aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/Lanai/LanaiInstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Target/Lanai/LanaiInstrInfo.td')
-rw-r--r--lib/Target/Lanai/LanaiInstrInfo.td892
1 files changed, 892 insertions, 0 deletions
diff --git a/lib/Target/Lanai/LanaiInstrInfo.td b/lib/Target/Lanai/LanaiInstrInfo.td
new file mode 100644
index 000000000000..cd1abc1f3359
--- /dev/null
+++ b/lib/Target/Lanai/LanaiInstrInfo.td
@@ -0,0 +1,892 @@
+//===-- LanaiInstrInfo.td - Target Description for Lanai Target -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Lanai instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+
+include "LanaiInstrFormats.td"
+
+// -------------------------------------------------- //
+// Instruction Operands and Patterns
+// -------------------------------------------------- //
+
+// These are target-independent nodes, but have target-specific formats.
+def SDT_LanaiCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
+def SDT_LanaiCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>]>;
+def SDT_LanaiCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
+def SDT_LanaiSetFlag : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
+def SDT_LanaiSelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
+ SDTCisSameAs<1, 2>]>;
+def SDT_LanaiSetCC : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>]>;
+def SDT_LanaiBrCC : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>,
+ SDTCisVT<1, i32>]>;
+def SDT_LanaiAdjDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>]>;
+
+def Call : SDNode<"LanaiISD::CALL", SDT_LanaiCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+def RetFlag : SDNode<"LanaiISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+def CallSeqStart : SDNode<"ISD::CALLSEQ_START", SDT_LanaiCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def CallSeqEnd : SDNode<"ISD::CALLSEQ_END", SDT_LanaiCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def LanaiSetFlag : SDNode<"LanaiISD::SET_FLAG", SDT_LanaiSetFlag,
+ [SDNPOutGlue]>;
+def LanaiSubbF : SDNode<"LanaiISD::SUBBF", SDT_LanaiSetFlag,
+ [SDNPOutGlue, SDNPInGlue]>;
+def LanaiBrCC : SDNode<"LanaiISD::BR_CC", SDT_LanaiBrCC,
+ [SDNPHasChain, SDNPInGlue]>;
+def LanaiSelectCC : SDNode<"LanaiISD::SELECT_CC", SDT_LanaiSelectCC,
+ [SDNPInGlue]>;
+def LanaiSetCC : SDNode<"LanaiISD::SETCC", SDT_LanaiSetCC,
+ [SDNPInGlue]>;
+def LanaiHi : SDNode<"LanaiISD::HI", SDTIntUnaryOp>;
+def LanaiLo : SDNode<"LanaiISD::LO", SDTIntUnaryOp>;
+def LanaiSmall : SDNode<"LanaiISD::SMALL", SDTIntUnaryOp>;
+def LanaiAdjDynAlloc : SDNode<"LanaiISD::ADJDYNALLOC", SDT_LanaiAdjDynAlloc>;
+
+// Extract bits 0-15 (low-end) of an immediate value.
+def LO16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() & 0xffff,
+ SDLoc(N), MVT::i32);
+}]>;
+
+// Extract bits 16-31 (high-end) of an immediate value.
+// Transformation function: shift the immediate value down into the low bits.
+def HI16 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() >> 16, SDLoc(N),
+ MVT::i32);
+}]>;
+
+def NEG : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N), MVT::i32);
+}]>;
+
+def LO21 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((uint64_t)N->getZExtValue() & 0x1fffff,
+ SDLoc(N), MVT::i32);
+}]>;
+
+// Branch targets
+def BrTargetAsmOperand : AsmOperandClass {
+ let Name = "BrTarget";
+}
+def BrTarget : Operand<OtherVT> {
+ let ParserMatchClass = BrTargetAsmOperand;
+ let EncoderMethod = "getBranchTargetOpValue";
+ let DecoderMethod = "decodeBranch";
+}
+
+def CallTargetAsmOperand : AsmOperandClass {
+ let Name = "CallTarget";
+}
+def CallTarget : Operand<i32> {
+ let ParserMatchClass = CallTargetAsmOperand;
+ let EncoderMethod = "getBranchTargetOpValue";
+ let DecoderMethod = "decodeBranch";
+}
+
+def ImmShiftAsmOperand : AsmOperandClass { let Name = "ImmShift"; }
+def immShift : Operand<i32>, PatLeaf<(imm), [{
+ int Imm = N->getSExtValue();
+ return Imm >= -31 && Imm <= 31;}]> {
+ let ParserMatchClass = ImmShiftAsmOperand;
+ let DecoderMethod = "decodeShiftImm";
+}
+
+def Imm10AsmOperand : AsmOperandClass { let Name = "Imm10"; }
+def imm10 : Operand<i32>, PatLeaf<(imm), [{
+ return isInt<10>(N->getSExtValue()); }]> {
+ let ParserMatchClass = Imm10AsmOperand;
+}
+
+def immZExt21 : PatLeaf<(imm),
+ [{return isUInt<21>(N->getZExtValue()); }], LO21>;
+
+def LoImm16AsmOperand : AsmOperandClass { let Name = "LoImm16"; }
+def i32lo16z : Operand<i32>, PatLeaf<(i32 imm), [{
+ // i32lo16 predicate - true if the 32-bit immediate has only rightmost 16
+ // bits set.
