aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Scalar/LoopPredication.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Scalar/LoopPredication.cpp')
-rw-r--r--lib/Transforms/Scalar/LoopPredication.cpp524
1 files changed, 353 insertions, 171 deletions
diff --git a/lib/Transforms/Scalar/LoopPredication.cpp b/lib/Transforms/Scalar/LoopPredication.cpp
index 5983c804c0c1..507a1e251ca6 100644
--- a/lib/Transforms/Scalar/LoopPredication.cpp
+++ b/lib/Transforms/Scalar/LoopPredication.cpp
@@ -1,9 +1,8 @@
//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
@@ -179,6 +178,7 @@
#include "llvm/Transforms/Scalar/LoopPredication.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LoopInfo.h"
@@ -194,6 +194,7 @@
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#define DEBUG_TYPE "loop-predication"
@@ -222,24 +223,31 @@ static cl::opt<float> LatchExitProbabilityScale(
cl::desc("scale factor for the latch probability. Value should be greater "
"than 1. Lower values are ignored"));
+static cl::opt<bool> PredicateWidenableBranchGuards(
+ "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
+ cl::desc("Whether or not we should predicate guards "
+ "expressed as widenable branches to deoptimize blocks"),
+ cl::init(true));
+
namespace {
-class LoopPredication {
- /// Represents an induction variable check:
- /// icmp Pred, <induction variable>, <loop invariant limit>
- struct LoopICmp {
- ICmpInst::Predicate Pred;
- const SCEVAddRecExpr *IV;
- const SCEV *Limit;
- LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
- const SCEV *Limit)
- : Pred(Pred), IV(IV), Limit(Limit) {}
- LoopICmp() {}
- void dump() {
- dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
- << ", Limit = " << *Limit << "\n";
- }
- };
+/// Represents an induction variable check:
+/// icmp Pred, <induction variable>, <loop invariant limit>
+struct LoopICmp {
+ ICmpInst::Predicate Pred;
+ const SCEVAddRecExpr *IV;
+ const SCEV *Limit;
+ LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
+ const SCEV *Limit)
+ : Pred(Pred), IV(IV), Limit(Limit) {}
+ LoopICmp() {}
+ void dump() {
+ dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
+ << ", Limit = " << *Limit << "\n";
+ }
+};
+class LoopPredication {
+ AliasAnalysis *AA;
ScalarEvolution *SE;
BranchProbabilityInfo *BPI;
@@ -249,58 +257,53 @@ class LoopPredication {
LoopICmp LatchCheck;
bool isSupportedStep(const SCEV* Step);
- Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
- return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
- ICI->getOperand(1));
- }
- Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
- Value *RHS);
-
+ Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
Optional<LoopICmp> parseLoopLatchICmp();
- bool CanExpand(const SCEV* S);
- Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
- ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
- Instruction *InsertAt);
+ /// Return an insertion point suitable for inserting a safe to speculate
+ /// instruction whose only user will be 'User' which has operands 'Ops'. A
+ /// trivial result would be the at the User itself, but we try to return a
+ /// loop invariant location if possible.
+ Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
+ /// Same as above, *except* that this uses the SCEV definition of invariant
+ /// which is that an expression *can be made* invariant via SCEVExpander.
+ /// Thus, this version is only suitable for finding an insert point to be be
+ /// passed to SCEVExpander!
+ Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
+
+ /// Return true if the value is known to produce a single fixed value across
+ /// all iterations on which it executes. Note that this does not imply
+ /// speculation safety. That must be established seperately.
+ bool isLoopInvariantValue(const SCEV* S);
+
+ Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
+ ICmpInst::Predicate Pred, const SCEV *LHS,
+ const SCEV *RHS);
Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
- IRBuilder<> &Builder);
+ Instruction *Guard);
Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
LoopICmp RangeCheck,
SCEVExpander &Expander,
- IRBuilder<> &Builder);
+ Instruction *Guard);
Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
LoopICmp RangeCheck,
SCEVExpander &Expander,
- IRBuilder<> &Builder);
+ Instruction *Guard);
+ unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
+ SCEVExpander &Expander, Instruction *Guard);
bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
-
+ bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
// If the loop always exits through another block in the loop, we should not
// predicate based on the latch check. For example, the latch check can be a
// very coarse grained check and there can be more fine grained exit checks
// within the loop. We identify such unprofitable loops through BPI.
bool isLoopProfitableToPredicate();
- // When the IV type is wider than the range operand type, we can still do loop
- // predication, by generating SCEVs for the range and latch that are of the
- // same type. We achieve this by generating a SCEV truncate expression for the
- // latch IV. This is done iff truncation of the IV is a safe operation,
- // without loss of information.
