diff options
Diffstat (limited to 'lib/Target/ARM/MVETailPredication.cpp')
-rw-r--r-- | lib/Target/ARM/MVETailPredication.cpp | 519 |
1 files changed, 519 insertions, 0 deletions
diff --git a/lib/Target/ARM/MVETailPredication.cpp b/lib/Target/ARM/MVETailPredication.cpp new file mode 100644 index 000000000000..4db8ab17c49b --- /dev/null +++ b/lib/Target/ARM/MVETailPredication.cpp @@ -0,0 +1,519 @@ +//===- MVETailPredication.cpp - MVE Tail Predication ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead +/// branches to help accelerate DSP applications. These two extensions can be +/// combined to provide implicit vector predication within a low-overhead loop. +/// The HardwareLoops pass inserts intrinsics identifying loops that the +/// backend will attempt to convert into a low-overhead loop. The vectorizer is +/// responsible for generating a vectorized loop in which the lanes are +/// predicated upon the iteration counter. This pass looks at these predicated +/// vector loops, that are targets for low-overhead loops, and prepares it for +/// code generation. Once the vectorizer has produced a masked loop, there's a +/// couple of final forms: +/// - A tail-predicated loop, with implicit predication. +/// - A loop containing multiple VCPT instructions, predicating multiple VPT +/// blocks of instructions operating on different vector types. + +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "ARM.h" +#include "ARMSubtarget.h" + +using namespace llvm; + +#define DEBUG_TYPE "mve-tail-predication" +#define DESC "Transform predicated vector loops to use MVE tail predication" + +static cl::opt<bool> +DisableTailPredication("disable-mve-tail-predication", cl::Hidden, + cl::init(true), + cl::desc("Disable MVE Tail Predication")); +namespace { + +class MVETailPredication : public LoopPass { + SmallVector<IntrinsicInst*, 4> MaskedInsts; + Loop *L = nullptr; + ScalarEvolution *SE = nullptr; + TargetTransformInfo *TTI = nullptr; + +public: + static char ID; + + MVETailPredication() : LoopPass(ID) { } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<ScalarEvolutionWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addRequired<TargetPassConfig>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.setPreservesCFG(); + } + + bool runOnLoop(Loop *L, LPPassManager&) override; + +private: + + /// Perform the relevant checks on the loop and convert if possible. + bool TryConvert(Value *TripCount); + + /// Return whether this is a vectorized loop, that contains masked + /// load/stores. + bool IsPredicatedVectorLoop(); + + /// Compute a value for the total number of elements that the predicated + /// loop will process. + Value *ComputeElements(Value *TripCount, VectorType *VecTy); + + /// Is the icmp that generates an i1 vector, based upon a loop counter + /// and a limit that is defined outside the loop. + bool isTailPredicate(Instruction *Predicate, Value *NumElements); +}; + +} // end namespace + +static bool IsDecrement(Instruction &I) { + auto *Call = dyn_cast<IntrinsicInst>(&I); + if (!Call) + return false; + + Intrinsic::ID ID = Call->getIntrinsicID(); + return ID == Intrinsic::loop_decrement_reg; +} + +static bool IsMasked(Instruction *I) { + auto *Call = dyn_cast<IntrinsicInst>(I); + if (!Call) + return false; + + Intrinsic::ID ID = Call->getIntrinsicID(); + // TODO: Support gather/scatter expand/compress operations. + return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load; +} + +bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { + if (skipLoop(L) || DisableTailPredication) + return false; + + Function &F = *L->getHeader()->getParent(); + auto &TPC = getAnalysis<TargetPassConfig>(); + auto &TM = TPC.getTM<TargetMachine>(); + auto *ST = &TM.getSubtarget<ARMSubtarget>(F); + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + this->L = L; + + // The MVE and LOB extensions are combined to enable tail-predication, but + // there's nothing preventing us from generating VCTP instructions for v8.1m. + if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { + LLVM_DEBUG(dbgs() << "TP: Not a v8.1m.main+mve target.