diff options
Diffstat (limited to 'lib/Transforms/Scalar/LoopSimplifyCFG.cpp')
| -rw-r--r-- | lib/Transforms/Scalar/LoopSimplifyCFG.cpp | 565 |
1 files changed, 559 insertions, 6 deletions
diff --git a/lib/Transforms/Scalar/LoopSimplifyCFG.cpp b/lib/Transforms/Scalar/LoopSimplifyCFG.cpp index 2b83d3dc5f1b..2e5927f9a068 100644 --- a/lib/Transforms/Scalar/LoopSimplifyCFG.cpp +++ b/lib/Transforms/Scalar/LoopSimplifyCFG.cpp @@ -24,9 +24,12 @@ #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/DomTreeUpdater.h" #include "llvm/IR/Dominators.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" @@ -38,9 +41,527 @@ using namespace llvm; #define DEBUG_TYPE "loop-simplifycfg" -static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, - ScalarEvolution &SE) { +static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding", + cl::init(false)); + +STATISTIC(NumTerminatorsFolded, + "Number of terminators folded to unconditional branches"); +STATISTIC(NumLoopBlocksDeleted, + "Number of loop blocks deleted"); +STATISTIC(NumLoopExitsDeleted, + "Number of loop exiting edges deleted"); + +/// If \p BB is a switch or a conditional branch, but only one of its successors +/// can be reached from this block in runtime, return this successor. Otherwise, +/// return nullptr. +static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { + Instruction *TI = BB->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (BI->isUnconditional()) + return nullptr; + if (BI->getSuccessor(0) == BI->getSuccessor(1)) + return BI->getSuccessor(0); + ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); + if (!Cond) + return nullptr; + return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0); + } + + if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); + if (!CI) + return nullptr; + for (auto Case : SI->cases()) + if (Case.getCaseValue() == CI) + return Case.getCaseSuccessor(); + return SI->getDefaultDest(); + } + + return nullptr; +} + +namespace { +/// Helper class that can turn branches and switches with constant conditions +/// into unconditional branches. +class ConstantTerminatorFoldingImpl { +private: + Loop &L; + LoopInfo &LI; + DominatorTree &DT; + ScalarEvolution &SE; + MemorySSAUpdater *MSSAU; + + // Whether or not the current loop has irreducible CFG. + bool HasIrreducibleCFG = false; + // Whether or not the current loop will still exist after terminator constant + // folding will be done. In theory, there are two ways how it can happen: + // 1. Loop's latch(es) become unreachable from loop header; + // 2. Loop's header becomes unreachable from method entry. + // In practice, the second situation is impossible because we only modify the + // current loop and its preheader and do not affect preheader's reachibility + // from any other block. So this variable set to true means that loop's latch + // has become unreachable from loop header. + bool DeleteCurrentLoop = false; + + // The blocks of the original loop that will still be reachable from entry + // after the constant folding. + SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; + // The blocks of the original loop that will become unreachable from entry + // after the constant folding. + SmallVector<BasicBlock *, 8> DeadLoopBlocks; + // The exits of the original loop that will still be reachable from entry + // after the constant folding. + SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; + // The exits of the original loop that will become unreachable from entry + // after the constant folding. + SmallVector<BasicBlock *, 8> DeadExitBlocks; + // The blocks that will still be a part of the current loop after folding. + SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; + // The blocks that have terminators with constant condition that can be + // folded. Note: fold candidates should be in L but not in any of its + // subloops to avoid complex LI updates. + SmallVector<BasicBlock *, 8> FoldCandidates; + + void dump() const { + dbgs() << "Constant terminator folding for loop " << L << "\n"; + dbgs() << "After terminator constant-folding, the loop will"; + if (!DeleteCurrentLoop) + dbgs() << " not"; + dbgs() << " be destroyed\n"; + auto PrintOutVector = [&](const char *Message, + const