aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/ARM/MVETailPredication.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/ARM/MVETailPredication.cpp')
-rw-r--r--lib/Target/ARM/MVETailPredication.cpp519
1 files changed, 519 insertions, 0 deletions
diff --git a/lib/Target/ARM/MVETailPredication.cpp b/lib/Target/ARM/MVETailPredication.cpp
new file mode 100644
index 000000000000..4db8ab17c49b
--- /dev/null
+++ b/lib/Target/ARM/MVETailPredication.cpp
@@ -0,0 +1,519 @@
+//===- MVETailPredication.cpp - MVE Tail Predication ----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
+/// branches to help accelerate DSP applications. These two extensions can be
+/// combined to provide implicit vector predication within a low-overhead loop.
+/// The HardwareLoops pass inserts intrinsics identifying loops that the
+/// backend will attempt to convert into a low-overhead loop. The vectorizer is
+/// responsible for generating a vectorized loop in which the lanes are
+/// predicated upon the iteration counter. This pass looks at these predicated
+/// vector loops, that are targets for low-overhead loops, and prepares it for
+/// code generation. Once the vectorizer has produced a masked loop, there's a
+/// couple of final forms:
+/// - A tail-predicated loop, with implicit predication.
+/// - A loop containing multiple VCPT instructions, predicating multiple VPT
+/// blocks of instructions operating on different vector types.
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "ARM.h"
+#include "ARMSubtarget.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mve-tail-predication"
+#define DESC "Transform predicated vector loops to use MVE tail predication"
+
+static cl::opt<bool>
+DisableTailPredication("disable-mve-tail-predication", cl::Hidden,
+ cl::init(true),
+ cl::desc("Disable MVE Tail Predication"));
+namespace {
+
+class MVETailPredication : public LoopPass {
+ SmallVector<IntrinsicInst*, 4> MaskedInsts;
+ Loop *L = nullptr;
+ ScalarEvolution *SE = nullptr;
+ TargetTransformInfo *TTI = nullptr;
+
+public:
+ static char ID;
+
+ MVETailPredication() : LoopPass(ID) { }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.setPreservesCFG();
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager&) override;
+
+private:
+
+ /// Perform the relevant checks on the loop and convert if possible.
+ bool TryConvert(Value *TripCount);
+
+ /// Return whether this is a vectorized loop, that contains masked
+ /// load/stores.
+ bool IsPredicatedVectorLoop();
+
+ /// Compute a value for the total number of elements that the predicated
+ /// loop will process.
+ Value *ComputeElements(Value *TripCount, VectorType *VecTy);
+
+ /// Is the icmp that generates an i1 vector, based upon a loop counter
+ /// and a limit that is defined outside the loop.
+ bool isTailPredicate(Instruction *Predicate, Value *NumElements);
+};
+
+} // end namespace
+
+static bool IsDecrement(Instruction &I) {
+ auto *Call = dyn_cast<IntrinsicInst>(&I);
+ if (!Call)
+ return false;
+
+ Intrinsic::ID ID = Call->getIntrinsicID();
+ return ID == Intrinsic::loop_decrement_reg;
+}
+
+static bool IsMasked(Instruction *I) {
+ auto *Call = dyn_cast<IntrinsicInst>(I);
+ if (!Call)
+ return false;
+
+ Intrinsic::ID ID = Call->getIntrinsicID();
+ // TODO: Support gather/scatter expand/compress operations.
+ return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
+}
+
+bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
+ if (skipLoop(L) || DisableTailPredication)
+ return false;
+
+ Function &F = *L->getHeader()->getParent();
+ auto &TPC = getAnalysis<TargetPassConfig>();
+ auto &TM = TPC.getTM<TargetMachine>();
+ auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
+ TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ this->L = L;
+
+ // The MVE and LOB extensions are combined to enable tail-predication, but
+ // there's nothing preventing us from generating VCTP instructions for v8.1m.