+ return ((N->getZExtValue() & 0xFFFFUL) == N->getZExtValue());}], LO16> {
+ let ParserMatchClass = LoImm16AsmOperand;
+}
+def i32neg16 : Operand<i32>, PatLeaf<(i32 imm), [{
+ // i32neg16 predicate - true if the 32-bit immediate is negative and can
+ // be represented by a 16 bit integer.
+ int Imm = N->getSExtValue();
+ return (Imm < 0) && (isInt<16>(Imm));}], LO16> {
+ let ParserMatchClass = LoImm16AsmOperand;
+}
+def i32lo16s : Operand<i32>, PatLeaf<(i32 imm), [{
+ // i32lo16 predicate - true if the 32-bit immediate has only rightmost 16
+ // bits set.
+ return ((int64_t)(N->getSExtValue() & 0xFFFFUL) == N->getSExtValue());}], LO16> {
+ let ParserMatchClass = LoImm16AsmOperand;
+}
+
+def LoImm16AndAsmOperand : AsmOperandClass { let Name = "LoImm16And"; }
+def i32lo16and : Operand<i32>, PatLeaf<(i32 imm), [{
+ // i32lo16 predicate - true if the 32-bit immediate has the rightmost 16
+ // bits set and the leftmost 16 bits 1's.
+ return (N->getZExtValue() >= 0xFFFF0000UL);}], LO16> {
+ let ParserMatchClass = LoImm16AndAsmOperand;
+ let PrintMethod = "printLo16AndImmOperand";
+}
+
+def HiImm16AsmOperand : AsmOperandClass { let Name = "HiImm16"; }
+def i32hi16 : Operand<i32>, PatLeaf<(i32 imm), [{
+ // i32hi16 predicate - true if the 32-bit immediate has only leftmost 16
+ // bits set.
+ return ((N->getZExtValue() & 0xFFFF0000UL) == N->getZExtValue());}], HI16> {
+ let ParserMatchClass = HiImm16AsmOperand;
+ let PrintMethod = "printHi16ImmOperand";
+}
+
+def HiImm16AndAsmOperand : AsmOperandClass { let Name = "HiImm16And"; }
+def i32hi16and : Operand<i32>, PatLeaf<(i32 imm), [{
+ // i32lo16 predicate - true if the 32-bit immediate has the leftmost 16
+ // bits set and the rightmost 16 bits 1's.
+ return ((N->getZExtValue() & 0xFFFFUL) == 0xFFFFUL);}], HI16> {
+ let ParserMatchClass = HiImm16AndAsmOperand;
+ let PrintMethod = "printHi16AndImmOperand";
+}
+
+def LoImm21AsmOperand : AsmOperandClass { let Name = "LoImm21"; }
+def i32lo21 : Operand<i32>, PatLeaf<(i32 imm), [{
+ // i32lo21 predicate - true if the 32-bit immediate has only rightmost 21
+ // bits set.
+ return ((N->getZExtValue() & 0x1FFFFFUL) == N->getZExtValue());}], LO21> {
+ let ParserMatchClass = LoImm21AsmOperand;
+}
+
+def AluOp : Operand<i32> {
+ let PrintMethod = "printAluOperand";
+}
+
+// Addressing modes.
+def ADDRrr : ComplexPattern<i32, 3, "selectAddrRr", [], []>;
+def ADDRri : ComplexPattern<i32, 3, "selectAddrRi", [frameindex], []>;
+def ADDRsls : ComplexPattern<i32, 1, "selectAddrSls", [frameindex], []>;
+def ADDRspls : ComplexPattern<i32, 3, "selectAddrSpls", [frameindex], []>;
+
+// Address operands
+def MemRegImmAsmOperand : AsmOperandClass {
+ let Name = "MemRegImm";
+ let ParserMethod = "parseMemoryOperand";
+}
+def MEMri : Operand<i32> {
+ let DecoderMethod = "decodeRiMemoryValue";
+ let EncoderMethod = "getRiMemoryOpValue";
+ let MIOperandInfo = (ops GPR:$base, i32lo16s:$offset, AluOp:$Opcode);
+ let ParserMatchClass = MemRegImmAsmOperand;
+ let PrintMethod = "printMemRiOperand";
+}
+
+def MemRegRegAsmOperand : AsmOperandClass {
+ let Name = "MemRegReg";
+ let ParserMethod = "parseMemoryOperand";
+}
+def MEMrr : Operand<i32> {
+ let DecoderMethod = "decodeRrMemoryValue";
+ let EncoderMethod = "getRrMemoryOpValue";
+ let MIOperandInfo = (ops GPR:$Op1, GPR:$Op2, AluOp:$Opcode);
+ let ParserMatchClass = MemRegRegAsmOperand;
+ let PrintMethod = "printMemRrOperand";
+}
+
+def MemImmAsmOperand : AsmOperandClass {
+ let Name = "MemImm";
+ let ParserMethod = "parseMemoryOperand";
+}
+def MEMi : Operand<i32> {
+ let MIOperandInfo = (ops i32lo21:$offset);
+ let ParserMatchClass = MemImmAsmOperand;
+ let PrintMethod = "printMemImmOperand";
+}
+
+def MemSplsAsmOperand : AsmOperandClass {
+ let Name = "MemSpls";
+ let ParserMethod = "parseMemoryOperand";
+}
+def MEMspls : Operand<i32> {
+ let DecoderMethod = "decodeSplsValue";
+ let EncoderMethod = "getSplsOpValue";
+ let MIOperandInfo = (ops GPR:$base, imm10:$offset, AluOp:$Opcode);
+ let ParserMatchClass = MemSplsAsmOperand;
+ let PrintMethod = "printMemSplsOperand";
+}
+
+def CCOp : Operand<i32> {
+ let PrintMethod = "printCCOperand";
+}
+
+// Predicate operand. Default to 0 = true.
+def CondCodeOperand : AsmOperandClass { let Name = "CondCode"; }
+
+def pred : PredicateOperand<i32, (ops i32imm), (ops (i32 0))> {
+ let PrintMethod = "printPredicateOperand";
+ let ParserMatchClass = CondCodeOperand;
+ let DecoderMethod = "decodePredicateOperand";
+}
+
+let hasSideEffects = 0, Inst = 0x00000001 in
+ def NOP : InstLanai<(outs), (ins), "nop", []>;
+
+// Special NOPs to change logging level in vlanai.
+let hasSideEffects = 0, Inst = 0x00000002 in
+ def LOG0 : InstLanai<(outs), (ins), "log_0", []>;
+let hasSideEffects = 0, Inst = 0x00000003 in
+ def LOG1 : InstLanai<(outs), (ins), "log_1", []>;
+let hasSideEffects = 0, Inst = 0x00000004 in
+ def LOG2 : InstLanai<(outs), (ins), "log_2", []>;
+let hasSideEffects = 0, Inst = 0x00000005 in
+ def LOG3 : InstLanai<(outs), (ins), "log_3", []>;
+let hasSideEffects = 0, Inst = 0x00000006 in
+ def LOG4 : InstLanai<(outs), (ins), "log_4", []>;
+
+// Map an SPLS instruction onto itself. All other instructions will be mapped
+// onto -1. Used to identify SPLS instructions.
+def splsIdempotent : InstrMapping {
+ let FilterClass = "InstSPLS";
+ let RowFields = ["AsmString"];
+ let ColFields = ["PostEncoderMethod"];
+ let KeyCol = ["adjustPqBitsSpls"];
+ let ValueCols = [["adjustPqBitsSpls"]];
+}
+
+// -------------------------------------------------- //
+// ALU instructions
+// -------------------------------------------------- //
+multiclass ALUbase<bits<3> subOp, string AsmStr, SDNode OpNode,
+ PatLeaf LoExt, PatLeaf HiExt,
+ list<dag> loPattern, list<dag> hiPattern> {
+ // Register Immediate
+ let H = 0 in
+ def LO : InstRI<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, LoExt:$imm16),
+ !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"),
+ loPattern>;
+ let H = 1 in
+ def HI : InstRI<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, HiExt:$imm16),
+ !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"),
+ hiPattern>;
+
+}
+
+multiclass ALUarith<bits<3> subOp, string AsmStr, SDNode OpNode,
+ PatLeaf LoExt, PatLeaf HiExt> {
+ defm I_ : ALUbase<subOp, AsmStr, OpNode, LoExt, HiExt, [], []>;
+
+ // Register Register
+ let JJJJJ = 0 in
+ def R : InstRR<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI),
+ !strconcat(AsmStr, "$DDDI\t$Rs1, $Rs2, $Rd"),
+ [(set GPR:$Rd, (OpNode GPR:$Rs1, GPR:$Rs2))]>;
+}
+
+multiclass ALUlogic<bits<3> subOp, string AsmStr, SDNode OpNode,
+ PatLeaf LoExt, PatLeaf HiExt> {
+ defm I_ : ALUbase<subOp, AsmStr, OpNode, LoExt, HiExt,
+ [(set GPR:$Rd, (OpNode GPR:$Rs1, LoExt:$imm16))],
+ [(set GPR:$Rd, (OpNode GPR:$Rs1, HiExt:$imm16))]>;
+
+ // Register Register
+ let JJJJJ = 0 in
+ def R : InstRR<subOp, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI),
+ !strconcat(AsmStr, "$DDDI\t$Rs1, $Rs2, $Rd"),
+ [(set GPR:$Rd, (OpNode GPR:$Rs1, GPR:$Rs2))]>;
+}
+
+// Non flag setting ALU operations
+let isAsCheapAsAMove = 1, F = 0 in {
+ let isCommutable = 1 in {
+ defm ADD_ : ALUarith<0b000, "add", add, i32lo16z, i32hi16>;
+ }
+ defm SUB_ : ALUarith<0b010, "sub", sub, i32lo16z, i32hi16>;
+ let isCommutable = 1 in {
+ defm AND_ : ALUlogic<0b100, "and", and, i32lo16and, i32hi16and>;
+ defm OR_ : ALUlogic<0b101, "or", or, i32lo16z, i32hi16>;
+ defm XOR_ : ALUlogic<0b110, "xor", xor, i32lo16z, i32hi16>;
+ }
+}
+
+def : Pat<(add GPR:$Rs1, i32lo16z:$imm),
+ (ADD_I_LO GPR:$Rs1, i32lo16z:$imm)>;
+
+def : Pat<(sub GPR:$Rs1, i32lo16z:$imm),
+ (SUB_I_LO GPR:$Rs1, i32lo16z:$imm)>;
+
+def : Pat<(add GPR:$Rs1, i32hi16:$imm),
+ (ADD_I_HI GPR:$Rs1, i32hi16:$imm)>;