SmallVectorImpl<BasicBlock *> &S) { + dbgs() << Message << "\n"; + for (const BasicBlock *BB : S) + dbgs() << "\t" << BB->getName() << "\n"; + }; + auto PrintOutSet = [&](const char *Message, + const SmallPtrSetImpl<BasicBlock *> &S) { + dbgs() << Message << "\n"; + for (const BasicBlock *BB : S) + dbgs() << "\t" << BB->getName() << "\n"; + }; + PrintOutVector("Blocks in which we can constant-fold terminator:", + FoldCandidates); + PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks); + PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks); + PrintOutSet("Live exit blocks:", LiveExitBlocks); + PrintOutVector("Dead exit blocks:", DeadExitBlocks); + if (!DeleteCurrentLoop) + PrintOutSet("The following blocks will still be part of the loop:", + BlocksInLoopAfterFolding); + } + + /// Whether or not the current loop has irreducible CFG. + bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { + assert(DFS.isComplete() && "DFS is expected to be finished"); + // Index of a basic block in RPO traversal. + DenseMap<const BasicBlock *, unsigned> RPO; + unsigned Current = 0; + for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) + RPO[*I] = Current++; + + for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { + BasicBlock *BB = *I; + for (auto *Succ : successors(BB)) + if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ]) + // If an edge goes from a block with greater order number into a block + // with lesses number, and it is not a loop backedge, then it can only + // be a part of irreducible non-loop cycle. + return true; + } + return false; + } + + /// Fill all information about status of blocks and exits of the current loop + /// if constant folding of all branches will be done. + void analyze() { + LoopBlocksDFS DFS(&L); + DFS.perform(&LI); + assert(DFS.isComplete() && "DFS is expected to be finished"); + + // TODO: The algorithm below relies on both RPO and Postorder traversals. + // When the loop has only reducible CFG inside, then the invariant "all + // predecessors of X are processed before X in RPO" is preserved. However + // an irreducible loop can break this invariant (e.g. latch does not have to + // be the last block in the traversal in this case, and the algorithm relies + // on this). We can later decide to support such cases by altering the + // algorithms, but so far we just give up analyzing them. + if (hasIrreducibleCFG(DFS)) { + HasIrreducibleCFG = true; + return; + } + + // Collect live and dead loop blocks and exits. + LiveLoopBlocks.insert(L.getHeader()); + for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { + BasicBlock *BB = *I; + + // If a loop block wasn't marked as live so far, then it's dead. + if (!LiveLoopBlocks.count(BB)) { + DeadLoopBlocks.push_back(BB); + continue; + } + + BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); + + // If a block has only one live successor, it's a candidate on constant + // folding. Only handle blocks from current loop: branches in child loops + // are skipped because if they can be folded, they should be folded during + // the processing of child loops. + if (TheOnlySucc && LI.getLoopFor(BB) == &L) + FoldCandidates.push_back(BB); + + // Handle successors. + for (BasicBlock *Succ : successors(BB)) + if (!TheOnlySucc || TheOnlySucc == Succ) { + if (L.contains(Succ)) + LiveLoopBlocks.insert(Succ); + else + LiveExitBlocks.insert(Succ); + } + } + + // Sanity check: amount of dead and live loop blocks should match the total + // number of blocks in loop. + assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && + "Malformed block sets?"); + + // Now, all exit blocks that are not marked as live are dead. + SmallVector<BasicBlock *, 8> ExitBlocks; + L.getExitBlocks(ExitBlocks); + for (auto *ExitBlock : ExitBlocks) + if (!LiveExitBlocks.count(ExitBlock)) + DeadExitBlocks.push_back(ExitBlock); + + // Whether or not the edge From->To will still be present in graph after the + // folding. + auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { + if (!LiveLoopBlocks.count(From)) + return false; + BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From); + return !TheOnlySucc || TheOnlySucc == To; + }; + + // The loop will not be destroyed if its latch