+ if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
+ LLVM_DEBUG(dbgs() << "TP: Not a v8.1m.main+mve target.\n");
+ return false;
+ }
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader)
+ return false;
+
+ auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
+ for (auto &I : *BB) {
+ auto *Call = dyn_cast<IntrinsicInst>(&I);
+ if (!Call)
+ continue;
+
+ Intrinsic::ID ID = Call->getIntrinsicID();
+ if (ID == Intrinsic::set_loop_iterations ||
+ ID == Intrinsic::test_set_loop_iterations)
+ return cast<IntrinsicInst>(&I);
+ }
+ return nullptr;
+ };
+
+ // Look for the hardware loop intrinsic that sets the iteration count.
+ IntrinsicInst *Setup = FindLoopIterations(Preheader);
+
+ // The test.set iteration could live in the pre- preheader.
+ if (!Setup) {
+ if (!Preheader->getSinglePredecessor())
+ return false;
+ Setup = FindLoopIterations(Preheader->getSinglePredecessor());
+ if (!Setup)
+ return false;
+ }
+
+ // Search for the hardware loop intrinic that decrements the loop counter.
+ IntrinsicInst *Decrement = nullptr;
+ for (auto *BB : L->getBlocks()) {
+ for (auto &I : *BB) {
+ if (IsDecrement(I)) {
+ Decrement = cast<IntrinsicInst>(&I);
+ break;
+ }
+ }
+ }
+
+ if (!Decrement)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "TP: Running on Loop: " << *L
+ << *Setup << "\n"
+ << *Decrement << "\n");
+ bool Changed = TryConvert(Setup->getArgOperand(0));
+ return Changed;
+}
+
+bool MVETailPredication::isTailPredicate(Instruction *I, Value *NumElements) {
+ // Look for the following:
+
+ // %trip.count.minus.1 = add i32 %N, -1
+ // %broadcast.splatinsert10 = insertelement <4 x i32> undef,
+ // i32 %trip.count.minus.1, i32 0
+ // %broadcast.splat11 = shufflevector <4 x i32> %broadcast.splatinsert10,
+ // <4 x i32> undef,
+ // <4 x i32> zeroinitializer
+ // ...
+ // ...
+ // %index = phi i32
+ // %broadcast.splatinsert = insertelement <4 x i32> undef, i32 %index, i32 0
+ // %broadcast.splat = shufflevector <4 x i32> %broadcast.splatinsert,
+ // <4 x i32> undef,
+ // <4 x i32> zeroinitializer
+ // %induction = add <4 x i32> %broadcast.splat, <i32 0, i32 1, i32 2, i32 3>
+ // %pred = icmp ule <4 x i32> %induction, %broadcast.splat11
+
+ // And return whether V == %pred.
+
+ using namespace PatternMatch;
+
+ CmpInst::Predicate Pred;
+ Instruction *Shuffle = nullptr;
+ Instruction *Induction = nullptr;
+
+ // The vector icmp
+ if (!match(I, m_ICmp(Pred, m_Instruction(Induction),
+ m_Instruction(Shuffle))) ||
+ Pred != ICmpInst::ICMP_ULE || !L->isLoopInvariant(Shuffle))
+ return false;
+
+ // First find the stuff outside the loop which is setting up the limit
+ // vector....
+ // The invariant shuffle that broadcast the limit into a vector.
+ Instruction *Insert = nullptr;
+ if (!match(Shuffle, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
+ m_Zero())))
+ return false;
+
+ // Insert the limit into a vector.
+ Instruction *BECount = nullptr;
+ if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(BECount),
+ m_Zero())))
+ return false;
+
+ // The limit calculation, backedge count.
+ Value *TripCount = nullptr;
+ if (!match(BECount, m_Add(m_Value(TripCount), m_AllOnes())))
+ return false;
+
+ if (TripCount != NumElements)
+ return false;
+
+ // Now back to searching inside the loop body...
+ // Find the add with takes the index iv and adds a constant vector to it.