\n"); + return false; + } + + BasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) + return false; + + auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { + for (auto &I : *BB) { + auto *Call = dyn_cast<IntrinsicInst>(&I); + if (!Call) + continue; + + Intrinsic::ID ID = Call->getIntrinsicID(); + if (ID == Intrinsic::set_loop_iterations || + ID == Intrinsic::test_set_loop_iterations) + return cast<IntrinsicInst>(&I); + } + return nullptr; + }; + + // Look for the hardware loop intrinsic that sets the iteration count. + IntrinsicInst *Setup = FindLoopIterations(Preheader); + + // The test.set iteration could live in the pre- preheader. + if (!Setup) { + if (!Preheader->getSinglePredecessor()) + return false; + Setup = FindLoopIterations(Preheader->getSinglePredecessor()); + if (!Setup) + return false; + } + + // Search for the hardware loop intrinic that decrements the loop counter. + IntrinsicInst *Decrement = nullptr; + for (auto *BB : L->getBlocks()) { + for (auto &I : *BB) { + if (IsDecrement(I)) { + Decrement = cast<IntrinsicInst>(&I); + break; + } + } + } + + if (!Decrement) + return false; + + LLVM_DEBUG(dbgs() << "TP: Running on Loop: " << *L + << *Setup << "\n" + << *Decrement << "\n"); + bool Changed = TryConvert(Setup->getArgOperand(0)); + return Changed; +} + +bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) { + // Look for the following: + + // %trip.count.minus.1 = add i32 %N, -1 + // %broadcast.splatinsert10 = insertelement <4 x i32> undef, + // i32 %trip.count.minus.1, i32 0 + // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10, + // <4 x i32> undef, + // <4 x i32> zeroinitializer + // ... + // ... + // %index = phi i32 + // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0 + // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert, + // <4 x i32> undef, + // <4 x i32> zeroinitializer + // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3> + // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11 + + // And return whether V == %pred. + + using namespace PatternMatch; + + CmpInst::Predicate Pred; + Instruction *Shuffle = nullptr; + Instruction *Induction = nullptr; + + // The vector icmp + if (!match(I, m_ICmp(Pred, m_Instruction(Induction), + m_Instruction(Shuffle))) || + Pred != ICmpInst::ICMP_ULE || !L->isLoopInvariant(Shuffle)) + return false; + + // First find the stuff outside the loop which is setting up the limit + // vector.... + // The invariant shuffle that broadcast the limit into a vector. + Instruction *Insert = nullptr; + if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(), + m_Zero()))) + return false; + + // Insert the limit into a vector. + Instruction *BECount = nullptr; + if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount), + m_Zero()))) + return false; + + // The limit calculation, backedge count. + Value *TripCount = nullptr; + if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes()))) + return false; + + if (TripCount != NumElements) + return false; + + // Now back to searching inside the loop body... + // Find the add with takes the index iv and adds a constant vector to it. + Instruction *BroadcastSplat = nullptr; + Constant *Const = nullptr; + if (!match(Induction, m_Add(m_Instruction(BroadcastSplat), + m_Constant(Const)))) + return false; + + // Check that we're adding <0, 1, 2, 3... + if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) { + for (unsigned i = 0; i < CDS->getNumElements(); ++i) { + if (CDS->getElementAsInteger(i) != i) + return false; + } + } else + return false; + + // The shuffle which broadcasts the index iv into a vector. + if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(), + m_Zero()))) + return false; + + // The insert element which initialises a vector with the index iv. + Instruction *IV = nullptr; + if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero()))) + return false; + + // The index iv. + auto *Phi = dyn_cast<PHINode>(IV); + if (!Phi) + return false; + + // TODO: Don't think we need to check the entry value. + Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader()); + if (!match(OnEntry, m_Zero())) + return false; + + Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch()); + unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements(); + + Instruction *LHS = nullptr; + if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes)))) + return false; + + return LHS == Phi; +} + +static VectorType* getVectorType(IntrinsicInst *I) { + unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1; + auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType()); + return cast<VectorType>(PtrTy->getElementType()); +} + +bool MVETailPredication::IsPredicatedVectorLoop() { + // Check that the loop contains at least one masked load/store intrinsic. + // We only support 'normal' vector instructions - other than masked + // load/stores. + for (auto *BB : L->getBlocks()) { + for (auto &I : *BB) { + if (IsMasked(&I)) { + VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I)); + unsigned Lanes = VecTy->getNumElements(); + unsigned ElementWidth = VecTy->getScalarSizeInBits(); + // MVE vectors are 128-bit, but don't support 128 x i1. + // TODO: Can we support vectors larger than 128-bits? + unsigned MaxWidth = TTI->getRegisterBitWidth(true); + if (Lanes * ElementWidth != MaxWidth || Lanes == MaxWidth) + return false; + MaskedInsts.push_back(cast<IntrinsicInst>(&I)); + } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) { + for (auto &U : Int->args()) { + if (isa<VectorType>(U->getType())) + return false; + } + } + } + } + + return !MaskedInsts.empty(); +} + +Value* MVETailPredication::ComputeElements(Value *TripCount, + VectorType *VecTy) { + const SCEV *TripCountSE = SE->getSCEV(TripCount); + ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()), + VecTy->getNumElements()); + + if (VF->equalsInt(1)) + return nullptr; + + // TODO: Support constant trip counts. + auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* { + if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { + if (Const->getAPInt() != -VF->getValue()) + return nullptr; + } else + return nullptr; + return dyn_cast<SCEVMulExpr>(S->getOperand(1)); + }; + + auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* { + if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) { + if (Const->getValue() != VF) + return nullptr; + } else + return nullptr; + return dyn_cast<SCEVUDivExpr>(S->getOperand(1)); + }; + + auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* { + if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) { + if (Const->getValue() != VF) + return nullptr; + } else + return nullptr; + + if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) { + if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) { + if (Const->getAPInt() != (VF->getValue() - 1)) + return nullptr; + } else + return nullptr; + + return RoundUp->getOperand(1); + } + return nullptr; + }; + + // TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to + // determine the numbers of elements instead? Looks like this is what is used + // for delinearization, but I'm not sure if it can be applied to the + // vectorized form - at least not without a bit more work than I feel + // comfortable with. + + // Search for Elems in the following SCEV: + // (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw> + const SCEV *Elems = nullptr; + if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE)) + if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1))) + if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS())) + if (auto *Mul = VisitAdd(Add)) + if (auto *Div = VisitMul(Mul)) + if (auto *Res = VisitDiv(Div)) + Elems = Res; + + if (!Elems) + return nullptr; + + Instruction *InsertPt = L->getLoopPreheader()->getTerminator(); + if (!isSafeToExpandAt(Elems, InsertPt, *SE)) + return nullptr; + + auto DL = L->getHeader()->getModule()->getDataLayout(); + SCEVExpander Expander(*SE, DL, "elements"); + return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt); +} + +// Look through the exit block to see whether there's a duplicate predicate +// instruction. This can happen when we need to perform a select on values +// from the last and previous iteration. Instead