is live. + DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); + + // If we are going to delete the current loop completely, no extra analysis + // is needed. + if (DeleteCurrentLoop) + return; + + // Otherwise, we should check which blocks will still be a part of the + // current loop after the transform. + BlocksInLoopAfterFolding.insert(L.getLoopLatch()); + // If the loop is live, then we should compute what blocks are still in + // loop after all branch folding has been done. A block is in loop if + // it has a live edge to another block that is in the loop; by definition, + // latch is in the loop. + auto BlockIsInLoop = [&](BasicBlock *BB) { + return any_of(successors(BB), [&](BasicBlock *Succ) { + return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ); + }); + }; + for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { + BasicBlock *BB = *I; + if (BlockIsInLoop(BB)) + BlocksInLoopAfterFolding.insert(BB); + } + + // Sanity check: header must be in loop. + assert(BlocksInLoopAfterFolding.count(L.getHeader()) && + "Header not in loop?"); + assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && + "All blocks that stay in loop should be live!"); + } + + /// We need to preserve static reachibility of all loop exit blocks (this is) + /// required by loop pass manager. In order to do it, we make the following + /// trick: + /// + /// preheader: + /// <preheader code> + /// br label %loop_header + /// + /// loop_header: + /// ... + /// br i1 false, label %dead_exit, label %loop_block + /// ... + /// + /// We cannot simply remove edge from the loop to dead exit because in this + /// case dead_exit (and its successors) may become unreachable. To avoid that, + /// we insert the following fictive preheader: + /// + /// preheader: + /// <preheader code> + /// switch i32 0, label %preheader-split, + /// [i32 1, label %dead_exit_1], + /// [i32 2, label %dead_exit_2], + /// ... + /// [i32 N, label %dead_exit_N], + /// + /// preheader-split: + /// br label %loop_header + /// + /// loop_header: + /// ... + /// br i1 false, label %dead_exit_N, label %loop_block + /// ... + /// + /// Doing so, we preserve static reachibility of all dead exits and can later + /// remove edges from the loop to these blocks. + void handleDeadExits() { + // If no dead exits, nothing to do. + if (DeadExitBlocks.empty()) + return; + + // Construct split preheader and the dummy switch to thread edges from it to + // dead exits. + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); + BasicBlock *Preheader = L.getLoopPreheader(); + BasicBlock *NewPreheader = Preheader->splitBasicBlock( + Preheader->getTerminator(), + Twine(Preheader->getName()).concat("-split")); + DTU.deleteEdge(Preheader, L.getHeader()); + DTU.insertEdge(NewPreheader, L.getHeader()); + DTU.insertEdge(Preheader, NewPreheader); + IRBuilder<> Builder(Preheader->getTerminator()); + SwitchInst *DummySwitch = + Builder.CreateSwitch(Builder.getInt32(0), NewPreheader); + Preheader->getTerminator()->eraseFromParent(); + + unsigned DummyIdx = 1; + for (BasicBlock *BB : DeadExitBlocks) { + SmallVector<Instruction *, 4> DeadPhis; + for (auto &PN : BB->phis()) + DeadPhis.push_back(&PN); + + // Eliminate all Phis from dead exits. + for (Instruction *PN : DeadPhis) { + PN->replaceAllUsesWith(UndefValue::get(PN->getType())); + PN->eraseFromParent(); + } + assert(DummyIdx != 0 && "Too many dead exits!"); + DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB); + DTU.insertEdge(Preheader, BB); + ++NumLoopExitsDeleted; + } + + assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?"); + if (Loop *OuterLoop = LI.getLoopFor(Preheader)) { + OuterLoop->addBasicBlockToLoop(NewPreheader, LI); + + // When we break dead edges, the outer loop may become unreachable from + // the current loop. We need to fix loop info accordingly. For this, we + // find the most nested loop that still contains L and remove L from all + // loops that are inside of it. + Loop *StillReachable = nullptr; + for (BasicBlock *BB : LiveExitBlocks) { + Loop *BBL = LI.getLoopFor(BB); + if (BBL && BBL->contains(L.getHeader())) + if (!StillReachable || + BBL->getLoopDepth() > StillReachable->getLoopDepth()) + StillReachable = BBL; + } + + // Okay, our