+ Instruction *BroadcastSplat = nullptr;
+ Constant *Const = nullptr;
+ if (!match(Induction, m_Add(m_Instruction(BroadcastSplat),
+ m_Constant(Const))))
+ return false;
+
+ // Check that we're adding <0, 1, 2, 3...
+ if (auto *CDS = dyn_cast<ConstantDataSequential>(Const)) {
+ for (unsigned i = 0; i < CDS->getNumElements(); ++i) {
+ if (CDS->getElementAsInteger(i) != i)
+ return false;
+ }
+ } else
+ return false;
+
+ // The shuffle which broadcasts the index iv into a vector.
+ if (!match(BroadcastSplat, m_ShuffleVector(m_Instruction(Insert), m_Undef(),
+ m_Zero())))
+ return false;
+
+ // The insert element which initialises a vector with the index iv.
+ Instruction *IV = nullptr;
+ if (!match(Insert, m_InsertElement(m_Undef(), m_Instruction(IV), m_Zero())))
+ return false;
+
+ // The index iv.
+ auto *Phi = dyn_cast<PHINode>(IV);
+ if (!Phi)
+ return false;
+
+ // TODO: Don't think we need to check the entry value.
+ Value *OnEntry = Phi->getIncomingValueForBlock(L->getLoopPreheader());
+ if (!match(OnEntry, m_Zero()))
+ return false;
+
+ Value *InLoop = Phi->getIncomingValueForBlock(L->getLoopLatch());
+ unsigned Lanes = cast<VectorType>(Insert->getType())->getNumElements();
+
+ Instruction *LHS = nullptr;
+ if (!match(InLoop, m_Add(m_Instruction(LHS), m_SpecificInt(Lanes))))
+ return false;
+
+ return LHS == Phi;
+}
+
+static VectorType* getVectorType(IntrinsicInst *I) {
+ unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
+ auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
+ return cast<VectorType>(PtrTy->getElementType());
+}
+
+bool MVETailPredication::IsPredicatedVectorLoop() {
+ // Check that the loop contains at least one masked load/store intrinsic.
+ // We only support 'normal' vector instructions - other than masked
+ // load/stores.
+ for (auto *BB : L->getBlocks()) {
+ for (auto &I : *BB) {
+ if (IsMasked(&I)) {
+ VectorType *VecTy = getVectorType(cast<IntrinsicInst>(&I));
+ unsigned Lanes = VecTy->getNumElements();
+ unsigned ElementWidth = VecTy->getScalarSizeInBits();
+ // MVE vectors are 128-bit, but don't support 128 x i1.
+ // TODO: Can we support vectors larger than 128-bits?
+ unsigned MaxWidth = TTI->getRegisterBitWidth(true);
+ if (Lanes * ElementWidth != MaxWidth || Lanes == MaxWidth)
+ return false;
+ MaskedInsts.push_back(cast<IntrinsicInst>(&I));
+ } else if (auto *Int = dyn_cast<IntrinsicInst>(&I)) {
+ for (auto &U : Int->args()) {
+ if (isa<VectorType>(U->getType()))
+ return false;
+ }
+ }
+ }
+ }
+
+ return !MaskedInsts.empty();
+}
+
+Value* MVETailPredication::ComputeElements(Value *TripCount,
+ VectorType *VecTy) {
+ const SCEV *TripCountSE = SE->getSCEV(TripCount);
+ ConstantInt *VF = ConstantInt::get(cast<IntegerType>(TripCount->getType()),
+ VecTy->getNumElements());
+
+ if (VF->equalsInt(1))
+ return nullptr;
+
+ // TODO: Support constant trip counts.
