diff options
Diffstat (limited to 'lib/Transforms/Instrumentation/EfficiencySanitizer.cpp')
-rw-r--r-- | lib/Transforms/Instrumentation/EfficiencySanitizer.cpp | 900 |
1 files changed, 0 insertions, 900 deletions
diff --git a/lib/Transforms/Instrumentation/EfficiencySanitizer.cpp b/lib/Transforms/Instrumentation/EfficiencySanitizer.cpp deleted file mode 100644 index db438e78ded9..000000000000 --- a/lib/Transforms/Instrumentation/EfficiencySanitizer.cpp +++ /dev/null @@ -1,900 +0,0 @@ -//===-- EfficiencySanitizer.cpp - performance tuner -----------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file is a part of EfficiencySanitizer, a family of performance tuners -// that detects multiple performance issues via separate sub-tools. -// -// The instrumentation phase is straightforward: -// - Take action on every memory access: either inlined instrumentation, -// or Inserted calls to our run-time library. -// - Optimizations may apply to avoid instrumenting some of the accesses. -// - Turn mem{set,cpy,move} instrinsics into library calls. -// The rest is handled by the run-time library. -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" - -using namespace llvm; - -#define DEBUG_TYPE "esan" - -// The tool type must be just one of these ClTool* options, as the tools -// cannot be combined due to shadow memory constraints. -static cl::opt<bool> - ClToolCacheFrag("esan-cache-frag", cl::init(false), - cl::desc("Detect data cache fragmentation"), cl::Hidden); -static cl::opt<bool> - ClToolWorkingSet("esan-working-set", cl::init(false), - cl::desc("Measure the working set size"), cl::Hidden); -// Each new tool will get its own opt flag here. -// These are converted to EfficiencySanitizerOptions for use -// in the code. - -static cl::opt<bool> ClInstrumentLoadsAndStores( - "esan-instrument-loads-and-stores", cl::init(true), - cl::desc("Instrument loads and stores"), cl::Hidden); -static cl::opt<bool> ClInstrumentMemIntrinsics( - "esan-instrument-memintrinsics", cl::init(true), - cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); -static cl::opt<bool> ClInstrumentFastpath( - "esan-instrument-fastpath", cl::init(true), - cl::desc("Instrument fastpath"), cl::Hidden); -static cl::opt<bool> ClAuxFieldInfo( - "esan-aux-field-info", cl::init(true), - cl::desc("Generate binary with auxiliary struct field information"), - cl::Hidden); - -// Experiments show that the performance difference can be 2x or more, -// and accuracy loss is typically negligible, so we turn this on by default. -static cl::opt<bool> ClAssumeIntraCacheLine( - "esan-assume-intra-cache-line", cl::init(true), - cl::desc("Assume each memory access touches just one cache line, for " - "better performance but with a potential loss of accuracy."), - cl::Hidden); - -STATISTIC(NumInstrumentedLoads, "Number of instrumented loads"); -STATISTIC(NumInstrumentedStores, "Number of instrumented stores"); -STATISTIC(NumFastpaths, "Number of instrumented fastpaths"); -STATISTIC(NumAccessesWithIrregularSize, - "Number of accesses with a size outside our targeted callout sizes"); -STATISTIC(NumIgnoredStructs, "Number of ignored structs"); -STATISTIC(NumIgnoredGEPs, "Number of ignored GEP instructions"); -STATISTIC(NumInstrumentedGEPs, "Number of instrumented GEP instructions"); -STATISTIC(NumAssumedIntraCacheLine, - "Number of accesses assumed to be intra-cache-line"); - -static const uint64_t EsanCtorAndDtorPriority = 0; -static const char *const EsanModuleCtorName = "esan.module_ctor"; -static const char *const EsanModuleDtorName = "esan.module_dtor"; -static const char *const EsanInitName = "__esan_init"; -static const char *const EsanExitName = "__esan_exit"; - -// We need to specify the tool to the runtime earlier than -// the ctor is called in some cases, so we set a global variable. -static const char *const EsanWhichToolName = "__esan_which_tool"; - -// We must keep these Shadow* constants consistent with the esan runtime. -// FIXME: Try to place these shadow constants, the names of the __esan_* -// interface functions, and the ToolType enum into a header shared between -// llvm and compiler-rt. -struct ShadowMemoryParams { - uint64_t ShadowMask; - uint64_t ShadowOffs[3]; -}; - -static const ShadowMemoryParams ShadowParams47 = { - 0x00000fffffffffffull, - { - 