+
+def : Pat<(sub GPR:$Rs1, i32hi16:$imm),
+ (SUB_I_HI GPR:$Rs1, i32hi16:$imm)>;
+
+def : Pat<(i32 i32lo16and:$imm), (AND_I_LO (i32 R1), i32lo16and:$imm)>;
+def : Pat<(i32 i32hi16and:$imm), (AND_I_HI (i32 R1), i32hi16and:$imm)>;
+
+// Change add/sub with negative number to sub/add
+def : Pat<(add GPR:$Rs1, i32neg16:$imm),
+ (SUB_I_LO GPR:$Rs1, (NEG $imm))>;
+def : Pat<(sub GPR:$Rs1, i32neg16:$imm),
+ (ADD_I_LO GPR:$Rs1, (NEG $imm))>;
+
+// Flag (incl. carry) setting addition and subtraction
+let F = 1, Defs = [SR] in {
+ defm ADD_F_ : ALUarith<0b000, "add.f", addc, i32lo16z, i32hi16>;
+ defm SUB_F_ : ALUarith<0b010, "sub.f", subc, i32lo16z, i32hi16>;
+}
+
+def : Pat<(addc GPR:$Rs1, i32lo16z:$imm),
+ (ADD_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;
+
+def : Pat<(subc GPR:$Rs1, i32lo16z:$imm),
+ (SUB_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;
+
+def : Pat<(addc GPR:$Rs1, i32hi16:$imm),
+ (ADD_F_I_HI GPR:$Rs1, i32hi16:$imm)>;
+
+def : Pat<(subc GPR:$Rs1, i32hi16:$imm),
+ (SUB_F_I_HI GPR:$Rs1, i32hi16:$imm)>;
+
+// Carry using addition and subtraction
+let F = 0, Uses = [SR] in {
+ defm ADDC_ : ALUarith<0b001, "addc", adde, i32lo16z, i32hi16>;
+ defm SUBB_ : ALUarith<0b011, "subb", sube, i32lo16z, i32hi16>;
+}
+
+def : Pat<(adde GPR:$Rs1, i32lo16z:$imm),
+ (ADDC_I_LO GPR:$Rs1, i32lo16z:$imm)>;
+
+def : Pat<(sube GPR:$Rs1, i32lo16z:$imm),
+ (SUBB_I_LO GPR:$Rs1, i32lo16z:$imm)>;
+
+def : Pat<(adde GPR:$Rs1, i32hi16:$imm),
+ (ADDC_I_HI GPR:$Rs1, i32hi16:$imm)>;
+
+def : Pat<(sube GPR:$Rs1, i32hi16:$imm),
+ (SUBB_I_HI GPR:$Rs1, i32hi16:$imm)>;
+
+// Flag setting ALU operations
+let isAsCheapAsAMove = 1, F = 1, Defs = [SR] in {
+ let isCommutable = 1 in {
+ defm AND_F_ : ALUlogic<0b100, "and.f", and, i32lo16and, i32hi16and>;
+ defm OR_F_ : ALUlogic<0b101, "or.f", or, i32lo16z, i32hi16>;
+ defm XOR_F_ : ALUlogic<0b110, "xor.f", xor, i32lo16z, i32hi16>;
+ }
+}
+
+let isAsCheapAsAMove = 1, F = 1, Defs = [SR], Uses = [SR] in {
+ defm ADDC_F_ : ALUarith<0b001, "addc.f", adde, i32lo16z, i32hi16>;
+ defm SUBB_F_ : ALUarith<0b011, "subb.f", sube, i32lo16z, i32hi16>;
+}
+
+def : Pat<(LanaiSubbF GPR:$Rs1, GPR:$Rs2),
+ (SUBB_F_R GPR:$Rs1, GPR:$Rs2)>;
+
+def : Pat<(LanaiSubbF GPR:$Rs1, i32lo16z:$imm),
+ (SUBB_F_I_LO GPR:$Rs1, i32lo16z:$imm)>;
+
+def : Pat<(LanaiSubbF GPR:$Rs1, i32hi16:$imm),
+ (SUBB_F_I_HI GPR:$Rs1, i32hi16:$imm)>;
+
+def : InstAlias<"mov $src, $dst", (ADD_R GPR:$dst, GPR:$src, R0, 0)>;
+
+let isAsCheapAsAMove = 1, Rs1 = R0.Num, isCodeGenOnly = 1, H = 1, F = 0,
+ isReMaterializable = 1 in
+ def MOVHI : InstRI<0b000, (outs GPR:$Rd), (ins i32hi16:$imm16),
+ "mov\t$imm16, $Rd",
+ [(set GPR:$Rd, i32hi16:$imm16)]>;
+
+def : InstAlias<"mov $imm16, $dst", (ADD_I_LO GPR:$dst, R0, i32lo16z:$imm16)>;
+def : InstAlias<"mov $imm16, $dst", (ADD_I_HI GPR:$dst, R0, i32hi16:$imm16)>;
+def : InstAlias<"mov $imm16, $dst",
+ (AND_I_LO GPR:$dst, R1, i32lo16and:$imm16)>;
+def : InstAlias<"mov $imm16, $dst",
+ (AND_I_HI GPR:$dst, R1, i32hi16and:$imm16)>;
+
+// Shift instructions
+class ShiftRI<string AsmStr, list<dag> Pattern>
+ : InstRI<0b111, (outs GPR:$Rd), (ins GPR:$Rs1, immShift:$imm16),
+ !strconcat(AsmStr, "\t$Rs1, $imm16, $Rd"), Pattern> {
+ let isReMaterializable = 1;
+}
+
+let F = 0 in {
+ let H = 0 in
+ def SL_I : ShiftRI<"sh", [(set GPR:$Rd, (shl GPR:$Rs1, immShift:$imm16))]>;
+ let H = 1 in
+ def SA_I : ShiftRI<"sha", []>;
+}
+def : Pat<(srl GPR:$Rs1, immShift:$imm), (SL_I GPR:$Rs1, (NEG $imm))>;
