diff options
Diffstat (limited to 'lib/Transforms/Instrumentation/PoisonChecking.cpp')
-rw-r--r-- | lib/Transforms/Instrumentation/PoisonChecking.cpp | 357 |
1 files changed, 357 insertions, 0 deletions
diff --git a/lib/Transforms/Instrumentation/PoisonChecking.cpp b/lib/Transforms/Instrumentation/PoisonChecking.cpp new file mode 100644 index 000000000000..81d92e724c7d --- /dev/null +++ b/lib/Transforms/Instrumentation/PoisonChecking.cpp @@ -0,0 +1,357 @@ +//===- PoisonChecking.cpp - -----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implements a transform pass which instruments IR such that poison semantics +// are made explicit. That is, it provides a (possibly partial) executable +// semantics for every instruction w.r.t. poison as specified in the LLVM +// LangRef. There are obvious parallels to the sanitizer tools, but this pass +// is focused purely on the semantics of LLVM IR, not any particular source +// language. If you're looking for something to see if your C/C++ contains +// UB, this is not it. +// +// The rewritten semantics of each instruction will include the following +// components: +// +// 1) The original instruction, unmodified. +// 2) A propagation rule which translates dynamic information about the poison +// state of each input to whether the dynamic output of the instruction +// produces poison. +// 3) A flag validation rule which validates any poison producing flags on the +// instruction itself (e.g. checks for overflow on nsw). +// 4) A check rule which traps (to a handler function) if this instruction must +// execute undefined behavior given the poison state of it's inputs. +// +// At the moment, the UB detection is done in a best effort manner; that is, +// the resulting code may produce a false negative result (not report UB when +// it actually exists according to the LangRef spec), but should never produce +// a false positive (report UB where it doesn't exist). The intention is to +// eventually support a "strict" mode which never dynamically reports a false +// negative at the cost of rejecting some valid inputs to translation. +// +// Use cases for this pass include: +// - Understanding (and testing!) the implications of the definition of poison +// from the LangRef. +// - Validating the output of a IR fuzzer to ensure that all programs produced +// are well defined on the specific input used. +// - Finding/confirming poison specific miscompiles by checking the poison +// status of an input/IR pair is the same before and after an optimization +// transform. +// - Checking that a bugpoint reduction does not introduce UB which didn't +// exist in the original program being reduced. +// +// The major sources of inaccuracy are currently: +// - Most validation rules not yet implemented for instructions with poison +// relavant flags. At the moment, only nsw/nuw on add/sub are supported. +// - UB which is control dependent on a branch on poison is not yet +// reported. Currently, only data flow dependence is modeled. +// - Poison which is propagated through memory is not modeled. As such, +// storing poison to memory and then reloading it will cause a false negative +// as we consider the reloaded value to not be poisoned. +// - Poison propagation across function boundaries is not modeled. At the +// moment, all arguments and return values are assumed not to be poison. +// - Undef is not modeled. In particular, the optimizer's freedom to pick +// concrete values for undef bits so as to maximize potential for producing +// poison is not modeled. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/PoisonChecking.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/Debug.h" + +using namespace llvm; + +#define DEBUG_TYPE "poison-checking" + +static cl::opt<bool> +LocalCheck("poison-checking-function-local", + cl::init(false), + cl::desc("Check that returns are non-poison (for testing)")); + + +static bool isConstantFalse(Value* V) { + assert(V->getType()->isIntegerTy(1)); + if (auto *CI = dyn_cast<ConstantInt>(V)) + return CI->isZero(); + return false; +} + +static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) { + if (Ops.size() == 0) + return B.getFalse(); + unsigned i = 0; + for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {} + if (i == Ops.size()) + return B.getFalse(); + Value *Accum = Ops[i++]; + for (; i < Ops.size(); i++) + if (!isConstantFalse(Ops[i])) + Accum = B.CreateOr(Accum, Ops[i]); + return Accum; +} + +static void generatePoisonChecksForBinOp(Instruction &I, + SmallVector<Value*, 2> &Checks) { + assert(isa<BinaryOperator>(I)); + + IRBuilder<> B(&I); + Value *LHS = I.getOperand(0); + Value *RHS = I.getOperand(1); + switch (I.getOpcode()) { + default: + return; + case Instruction::Add: { + if (I.hasNoSignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + if (I.hasNoUnsignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + break; + } + case Instruction::Sub: { + if (I.hasNoSignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + if (I.hasNoUnsignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + break; + } + case Instruction::Mul: { + if (I.hasNoSignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + if (I.hasNoUnsignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + break; + } + case Instruction::UDiv: { + if (I.isExact()) { + auto *Check = + B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS), + ConstantInt::get(LHS->getType(), 0)); + Checks.push_back(Check); + } + break; + } + case Instruction::SDiv: { + if (I.isExact()) { + auto *Check = + B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS), + ConstantInt::get(LHS->getType(), 0)); + Checks.push_back(Check); + } + break; + } + case Instruction::AShr: + case Instruction::LShr: + case Instruction::Shl: { + Value *ShiftCheck = + B.CreateICmp(ICmpInst::ICMP_UGE, RHS, + ConstantInt::get(RHS->getType(), + LHS->getType()->getScalarSizeInBits())); + Checks.push_back(ShiftCheck); + break; + } + }; +} + +static Value* generatePoisonChecks(Instruction &I) { + IRBuilder<> B(&I); + SmallVector<Value*, 2> Checks; + if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy()) + generatePoisonChecksForBinOp(I, Checks); + + // Handle non-binops seperately + switch (I.getOpcode()) { + default: + break; + case Instruction::ExtractElement: { + Value *Vec = I.getOperand(0); + if (Vec->getType()->getVectorIsScalable()) + break; + Value *Idx = I.getOperand(1); + unsigned NumElts = Vec->getType()->getVectorNumElements(); + Value *Check = + B.CreateICmp(ICmpInst::ICMP_UGE, Idx, + ConstantInt::get(Idx->getType(), NumElts)); + Checks.push_back(Check); + break; + } + case Instruction::InsertElement: { + Value *Vec = I.getOperand(0); + if (Vec->getType()->getVectorIsScalable()) + break; + Value *Idx = I.getOperand(2); + unsigned NumElts = Vec->getType()->getVectorNumElements(); + Value *Check = + B.CreateICmp(ICmpInst::ICMP_UGE, Idx, + ConstantInt::get(Idx->getType(), NumElts)); + Checks.push_back(Check); + break; + } + }; + return buildOrChain(B, Checks); +} + +static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) { + auto Itr = ValToPoison.find(V); + if (Itr != ValToPoison.end()) + return Itr->second; + if (isa<Constant>(V)) { + return ConstantInt::getFalse(V->getContext()); + } + // Return false for unknwon values - this implements a non-strict mode where + // unhandled IR constructs are simply considered to never produce poison. At + // some point in the future, we probably want a "strict mode" for testing if + // nothing else. + return ConstantInt::getFalse(V->getContext()); +} + +static void CreateAssert(IRBuilder<> &B, Value *Cond) { + assert(Cond->getType()->isIntegerTy(1)); + if (auto *CI = dyn_cast<ConstantInt>(Cond)) + if (CI->isAllOnesValue()) + return; + + Module *M = B.GetInsertBlock()->getModule(); + M->getOrInsertFunction("__poison_checker_assert", + Type::getVoidTy(M->getContext()), + Type::getInt1Ty(M->getContext())); + Function *TrapFunc = M->getFunction("__poison_checker_assert"); + B.CreateCall(TrapFunc, Cond); +} + +static void CreateAssertNot(IRBuilder<> &B, Value *Cond) { + assert(Cond->getType()->isIntegerTy(1)); + CreateAssert(B, B.CreateNot(Cond)); +} + +static bool rewrite(Function &F) { + auto * const Int1Ty = Type::getInt1Ty(F.getContext()); + + DenseMap<Value *, Value *> ValToPoison; + + for (BasicBlock &BB : F) + for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { + auto *OldPHI = cast<PHINode>(&*I); + auto *NewPHI = PHINode::Create(Int1Ty, + OldPHI->getNumIncomingValues()); + for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) + NewPHI->addIncoming(UndefValue::get(Int1Ty), + OldPHI->getIncomingBlock(i)); + NewPHI->insertBefore(OldPHI); + ValToPoison[OldPHI] = NewPHI; + } + + for (BasicBlock &BB : F) + for (Instruction &I : BB) { + if (isa<PHINode>(I)) continue; + + IRBuilder<> B(cast<Instruction>(&I)); + + // Note: There are many more sources of documented UB, but this pass only + // attempts to find UB triggered by propagation of poison. + if (Value *Op = const_cast<Value*>(getGuaranteedNonFullPoisonOp(&I))) + CreateAssertNot(B, getPoisonFor(ValToPoison, Op)); + + if (LocalCheck) + if (auto *RI = dyn_cast<ReturnInst>(&I)) + if (RI->getNumOperands() != 0) { + Value *Op = RI->getOperand(0); + CreateAssertNot(B, getPoisonFor(ValToPoison, Op)); + } + + SmallVector<Value*, 4> Checks; + if (propagatesFullPoison(&I)) + for (Value *V : I.operands()) + Checks.push_back(getPoisonFor(ValToPoison, V)); + + if (auto *Check = generatePoisonChecks(I)) + Checks.push_back(Check); + ValToPoison[&I] = buildOrChain(B, Checks); + } + + for (BasicBlock &BB : F) + for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { + auto *OldPHI = cast<PHINode>(&*I); + if (!ValToPoison.count(OldPHI)) + continue; // skip the newly inserted phis + auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]); + for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) { + auto *OldVal = OldPHI->getIncomingValue(i); + NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal)); + } + } + return true; +} + + +PreservedAnalyses PoisonCheckingPass::run(Module &M, + ModuleAnalysisManager &AM) { + bool Changed = false; + for (auto &F : M) + Changed |= rewrite(F); + + return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); +} + +PreservedAnalyses PoisonCheckingPass::run(Function &F, + FunctionAnalysisManager &AM) { + return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all(); +} + + +/* Major TODO Items: + - Control dependent poison UB + - Strict mode - (i.e. must analyze every operand) + - Poison through memory + - Function ABIs + - Full coverage of intrinsics, etc.. (ouch) + + Instructions w/Unclear Semantics: + - shufflevector - It would seem reasonable for an out of bounds mask element + to produce poison, but the LangRef does not state. + - and/or - It would seem reasonable for poison to propagate from both + arguments, but LangRef doesn't state and propagatesFullPoison doesn't + include these two. + - all binary ops w/vector operands - The likely interpretation would be that + any element overflowing should produce poison for the entire result, but + the LangRef does not state. + - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems + strange that only certian flags should be documented as producing poison. + + Cases of clear poison semantics not yet implemented: + - Exact flags on ashr/lshr produce poison + - NSW/NUW flags on shl produce poison + - Inbounds flag on getelementptr produce poison + - fptosi/fptoui (out of bounds input) produce poison + - Scalable vector types for insertelement/extractelement + - Floating point binary ops w/fmf nnan/noinfs flags produce poison + */ |