0x0000130000000000ull, 0x0000220000000000ull, 0x0000440000000000ull, - }}; - -static const ShadowMemoryParams ShadowParams40 = { - 0x0fffffffffull, - { - 0x1300000000ull, 0x2200000000ull, 0x4400000000ull, - }}; - -// This array is indexed by the ToolType enum. -static const int ShadowScale[] = { - 0, // ESAN_None. - 2, // ESAN_CacheFrag: 4B:1B, so 4 to 1 == >>2. - 6, // ESAN_WorkingSet: 64B:1B, so 64 to 1 == >>6. -}; - -// MaxStructCounterNameSize is a soft size limit to avoid insanely long -// names for those extremely large structs. -static const unsigned MaxStructCounterNameSize = 512; - -namespace { - -static EfficiencySanitizerOptions -OverrideOptionsFromCL(EfficiencySanitizerOptions Options) { - if (ClToolCacheFrag) - Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; - else if (ClToolWorkingSet) - Options.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet; - - // Direct opt invocation with no params will have the default ESAN_None. - // We run the default tool in that case. - if (Options.ToolType == EfficiencySanitizerOptions::ESAN_None) - Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag; - - return Options; -} - -/// EfficiencySanitizer: instrument each module to find performance issues. -class EfficiencySanitizer : public ModulePass { -public: - EfficiencySanitizer( - const EfficiencySanitizerOptions &Opts = EfficiencySanitizerOptions()) - : ModulePass(ID), Options(OverrideOptionsFromCL(Opts)) {} - StringRef getPassName() const override; - void getAnalysisUsage(AnalysisUsage &AU) const override; - bool runOnModule(Module &M) override; - static char ID; - -private: - bool initOnModule(Module &M); - void initializeCallbacks(Module &M); - bool shouldIgnoreStructType(StructType *StructTy); - void createStructCounterName( - StructType *StructTy, SmallString<MaxStructCounterNameSize> &NameStr); - void createCacheFragAuxGV( - Module &M, const DataLayout &DL, StructType *StructTy, - GlobalVariable *&TypeNames, GlobalVariable *&Offsets, GlobalVariable *&Size); - GlobalVariable *createCacheFragInfoGV(Module &M, const DataLayout &DL, - Constant *UnitName); - Constant *createEsanInitToolInfoArg(Module &M, const DataLayout &DL); - void createDestructor(Module &M, Constant *ToolInfoArg); - bool runOnFunction(Function &F, Module &M); - bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL); - bool instrumentMemIntrinsic(MemIntrinsic *MI); - bool instrumentGetElementPtr(Instruction *I, Module &M); - bool insertCounterUpdate(Instruction *I, StructType *StructTy, - unsigned CounterIdx); - unsigned getFieldCounterIdx(StructType *StructTy) { - return 0; - } - unsigned getArrayCounterIdx(StructType *StructTy) { - return StructTy->getNumElements(); - } - unsigned getStructCounterSize(StructType *StructTy) { - // The struct counter array includes: - // - one counter for each struct field, - // - one counter for the struct access within an array. - return (StructTy->getNumElements()/*field*/ + 1/*array*/); - } - bool shouldIgnoreMemoryAccess(Instruction *I); - int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); - Value *appToShadow(Value *Shadow, IRBuilder<> &IRB); - bool instrumentFastpath(Instruction *I, const DataLayout &DL, bool IsStore, - Value *Addr, unsigned Alignment); - // Each tool has its own fastpath routine: - bool instrumentFastpathCacheFrag(Instruction *I, const DataLayout &DL, - Value *Addr, unsigned Alignment); - bool instrumentFastpathWorkingSet(Instruction *I, const DataLayout &DL, - Value *Addr, unsigned Alignment); - - EfficiencySanitizerOptions Options; - LLVMContext *Ctx; - Type *IntptrTy; - // Our slowpath involves callouts to the runtime library. - // Access sizes are powers of two: 1, 2, 4, 8, 16. - static const size_t NumberOfAccessSizes = 5; - Function *EsanAlignedLoad[NumberOfAccessSizes]; - Function *EsanAlignedStore[NumberOfAccessSizes]; - Function *EsanUnalignedLoad[NumberOfAccessSizes]; - Function *EsanUnalignedStore[NumberOfAccessSizes]; - // For irregular sizes of any alignment: - Function *EsanUnalignedLoadN, *EsanUnalignedStoreN; - Function *MemmoveFn, *MemcpyFn, *MemsetFn; - Function *EsanCtorFunction; - Function *EsanDtorFunction; - // Remember the counter variable for each struct type to avoid - // recomputing the variable name later during instrumentation. - std::map<Type *, GlobalVariable *> StructTyMap; - ShadowMemoryParams ShadowParams; -}; -} // namespace - -char EfficiencySanitizer::ID = 0; -INITIALIZE_PASS_BEGIN( - EfficiencySanitizer, "esan", - "EfficiencySanitizer: finds performance issues.", false, false) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END( - EfficiencySanitizer, "esan", - "EfficiencySanitizer: finds performance issues.", false, false) - -StringRef EfficiencySanitizer::getPassName() const { - return "EfficiencySanitizer"; -} - -void EfficiencySanitizer::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<TargetLibraryInfoWrapperPass>(); -} - -ModulePass * -llvm::createEfficiencySanitizerPass(const EfficiencySanitizerOptions &Options) { - return new EfficiencySanitizer(Options); -} - -void EfficiencySanitizer::initializeCallbacks(Module &M) { - IRBuilder<> IRB(M.getContext()); - // Initialize the callbacks. - for (size_t Idx = 0; Idx < NumberOfAccessSizes; ++Idx) { - const unsigned ByteSize = 1U << Idx; - std::string ByteSizeStr = utostr(ByteSize); - // We'll inline the most common (i.e., aligned and frequent sizes) - // load + store instrumentation: these callouts are for the slowpath. - SmallString<32> AlignedLoadName("__esan_aligned_load" + ByteSizeStr); - EsanAlignedLoad[Idx] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - AlignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy())); - SmallString<32> AlignedStoreName("__esan_aligned_store" + ByteSizeStr); - EsanAlignedStore[Idx] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - AlignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy())); - SmallString<32> UnalignedLoadName("__esan_unaligned_load" + ByteSizeStr); - EsanUnalignedLoad[Idx] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - UnalignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy())); - SmallString<32> UnalignedStoreName("__esan_unaligned_store" + ByteSizeStr); - EsanUnalignedStore[Idx] = - checkSanitizerInterfaceFunction(M.getOrInsertFunction( - UnalignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy())); - } - EsanUnalignedLoadN = checkSanitizerInterfaceFunction( - M.getOrInsertFunction("__esan_unaligned_loadN", IRB.getVoidTy(), - IRB.getInt8PtrTy(), IntptrTy)); - EsanUnalignedStoreN = checkSanitizerInterfaceFunction( - M.getOrInsertFunction("__esan_unaligned_storeN", IRB.getVoidTy(), - IRB.getInt8PtrTy(), IntptrTy)); - MemmoveFn = checkSanitizerInterfaceFunction( - M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy)); - MemcpyFn = checkSanitizerInterfaceFunction( - M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy)); - MemsetFn = checkSanitizerInterfaceFunction( - M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt32Ty(), IntptrTy)); -} - -bool EfficiencySanitizer::shouldIgnoreStructType(StructType *StructTy) { - if (StructTy == nullptr || StructTy->isOpaque() /* no struct body */) - return true; - return false; -} - -void EfficiencySanitizer::createStructCounterName( - StructType *StructTy, SmallString<MaxStructCounterNameSize> &NameStr) { - // Append NumFields and field type ids to avoid struct conflicts - // with the same name but different fields. - if (StructTy->hasName()) - NameStr += StructTy->getName(); - else - NameStr += "struct.anon"; - // We allow the actual size of the StructCounterName to be larger than - // MaxStructCounterNameSize and append $NumFields and at least one - // field type id. - // Append $NumFields. - NameStr += "$"; - Twine(StructTy->getNumElements()).toVector(NameStr); - // Append struct field type ids in the reverse order. - for (int i = StructTy->getNumElements() - 1; i >= 0; --i) { - NameStr += "$"; - Twine(StructTy->getElementType(i)->getTypeID()).toVector(NameStr); - if (NameStr.size() >= MaxStructCounterNameSize) - break; - } - if (StructTy->isLiteral()) { - // End with $ for literal struct. - NameStr += "$"; - } -} - -// Create global variables with auxiliary information (e.g., struct field size, -// offset, and type name) for better user report. -void EfficiencySanitizer::createCacheFragAuxGV( - Module &M, const DataLayout &DL, StructType *StructTy, - GlobalVariable *&TypeName, GlobalVariable *&Offset, - GlobalVariable *&Size) { - auto *Int8PtrTy = Type::getInt8PtrTy(*Ctx); - auto *Int32Ty = Type::getInt32Ty(*Ctx); - // FieldTypeName. - auto *TypeNameArrayTy = ArrayType::get(Int8PtrTy, StructTy->getNumElements()); - TypeName = new GlobalVariable(M, TypeNameArrayTy, true, - GlobalVariable::InternalLinkage, nullptr); - SmallVector<Constant *, 16> TypeNameVec; - // FieldOffset. - auto *OffsetArrayTy = ArrayType::get(Int32Ty, StructTy->getNumElements()); - Offset = new GlobalVariable(M, OffsetArrayTy, true, - GlobalVariable::InternalLinkage, nullptr); - SmallVector<Constant *, 16> OffsetVec; - // FieldSize - auto *SizeArrayTy = ArrayType::get(Int32Ty, StructTy->getNumElements()); - Size = new GlobalVariable(M, SizeArrayTy, true, - GlobalVariable::InternalLinkage, nullptr); - SmallVector<Constant *, 16> SizeVec; - for (unsigned i = 0; i < StructTy->getNumElements(); ++i) { - Type *Ty = StructTy->getElementType(i); - std::string Str; - raw_string_ostream StrOS(Str); - Ty->print(StrOS); - TypeNameVec.push_back( - ConstantExpr::getPointerCast( - createPrivateGlobalForString(M, StrOS.str(), true), - Int8PtrTy)); - OffsetVec.push_back( - ConstantInt::get(Int32Ty, - DL.getStructLayout(StructTy)->getElementOffset(i))); - SizeVec.push_back(ConstantInt::get(Int32Ty, - DL.getTypeAllocSize(Ty))); - } - TypeName->setInitializer(ConstantArray::get(TypeNameArrayTy, TypeNameVec)); - Offset->setInitializer(ConstantArray::get(OffsetArrayTy, OffsetVec)); - Size->setInitializer(ConstantArray::get(SizeArrayTy, SizeVec)); -} - -// Create the global variable for the cache-fragmentation tool. -GlobalVariable *EfficiencySanitizer::createCacheFragInfoGV( - Module &M, const DataLayout &DL, Constant *UnitName) { - assert(Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag); - - auto *Int8PtrTy = Type::getInt8PtrTy(*Ctx); - auto *Int8PtrPtrTy = Int8PtrTy->getPointerTo(); - auto *Int32Ty = Type::getInt32Ty(*Ctx); - auto *Int32PtrTy = Type::getInt32PtrTy(*Ctx); - auto *Int64Ty = Type::getInt64Ty(*Ctx); - auto *Int64PtrTy = Type::getInt64PtrTy(*Ctx); - // This structure should be kept consistent with the StructInfo struct - // in the runtime library. - // struct StructInfo { - // const char *StructName; - // u32 Size; - // u32 NumFields; - // u32 *FieldOffset; // auxiliary struct field info. - // u32 *FieldSize; // auxiliary struct field info. - // const char **FieldTypeName; // auxiliary struct field info. - // u64 *FieldCounters; - // u64 *ArrayCounter; - // }; - auto *StructInfoTy = - StructType::get(Int8PtrTy, Int32Ty, Int32Ty, Int32PtrTy, Int32PtrTy, - Int8PtrPtrTy, Int64PtrTy, Int64PtrTy); - auto *StructInfoPtrTy = StructInfoTy->getPointerTo(); - // This structure should be kept consistent with the CacheFragInfo struct - // in the runtime library. - // struct CacheFragInfo { - // const char *UnitName; - // u32 NumStructs; - // StructInfo *Structs; - // }; - auto *CacheFragInfoTy = StructType::get(Int8PtrTy, Int32Ty, StructInfoPtrTy); - - std::vector<StructType *> Vec = M.getIdentifiedStructTypes(); - unsigned NumStructs = 0; - SmallVector<Constant *, 16> Initializers; - - for (auto &StructTy : Vec) { - if (shouldIgnoreStructType(StructTy)) { - ++NumIgnoredStructs; - continue; - } - ++NumStructs; - - // StructName. - SmallString<MaxStructCounterNameSize> CounterNameStr; - createStructCounterName(StructTy, CounterNameStr); - GlobalVariable *StructCounterName = createPrivateGlobalForString( - M, CounterNameStr, /*AllowMerging*/true); - - // Counters. - // We create the counter array with StructCounterName and weak linkage - // so that the structs with the same name and layout from different - // compilation units will be merged into one. - auto *CounterArrayTy = ArrayType::get(Int64Ty, - getStructCounterSize(StructTy)); - GlobalVariable *Counters = - new GlobalVariable(M, CounterArrayTy, false, - GlobalVariable::WeakAnyLinkage, - ConstantAggregateZero::get(CounterArrayTy), - CounterNameStr); - - // Remember the counter variable for each struct type. - StructTyMap.insert(std::pair<Type *, GlobalVariable *>(StructTy, Counters)); - - // We pass the field type name array, offset array, and size array to - // the runtime for better reporting. - GlobalVariable *TypeName = nullptr, *Offset = nullptr, *Size = nullptr; - if (ClAuxFieldInfo) - createCacheFragAuxGV(M, DL, StructTy, TypeName, Offset, Size); - - Constant *FieldCounterIdx[2]; - FieldCounterIdx[0] = ConstantInt::get(Int32Ty, 