loop is no longer in the outer loop (and maybe not in some of + // its parents as well). Make the fixup. + if (StillReachable != OuterLoop) { + LI.changeLoopFor(NewPreheader, StillReachable); + for (Loop *NotContaining = OuterLoop; NotContaining != StillReachable; + NotContaining = NotContaining->getParentLoop()) { + NotContaining->removeBlockFromLoop(NewPreheader); + for (auto *BB : L.blocks()) + NotContaining->removeBlockFromLoop(BB); + } + OuterLoop->removeChildLoop(&L); + if (StillReachable) + StillReachable->addChildLoop(&L); + else + LI.addTopLevelLoop(&L); + } + } + } + + /// Delete loop blocks that have become unreachable after folding. Make all + /// relevant updates to DT and LI. + void deleteDeadLoopBlocks() { + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); + if (MSSAU) { + SmallPtrSet<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), + DeadLoopBlocks.end()); + MSSAU->removeBlocks(DeadLoopBlocksSet); + } + for (auto *BB : DeadLoopBlocks) { + assert(BB != L.getHeader() && + "Header of the current loop cannot be dead!"); + LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() + << "\n"); + if (LI.isLoopHeader(BB)) { + assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!"); + LI.erase(LI.getLoopFor(BB)); + } + LI.removeBlock(BB); + DeleteDeadBlock(BB, &DTU); + ++NumLoopBlocksDeleted; + } + } + + /// Constant-fold terminators of blocks acculumated in FoldCandidates into the + /// unconditional branches. + void foldTerminators() { + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); + + for (BasicBlock *BB : FoldCandidates) { + assert(LI.getLoopFor(BB) == &L && "Should be a loop block!"); + BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); + assert(TheOnlySucc && "Should have one live successor!"); + + LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() + << " with an unconditional branch to the block " + << TheOnlySucc->getName() << "\n"); + + SmallPtrSet<BasicBlock *, 2> DeadSuccessors; + // Remove all BB's successors except for the live one. + unsigned TheOnlySuccDuplicates = 0; + for (auto *Succ : successors(BB)) + if (Succ != TheOnlySucc) { + DeadSuccessors.insert(Succ); + // If our successor lies in a different loop, we don't want to remove + // the one-input Phi because it is a LCSSA Phi. + bool PreserveLCSSAPhi = !L.contains(Succ); + Succ->removePredecessor(BB, PreserveLCSSAPhi); + if (MSSAU) + MSSAU->removeEdge(BB, Succ); + } else + ++TheOnlySuccDuplicates; + + assert(TheOnlySuccDuplicates > 0 && "Should be!"); + // If TheOnlySucc was BB's successor more than once, after transform it + // will be its successor only once. Remove redundant inputs from + // TheOnlySucc's Phis. + bool PreserveLCSSAPhi = !L.contains(TheOnlySucc); + for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) + TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi); + if (MSSAU && TheOnlySuccDuplicates > 1) + MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc); + + IRBuilder<> Builder(BB->getContext()); + Instruction *Term = BB->getTerminator(); + Builder.SetInsertPoint(Term); + Builder.CreateBr(TheOnlySucc); + Term->eraseFromParent(); + + for (auto *DeadSucc : DeadSuccessors) + DTU.deleteEdge(BB, DeadSucc); + + ++NumTerminatorsFolded; + } + } + +public: + ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, + ScalarEvolution &SE, + MemorySSAUpdater *MSSAU) + : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU) {} + bool run() { + assert(L.getLoopLatch() && "Should be single latch!"); + + // Collect all available information about status of blocks after constant + // folding. + analyze(); + + LLVM_DEBUG(dbgs() << "In function " << L.getHeader()->getParent()->getName() + << ": "); + + if (HasIrreducibleCFG) { + LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n"); + return false; + } + + // Nothing to constant-fold. + if (FoldCandidates.empty()) { + LLVM_DEBUG( + dbgs() << "No constant terminator folding candidates found in loop " + << L.getHeader()->getName() << "\n"); + return false; + } + + // TODO: Support deletion of the current loop. + if (DeleteCurrentLoop) { + LLVM_DEBUG( + dbgs() + << "Give up constant terminator folding in loop " + << L.getHeader()->getName() + << ": we don't currently support deletion of the current loop.