- // Another way to achieve this is by generating a wider type SCEV for the
- // range check operand, however, this needs a more involved check that
- // operands do not overflow. This can lead to loss of information when the
- // range operand is of the form: add i32 %offset, %iv. We need to prove that
- // sext(x + y) is same as sext(x) + sext(y).
- // This function returns true if we can safely represent the IV type in
- // the RangeCheckType without loss of information.
- bool isSafeToTruncateWideIVType(Type *RangeCheckType);
- // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
- // so.
- Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
-
public:
- LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
- : SE(SE), BPI(BPI){};
+ LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
+ BranchProbabilityInfo *BPI)
+ : AA(AA), SE(SE), BPI(BPI){};
bool runOnLoop(Loop *L);
};
@@ -322,7 +325,8 @@ public:
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
BranchProbabilityInfo &BPI =
getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
- LoopPredication LP(SE, &BPI);
+ auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ LoopPredication LP(AA, SE, &BPI);
return LP.runOnLoop(L);
}
};
@@ -348,16 +352,19 @@ PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
Function *F = L.getHeader()->getParent();
auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
- LoopPredication LP(&AR.SE, BPI);
+ LoopPredication LP(&AR.AA, &AR.SE, BPI);
if (!LP.runOnLoop(&L))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
-Optional<LoopPredication::LoopICmp>
-LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
- Value *RHS) {
+Optional<LoopICmp>
+LoopPredication::parseLoopICmp(ICmpInst *ICI) {
+ auto Pred = ICI->getPredicate();
+ auto *LHS = ICI->getOperand(0);
+ auto *RHS = ICI->getOperand(1);
+
const SCEV *LHSS = SE->getSCEV(LHS);
if (isa<SCEVCouldNotCompute>(LHSS))
return None;
@@ -380,42 +387,98 @@ LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
}
Value *LoopPredication::expandCheck(SCEVExpander &Expander,
- IRBuilder<> &Builder,
+ Instruction *Guard,
ICmpInst::Predicate Pred, const SCEV *LHS,
- const SCEV *RHS, Instruction *InsertAt) {
- // TODO: we can check isLoopEntryGuardedByCond before emitting the check
-
+ const SCEV *RHS) {
Type *Ty = LHS->getType();
assert(Ty == RHS->getType() && "expandCheck operands have different types?");
- if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
- return Builder.getTrue();
+ if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
+ IRBuilder<> Builder(Guard);
+ if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
+ return Builder.getTrue();
+ if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
+ LHS, RHS))
+ return Builder.getFalse();
+ }
- Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
- Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
+ Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
+ Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
+ IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
return Builder.CreateICmp(Pred, LHSV, RHSV);
}
-Optional<LoopPredication::LoopICmp>
-LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
+
+// Returns true if its safe to truncate the IV to RangeCheckType.
+// When the IV type is wider than the range operand type, we can still do loop
+// predication, by generating SCEVs for the range and latch that are of the
+// same type. We achieve this by generating a SCEV truncate expression for the
+// latch IV. This is done iff truncation of the IV is a safe operation,
+// without loss of information.
+// Another way to achieve this is by generating a wider type SCEV for the
+// range check operand, however, this needs a more involved check that
+// operands do not overflow. This can lead to loss of information when the
+// range operand is of the form: add i32 %offset, %iv. We need to prove that
+// sext(x + y) is same as sext(x) + sext(y).
+// This function returns true if we can safely represent the IV type in
+// the RangeCheckType without loss of information.
+static bool isSafeToTruncateWideIVType(const DataLayout &DL,
+ ScalarEvolution &SE,
+ const LoopICmp LatchCheck,
+ Type *RangeCheckType) {
+ if (!EnableIVTruncation)
+ return false;
+ assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
+ DL.getTypeSizeInBits(RangeCheckType) &&
+ "Expected latch check IV type to be larger than range check operand "
+ "type!");
+ // The start and end values of the IV should be known. This is to guarantee
+ // that truncating the wide type will not lose information.
+ auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
+ auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
+ if (!Limit || !Start)
+ return false;
+ // This check makes sure that the IV does not change sign during loop
+ // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
+ // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
+ // IV wraps around, and the truncation of the IV would lose the range of
+ // iterations between 2^32 and 2^64.
+ bool Increasing;
+ if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
+ return false;
+ // The active bits should be less than the bits in the RangeCheckType. This
+ // guarantees that truncating the latch check to RangeCheckType is a safe
+ // operation.
+ auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
+ return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
+ Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
+}
+
+
+// Return an LoopICmp describing a latch check equivlent to LatchCheck but with
+// the requested type if safe to do so. May involve the use of a new IV.
+static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
+ ScalarEvolution &SE,
+ const LoopICmp LatchCheck,
+ Type *RangeCheckType) {
auto *LatchType = LatchCheck.IV->getType();
if (RangeCheckType == LatchType)
return LatchCheck;
// For now, bail out if latch type is narrower than range type.
- if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
+ if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
return None;
- if (!isSafeToTruncateWideIVType(RangeCheckType))
+ if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
return None;
// We can now safely identify the truncated version of the IV and limit for
// RangeCheckType.
LoopICmp NewLatchCheck;
NewLatchCheck.Pred = LatchCheck.Pred;
NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
- SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
+ SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
if (!NewLatchCheck.IV)
return None;
- NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
+ NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
<< "can be represented as range check type:"
<< *RangeCheckType << "\n");
@@ -428,13 +491,66 @@ bool LoopPredication::isSupportedStep(const SCEV* Step) {
return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
}
-bool LoopPredication::CanExpand(const SCEV* S) {
- return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
+Instruction *LoopPredication::findInsertPt(Instruction *Use,
+ ArrayRef<Value*> Ops) {
+ for (Value *Op : Ops)
+ if (!L->isLoopInvariant(Op))
+ return Use;
+ return Preheader->getTerminator();
+}
+
+Instruction *LoopPredication::findInsertPt(Instruction *Use,
+ ArrayRef<const SCEV*> Ops) {
+ // Subtlety: SCEV considers things to be invariant if the value produced is
+ // the same across iterations. This is not the same as being able to
+ // evaluate outside the loop, which is what we actually need here.
+ for (const SCEV *Op : Ops)
+ if (!SE->isLoopInvariant(Op, L) ||
+ !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
+ return Use;
+ return Preheader->getTerminator();
+}
+
+bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
+ // Handling expressions which produce invariant results, but *haven't* yet
+ // been removed from the loop serves two important purposes.
+ // 1) Most importantly, it resolves a pass ordering cycle which would
+ // otherwise need us to iteration licm, loop-predication, and either
+ // loop-unswitch or loop-peeling to make progress on examples with lots of
+ // predicable range checks in a row. (Since, in the general case, we can't
+ // hoist the length checks until the dominating checks have been discharged
+ // as we can't prove doing so is safe.)
+ // 2) As a nice side effect, this exposes the value of peeling or unswitching
+ // much more obviously in the IR. Otherwise, the cost modeling for other
+ // transforms would end up needing to duplicate all of this logic to model a
+ // check which becomes predictable based on a modeled peel or unswitch.
+ //
+ // The cost of doing so in the worst case is an extra fill from the stack in
+ // the loop to materialize the loop invariant test value instead of checking
+ // against the original IV which is presumable in a register inside the loop.
+ // Such cases are presumably rare, and hint at missing oppurtunities for
+ // other passes.
+
+ if (SE->isLoopInvariant(S, L))
+ // Note: This the SCEV variant, so the original Value* may be within the
+ // loop even though SCEV has proven it is loop invariant.
+ return true;
+
+ // Handle a particular important case which SCEV doesn't yet know about which
+ // shows up in range checks on arrays with immutable lengths.
+ // TODO: This should be sunk inside SCEV.
+ if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
+ if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
+ if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
+ if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
+ LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
+ return true;
+ return false;
}
Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
- LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
- SCEVExpander &Expander, IRBuilder<> &Builder) {
+ LoopICmp LatchCheck, LoopICmp RangeCheck,
+ SCEVExpander &Expander, Instruction *Guard) {
auto *Ty = RangeCheck.IV->getType();
// Generate the widened condition for the forward loop:
// guardStart u< guardLimit &&
@@ -446,40 +562,61 @@ Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
const SCEV *GuardLimit = RangeCheck.Limit;
const SCEV *LatchStart = LatchCheck.IV->getStart();
const SCEV *LatchLimit = LatchCheck.Limit;
+ // Subtlety: We need all the values to be *invariant* across all iterations,
+ // but we only need to check expansion safety for those which *aren't*
+ // already guaranteed to dominate the guard.
+ if (!isLoopInvariantValue(GuardStart) ||
+ !isLoopInvariantValue(GuardLimit) ||
+ !isLoopInvariantValue(LatchStart) ||
+ !isLoopInvariantValue(LatchLimit)) {
+ LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
+ return None;
+ }
+ if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
+ !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
+ LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
+ return None;
+ }
// guardLimit - guardStart + latchStart - 1
const SCEV *RHS =
SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
- if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
- !CanExpand(LatchLimit) || !CanExpand(RHS)) {
- LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
- return None;
- }
auto LimitCheckPred =
ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
-
- Instruction *InsertAt = Preheader->getTerminator();
+
auto *LimitCheck =
- expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
- auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
- GuardStart, GuardLimit, InsertAt);
+ expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
+ auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
+ GuardStart, GuardLimit);
+ IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}
Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
- LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
- SCEVExpander &Expander, IRBuilder<> &Builder) {
+ LoopICmp LatchCheck, LoopICmp RangeCheck,
+ SCEVExpander &Expander, Instruction *Guard) {
auto *Ty = RangeCheck.IV->getType();
const SCEV *GuardStart = RangeCheck.IV->getStart();
const SCEV *GuardLimit = RangeCheck.Limit;
+ const SCEV *LatchStart = LatchCheck.IV->getStart();
const SCEV *LatchLimit = LatchCheck.Limit;
- if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
- !CanExpand(LatchLimit)) {
+ // Subtlety: We need all the values to be *invariant* across all iterations,
+ // but we only need to check expansion safety for those which *aren't*
+ // already guaranteed to dominate the guard.
+ if (!isLoopInvariantValue(GuardStart) ||
+ !isLoopInvariantValue(GuardLimit) ||
+ !isLoopInvariantValue(LatchStart) ||
+ !isLoopInvariantValue(LatchLimit)) {
+ LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
+ return None;
+ }
+ if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
+ !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
return None;
}
@@ -497,22 +634,35 @@ Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
// guardStart u< guardLimit &&
// latchLimit <pred> 1.
// See the header comment for reasoning of the checks.
- Instruction *InsertAt = Preheader->getTerminator();
auto LimitCheckPred =
ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
- auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
- GuardStart, GuardLimit, InsertAt);
- auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
- SE->getOne(Ty), InsertAt);
+ auto *FirstIterationCheck = expandCheck(Expander, Guard,
+ ICmpInst::ICMP_ULT,
+ GuardStart, GuardLimit);
+ auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
+ SE->getOne(Ty));
+ IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}
+static void normalizePredicate(ScalarEvolution *SE, Loop *L,
+ LoopICmp& RC) {
+ // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
+ // ULT/UGE form for ease of handling by our caller.
+ if (ICmpInst::isEquality(RC.Pred) &&
+ RC.IV->getStepRecurrence(*SE)->isOne() &&
+ SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
+ RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
+ ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
+}
+
+
/// If ICI can be widened to a loop invariant condition emits the loop
/// invariant condition in the loop preheader and return it, otherwise
/// returns None.
Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
SCEVExpander &Expander,
- IRBuilder<> &Builder) {
+ Instruction *Guard) {
LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
LLVM_DEBUG(ICI->dump());
@@ -545,7 +695,7 @@ Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
return None;
}
auto *Ty = RangeCheckIV->getType();
- auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
+ auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
if (!CurrLatchCheckOpt) {
LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
"corresponding to range type: "
@@ -566,34 +716,27 @@ Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
if (Step->isOne())
return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
- Expander, Builder);
+ Expander, Guard);
else {
assert(Step->isAllOnesValue() && "Step should be -1!");
return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
- Expander, Builder);
+ Expander, Guard);
}
}
-bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
- SCEVExpander &Expander) {
- LLVM_DEBUG(dbgs() << "Processing guard:\n");
- LLVM_DEBUG(Guard->dump());
-
- TotalConsidered++;
-
- IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
-
+unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
+ Value *Condition,
+ SCEVExpander &Expander,
+ Instruction *Guard) {
+ unsigned NumWidened = 0;
// The guard condition is expected to be in form of:
// cond1 && cond2 && cond3 ...
// Iterate over subconditions looking for icmp conditions which can be
// widened across loop iterations. Widening these conditions remember the
// resulting list of subconditions in Checks vector.
- SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
+ SmallVector<Value *, 4> Worklist(1, Condition);
SmallPtrSet<Value *, 4> Visited;
-
- SmallVector<Value *, 4> Checks;
-
- unsigned NumWidened = 0;
+ Value *WideableCond = nullptr;
do {
Value *Condition = Worklist.pop_back_val();
if (!Visited.insert(Condition).second)
@@ -607,8 +750,16 @@ bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
continue;
}
+ if (match(Condition,
+ m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
+ // Pick any, we don't care which
+ WideableCond = Condition;
+ continue;
+ }
+
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
- if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
+ if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
+ Guard)) {
Checks.push_back(NewRangeCheck.getValue());
NumWidened++;
continue;
@@ -617,28 +768,70 @@ bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
// Save the condition as is if we can't widen it
Checks.push_back(Condition);
- } while (Worklist.size() != 0);
+ } while (!Worklist.empty());
+ // At the moment, our matching logic for wideable conditions implicitly
+ // assumes we preserve the form: (br (and Cond, WC())). FIXME
+ // Note that if there were multiple calls to wideable condition in the
+ // traversal, we only need to keep one, and which one is arbitrary.
+ if (WideableCond)
+ Checks.push_back(WideableCond);
+ return NumWidened;
+}
+
+bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
+ SCEVExpander &Expander) {
+ LLVM_DEBUG(dbgs() << "Processing guard:\n");
+ LLVM_DEBUG(Guard->dump());
+ TotalConsidered++;
+ SmallVector<Value *, 4> Checks;
+ unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
+ Guard);
+ if (NumWidened == 0)
+ return false;
+
+ TotalWidened += NumWidened;
+
+ // Emit the new guard condition
+ IRBuilder<> Builder(findInsertPt(Guard, Checks));
+ Value *AllChecks = Builder.CreateAnd(Checks);
+ auto *OldCond = Guard->getOperand(0);
+ Guard->setOperand(0, AllChecks);
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
+
+ LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
+ return true;
+}
+
+bool LoopPredication::widenWidenableBranchGuardConditions(
+ BranchInst *BI, SCEVExpander &Expander) {
+ assert(isGuardAsWidenableBranch(BI) && "Must be!");
+ LLVM_DEBUG(dbgs() << "Processing guard:\n");
+ LLVM_DEBUG(BI->dump());
+
+ TotalConsidered++;
+ SmallVector<Value *, 4> Checks;
+ unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
+ Expander, BI);
if (NumWidened == 0)
return false;
TotalWidened += NumWidened;
// Emit the new guard condition
- Builder.SetInsertPoint(Guard);
- Value *LastCheck = nullptr;
- for (auto *Check : Checks)
- if (!LastCheck)
- LastCheck = Check;
- else
- LastCheck = Builder.CreateAnd(LastCheck, Check);
- Guard->setOperand(0, LastCheck);
+ IRBuilder<> Builder(findInsertPt(BI, Checks));
+ Value *AllChecks = Builder.CreateAnd(Checks);
+ auto *OldCond = BI->getCondition();
+ BI->setCondition(AllChecks);
+ assert(isGuardAsWidenableBranch(BI) &&
+ "Stopped being a guard after transform?");
+ RecursivelyDeleteTriviallyDeadInstructions(OldCond);
LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
return true;
}
-Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
+Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
using namespace PatternMatch;
BasicBlock *LoopLatch = L->getLoopLatch();
@@ -647,27 +840,30 @@ Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
return None;
}
- ICmpInst::Predicate Pred;
- Value *LHS, *RHS;
- BasicBlock *TrueDest, *FalseDest;
-
- if (!match(LoopLatch->getTerminator(),
- m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
- FalseDest))) {
+ auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
+ if (!BI || !BI->isConditional()) {
LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
return None;
}
- assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
- "One of the latch's destinations must be the header");
- if (TrueDest != L->getHeader())
- Pred = ICmpInst::getInversePredicate(Pred);
-
- auto Result = parseLoopICmp(Pred, LHS, RHS);
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ assert(
+ (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
+ "One of the latch's destinations must be the header");
+
+ auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!ICI) {
+ LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
+ return None;
+ }
+ auto Result = parseLoopICmp(ICI);
if (!Result) {
LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
return None;
}
+ if (TrueDest != L->getHeader())
+ Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
+
// Check affine first, so if it's not we don't try to compute the step
// recurrence.