+def : Pat<(sra GPR:$Rs1, immShift:$imm), (SA_I GPR:$Rs1, (NEG $imm))>;
+
+let F = 1, Defs = [SR] in {
+ let H = 0 in
+ def SL_F_I : ShiftRI<"sh.f", []>;
+ let H = 1 in
+ def SA_F_I : ShiftRI<"sha.f", []>;
+}
+
+class ShiftRR<string AsmStr, list<dag> Pattern>
+ : InstRR<0b111, (outs GPR:$Rd), (ins GPR:$Rs1, GPR:$Rs2, pred:$DDDI), AsmStr,
+ Pattern>;
+
+let F = 0 in {
+ let JJJJJ = 0b10000 in
+ def SHL_R : ShiftRR<"sh$DDDI\t$Rs1, $Rs2, $Rd",
+ [(set GPR:$Rd, (shl GPR:$Rs1, GPR:$Rs2))]>;
+ let isCodeGenOnly = 1 in {
+ let JJJJJ = 0b10000 in
+ def SRL_R : ShiftRR<"sh$DDDI\t$Rs1, $Rs2, $Rd", []>;
+ }
+ let JJJJJ = 0b11000 in
+ def SRA_R : ShiftRR<"sha$DDDI\t$Rs1, $Rs2, $Rd", []>;
+}
+
+let F = 1, Defs = [SR] in {
+ let JJJJJ = 0b10000 in
+ def SHL_F_R : ShiftRR<"sh.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
+ let isCodeGenOnly = 1 in {
+ let JJJJJ = 0b10000 in
+ def SRL_F_R : ShiftRR<"sh.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
+ }
+ let JJJJJ = 0b11000 in
+ def SRA_F_R : ShiftRR<"sha.f$DDDI\t$Rs1, $Rs2, $Rd", []>;
+}
+
+// Expand shift-right operations
+def : Pat<(srl GPR:$Rs1, GPR:$Rs2),
+ (SRL_R GPR:$Rs1, (SUB_R R0, GPR:$Rs2))>;
+def : Pat<(sra GPR:$Rs1, GPR:$Rs2),
+ (SRA_R GPR:$Rs1, (SUB_R R0, GPR:$Rs2))>;
+
+// -------------------------------------------------- //
+// LOAD instructions
+// -------------------------------------------------- //
+
+class LoadRR<string OpcString, PatFrag OpNode, ValueType Ty>
+ : InstRRM<0b0, (outs GPR:$Rd), (ins MEMrr:$src),
+ !strconcat(OpcString, "\t$src, $Rd"),
+ [(set (Ty GPR:$Rd), (OpNode ADDRrr:$src))]>,
+ Sched<[WriteLD]> {
+ bits<20> src;
+
+ let Rs1 = src{19-15};
+ let Rs2 = src{14-10};
+ let P = src{9};
+ let Q = src{8};
+ let BBB = src{7-5};
+ let JJJJJ = src{4-0};
+ let mayLoad = 1;
+}
+
+class LoadRI<string OpcString, PatFrag OpNode, ValueType Ty>
+ : InstRM<0b0, (outs GPR:$Rd), (ins MEMri:$src),
+ !strconcat(OpcString, "\t$src, $Rd"),
+ [(set (Ty GPR:$Rd), (OpNode ADDRri:$src))]>,
+ Sched<[WriteLD]> {
+ bits<23> src;
+
+ let Itinerary = IIC_LD;
+ let Rs1 = src{22-18};
+ let P = src{17};
+ let Q = src{16};
+ let imm16 = src{15-0};
+ let isReMaterializable = 1;
+ let mayLoad = 1;
+}
+
+let E = 0 in {
+ let YL = 0b01 in {
+ // uld is used here and ld in the alias as the alias is printed out first if
+ // an alias exist
+ def LDW_RI : LoadRI<"uld", load, i32>;
+ def LDW_RR : LoadRR<"ld", load, i32>;
+ }
+}
+
+def : InstAlias<"ld $src, $dst", (LDW_RI GPR:$dst, MEMri:$src)>;
+
+let E = 1 in {
+ let YL = 0b01 in {
+ def LDWz_RR : LoadRR<"uld", zextloadi32, i32>;
+ }
+}
+
+let E = 1 in {
+ let YL = 0b00 in
+ def LDHz_RR : LoadRR<"uld.h", zextloadi16, i32>;
+ let YL = 0b10 in
+ def LDBz_RR : LoadRR<"uld.b", zextloadi8, i32>;
+}
+
+let E = 0 in {
+ let YL = 0b00 in
+ def LDHs_RR : LoadRR<"ld.h", sextloadi16, i32>;
+ let YL = 0b10 in
+ def LDBs_RR : LoadRR<"ld.b", sextloadi8, i32>;
+}
+
+def LDADDR : InstSLS<0x0, (outs GPR:$Rd), (ins MEMi:$src),
+ "ld\t$src, $Rd",
+ [(set (i32 GPR:$Rd), (load ADDRsls:$src))]>,
+ Sched<[WriteLD]> {
+ bits<21> src;
+
+ let Itinerary = IIC_LD;
+ let msb = src{20-16};
+ let lsb = src{15-0};
+ let isReMaterializable = 1;
+ let mayLoad = 1;
+}
+
+class LoadSPLS<string asmstring, PatFrag opNode>
+ : InstSPLS<(outs GPR:$Rd), (ins MEMspls:$src),
+ !strconcat(asmstring, "\t$src, $Rd"),
+ [(set (i32 GPR:$Rd), (opNode ADDRspls:$src))]>,
+ Sched<[WriteLDSW]> {
+ bits<17> src;
+ let Itinerary = IIC_LDSW;
+ let Rs1 = src{16-12};
+ let P = src{11};
+ let Q = src{10};
+ let imm10 = src{9-0};
+ let mayLoad = 1;
+ let isReMaterializable = 1;
+}
+
+let Y = 0, S = 0, E = 1 in
+ def LDHz_RI : LoadSPLS<"uld.h", zextloadi16>;
+
+let Y = 0, S = 0, E = 0 in
+ def LDHs_RI : LoadSPLS<"ld.h", sextloadi16>;
+
+let Y = 1, S = 0, E = 1 in
+ def LDBz_RI : LoadSPLS<"uld.b", zextloadi8>;
+
+let Y = 1, S = 0, E = 0 in
+ def LDBs_RI : LoadSPLS<"ld.b", sextloadi8>;
+
+def SLI : InstSLI<(outs GPR:$Rd), (ins i32lo21:$imm),
+ "mov\t$imm, $Rd",
+ [(set GPR:$Rd, i32lo21:$imm)]> {
+ bits<21> imm;
+
+ let msb = imm{20-16};
+ let lsb = imm{15-0};
+ let isReMaterializable = 1;
+ let isAsCheapAsAMove = 1;
+}
+
+// -------------------------------------------------- //
+// STORE instructions
+// -------------------------------------------------- //
+
+class StoreRR<string OpcString, PatFrag OpNode, ValueType Ty>
+ : InstRRM<0b1, (outs), (ins GPR:$Rd, MEMrr:$dst),
+ !strconcat(OpcString, "\t$Rd, $dst"),
+ [(OpNode (Ty GPR:$Rd), ADDRrr:$dst)]>,
+ Sched<[WriteST]> {
+ bits<20> dst;
+
+ let Itinerary = IIC_ST;
+ let Rs1 = dst{19-15};
+ let Rs2 = dst{14-10};
+ let P = dst{9};
+ let Q = dst{8};
+ let BBB = dst{7-5};
+ let JJJJJ = dst{4-0};
+ let mayStore = 1;
+}
+
+class StoreRI<string OpcString, PatFrag OpNode, ValueType Ty>
+ : InstRM<0b1, (outs), (ins GPR:$Rd, MEMri:$dst),
+ !strconcat(OpcString, "\t$Rd, $dst"),
+ [(OpNode (Ty GPR:$Rd), ADDRri:$dst)]>,
+ Sched<[WriteST]> {
+ bits<23> dst;
+
+ let Itinerary = IIC_ST;
+ let Rs1 = dst{22-18};
+ let P = dst{17};
+ let Q = dst{16};
+ let imm16 = dst{15-0};
+ let mayStore = 1;
+}
+
+let YL = 0b01, E = 0 in {
+ def SW_RR : StoreRR<"st", store, i32>;
+ def SW_RI : StoreRI<"st", store, i32>;
+}
+
+let E = 0 in {
+ let YL = 0b00 in
+ def STH_RR : StoreRR<"st.h", truncstorei16, i32>;
+ let YL = 0b10 in
+ def STB_RR : StoreRR<"st.b", truncstorei8, i32>;
+}
+
+def STADDR : InstSLS<0x1, (outs), (ins GPR:$Rd, MEMi:$dst),
+ "st\t$Rd, $dst",
+ [(store (i32 GPR:$Rd), ADDRsls:$dst)]>,
+ Sched<[WriteST]> {
+ bits<21> dst;
+
+ let Itinerary = IIC_ST;
+ let msb = dst{20-16};
+ let lsb = dst{15-0};
+ let mayStore = 1;
+}
+
+class StoreSPLS<string asmstring, PatFrag opNode>
+ : InstSPLS<(outs), (ins GPR:$Rd, MEMspls:$dst),
+ !strconcat(asmstring, "\t$Rd, $dst"),
+ [(opNode (i32 GPR:$Rd), ADDRspls:$dst)]>,
+ Sched<[WriteSTSW]> {
+ bits<17> dst;
+
+ let Itinerary = IIC_STSW;
+ let Rs1 = dst{16-12};
+ let P = dst{11};
+ let Q = dst{10};
+ let imm10 = dst{9-0};
+ let mayStore = 1;
+}
+
+let Y = 0, S = 1, E = 0 in
+ def STH_RI : StoreSPLS<"st.h", truncstorei16>;
+
+let Y = 1, S = 1, E = 0 in
+ def STB_RI : StoreSPLS<"st.b", truncstorei8>;
+
+// -------------------------------------------------- //
+// BRANCH instructions
+// -------------------------------------------------- //
+
+let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1 in {
+ def BT : InstBR<(outs), (ins BrTarget:$addr),
+ "bt\t$addr",
+ [(br bb:$addr)]> {
+ let DDDI = 0b0000;
+ }
+ let Uses = [SR] in
+ def BRCC : InstBR<(outs), (ins BrTarget:$addr, CCOp:$DDDI),
+ "b$DDDI\t$addr",
+ [(LanaiBrCC bb:$addr, imm:$DDDI)]>;
+
+ let isIndirectBranch = 1 in {
+ def JR : InstRR<0b101, (outs), (ins GPR:$Rs2), "bt\t$Rs2",
+ [(brind GPR:$Rs2)]> {
+ let Rs1 = R0.Num;
+ let Rd = R2.Num;
+ let F = 0;
+ let JJJJJ = 0;
+ let DDDI = 0;
+ }
+ }
+}
+
+// -------------------------------------------------- //
+// Condition/SF instructions
+// -------------------------------------------------- //
+
+// Instructions to set flags used in lowering comparisons.
