aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstCombineCompares.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstCombineCompares.cpp212
1 files changed, 142 insertions, 70 deletions
diff --git a/lib/Transforms/InstCombine/InstCombineCompares.cpp b/lib/Transforms/InstCombine/InstCombineCompares.cpp
index 428f94bb5e93..bbafa9e9f468 100644
--- a/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -230,7 +230,9 @@ Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
return nullptr;
uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
- if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
+ // Don't blow up on huge arrays.
+ if (ArrayElementCount > MaxArraySizeForCombine)
+ return nullptr;
// There are many forms of this optimization we can handle, for now, just do
// the simple index into a single-dimensional array.
@@ -1663,7 +1665,7 @@ Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
(Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
// TODO: Is this a good transform for vectors? Wider types may reduce
// throughput. Should this transform be limited (even for scalars) by using
- // ShouldChangeType()?
+ // shouldChangeType()?
if (!Cmp.getType()->isVectorTy()) {
Type *WideType = W->getType();
unsigned WideScalarBits = WideType->getScalarSizeInBits();
@@ -1792,6 +1794,15 @@ Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
ConstantInt::get(V->getType(), 1));
}
+ // X | C == C --> X <=u C
+ // X | C != C --> X >u C
+ // iff C+1 is a power of 2 (C is a bitmask of the low bits)
+ if (Cmp.isEquality() && Cmp.getOperand(1) == Or->getOperand(1) &&
+ (*C + 1).isPowerOf2()) {
+ Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
+ return new ICmpInst(Pred, Or->getOperand(0), Or->getOperand(1));
+ }
+
if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
return nullptr;
@@ -1914,61 +1925,89 @@ Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
ICmpInst::Predicate Pred = Cmp.getPredicate();
Value *X = Shl->getOperand(0);
- if (Cmp.isEquality()) {
- // If the shift is NUW, then it is just shifting out zeros, no need for an
- // AND.
- Constant *LShrC = ConstantInt::get(Shl->getType(), C->lshr(*ShiftAmt));
- if (Shl->hasNoUnsignedWrap())
- return new ICmpInst(Pred, X, LShrC);
-
- // If the shift is NSW and we compare to 0, then it is just shifting out
- // sign bits, no need for an AND either.
- if (Shl->hasNoSignedWrap() && *C == 0)
- return new ICmpInst(Pred, X, LShrC);
-
- if (Shl->hasOneUse()) {
- // Otherwise, strength reduce the shift into an and.
- Constant *Mask = ConstantInt::get(Shl->getType(),
- APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
-
- Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
- return new ICmpInst(Pred, And, LShrC);
+ Type *ShType = Shl->getType();
+
+ // NSW guarantees that we are only shifting out sign bits from the high bits,
+ // so we can ASHR the compare constant without needing a mask and eliminate
+ // the shift.
+ if (Shl->hasNoSignedWrap()) {
+ if (Pred == ICmpInst::ICMP_SGT) {
+ // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
+ APInt ShiftedC = C->ashr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
+ // This is the same code as the SGT case, but assert the pre-condition
+ // that is needed for this to work with equality predicates.
+ assert(C->ashr(*ShiftAmt).shl(*ShiftAmt) == *C &&
+ "Compare known true or false was not folded");
+ APInt ShiftedC = C->ashr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if (Pred == ICmpInst::ICMP_SLT) {
+ // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
+ // (X << S) <=s C is equiv to X <=s (C >> S) for all C
+ // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
+ // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
+ assert(!C->isMinSignedValue() && "Unexpected icmp slt");
+ APInt ShiftedC = (*C - 1).ashr(*ShiftAmt) + 1;
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ // If this is a signed comparison to 0 and the shift is sign preserving,
+ // use the shift LHS operand instead; isSignTest may change 'Pred', so only
+ // do that if we're sure to not continue on in this function.
+ if (isSignTest(Pred, *C))
+ return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
+ }
+
+ // NUW guarantees that we are only shifting out zero bits from the high bits,
+ // so we can LSHR the compare constant without needing a mask and eliminate
+ // the shift.