of doing a straight +// replacement of that predicate with the vctp, clone the vctp and place it +// in the block. This means that the VPR doesn't have to be live into the +// exit block which should make it easier to convert this loop into a proper +// tail predicated loop. +static void Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates, + SetVector<Instruction*> &MaybeDead, Loop *L) { + if (BasicBlock *Exit = L->getUniqueExitBlock()) { + for (auto &Pair : NewPredicates) { + Instruction *OldPred = Pair.first; + Instruction *NewPred = Pair.second; + + for (auto &I : *Exit) { + if (I.isSameOperationAs(OldPred)) { + Instruction *PredClone = NewPred->clone(); + PredClone->insertBefore(&I); + I.replaceAllUsesWith(PredClone); + MaybeDead.insert(&I); + break; + } + } + } + } + + // Drop references and add operands to check for dead. + SmallPtrSet<Instruction*, 4> Dead; + while (!MaybeDead.empty()) { + auto *I = MaybeDead.front(); + MaybeDead.remove(I); + if (I->hasNUsesOrMore(1)) + continue; + + for (auto &U : I->operands()) { + if (auto *OpI = dyn_cast<Instruction>(U)) + MaybeDead.insert(OpI); + } + I->dropAllReferences(); + Dead.insert(I); + } + + for (auto *I : Dead) + I->eraseFromParent(); + + for (auto I : L->blocks()) + DeleteDeadPHIs(I); +} + +bool MVETailPredication::TryConvert(Value *TripCount) { + if (!IsPredicatedVectorLoop()) + return false; + + LLVM_DEBUG(dbgs() << "TP: Found predicated vector loop.\n"); + + // Walk through the masked intrinsics and try to find whether the predicate + // operand is generated from an induction variable. + Module *M = L->getHeader()->getModule(); + Type *Ty = IntegerType::get(M->getContext(), 32); + SetVector<Instruction*> Predicates; + DenseMap<Instruction*, Instruction*> NewPredicates; + + for (auto *I : MaskedInsts) { + Intrinsic::ID ID = I->getIntrinsicID(); + unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3; + auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp)); + if (!Predicate || Predicates.count(Predicate)) + continue; + + VectorType *VecTy = getVectorType(I); + Value *NumElements = ComputeElements(TripCount, VecTy); + if (!NumElements) + continue; + + if (!isTailPredicate(Predicate, NumElements)) { + LLVM_DEBUG(dbgs() << "TP: Not tail predicate: " << *Predicate << "\n"); + continue; + } + + LLVM_DEBUG(dbgs() << "TP: Found tail predicate: " << *Predicate << "\n"); + Predicates.insert(Predicate); + + // Insert a phi to count the number of elements processed by the loop. + IRBuilder<> Builder(L->getHeader()->getFirstNonPHI()); + PHINode *Processed = Builder.CreatePHI(Ty, 2); + Processed->addIncoming(NumElements, L->getLoopPreheader()); + + // Insert the intrinsic to represent the effect of tail predication. + Builder.SetInsertPoint(cast<Instruction>(Predicate)); + ConstantInt *Factor = + ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements()); + Intrinsic::ID VCTPID; + switch (VecTy->getNumElements()) { + default: + llvm_unreachable("unexpected number of lanes"); + case 2: VCTPID = Intrinsic::arm_vctp64; break; + case 4: VCTPID = Intrinsic::arm_vctp32; break; + case 8: VCTPID = Intrinsic::arm_vctp16; break; + case 16: VCTPID = Intrinsic::arm_vctp8; break; + } + Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); + Value *TailPredicate = Builder.CreateCall(VCTP, Processed); + Predicate->replaceAllUsesWith(TailPredicate); + NewPredicates[Predicate] = cast<Instruction>(TailPredicate); + + // Add the incoming value to the new phi. + // TODO: This add likely already exists in the loop. + Value *Remaining = Builder.CreateSub(Processed, Factor); + Processed->addIncoming(Remaining, L->getLoopLatch()); + LLVM_DEBUG(dbgs() << "TP: Insert processed elements phi: " + << *Processed << "\n" + << "TP: Inserted VCTP: " << *TailPredicate << "\n"); + } + + // Now clean up. + Cleanup(NewPredicates, Predicates, L); + return true; +} + +Pass *llvm::createMVETailPredicationPass() { + return new MVETailPredication(); +} + +char MVETailPredication::ID = 0; + +INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) +INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) |