\n"); + return false; + } + + // TODO: Support blocks that are not dead, but also not in loop after the + // folding. + if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != + L.getNumBlocks()) { + LLVM_DEBUG( + dbgs() << "Give up constant terminator folding in loop " + << L.getHeader()->getName() + << ": we don't currently" + " support blocks that are not dead, but will stop " + "being a part of the loop after constant-folding.\n"); + return false; + } + + SE.forgetTopmostLoop(&L); + // Dump analysis results. + LLVM_DEBUG(dump()); + + LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() + << " terminators in loop " << L.getHeader()->getName() + << "\n"); + + // Make the actual transforms. + handleDeadExits(); + foldTerminators(); + + if (!DeadLoopBlocks.empty()) { + LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() + << " dead blocks in loop " << L.getHeader()->getName() + << "\n"); + deleteDeadLoopBlocks(); + } + +#ifndef NDEBUG + // Make sure that we have preserved all data structures after the transform. + DT.verify(); + assert(DT.isReachableFromEntry(L.getHeader())); + LI.verify(DT); +#endif + + return true; + } +}; +} // namespace + +/// Turn branches and switches with known constant conditions into unconditional +/// branches. +static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, + ScalarEvolution &SE, + MemorySSAUpdater *MSSAU) { + if (!EnableTermFolding) + return false; + + // To keep things simple, only process loops with single latch. We + // canonicalize most loops to this form. We can support multi-latch if needed. + if (!L.getLoopLatch()) + return false; + + ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); + return BranchFolder.run(); +} + +static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, + LoopInfo &LI, MemorySSAUpdater *MSSAU) { bool Changed = false; + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); // Copy blocks into a temporary array to avoid iterator invalidation issues // as we remove them. SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); @@ -57,19 +578,38 @@ static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, continue; // Merge Succ into Pred and delete it. - MergeBlockIntoPredecessor(Succ, &DT, &LI); + MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU); - SE.forgetLoop(&L); Changed = true; } return Changed; } +static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, + ScalarEvolution &SE, MemorySSAUpdater *MSSAU) { + bool Changed = false; + + // Constant-fold terminators with known constant conditions. + Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU); + + // Eliminate unconditional branches by merging blocks into their predecessors. + Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU); + + if (Changed) + SE.forgetTopmostLoop(&L); + + return Changed; +} + PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &) { - if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE)) + Optional<MemorySSAUpdater> MSSAU; + if (EnableMSSALoopDependency && AR.MSSA) + MSSAU = MemorySSAUpdater(AR.MSSA); + if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, + MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) return PreservedAnalyses::all(); return getLoopPassPreservedAnalyses(); @@ -90,10 +630,22 @@ public: DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - return simplifyLoopCFG(*L, DT, LI, SE); + Optional<MemorySSAUpdater> MSSAU; + if (EnableMSSALoopDependency) { + MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); + MSSAU = MemorySSAUpdater(MSSA); + if (VerifyMemorySSA) + MSSA->verifyMemorySSA(); + } + return simplifyLoopCFG(*L, DT, LI, SE, + MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); } void getAnalysisUsage(AnalysisUsage &AU) const override { + if (EnableMSSALoopDependency) { + AU.addRequired<MemorySSAWrapperPass>(); + AU.addPreserved<MemorySSAWrapperPass>(); + } AU.addPreserved<DependenceAnalysisWrapperPass>(); getLoopAnalysisUsage(AU); } @@ -104,6 +656,7 @@ char LoopSimplifyCFGLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", "Simplify loop CFG", false, false) INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg", "Simplify loop CFG", false, false) |