+ if (Shl->hasNoUnsignedWrap()) {
+ if (Pred == ICmpInst::ICMP_UGT) {
+ // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
+ APInt ShiftedC = C->lshr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) {
+ // This is the same code as the UGT case, but assert the pre-condition
+ // that is needed for this to work with equality predicates.
+ assert(C->lshr(*ShiftAmt).shl(*ShiftAmt) == *C &&
+ "Compare known true or false was not folded");
+ APInt ShiftedC = C->lshr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
+ }
+ if (Pred == ICmpInst::ICMP_ULT) {
+ // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
+ // (X << S) <=u C is equiv to X <=u (C >> S) for all C
+ // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
+ // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
+ assert(C->ugt(0) && "ult 0 should have been eliminated");
+ APInt ShiftedC = (*C - 1).lshr(*ShiftAmt) + 1;
+ return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
}
}
- // If this is a signed comparison to 0 and the shift is sign preserving,
- // use the shift LHS operand instead; isSignTest may change 'Pred', so only
- // do that if we're sure to not continue on in this function.
- if (Shl->hasNoSignedWrap() && isSignTest(Pred, *C))
- return new ICmpInst(Pred, X, Constant::getNullValue(X->getType()));
+ if (Cmp.isEquality() && Shl->hasOneUse()) {
+ // Strength-reduce the shift into an 'and'.
+ Constant *Mask = ConstantInt::get(
+ ShType,
+ APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
+ Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
+ Constant *LShrC = ConstantInt::get(ShType, C->lshr(*ShiftAmt));
+ return new ICmpInst(Pred, And, LShrC);
+ }
// Otherwise, if this is a comparison of the sign bit, simplify to and/test.
bool TrueIfSigned = false;
if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
// (X << 31) <s 0 --> (X & 1) != 0
Constant *Mask = ConstantInt::get(
- X->getType(),
+ ShType,
APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
- And, Constant::getNullValue(And->getType()));
- }
-
- // When the shift is nuw and pred is >u or <=u, comparison only really happens
- // in the pre-shifted bits. Since InstSimplify canonicalizes <=u into <u, the
- // <=u case can be further converted to match <u (see below).
- if (Shl->hasNoUnsignedWrap() &&
- (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT)) {
- // Derivation for the ult case:
- // (X << S) <=u C is equiv to X <=u (C >> S) for all C
- // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
- // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
- assert((Pred != ICmpInst::ICMP_ULT || C->ugt(0)) &&
- "Encountered `ult 0` that should have been eliminated by "
- "InstSimplify.");
- APInt ShiftedC = Pred == ICmpInst::ICMP_ULT ? (*C - 1).lshr(*ShiftAmt) + 1
- : C->lshr(*ShiftAmt);
- return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), ShiftedC));
+ And, Constant::getNullValue(ShType));
}
// Transform (icmp pred iM (shl iM %v, N), C)
@@ -1981,8 +2020,8 @@ Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt &&
DL.isLegalInteger(TypeBits - Amt)) {
Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
- if (X->getType()->isVectorTy())
- TruncTy = VectorType::get(TruncTy, X->getType()->getVectorNumElements());
+ if (ShType->isVectorTy())
+ TruncTy = VectorType::get(TruncTy, ShType->getVectorNumElements());
Constant *NewC =
ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
@@ -2342,8 +2381,24 @@ Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
// Fold icmp pred (add X, C2), C.
Value *X = Add->getOperand(0);
Type *Ty = Add->getType();
- auto CR =
- ConstantRange::makeExactICmpRegion(Cmp.getPredicate(), *C).subtract(*C2);
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+
+ // If the add does not wrap, we can always adjust the compare by subtracting
+ // the constants. Equality comparisons are handled elsewhere. SGE/SLE are
+ // canonicalized to SGT/SLT.
+ if (Add->hasNoSignedWrap() &&
+ (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) {
+ bool Overflow;
+ APInt NewC = C->ssub_ov(*C2, Overflow);
+ // If there is overflow, the result must be true or false.
+ // TODO: Can we assert there is no overflow because InstSimplify always
+ // handles those cases?