+multiclass SF<bits<3> op2Val, string AsmStr> {
+ let F = 1, Rd = R0.Num, JJJJJ = 0, Defs = [SR], DDDI = 0 in
+ def _RR : InstRR<op2Val, (outs), (ins GPR:$Rs1, GPR:$Rs2),
+ !strconcat(AsmStr, "\t$Rs1, $Rs2, %r0"),
+ [(LanaiSetFlag (i32 GPR:$Rs1), (i32 GPR:$Rs2))]>;
+ let F = 1, Rd = R0.Num, H = 0, Defs = [SR] in
+ def _RI_LO : InstRI<op2Val, (outs), (ins GPR:$Rs1, i32lo16z:$imm16),
+ !strconcat(AsmStr, "\t$Rs1, $imm16, %r0"),
+ [(LanaiSetFlag (i32 GPR:$Rs1), i32lo16z:$imm16)]>;
+ let F = 1, Rd = R0.Num, H = 1, Defs = [SR] in
+ def _RI_HI : InstRI<op2Val, (outs), (ins GPR:$Rs1, i32hi16:$imm16),
+ !strconcat(AsmStr, "\t$Rs1, $imm16, %r0"),
+ [(LanaiSetFlag (i32 GPR:$Rs1), i32hi16:$imm16)]>;
+}
+let isCodeGenOnly = 1, isCompare = 1 in {
+ defm SFSUB_F : SF<0b010, "sub.f">;
+}
+
+// Jump and link
+let isCall = 1, hasDelaySlot = 1, isCodeGenOnly = 1, Uses = [SP],
+ Defs = [RCA] in {
+ def CALL : Pseudo<(outs), (ins CallTarget:$addr), "", []>;
+ def CALLR : Pseudo<(outs), (ins GPR:$Rs1), "", [(Call GPR:$Rs1)]>;
+}
+
+let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
+ Uses = [RCA] in {
+ def RET : InstRM<0b0, (outs), (ins),
+ "ld\t-4[%fp], %pc ! return",
+ [(RetFlag)]> {
+ let Rd = PC.Num;
+ let Rs1 = FP.Num;
+ let P = 1;
+ let Q = 0;
+ let imm16 = -4;
+
+ // Post encoding is not needed for RET.
+ let PostEncoderMethod = "";
+ }
+}
+
+// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
+// a stack adjustment and the codegen must know that they may modify the stack
+// pointer before prolog-epilog rewriting occurs.
+// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
+// sub / add which can clobber SP.
+let Defs = [SP], Uses = [SP] in {
+ def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ "#ADJCALLSTACKDOWN $amt",
+ [(CallSeqStart timm:$amt)]>;
+ def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "#ADJCALLSTACKUP $amt1 $amt2",
+ [(CallSeqEnd timm:$amt1, timm:$amt2)]>;
+}
+
+let Defs = [SP], Uses = [SP] in {
+ def ADJDYNALLOC : Pseudo<(outs GPR:$dst), (ins GPR:$src),
+ "#ADJDYNALLOC $dst $src",
+ [(set GPR:$dst, (LanaiAdjDynAlloc GPR:$src))]>;
+}
+
+let Uses = [SR] in {
+ def SCC : InstSCC<(outs GPR:$Rs1), (ins CCOp:$DDDI),
+ "s$DDDI\t$Rs1",
+ [(set (i32 GPR:$Rs1), (LanaiSetCC imm:$DDDI))]>;
+}
+
+// SCC's output is already 1-bit so and'ing with 1 is redundant.
+def : Pat<(and (LanaiSetCC imm:$DDDI), 1), (SCC imm:$DDDI)>;
+
+// Select with hardware support
+let Uses = [SR], isSelect = 1 in {
+ def SELECT : InstRR<0b111, (outs GPR:$Rd),
+ (ins GPR:$Rs1, GPR:$Rs2, CCOp:$DDDI),
+ "sel.$DDDI $Rs1, $Rs2, $Rd",
+ [(set (i32 GPR:$Rd),
+ (LanaiSelectCC (i32 GPR:$Rs1), (i32 GPR:$Rs2),
+ (imm:$DDDI)))]> {
+ let JJJJJ = 0;
+ let F = 0;
+ }
+}
+
+let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1,
+ isIndirectBranch = 1, Uses = [SR] in {
+ def BRIND_CC : InstRR<0b101, (outs), (ins GPR:$Rs1, CCOp:$DDDI),
+ "b$DDDI\t$Rs1", []> {
+ let F = 0;
+ let JJJJJ = 0;
+ let Rd = PC.Num;
+ let Rs2 = R0.Num;
+ }
+
+ def BRIND_CCA : InstRR<0b101, (outs), (ins GPR:$Rs1, GPR:$Rs2, CCOp:$DDDI),
+ "b${DDDI}\t$Rs1 add $Rs2", []> {
+ let F = 0;
+ let Rd = PC.Num;
+ let JJJJJ = 0;
+ }
+}
+
+// TODO: This only considers the case where BROFF is an immediate and not where
+// it is a register. Add support for register relative branching.