if (!Result->IV->isAffine()) {
@@ -692,49 +888,22 @@ Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
}
};
+ normalizePredicate(SE, L, *Result);
if (IsUnsupportedPredicate(Step, Result->Pred)) {
LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
<< ")!\n");
return None;
}
+
return Result;
}
-// Returns true if its safe to truncate the IV to RangeCheckType.
-bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
- if (!EnableIVTruncation)
- return false;
- assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
- DL->getTypeSizeInBits(RangeCheckType) &&
- "Expected latch check IV type to be larger than range check operand "
- "type!");
- // The start and end values of the IV should be known. This is to guarantee
- // that truncating the wide type will not lose information.
- auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
- auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
- if (!Limit || !Start)
- return false;
- // This check makes sure that the IV does not change sign during loop
- // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
- // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
- // IV wraps around, and the truncation of the IV would lose the range of
- // iterations between 2^32 and 2^64.
- bool Increasing;
- if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
- return false;
- // The active bits should be less than the bits in the RangeCheckType. This
- // guarantees that truncating the latch check to RangeCheckType is a safe
- // operation.
- auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
- return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
- Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
-}
bool LoopPredication::isLoopProfitableToPredicate() {
if (SkipProfitabilityChecks || !BPI)
return true;
- SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
+ SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
L->getExitEdges(ExitEdges);
// If there is only one exiting edge in the loop, it is always profitable to
// predicate the loop.
@@ -795,7 +964,12 @@ bool LoopPredication::runOnLoop(Loop *Loop) {
// There is nothing to do if the module doesn't use guards
auto *GuardDecl =
M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
- if (!GuardDecl || GuardDecl->use_empty())
+ bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
+ auto *WCDecl = M->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_widenable_condition));
+ bool HasWidenableConditions =
+ PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
+ if (!HasIntrinsicGuards && !HasWidenableConditions)
return false;
DL = &M->getDataLayout();
@@ -819,12 +993,18 @@ bool LoopPredication::runOnLoop(Loop *Loop) {
// Collect all the guards into a vector and process later, so as not
// to invalidate the instruction iterator.
SmallVector<IntrinsicInst *, 4> Guards;
- for (const auto BB : L->blocks())
+ SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
+ for (const auto BB : L->blocks()) {
for (auto &I : *BB)
if (isGuard(&I))
Guards.push_back(cast<IntrinsicInst>(&I));
+ if (PredicateWidenableBranchGuards &&
+ isGuardAsWidenableBranch(BB->getTerminator()))
+ GuardsAsWidenableBranches.push_back(
+ cast<BranchInst>(BB->getTerminator()));
+ }
- if (Guards.empty())
+ if (Guards.empty() && GuardsAsWidenableBranches.empty())
return false;
SCEVExpander Expander(*SE, *DL, "loop-predication");
@@ -832,6 +1012,8 @@ bool LoopPredication::runOnLoop(Loop *Loop) {
bool Changed = false;
for (auto *Guard : Guards)
Changed |= widenGuardConditions(Guard, Expander);
+ for (auto *Guard : GuardsAsWidenableBranches)
+ Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
return Changed;
}