0); - FieldCounterIdx[1] = ConstantInt::get(Int32Ty, - getFieldCounterIdx(StructTy)); - Constant *ArrayCounterIdx[2]; - ArrayCounterIdx[0] = ConstantInt::get(Int32Ty, 0); - ArrayCounterIdx[1] = ConstantInt::get(Int32Ty, - getArrayCounterIdx(StructTy)); - Initializers.push_back(ConstantStruct::get( - StructInfoTy, - ConstantExpr::getPointerCast(StructCounterName, Int8PtrTy), - ConstantInt::get(Int32Ty, - DL.getStructLayout(StructTy)->getSizeInBytes()), - ConstantInt::get(Int32Ty, StructTy->getNumElements()), - Offset == nullptr ? ConstantPointerNull::get(Int32PtrTy) - : ConstantExpr::getPointerCast(Offset, Int32PtrTy), - Size == nullptr ? ConstantPointerNull::get(Int32PtrTy) - : ConstantExpr::getPointerCast(Size, Int32PtrTy), - TypeName == nullptr - ? ConstantPointerNull::get(Int8PtrPtrTy) - : ConstantExpr::getPointerCast(TypeName, Int8PtrPtrTy), - ConstantExpr::getGetElementPtr(CounterArrayTy, Counters, - FieldCounterIdx), - ConstantExpr::getGetElementPtr(CounterArrayTy, Counters, - ArrayCounterIdx))); - } - // Structs. - Constant *StructInfo; - if (NumStructs == 0) { - StructInfo = ConstantPointerNull::get(StructInfoPtrTy); - } else { - auto *StructInfoArrayTy = ArrayType::get(StructInfoTy, NumStructs); - StructInfo = ConstantExpr::getPointerCast( - new GlobalVariable(M, StructInfoArrayTy, false, - GlobalVariable::InternalLinkage, - ConstantArray::get(StructInfoArrayTy, Initializers)), - StructInfoPtrTy); - } - - auto *CacheFragInfoGV = new GlobalVariable( - M, CacheFragInfoTy, true, GlobalVariable::InternalLinkage, - ConstantStruct::get(CacheFragInfoTy, UnitName, - ConstantInt::get(Int32Ty, NumStructs), StructInfo)); - return CacheFragInfoGV; -} - -// Create the tool-specific argument passed to EsanInit and EsanExit. -Constant *EfficiencySanitizer::createEsanInitToolInfoArg(Module &M, - const DataLayout &DL) { - // This structure contains tool-specific information about each compilation - // unit (module) and is passed to the runtime library. - GlobalVariable *ToolInfoGV = nullptr; - - auto *Int8PtrTy = Type::getInt8PtrTy(*Ctx); - // Compilation unit name. - auto *UnitName = ConstantExpr::getPointerCast( - createPrivateGlobalForString(M, M.getModuleIdentifier(), true), - Int8PtrTy); - - // Create the tool-specific variable. - if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) - ToolInfoGV = createCacheFragInfoGV(M, DL, UnitName); - - if (ToolInfoGV != nullptr) - return ConstantExpr::getPointerCast(ToolInfoGV, Int8PtrTy); - - // Create the null pointer if no tool-specific variable created. - return ConstantPointerNull::get(Int8PtrTy); -} - -void EfficiencySanitizer::createDestructor(Module &M, Constant *ToolInfoArg) { - PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx); - EsanDtorFunction = Function::Create(FunctionType::get(Type::getVoidTy(*Ctx), - false), - GlobalValue::InternalLinkage, - EsanModuleDtorName, &M); - ReturnInst::Create(*Ctx, BasicBlock::Create(*Ctx, "", EsanDtorFunction)); - IRBuilder<> IRB_Dtor(EsanDtorFunction->getEntryBlock().getTerminator()); - Function *EsanExit = checkSanitizerInterfaceFunction( - M.getOrInsertFunction(EsanExitName, IRB_Dtor.getVoidTy(), - Int8PtrTy)); - EsanExit->setLinkage(Function::ExternalLinkage); - IRB_Dtor.CreateCall(EsanExit, {ToolInfoArg}); - appendToGlobalDtors(M, EsanDtorFunction, EsanCtorAndDtorPriority); -} - -bool EfficiencySanitizer::initOnModule(Module &M) { - - Triple TargetTriple(M.getTargetTriple()); - if (TargetTriple.isMIPS64()) - ShadowParams = ShadowParams40; - else - ShadowParams = ShadowParams47; - - Ctx = &M.getContext(); - const DataLayout &DL = M.getDataLayout(); - IRBuilder<> IRB(M.getContext()); - IntegerType *OrdTy = IRB.getInt32Ty(); - PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx); - IntptrTy = DL.getIntPtrType(M.getContext()); - // Create the variable passed to EsanInit and EsanExit. - Constant *ToolInfoArg = createEsanInitToolInfoArg(M, DL); - // Constructor - // We specify the tool type both in the EsanWhichToolName global - // and as an arg to the init routine as a sanity check. - std::tie(EsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions( - M, EsanModuleCtorName, EsanInitName, /*InitArgTypes=*/{OrdTy, Int8PtrTy}, - /*InitArgs=*/{ - ConstantInt::get(OrdTy, static_cast<int>(Options.ToolType)), - ToolInfoArg}); - appendToGlobalCtors(M, EsanCtorFunction, EsanCtorAndDtorPriority); - - createDestructor(M, ToolInfoArg); - - new GlobalVariable(M, OrdTy, true, - GlobalValue::WeakAnyLinkage, - ConstantInt::get(OrdTy, - static_cast<int>(Options.ToolType)), - EsanWhichToolName); - - return true; -} - -Value *EfficiencySanitizer::appToShadow(Value *Shadow, IRBuilder<> &IRB) { - // Shadow = ((App & Mask) + Offs) >> Scale - Shadow = IRB.CreateAnd(Shadow, ConstantInt::get(IntptrTy, ShadowParams.ShadowMask)); - uint64_t Offs; - int Scale = ShadowScale[Options.ToolType]; - if (Scale <= 2) - Offs = ShadowParams.ShadowOffs[Scale]; - else - Offs = ShadowParams.ShadowOffs[0] << Scale; - Shadow = IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Offs)); - if (Scale > 0) - Shadow = IRB.CreateLShr(Shadow, Scale); - return Shadow; -} - -bool EfficiencySanitizer::shouldIgnoreMemoryAccess(Instruction *I) { - if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) { - // We'd like to know about cache fragmentation in vtable accesses and - // constant data references, so we do not currently ignore anything. - return false; - } else if (Options.ToolType == EfficiencySanitizerOptions::ESAN_WorkingSet) { - // TODO: the instrumentation disturbs the data layout on the stack, so we - // may want to add an option to ignore stack references (if we can - // distinguish them) to reduce overhead. - } - // TODO(bruening): future tools will be returning true for some cases. - return false; -} - -bool EfficiencySanitizer::runOnModule(Module &M) { - bool Res = initOnModule(M); - initializeCallbacks(M); - for (auto &F : M) { - Res |= runOnFunction(F, M); - } - return Res; -} - -bool EfficiencySanitizer::runOnFunction(Function &F, Module &M) { - // This is required to prevent instrumenting the call to __esan_init from - // within the module constructor. - if (&F == EsanCtorFunction) - return false; - SmallVector<Instruction *, 8> LoadsAndStores; - SmallVector<Instruction *, 8> MemIntrinCalls; - SmallVector<Instruction *, 8> GetElementPtrs; - bool Res = false; - const DataLayout &DL = M.getDataLayout(); - const TargetLibraryInfo *TLI = - &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); - - for (auto &BB : F) { - for (auto &Inst : BB) { - if ((isa<LoadInst>(Inst) || isa<StoreInst>(Inst) || - isa<AtomicRMWInst>(Inst) || isa<AtomicCmpXchgInst>(Inst)) && - !shouldIgnoreMemoryAccess(&Inst)) - LoadsAndStores.push_back(&Inst); - else if (isa<MemIntrinsic>(Inst)) - MemIntrinCalls.push_back(&Inst); - else if (isa<GetElementPtrInst>(Inst)) - GetElementPtrs.push_back(&Inst); - else if (CallInst *CI = dyn_cast<CallInst>(&Inst)) - maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); - } - } - - if (ClInstrumentLoadsAndStores) { - for (auto Inst : LoadsAndStores) { - Res |= instrumentLoadOrStore(Inst, DL); - } - } - - if (ClInstrumentMemIntrinsics) { - for (auto Inst : MemIntrinCalls) { - Res |= instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); - } - } - - if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) { - for (auto Inst : GetElementPtrs) { - Res |= instrumentGetElementPtr(Inst, M); - } - } - - return Res; -} - -bool EfficiencySanitizer::instrumentLoadOrStore(Instruction *I, - const DataLayout &DL) { - IRBuilder<> IRB(I); - bool IsStore; - Value *Addr; - unsigned Alignment; - if (LoadInst *Load = dyn_cast<LoadInst>(I)) { - IsStore = false; - Alignment = Load->getAlignment(); - Addr = Load->getPointerOperand(); - } else if (StoreInst *Store = dyn_cast<StoreInst>(I)) { - IsStore = true; - Alignment = Store->getAlignment(); - Addr = Store->getPointerOperand(); - } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { - IsStore = true; - Alignment = 0; - Addr = RMW->getPointerOperand(); - } else if (AtomicCmpXchgInst *Xchg = dyn_cast<AtomicCmpXchgInst>(I)) { - IsStore = true; - Alignment = 0; - Addr = Xchg->getPointerOperand(); - } else - llvm_unreachable("Unsupported mem access type"); - - Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); - const uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8; - Value *OnAccessFunc = nullptr; - - // Convert 0 to the default alignment. - if (Alignment == 0) - Alignment = DL.getPrefTypeAlignment(OrigTy); - - if (IsStore) - NumInstrumentedStores++; - else - NumInstrumentedLoads++; - int Idx = getMemoryAccessFuncIndex(Addr, DL); - if (Idx < 0) { - OnAccessFunc = IsStore ? EsanUnalignedStoreN : EsanUnalignedLoadN; - IRB.CreateCall(OnAccessFunc, - {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), - ConstantInt::get(IntptrTy, TypeSizeBytes)}); - } else { - if (ClInstrumentFastpath && - instrumentFastpath(I, DL, IsStore, Addr, Alignment)) { - NumFastpaths++; - return true; - } - if (Alignment == 0 || (Alignment % TypeSizeBytes) == 0) - OnAccessFunc = IsStore ? EsanAlignedStore[Idx] : EsanAlignedLoad[Idx]; - else - OnAccessFunc = IsStore ? EsanUnalignedStore[Idx] : EsanUnalignedLoad[Idx]; - IRB.CreateCall(OnAccessFunc, - IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); - } - return true; -} - -// It's simplest to replace the memset/memmove/memcpy intrinsics with -// calls that the runtime library intercepts. -// Our pass is late enough that calls should not turn back into intrinsics. -bool EfficiencySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { - IRBuilder<> IRB(MI); - bool Res = false; - if (isa<MemSetInst>(MI)) { - IRB.CreateCall( - MemsetFn, - {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getArgOperand(1), IRB.getInt32Ty(), false), - IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)}); - MI->eraseFromParent(); - Res = true; - } else if (isa<MemTransferInst>(MI)) { - IRB.CreateCall( - isa<MemCpyInst>(MI) ? MemcpyFn : MemmoveFn, - {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(MI->getArgOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)}); - MI->eraseFromParent(); - Res = true; - } else - llvm_unreachable("Unsupported mem intrinsic type"); - return Res; -} - -bool EfficiencySanitizer::instrumentGetElementPtr(Instruction *I, Module &M) { - GetElementPtrInst *GepInst = dyn_cast<GetElementPtrInst>(I); - bool Res = false; - if (GepInst == nullptr || GepInst->getNumIndices() == 1) { - ++NumIgnoredGEPs; - return false; - } - Type *SourceTy = GepInst->getSourceElementType(); - StructType *StructTy = nullptr; - ConstantInt *Idx; - // Check if GEP calculates address from a struct array. - if (isa<StructType>(SourceTy)) { - StructTy = cast<StructType>(SourceTy); - Idx = dyn_cast<ConstantInt>(GepInst->getOperand(1)); - if ((Idx == nullptr || Idx->getSExtValue() != 0) && - !shouldIgnoreStructType(StructTy) && StructTyMap.count(StructTy) != 0) - Res |= insertCounterUpdate(I, StructTy, getArrayCounterIdx(StructTy)); - } - // Iterate all (except the first and the last) idx within each GEP instruction - // for possible nested struct field address calculation. - for (unsigned i = 1; i < GepInst->getNumIndices(); ++i) { - SmallVector<Value *, 8> IdxVec(GepInst->idx_begin(), - GepInst->idx_begin() + i); - Type *Ty = GetElementPtrInst::getIndexedType(SourceTy, IdxVec); - unsigned CounterIdx = 0; - if (isa<ArrayType>(Ty)) { - ArrayType *ArrayTy = cast<ArrayType>(Ty); - StructTy = dyn_cast<StructType>(ArrayTy->getElementType()); - if (shouldIgnoreStructType(StructTy) || StructTyMap.count(StructTy) == 0) - continue; - // The last counter for struct array access. - CounterIdx = getArrayCounterIdx(StructTy); - } else if (isa<StructType>(Ty)) { - StructTy = cast<StructType>(Ty); - if (shouldIgnoreStructType(StructTy) || StructTyMap.count(StructTy) == 0) - continue; - // Get the StructTy's subfield index. - Idx = cast<ConstantInt>(GepInst->getOperand(i+1)); - assert(Idx->getSExtValue() >= 0 && - Idx->getSExtValue() < StructTy->getNumElements()); - CounterIdx = getFieldCounterIdx(StructTy) + Idx->getSExtValue(); - } - Res |= insertCounterUpdate(I, StructTy, CounterIdx); - } - if (Res) - ++NumInstrumentedGEPs; - else - ++NumIgnoredGEPs; - return Res; -} - -bool EfficiencySanitizer::insertCounterUpdate(Instruction *I, - StructType *StructTy, - unsigned CounterIdx) { - GlobalVariable *CounterArray = StructTyMap[StructTy]; - if (CounterArray == nullptr) - return false; - IRBuilder<> IRB(I); - Constant *Indices[2]; - // Xref http://llvm.org/docs/LangRef.html#i-getelementptr and - // http://llvm.org/docs/GetElementPtr.html. - // The first index of the GEP instruction steps through the first operand, - // i.e., the array itself. - Indices[0] = ConstantInt::get(IRB.getInt32Ty(), 0); - // The second index is the index within the array. - Indices[1] = ConstantInt::get(IRB.getInt32Ty(), CounterIdx); - Constant *Counter = - ConstantExpr::getGetElementPtr( - ArrayType::get(IRB.getInt64Ty(), getStructCounterSize(StructTy)), - CounterArray, Indices); - Value *Load = IRB.CreateLoad(Counter); - IRB.CreateStore(IRB.CreateAdd(Load, ConstantInt::get(IRB.getInt64Ty(), 1)), - Counter); - return true; -} - -int EfficiencySanitizer::getMemoryAccessFuncIndex(Value *Addr, - const DataLayout &DL) { - Type *OrigPtrTy = Addr->getType(); - Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); - assert(OrigTy->isSized()); - // The size is always a multiple of 8. - uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8; - if (TypeSizeBytes != 1 && TypeSizeBytes != 2 && TypeSizeBytes != 4 && - TypeSizeBytes != 8 && TypeSizeBytes != 16) { - // Irregular sizes do not have per-size call targets. - NumAccessesWithIrregularSize++; - return -1; - } - size_t Idx = countTrailingZeros(TypeSizeBytes); - assert(Idx < NumberOfAccessSizes); - return Idx; -} - -bool EfficiencySanitizer::instrumentFastpath(Instruction *I, - const DataLayout &DL, bool IsStore, - Value *Addr, unsigned Alignment) { - if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) { - return instrumentFastpathCacheFrag(I, DL, Addr, Alignment); - } else if (Options.ToolType == EfficiencySanitizerOptions::ESAN_WorkingSet) { - return instrumentFastpathWorkingSet(I, DL, Addr, Alignment); - } - return false; -} - -bool EfficiencySanitizer::instrumentFastpathCacheFrag(Instruction *I, - const DataLayout &DL, - Value *Addr, - unsigned Alignment) { - // Do nothing. - return true; // Return true to avoid slowpath instrumentation. -} - -bool EfficiencySanitizer::instrumentFastpathWorkingSet( - Instruction *I, const DataLayout &DL, Value *Addr, unsigned Alignment) { - assert(ShadowScale[Options.ToolType] == 6); // The code below assumes this - IRBuilder<> IRB(I); - Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); - const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); - // Bail to the slowpath if the access might touch multiple cache lines. - // An access aligned to its size is guaranteed to be intra-cache-line. - // getMemoryAccessFuncIndex has already ruled out a size larger than 16 - // and thus larger than a cache line for platforms this tool targets - // (and our shadow memory setup assumes 64-byte cache lines). - assert(TypeSize <= 128); - if (!(TypeSize == 8 || - (Alignment % (TypeSize / 8)) == 0)) { - if (ClAssumeIntraCacheLine) - ++NumAssumedIntraCacheLine; - else - return false; - } - - // We inline instrumentation to set the corresponding shadow bits for - // each cache line touched by the application. Here we handle a single - // load or store where we've already ruled out the possibility that it - // might touch more than one cache line and thus we simply update the - // shadow memory for a single cache line. - // Our shadow memory model is fine with races when manipulating shadow values. - // We generate the following code: - // - // const char BitMask = 0x81; - // char *ShadowAddr = appToShadow(AppAddr); - // if ((*ShadowAddr & BitMask) != BitMask) - // *ShadowAddr |= Bitmask; - // - Value *AddrPtr = IRB.CreatePointerCast(Addr, IntptrTy); - Value *ShadowPtr = appToShadow(AddrPtr, IRB); - Type *ShadowTy = IntegerType::get(*Ctx, 8U); - Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); - // The bottom bit is used for the current sampling period's working set. - // The top bit is used for the total working set. We set both on each - // memory access, if they are not already set. - Value *ValueMask = ConstantInt::get(ShadowTy, 0x81); // 10000001B - - Value *OldValue = IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); - // The AND and CMP will be turned into a TEST instruction by the compiler. - Value *Cmp = IRB.CreateICmpNE(IRB.CreateAnd(OldValue, ValueMask), ValueMask); - Instruction *CmpTerm = SplitBlockAndInsertIfThen(Cmp, I, false); - // FIXME: do I need to call SetCurrentDebugLocation? - IRB.SetInsertPoint(CmpTerm); - // We use OR to set the shadow bits to avoid corrupting the middle 6 bits, - // which are used by the runtime library. - Value *NewVal = IRB.CreateOr(OldValue, ValueMask); - IRB.CreateStore(NewVal, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); - IRB.SetInsertPoint(I); - - return true; -} |