+ if (!Overflow)
+ // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
+ return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
+ }
+
+ auto CR = ConstantRange::makeExactICmpRegion(Pred, *C).subtract(*C2);
const APInt &Upper = CR.getUpper();
const APInt &Lower = CR.getLower();
if (Cmp.isSigned()) {
@@ -2364,16 +2419,14 @@ Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
// X+C <u C2 -> (X & -C2) == C
// iff C & (C2-1) == 0
// C2 is a power of 2
- if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
- (*C2 & (*C - 1)) == 0)
+ if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() && (*C2 & (*C - 1)) == 0)
return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
ConstantExpr::getNeg(cast<Constant>(Y)));
// X+C >u C2 -> (X & ~C2) != C
// iff C & C2 == 0
// C2+1 is a power of 2
- if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() &&
- (*C2 & *C) == 0)
+ if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == 0)
return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
ConstantExpr::getNeg(cast<Constant>(Y)));
@@ -2656,7 +2709,7 @@ Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
+ if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
return NV;
break;
case Instruction::Select: {
@@ -2767,12 +2820,6 @@ Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
D = BO1->getOperand(1);
}
- // icmp (X+cst) < 0 --> X < -cst
- if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
- if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
- if (!RHSC->isMinValue(/*isSigned=*/true))
- return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
-
// icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
return new ICmpInst(Pred, A == Op1 ? B : A,
@@ -2847,6 +2894,31 @@ Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
+ // TODO: The subtraction-related identities shown below also hold, but
+ // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
+ // wouldn't happen even if they were implemented.
+ //
+ // icmp ult (X - 1), Y -> icmp ule X, Y
+ // icmp uge (X - 1), Y -> icmp ugt X, Y
+ // icmp ugt X, (Y - 1) -> icmp uge X, Y
+ // icmp ule X, (Y - 1) -> icmp ult X, Y
+
+ // icmp ule (X + 1), Y -> icmp ult X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
+
+ // icmp ugt (X + 1), Y -> icmp uge X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
+
+ // icmp uge X, (Y + 1) -> icmp ugt X, Y
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
+
+ // icmp ult X, (Y + 1) -> icmp ule X, Y
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
+
// if C1 has greater magnitude than C2:
// icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
// s.t. C3 = C1 - C2
@@ -3738,16 +3810,14 @@ static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
// greater than the RHS must differ in a bit higher than these due to carry.
case ICmpInst::ICMP_UGT: {
unsigned trailingOnes = RHS.countTrailingOnes();
- APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
- return ~lowBitsSet;
+ return APInt::getBitsSetFrom(BitWidth, trailingOnes);
}
// Similarly, for a ULT comparison, we don't care about the trailing zeros.
// Any value less than the RHS must differ in a higher bit because of carries.
case ICmpInst::ICMP_ULT: {
unsigned trailingZeros = RHS.countTrailingZeros();
- APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
- return ~lowBitsSet;
+ return APInt::getBitsSetFrom(BitWidth, trailingZeros);
}
default:
@@ -3887,7 +3957,7 @@ bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
- // The check for the unique predecessor is not the best that can be
+ // The check for the single predecessor is not the best that can be
// done. But it protects efficiently against cases like when SI's
// home block has two successors, Succ and Succ1, and Succ1 predecessor
// of Succ. Then SI can't be replaced by SIOpd because the use that gets
@@ -3895,8 +3965,10 @@ bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
// guarantees that the path all uses of SI (outside SI's parent) are on
// is disjoint from all other paths out of SI. But that information
// is more expensive to compute, and the trade-off here is in favor
- // of compile-time.
- if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
+ // of compile-time. It should also be noticed that we check for a single
+ // predecessor and not only uniqueness. This to handle the situation when
+ // Succ and Succ1 points to the same basic block.
+ if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
NumSel++;
SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
return true;
@@ -3932,12 +4004,12 @@ Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
- if (SimplifyDemandedBits(I.getOperandUse(0),
+ if (SimplifyDemandedBits(&I, 0,
getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
Op0KnownZero, Op0KnownOne, 0))
return &I;
- if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth),
+ if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
Op1KnownZero, Op1KnownOne, 0))
return &I;
@@ -4801,7 +4873,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
+ if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
return NV;
break;
case Instruction::SIToFP: