AArch64ISelLowering.cpp
+++ b/lib/Target/AArch64/AArch64ISelLowering.cpp
@@ -29,6 +29,7 @@
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
@@ -554,8 +555,6 @@ AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
setSchedulingPreference(Sched::Hybrid);
- // Enable TBZ/TBNZ
- MaskAndBranchFoldingIsLegal = true;
EnableExtLdPromotion = true;
// Set required alignment.
@@ -793,7 +792,7 @@ EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
/// KnownZero/KnownOne bitsets.
void AArch64TargetLowering::computeKnownBitsForTargetNode(
const SDValue Op, APInt &KnownZero, APInt &KnownOne,
- const SelectionDAG &DAG, unsigned Depth) const {
+ const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
switch (Op.getOpcode()) {
default:
break;
@@ -2113,8 +2112,8 @@ SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
Entry.Node = Arg;
Entry.Ty = ArgTy;
- Entry.isSExt = false;
- Entry.isZExt = false;
+ Entry.IsSExt = false;
+ Entry.IsZExt = false;
Args.push_back(Entry);
const char *LibcallName =
@@ -2124,8 +2123,9 @@ SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
TargetLowering::CallLoweringInfo CLI(DAG);
- CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
- .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
+ CLI.setDebugLoc(dl)
+ .setChain(DAG.getEntryNode())
+ .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
return CallResult.first;
@@ -2231,19 +2231,13 @@ static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
}
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
- if (N->getOpcode() == ISD::SIGN_EXTEND)
- return true;
- if (isExtendedBUILD_VECTOR(N, DAG, true))
- return true;
- return false;
+ return N->getOpcode() == ISD::SIGN_EXTEND ||
+ isExtendedBUILD_VECTOR(N, DAG, true);
}
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
- if (N->getOpcode() == ISD::ZERO_EXTEND)
- return true;
- if (isExtendedBUILD_VECTOR(N, DAG, false))
- return true;
- return false;
+ return N->getOpcode() == ISD::ZERO_EXTEND ||
+ isExtendedBUILD_VECTOR(N, DAG, false);
}
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
@@ -3578,7 +3572,7 @@ SDValue
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
assert(Subtarget->isTargetELF() && "This function expects an ELF target");
- assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
+ assert(Subtarget->useSmallAddressing() &&
"ELF TLS only supported in small memory model");
// Different choices can be made for the maximum size of the TLS area for a
// module. For the small address model, the default TLS size is 16MiB and the
@@ -3679,7 +3673,7 @@ SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
SelectionDAG &DAG) const {
if (Subtarget->isTargetDarwin())
return LowerDarwinGlobalTLSAddress(Op, DAG);
- else if (Subtarget->isTargetELF())
+ if (Subtarget->isTargetELF())
return LowerELFGlobalTLSAddress(Op, DAG);
llvm_unreachable("Unexpected platform trying to use TLS");
@@ -4516,7 +4510,12 @@ unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("sp", AArch64::SP)
+ .Case("x18", AArch64::X18)
+ .Case("w18", AArch64::W18)
.Default(0);
+ if ((Reg == AArch64::X18 || Reg == AArch64::W18) &&
+ !Subtarget->isX18Reserved())
+ Reg = 0;
if (Reg)
return Reg;
report_fatal_error(Twine("Invalid register name \""
@@ -6591,21 +6590,20 @@ FailedModImm:
if (!isConstant && !usesOnlyOneValue) {
SDValue Vec = DAG.getUNDEF(VT);
SDValue Op0 = Op.getOperand(0);
- unsigned ElemSize = VT.getScalarSizeInBits();
unsigned i = 0;
- // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
+
+ // Use SCALAR_TO_VECTOR for lane zero to
// a) Avoid a RMW dependency on the full vector register, and
// b) Allow the register coalescer to fold away the copy if the
- // value is already in an S or D register.
- // Do not do this for UNDEF/LOAD nodes because we have better patterns
- // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
- if (!Op0.isUndef() && Op0.getOpcode() != ISD::LOAD &&
- (ElemSize == 32 || ElemSize == 64)) {
- unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
- MachineSDNode *N =
- DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
- DAG.getTargetConstant(SubIdx, dl, MVT::i32));
- Vec = SDValue(N, 0);
+ // value is already in an S or D register, and we're forced to emit an
+ // INSERT_SUBREG that we can't fold anywhere.
+ //
+ // We also allow types like i8 and i16 which are illegal scalar but legal
+ // vector element types. After type-legalization the inserted value is
+ // extended (i32) and it is safe to cast them to the vector type by ignoring
+ // the upper bits of the lowest lane (e.g. v8i8, v4i16).
+ if (!Op0.isUndef()) {
+ Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
++i;
}
for (; i < NumElts; ++i) {
@@ -7249,6 +7247,33 @@ bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
return NumBits == 32 || NumBits == 64;
}
+/// A helper function for determining the number of interleaved accesses we
+/// will generate when lowering accesses of the given type.
+unsigned
+AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
+ const DataLayout &DL) const {
+ return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
+}
+
+bool AArch64TargetLowering::isLegalInterleavedAccessType(
+ VectorType *VecTy, const DataLayout &DL) const {
+
+ unsigned VecSize = DL.getTypeSizeInBits(VecTy);
+ unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
+
+ // Ensure the number of vector elements is greater than 1.
+ if (VecTy->getNumElements() < 2)
+ return false;
+
+ // Ensure the element type is legal.
+ if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
+ return false;
+
+ // Ensure the total vector size is 64 or a multiple of 128. Types larger than
+ // 128 will be split into multiple interleaved accesses.
+ return VecSize == 64 || VecSize % 128 == 0;
+}
+
/// \brief Lower an interleaved load into a ldN intrinsic.
///
/// E.g. Lower an interleaved load (Factor = 2):
@@ -7272,12 +7297,15 @@ bool AArch64TargetLowering::lowerInterleavedLoad(
const DataLayout &DL = LI->getModule()->getDataLayout();
VectorType *VecTy = Shuffles[0]->getType();
- unsigned VecSize = DL.getTypeSizeInBits(VecTy);
- // Skip if we do not have NEON and skip illegal vector types.
- if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
+ // Skip if we do not have NEON and skip illegal vector types. We can
+ // "legalize" wide vector types into multiple interleaved accesses as long as
+ // the vector types are divisible by 128.
+ if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
return false;
+ unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
+
// A pointer vector can not be the return type of the ldN intrinsics. Need to
// load integer vectors first and then convert to pointer vectors.
Type *EltTy = VecTy->getVectorElementType();
@@ -7285,6 +7313,25 @@ bool AArch64TargetLowering::lowerInterleavedLoad(
VecTy =
VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
+ IRBuilder<> Builder(LI);
+
+ // The base address of the load.
+ Value *BaseAddr = LI->getPointerOperand();
+
+ if (NumLoads > 1) {
+ // If we're going to generate more than one load, reset the sub-vector type
+ // to something legal.
+ VecTy = VectorType::get(VecTy->getVectorElementType(),
+ VecTy->getVectorNumElements() / NumLoads);
+
+ // We will compute the pointer operand of each load from the original base
+ // address using GEPs. Cast the base address to a pointer to the scalar
+ // element type.
+ BaseAddr = Builder.CreateBitCast(
+ BaseAddr, VecTy->getVectorElementType()->getPointerTo(
+ LI->getPointerAddressSpace()));
+ }
+
Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
Type *Tys[2] = {VecTy, PtrTy};
static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
@@ -7293,39 +7340,49 @@ bool AArch64TargetLowering::lowerInterleavedLoad(
Function *LdNFunc =
Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
- IRBuilder<> Builder(LI);
- Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
+ // Holds sub-vectors extracted from the load intrinsic return values. The
+ // sub-vectors are associated with the shufflevector instructions they will
+ // replace.
+ DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
- CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
+ for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
- // Replace uses of each shufflevector with the corresponding vector loaded
- // by ldN.
- for (unsigned i = 0; i < Shuffles.size(); i++) {
- ShuffleVectorInst *SVI = Shuffles[i];
- unsigned Index = Indices[i];
+ // If we're generating more than one load, compute the base address of
+ // subsequent loads as an offset from the previous.
+ if (LoadCount > 0)
+ BaseAddr = Builder.CreateConstGEP1_32(
+ BaseAddr, VecTy->getVectorNumElements() * Factor);
- Value *SubVec = Builder.CreateExtractValue(LdN, Index);
+ CallInst *LdN = Builder.CreateCall(
+ LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
- // Convert the integer vector to pointer vector if the element is pointer.
- if (EltTy->isPointerTy())
- SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
+ // Extract and store the sub-vectors returned by the load intrinsic.
+ for (unsigned i = 0; i < Shuffles.size(); i++) {
+ ShuffleVectorInst *SVI = Shuffles[i];
+ unsigned Index = Indices[i];
- SVI->replaceAllUsesWith(SubVec);
- }
+ Value *SubVec = Builder.CreateExtractValue(LdN, Index);
- return true;
-}
+ // Convert the integer vector to pointer vector if the element is pointer.