+let isBranch = 1, isBarrier = 1, isTerminator = 1, hasDelaySlot = 1, Rs1 = 0,
+ Uses = [SR] in
+ def BRR : InstBRR<(outs), (ins i16imm:$imm16, CCOp:$DDDI),
+ "b${DDDI}.r\t$imm16", []>;
+
+let F = 0 in {
+// Population Count (POPC)
+def POPC: InstSpecial<0b001, (outs GPR:$Rd), (ins GPR:$Rs1),
+ "popc\t$Rs1, $Rd",
+ [(set GPR:$Rd, (ctpop GPR:$Rs1))]>;
+
+// Count Leading Zeros (LEADZ)
+def LEADZ: InstSpecial<0b010, (outs GPR:$Rd), (ins GPR:$Rs1),
+ "leadz\t$Rs1, $Rd", [(set GPR:$Rd, (ctlz GPR:$Rs1))]>;
+
+// Count Trailing Zeros (TRAILZ)
+def TRAILZ : InstSpecial<0b011, (outs GPR:$Rd), (ins GPR:$Rs1),
+ "trailz\t$Rs1, $Rd",
+ [(set GPR:$Rd, (cttz GPR:$Rs1))]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// i32 0 and R0 can be used interchangeably.
+def : Pat<(i32 0), (i32 R0)>;
+// i32 -1 and R1 can be used interchangeably.
+def : Pat<(i32 -1), (i32 R1)>;
+
+// unsigned 16-bit immediate
+def : Pat<(i32 i32lo16z:$imm), (OR_I_LO (i32 R0), imm:$imm)>;
+
+// arbitrary immediate
+def : Pat<(i32 imm:$imm), (OR_I_LO (MOVHI (HI16 imm:$imm)), (LO16 imm:$imm))>;
+
+// Calls
+def : Pat<(Call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
+def : Pat<(Call texternalsym:$dst), (CALL texternalsym:$dst)>;
+
+// Loads
+def : Pat<(extloadi8 ADDRspls:$src), (i32 (LDBz_RI ADDRspls:$src))>;
+def : Pat<(extloadi16 ADDRspls:$src), (i32 (LDHz_RI ADDRspls:$src))>;
+
+// GlobalAddress, ExternalSymbol, Jumptable, ConstantPool
+def : Pat<(LanaiHi tglobaladdr:$dst), (MOVHI tglobaladdr:$dst)>;
+def : Pat<(LanaiLo tglobaladdr:$dst), (OR_I_LO (i32 R0), tglobaladdr:$dst)>;
+def : Pat<(LanaiSmall tglobaladdr:$dst), (SLI tglobaladdr:$dst)>;
+def : Pat<(LanaiHi texternalsym:$dst), (MOVHI texternalsym:$dst)>;
+def : Pat<(LanaiLo texternalsym:$dst), (OR_I_LO (i32 R0), texternalsym:$dst)>;
+def : Pat<(LanaiSmall texternalsym:$dst), (SLI texternalsym:$dst)>;
+def : Pat<(LanaiHi tblockaddress:$dst), (MOVHI tblockaddress:$dst)>;
+def : Pat<(LanaiLo tblockaddress:$dst), (OR_I_LO (i32 R0), tblockaddress:$dst)>;
+def : Pat<(LanaiSmall tblockaddress:$dst), (SLI tblockaddress:$dst)>;
+def : Pat<(LanaiHi tjumptable:$dst), (MOVHI tjumptable:$dst)>;
+def : Pat<(LanaiLo tjumptable:$dst), (OR_I_LO (i32 R0), tjumptable:$dst)>;
+def : Pat<(LanaiSmall tjumptable:$dst), (SLI tjumptable:$dst)>;
+def : Pat<(LanaiHi tconstpool:$dst), (MOVHI tconstpool:$dst)>;
+def : Pat<(LanaiLo tconstpool:$dst), (OR_I_LO (i32 R0), tconstpool:$dst)>;
+def : Pat<(LanaiSmall tconstpool:$dst), (SLI tconstpool:$dst)>;
+
+def : Pat<(or GPR:$hi, (LanaiLo tglobaladdr:$lo)),
+ (OR_I_LO GPR:$hi, tglobaladdr:$lo)>;
+def : Pat<(or R0, (LanaiSmall tglobaladdr:$small)),
+ (SLI tglobaladdr:$small)>;
+def : Pat<(or GPR:$hi, (LanaiLo texternalsym:$lo)),
+ (OR_I_LO GPR:$hi, texternalsym:$lo)>;
+def : Pat<(or R0, (LanaiSmall texternalsym:$small)),
+ (SLI texternalsym:$small)>;
+def : Pat<(or GPR:$hi, (LanaiLo tblockaddress:$lo)),
+ (OR_I_LO GPR:$hi, tblockaddress:$lo)>;
+def : Pat<(or R0, (LanaiSmall tblockaddress:$small)),
+ (SLI tblockaddress:$small)>;
+def : Pat<(or GPR:$hi, (LanaiLo tjumptable:$lo)),
+ (OR_I_LO GPR:$hi, tjumptable:$lo)>;
+def : Pat<(or R0, (LanaiSmall tjumptable:$small)),
+ (SLI tjumptable:$small)>;
+def : Pat<(or GPR:$hi, (LanaiLo tconstpool:$lo)),
+ (OR_I_LO GPR:$hi, tconstpool:$lo)>;
+def : Pat<(or R0, (LanaiSmall tconstpool:$small)),
+ (SLI tconstpool:$small)>;