+ auto VisitAdd = [&](const SCEVAddExpr *S) -> const SCEVMulExpr* {
+ if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
+ if (Const->getAPInt() != -VF->getValue())
+ return nullptr;
+ } else
+ return nullptr;
+ return dyn_cast<SCEVMulExpr>(S->getOperand(1));
+ };
+
+ auto VisitMul = [&](const SCEVMulExpr *S) -> const SCEVUDivExpr* {
+ if (auto *Const = dyn_cast<SCEVConstant>(S->getOperand(0))) {
+ if (Const->getValue() != VF)
+ return nullptr;
+ } else
+ return nullptr;
+ return dyn_cast<SCEVUDivExpr>(S->getOperand(1));
+ };
+
+ auto VisitDiv = [&](const SCEVUDivExpr *S) -> const SCEV* {
+ if (auto *Const = dyn_cast<SCEVConstant>(S->getRHS())) {
+ if (Const->getValue() != VF)
+ return nullptr;
+ } else
+ return nullptr;
+
+ if (auto *RoundUp = dyn_cast<SCEVAddExpr>(S->getLHS())) {
+ if (auto *Const = dyn_cast<SCEVConstant>(RoundUp->getOperand(0))) {
+ if (Const->getAPInt() != (VF->getValue() - 1))
+ return nullptr;
+ } else
+ return nullptr;
+
+ return RoundUp->getOperand(1);
+ }
+ return nullptr;
+ };
+
+ // TODO: Can we use SCEV helpers, such as findArrayDimensions, and friends to
+ // determine the numbers of elements instead? Looks like this is what is used
+ // for delinearization, but I'm not sure if it can be applied to the
+ // vectorized form - at least not without a bit more work than I feel
+ // comfortable with.
+
+ // Search for Elems in the following SCEV:
+ // (1 + ((-VF + (VF * (((VF - 1) + %Elems) /u VF))<nuw>) /u VF))<nuw><nsw>
+ const SCEV *Elems = nullptr;
+ if (auto *TC = dyn_cast<SCEVAddExpr>(TripCountSE))
+ if (auto *Div = dyn_cast<SCEVUDivExpr>(TC->getOperand(1)))
+ if (auto *Add = dyn_cast<SCEVAddExpr>(Div->getLHS()))
+ if (auto *Mul = VisitAdd(Add))
+ if (auto *Div = VisitMul(Mul))
+ if (auto *Res = VisitDiv(Div))
+ Elems = Res;
+
+ if (!Elems)
+ return nullptr;
+
+ Instruction *InsertPt = L->getLoopPreheader()->getTerminator();
+ if (!isSafeToExpandAt(Elems, InsertPt, *SE))
+ return nullptr;
+
+ auto DL = L->getHeader()->getModule()->getDataLayout();
+ SCEVExpander Expander(*SE, DL, "elements");
+ return Expander.expandCodeFor(Elems, Elems->getType(), InsertPt);
+}
+
+// Look through the exit block to see whether there's a duplicate predicate
+// instruction. This can happen when we need to perform a select on values
+// from the last and previous iteration. Instead of doing a straight
+// replacement of that predicate with the vctp, clone the vctp and place it
+// in the block. This means that the VPR doesn't have to be live into the
+// exit block which should make it easier to convert this loop into a proper
+// tail predicated loop.
+static void Cleanup(DenseMap<Instruction*, Instruction*> &NewPredicates,
+ SetVector<Instruction*> &MaybeDead, Loop *L) {
+ if (BasicBlock *Exit = L->getUniqueExitBlock()) {
+ for (auto &Pair : NewPredicates) {
+ Instruction *OldPred = Pair.first;
+ Instruction *NewPred = Pair.second;
+
+ for (auto &I : *Exit) {
+ if (I.isSameOperationAs(OldPred)) {
+ Instruction *PredClone = NewPred->clone();
+ PredClone->insertBefore(&I);
+ I.replaceAllUsesWith(PredClone);
+ MaybeDead.insert(&I);
+ break;
+ }
+ }
+ }
+ }
+
+ // Drop references and add operands to check for dead.