+ if (EltTy->isPointerTy())
+ SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
-/// \brief Get a mask consisting of sequential integers starting from \p Start.
-///
-/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
-static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
- unsigned NumElts) {
- SmallVector<Constant *, 16> Mask;
- for (unsigned i = 0; i < NumElts; i++)
- Mask.push_back(Builder.getInt32(Start + i));
+ SubVecs[SVI].push_back(SubVec);
+ }
+ }
+
+ // Replace uses of the shufflevector instructions with the sub-vectors
+ // returned by the load intrinsic. If a shufflevector instruction is
+ // associated with more than one sub-vector, those sub-vectors will be
+ // concatenated into a single wide vector.
+ for (ShuffleVectorInst *SVI : Shuffles) {
+ auto &SubVec = SubVecs[SVI];
+ auto *WideVec =
+ SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
+ SVI->replaceAllUsesWith(WideVec);
+ }
- return ConstantVector::get(Mask);
+ return true;
}
/// \brief Lower an interleaved store into a stN intrinsic.
@@ -7369,12 +7426,15 @@ bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
const DataLayout &DL = SI->getModule()->getDataLayout();
- unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
- // Skip if we do not have NEON and skip illegal vector types.
- if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
+ // Skip if we do not have NEON and skip illegal vector types. We can
+ // "legalize" wide vector types into multiple interleaved accesses as long as
+ // the vector types are divisible by 128.
+ if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
return false;
+ unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
+
Value *Op0 = SVI->getOperand(0);
Value *Op1 = SVI->getOperand(1);
IRBuilder<> Builder(SI);
@@ -7394,6 +7454,25 @@ bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
SubVecTy = VectorType::get(IntTy, LaneLen);
}
+ // The base address of the store.
+ Value *BaseAddr = SI->getPointerOperand();
+
+ if (NumStores > 1) {
+ // If we're going to generate more than one store, reset the lane length
+ // and sub-vector type to something legal.
+ LaneLen /= NumStores;
+ SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
+
+ // We will compute the pointer operand of each store from the original base
+ // address using GEPs. Cast the base address to a pointer to the scalar
+ // element type.
+ BaseAddr = Builder.CreateBitCast(
+ BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
+ SI->getPointerAddressSpace()));
+ }
+
+ auto Mask = SVI->getShuffleMask();
+
Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
Type *Tys[2] = {SubVecTy, PtrTy};
static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
@@ -7402,34 +7481,43 @@ bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
Function *StNFunc =
Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
- SmallVector<Value *, 5> Ops;
+ for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
- // Split the shufflevector operands into sub vectors for the new stN call.
- auto Mask = SVI->getShuffleMask();
- for (unsigned i = 0; i < Factor; i++) {
- if (Mask[i] >= 0) {
- Ops.push_back(Builder.CreateShuffleVector(
- Op0, Op1, getSequentialMask(Builder, Mask[i], LaneLen)));
- } else {
- unsigned StartMask = 0;
- for (unsigned j = 1; j < LaneLen; j++) {
- if (Mask[j*Factor + i] >= 0) {
- StartMask = Mask[j*Factor + i] - j;
- break;
+ SmallVector<Value *, 5> Ops;
+
+ // Split the shufflevector operands into sub vectors for the new stN call.
+ for (unsigned i = 0; i < Factor; i++) {
+ unsigned IdxI = StoreCount * LaneLen * Factor + i;
+ if (Mask[IdxI] >= 0) {
+ Ops.push_back(Builder.CreateShuffleVector(
+ Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
+ } else {
+ unsigned StartMask = 0;
+ for (unsigned j = 1; j < LaneLen; j++) {
+ unsigned IdxJ = StoreCount * LaneLen * Factor + j;
+ if (Mask[IdxJ * Factor + IdxI] >= 0) {
+ StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
+ break;
+ }
}
+ // Note: Filling undef gaps with random elements is ok, since
+ // those elements were being written anyway (with undefs).
+ // In the case of all undefs we're defaulting to using elems from 0
+ // Note: StartMask cannot be negative, it's checked in
+ // isReInterleaveMask
+ Ops.push_back(Builder.CreateShuffleVector(
+ Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
}
- // Note: If all elements in a chunk are undefs, StartMask=0!
- // Note: Filling undef gaps with random elements is ok, since
- // those elements were being written anyway (with undefs).
- // In the case of all undefs we're defaulting to using elems from 0
- // Note: StartMask cannot be negative, it's checked in isReInterleaveMask
- Ops.push_back(Builder.CreateShuffleVector(
- Op0, Op1, getSequentialMask(Builder, StartMask, LaneLen)));
}
- }
- Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
- Builder.CreateCall(StNFunc, Ops);
+ // If we generating more than one store, we compute the base address of
+ // subsequent stores as an offset from the previous.
+ if (StoreCount > 0)
+ BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
+
+ Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
+ Builder.CreateCall(StNFunc, Ops);
+ }
return true;
}
@@ -7690,7 +7778,7 @@ SDValue
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
std::vector<SDNode *> *Created) const {
- AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
+ AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes();
if (isIntDivCheap(N->getValueType(0), Attr))
return SDValue(N,0); // Lower SDIV as SDIV
@@ -9267,7 +9355,7 @@ static SDValue performSTORECombine(SDNode *N,
return SDValue();
}
- /// This function handles the log2-shuffle pattern produced by the
+/// This function handles the log2-shuffle pattern produced by the
/// LoopVectorizer for the across vector reduction. It consists of
/// log2(NumVectorElements) steps and, in each step, 2^(s) elements
/// are reduced, where s is an induction variable from 0 to
@@ -10483,9 +10571,9 @@ void AArch64TargetLowering::ReplaceNodeResults(
}
bool AArch64TargetLowering::useLoadStackGuardNode() const {
- if (!Subtarget->isTargetAndroid())
- return true;
- return TargetLowering::useLoadStackGuardNode();
+ if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
+ return TargetLowering::useLoadStackGuardNode();
+ return true;
}
unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
@@ -10623,36 +10711,56 @@ bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
return false;
}
-Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
- if (!Subtarget->isTargetAndroid())
- return TargetLowering::getIRStackGuard(IRB);
-
- // Android provides a fixed TLS slot for the stack cookie. See the definition
- // of TLS_SLOT_STACK_GUARD in
- // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
- const unsigned TlsOffset = 0x28;
+static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Function *ThreadPointerFunc =
Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
return IRB.CreatePointerCast(
- IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
+ IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset),
Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
}
-Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
- if (!Subtarget->isTargetAndroid())
- return TargetLowering::getSafeStackPointerLocation(IRB);
+Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
+ // Android provides a fixed TLS slot for the stack cookie. See the definition
+ // of TLS_SLOT_STACK_GUARD in
+ // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
+ if (Subtarget->isTargetAndroid())
+ return UseTlsOffset(IRB, 0x28);
+ // Fuchsia is similar.
+ // <magenta/tls.h> defines MX_TLS_STACK_GUARD_OFFSET with this value.
+ if (Subtarget->isTargetFuchsia())
+ return UseTlsOffset(IRB, -0x10);
+
+ return TargetLowering::getIRStackGuard(IRB);
+}
+
+Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
// Android provides a fixed TLS slot for the SafeStack pointer. See the
// definition of TLS_SLOT_SAFESTACK in
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
- const unsigned TlsOffset = 0x48;
- Module *M = IRB.GetInsertBlock()->getParent()->getParent();
- Function *ThreadPointerFunc =
- Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
- return IRB.CreatePointerCast(
- IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
- Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
+ if (Subtarget->isTargetAndroid())
+ return UseTlsOffset(IRB, 0x48);
+
+ // Fuchsia is similar.
+ // <magenta/tls.h> defines MX_TLS_UNSAFE_SP_OFFSET with this value.
+ if (Subtarget->isTargetFuchsia())
+ return UseTlsOffset(IRB, -0x8);
+
+ return TargetLowering::getSafeStackPointerLocation(IRB);
+}
+
+bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
+ const Instruction &AndI) const {
+ // Only sink 'and' mask to cmp use block if it is masking a single bit, since
+ // this is likely to be fold the and/cmp/br into a single tbz instruction. It
+ // may be beneficial to sink in other cases, but we would have to check that
+ // the cmp would not get folded into the br to form a cbz for these to be
+ // beneficial.
+ ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
+ if (!Mask)
+ return false;
+ return Mask->getUniqueInteger().isPowerOf2();
}
void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
@@ -10702,7 +10810,7 @@ void AArch64TargetLowering::insertCopiesSplitCSR(
}
}
-bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
+bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
// Integer division on AArch64 is expensive. However, when aggressively
// optimizing for code size, we prefer to use a div instruction, as it is
// usually smaller than the alternative sequence.
@@ -10711,6 +10819,14 @@ bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
// size, because it will have to be scalarized, while the alternative code
// sequence can be performed in vector form.
bool OptSize =
- Attr.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+ Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
return OptSize && !VT.isVector();
}
+
+unsigned
+AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
+ if (Subtarget->isTargetDarwin())
+ return getPointerTy(DL).getSizeInBits();
+
+ return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
+}