+ SmallPtrSet<Instruction*, 4> Dead;
+ while (!MaybeDead.empty()) {
+ auto *I = MaybeDead.front();
+ MaybeDead.remove(I);
+ if (I->hasNUsesOrMore(1))
+ continue;
+
+ for (auto &U : I->operands()) {
+ if (auto *OpI = dyn_cast<Instruction>(U))
+ MaybeDead.insert(OpI);
+ }
+ I->dropAllReferences();
+ Dead.insert(I);
+ }
+
+ for (auto *I : Dead)
+ I->eraseFromParent();
+
+ for (auto I : L->blocks())
+ DeleteDeadPHIs(I);
+}
+
+bool MVETailPredication::TryConvert(Value *TripCount) {
+ if (!IsPredicatedVectorLoop())
+ return false;
+
+ LLVM_DEBUG(dbgs() << "TP: Found predicated vector loop.\n");
+
+ // Walk through the masked intrinsics and try to find whether the predicate
+ // operand is generated from an induction variable.
+ Module *M = L->getHeader()->getModule();
+ Type *Ty = IntegerType::get(M->getContext(), 32);
+ SetVector<Instruction*> Predicates;
+ DenseMap<Instruction*, Instruction*> NewPredicates;
+
+ for (auto *I : MaskedInsts) {
+ Intrinsic::ID ID = I->getIntrinsicID();
+ unsigned PredOp = ID == Intrinsic::masked_load ? 2 : 3;
+ auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
+ if (!Predicate || Predicates.count(Predicate))
+ continue;
+
+ VectorType *VecTy = getVectorType(I);
+ Value *NumElements = ComputeElements(TripCount, VecTy);
+ if (!NumElements)
+ continue;
+
+ if (!isTailPredicate(Predicate, NumElements)) {
+ LLVM_DEBUG(dbgs() << "TP: Not tail predicate: " << *Predicate << "\n");
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << "TP: Found tail predicate: " << *Predicate << "\n");
+ Predicates.insert(Predicate);
+
+ // Insert a phi to count the number of elements processed by the loop.
+ IRBuilder<> Builder(L->getHeader()->getFirstNonPHI());
+ PHINode *Processed = Builder.CreatePHI(Ty, 2);
+ Processed->addIncoming(NumElements, L->getLoopPreheader());
+
+ // Insert the intrinsic to represent the effect of tail predication.
+ Builder.SetInsertPoint(cast<Instruction>(Predicate));
+ ConstantInt *Factor =
+ ConstantInt::get(cast<IntegerType>(Ty), VecTy->getNumElements());
+ Intrinsic::ID VCTPID;
+ switch (VecTy->getNumElements()) {
+ default:
+ llvm_unreachable("unexpected number of lanes");
+ case 2: VCTPID = Intrinsic::arm_vctp64; break;
+ case 4: VCTPID = Intrinsic::arm_vctp32; break;
+ case 8: VCTPID = Intrinsic::arm_vctp16; break;
+ case 16: VCTPID = Intrinsic::arm_vctp8; break;
+ }
+ Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
+ Value *TailPredicate = Builder.CreateCall(VCTP, Processed);
+ Predicate->replaceAllUsesWith(TailPredicate);
+ NewPredicates[Predicate] = cast<Instruction>(TailPredicate);
+
+ // Add the incoming value to the new phi.
+ // TODO: This add likely already exists in the loop.
+ Value *Remaining = Builder.CreateSub(Processed, Factor);
+ Processed->addIncoming(Remaining, L->getLoopLatch());
+ LLVM_DEBUG(dbgs() << "TP: Insert processed elements phi: "
+ << *Processed << "\n"
+ << "TP: Inserted VCTP: " << *TailPredicate << "\n");
+ }
+
+ // Now clean up.
+ Cleanup(NewPredicates, Predicates, L);
+ return true;
+}
+
+Pass *llvm::createMVETailPredicationPass() {
+ return new MVETailPredication();
+}
+
+char MVETailPredication::ID = 0;
+
+INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
+INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)