diff options
Diffstat (limited to 'lib/Transforms/Utils/MemorySSA.cpp')
-rw-r--r-- | lib/Transforms/Utils/MemorySSA.cpp | 2305 |
1 files changed, 0 insertions, 2305 deletions
diff --git a/lib/Transforms/Utils/MemorySSA.cpp b/lib/Transforms/Utils/MemorySSA.cpp deleted file mode 100644 index 1ce4225f09cc..000000000000 --- a/lib/Transforms/Utils/MemorySSA.cpp +++ /dev/null @@ -1,2305 +0,0 @@ -//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------===// -// -// This file implements the MemorySSA class. -// -//===----------------------------------------------------------------===// -#include "llvm/Transforms/Utils/MemorySSA.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallBitVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/CFG.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/IteratedDominanceFrontier.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/PHITransAddr.h" -#include "llvm/IR/AssemblyAnnotationWriter.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FormattedStream.h" -#include "llvm/Transforms/Scalar.h" -#include <algorithm> - -#define DEBUG_TYPE "memoryssa" -using namespace llvm; -STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups"); -STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits"); -STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts"); - -INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, - true) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, - true) - -INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", - "Memory SSA Printer", false, false) -INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) -INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", - "Memory SSA Printer", false, false) - -static cl::opt<unsigned> MaxCheckLimit( - "memssa-check-limit", cl::Hidden, cl::init(100), - cl::desc("The maximum number of stores/phis MemorySSA" - "will consider trying to walk past (default = 100)")); - -static cl::opt<bool> - VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, - cl::desc("Verify MemorySSA in legacy printer pass.")); - -namespace llvm { -/// \brief An assembly annotator class to print Memory SSA information in -/// comments. -class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { - friend class MemorySSA; - const MemorySSA *MSSA; - -public: - MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} - - virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, - formatted_raw_ostream &OS) { - if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) - OS << "; " << *MA << "\n"; - } - - virtual void emitInstructionAnnot(const Instruction *I, - formatted_raw_ostream &OS) { - if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) - OS << "; " << *MA << "\n"; - } -}; -} - -namespace { -/// Our current alias analysis API differentiates heavily between calls and -/// non-calls, and functions called on one usually assert on the other. -/// This class encapsulates the distinction to simplify other code that wants -/// "Memory affecting instructions and related data" to use as a key. -/// For example, this class is used as a densemap key in the use optimizer. -class MemoryLocOrCall { -public: - MemoryLocOrCall() : IsCall(false) {} - MemoryLocOrCall(MemoryUseOrDef *MUD) - : MemoryLocOrCall(MUD->getMemoryInst()) {} - MemoryLocOrCall(const MemoryUseOrDef *MUD) - : MemoryLocOrCall(MUD->getMemoryInst()) {} - - MemoryLocOrCall(Instruction *Inst) { - if (ImmutableCallSite(Inst)) { - IsCall = true; - CS = ImmutableCallSite(Inst); - } else { - IsCall = false; - // There is no such thing as a memorylocation for a fence inst, and it is - // unique in that regard. - if (!isa<FenceInst>(Inst)) - Loc = MemoryLocation::get(Inst); - } - } - - explicit MemoryLocOrCall(const MemoryLocation &Loc) - : IsCall(false), Loc(Loc) {} - - bool IsCall; - ImmutableCallSite getCS() const { - assert(IsCall); - return CS; - } - MemoryLocation getLoc() const { - assert(!IsCall); - return Loc; - } - - bool operator==(const MemoryLocOrCall &Other) const { - if (IsCall != Other.IsCall) - return false; - - if (IsCall) - return CS.getCalledValue() == Other.CS.getCalledValue(); - return Loc == Other.Loc; - } - -private: - union { - ImmutableCallSite CS; - MemoryLocation Loc; - }; -}; -} - -namespace llvm { -template <> struct DenseMapInfo<MemoryLocOrCall> { - static inline MemoryLocOrCall getEmptyKey() { - return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey()); - } - static inline MemoryLocOrCall getTombstoneKey() { - return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey()); - } - static unsigned getHashValue(const MemoryLocOrCall &MLOC) { - if (MLOC.IsCall) - return hash_combine(MLOC.IsCall, - DenseMapInfo<const Value *>::getHashValue( - MLOC.getCS().getCalledValue())); - return hash_combine( - MLOC.IsCall, DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc())); - } - static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) { - return LHS == RHS; - } -}; - -enum class Reorderability { Always, IfNoAlias, Never }; - -/// This does one-way checks to see if Use could theoretically be hoisted above -/// MayClobber. This will not check the other way around. -/// -/// This assumes that, for the purposes of MemorySSA, Use comes directly after -/// MayClobber, with no potentially clobbering operations in between them. -/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.) -static Reorderability getLoadReorderability(const LoadInst *Use, - const LoadInst *MayClobber) { - bool VolatileUse = Use->isVolatile(); - bool VolatileClobber = MayClobber->isVolatile(); - // Volatile operations may never be reordered with other volatile operations. - if (VolatileUse && VolatileClobber) - return Reorderability::Never; - - // The lang ref allows reordering of volatile and non-volatile operations. - // Whether an aliasing nonvolatile load and volatile load can be reordered, - // though, is ambiguous. Because it may not be best to exploit this ambiguity, - // we only allow volatile/non-volatile reordering if the volatile and - // non-volatile operations don't alias. - Reorderability Result = VolatileUse || VolatileClobber - ? Reorderability::IfNoAlias - : Reorderability::Always; - - // If a load is seq_cst, it cannot be moved above other loads. If its ordering - // is weaker, it can be moved above other loads. We just need to be sure that - // MayClobber isn't an acquire load, because loads can't be moved above - // acquire loads. - // - // Note that this explicitly *does* allow the free reordering of monotonic (or - // weaker) loads of the same address. - bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent; - bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(), - AtomicOrdering::Acquire); - if (SeqCstUse || MayClobberIsAcquire) - return Reorderability::Never; - return Result; -} - -static bool instructionClobbersQuery(MemoryDef *MD, - const MemoryLocation &UseLoc, - const Instruction *UseInst, - AliasAnalysis &AA) { - Instruction *DefInst = MD->getMemoryInst(); - assert(DefInst && "Defining instruction not actually an instruction"); - - if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) { - // These intrinsics will show up as affecting memory, but they are just - // markers. - switch (II->getIntrinsicID()) { - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: - case Intrinsic::invariant_start: - case Intrinsic::invariant_end: - case Intrinsic::assume: - return false; - default: - break; - } - } - - ImmutableCallSite UseCS(UseInst); - if (UseCS) { - ModRefInfo I = AA.getModRefInfo(DefInst, UseCS); - return I != MRI_NoModRef; - } - - if (auto *DefLoad = dyn_cast<LoadInst>(DefInst)) { - if (auto *UseLoad = dyn_cast<LoadInst>(UseInst)) { - switch (getLoadReorderability(UseLoad, DefLoad)) { - case Reorderability::Always: - return false; - case Reorderability::Never: - return true; - case Reorderability::IfNoAlias: - return !AA.isNoAlias(UseLoc, MemoryLocation::get(DefLoad)); - } - } - } - - return AA.getModRefInfo(DefInst, UseLoc) & MRI_Mod; -} - -static bool instructionClobbersQuery(MemoryDef *MD, const MemoryUseOrDef *MU, - const MemoryLocOrCall &UseMLOC, - AliasAnalysis &AA) { - // FIXME: This is a temporary hack to allow a single instructionClobbersQuery - // to exist while MemoryLocOrCall is pushed through places. - if (UseMLOC.IsCall) - return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(), - AA); - return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(), - AA); -} - -// Return true when MD may alias MU, return false otherwise. -bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU, - AliasAnalysis &AA) { - return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA); -} -} - -namespace { -struct UpwardsMemoryQuery { - // True if our original query started off as a call - bool IsCall; - // The pointer location we started the query with. This will be empty if - // IsCall is true. - MemoryLocation StartingLoc; - // This is the instruction we were querying about. - const Instruction *Inst; - // The MemoryAccess we actually got called with, used to test local domination - const MemoryAccess *OriginalAccess; - - UpwardsMemoryQuery() - : IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {} - - UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) - : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) { - if (!IsCall) - StartingLoc = MemoryLocation::get(Inst); - } -}; - -static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc, - AliasAnalysis &AA) { - Instruction *Inst = MD->getMemoryInst(); - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { - switch (II->getIntrinsicID()) { - case Intrinsic::lifetime_start: - case Intrinsic::lifetime_end: - return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc); - default: - return false; - } - } - return false; -} - -static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA, - const Instruction *I) { - // If the memory can't be changed, then loads of the memory can't be - // clobbered. - // - // FIXME: We should handle invariant groups, as well. It's a bit harder, - // because we need to pay close attention to invariant group barriers. - return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) || - AA.pointsToConstantMemory(I)); -} - -/// Cache for our caching MemorySSA walker. -class WalkerCache { - DenseMap<ConstMemoryAccessPair, MemoryAccess *> Accesses; - DenseMap<const MemoryAccess *, MemoryAccess *> Calls; - -public: - MemoryAccess *lookup(const MemoryAccess *MA, const MemoryLocation &Loc, - bool IsCall) const { - ++NumClobberCacheLookups; - MemoryAccess *R = IsCall ? Calls.lookup(MA) : Accesses.lookup({MA, Loc}); - if (R) - ++NumClobberCacheHits; - return R; - } - - bool insert(const MemoryAccess *MA, MemoryAccess *To, - const MemoryLocation &Loc, bool IsCall) { - // This is fine for Phis, since there are times where we can't optimize - // them. Making a def its own clobber is never correct, though. - assert((MA != To || isa<MemoryPhi>(MA)) && - "Something can't clobber itself!"); - - ++NumClobberCacheInserts; - bool Inserted; - if (IsCall) - Inserted = Calls.insert({MA, To}).second; - else - Inserted = Accesses.insert({{MA, Loc}, To}).second; - - return Inserted; - } - - bool remove(const MemoryAccess *MA, const MemoryLocation &Loc, bool IsCall) { - return IsCall ? Calls.erase(MA) : Accesses.erase({MA, Loc}); - } - - void clear() { - Accesses.clear(); - Calls.clear(); - } - - bool contains(const MemoryAccess *MA) const { - for (auto &P : Accesses) - if (P.first.first == MA || P.second == MA) - return true; - for (auto &P : Calls) - if (P.first == MA || P.second == MA) - return true; - return false; - } -}; - -/// Walks the defining uses of MemoryDefs. Stops after we hit something that has -/// no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when comparing -/// against a null def_chain_iterator, this will compare equal only after -/// walking said Phi/liveOnEntry. -struct def_chain_iterator - : public iterator_facade_base<def_chain_iterator, std::forward_iterator_tag, - MemoryAccess *> { - def_chain_iterator() : MA(nullptr) {} - def_chain_iterator(MemoryAccess *MA) : MA(MA) {} - - MemoryAccess *operator*() const { return MA; } - - def_chain_iterator &operator++() { - // N.B. liveOnEntry has a null defining access. - if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) - MA = MUD->getDefiningAccess(); - else - MA = nullptr; - return *this; - } - - bool operator==(const def_chain_iterator &O) const { return MA == O.MA; } - -private: - MemoryAccess *MA; -}; - -static iterator_range<def_chain_iterator> -def_chain(MemoryAccess *MA, MemoryAccess *UpTo = nullptr) { -#ifdef EXPENSIVE_CHECKS - assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator()) && - "UpTo isn't in the def chain!"); -#endif - return make_range(def_chain_iterator(MA), def_chain_iterator(UpTo)); -} - -/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing -/// inbetween `Start` and `ClobberAt` can clobbers `Start`. -/// -/// This is meant to be as simple and self-contained as possible. Because it -/// uses no cache, etc., it can be relatively expensive. -/// -/// \param Start The MemoryAccess that we want to walk from. -/// \param ClobberAt A clobber for Start. -/// \param StartLoc The MemoryLocation for Start. -/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to. -/// \param Query The UpwardsMemoryQuery we used for our search. -/// \param AA The AliasAnalysis we used for our search. -static void LLVM_ATTRIBUTE_UNUSED -checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt, - const MemoryLocation &StartLoc, const MemorySSA &MSSA, - const UpwardsMemoryQuery &Query, AliasAnalysis &AA) { - assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?"); - - if (MSSA.isLiveOnEntryDef(Start)) { - assert(MSSA.isLiveOnEntryDef(ClobberAt) && - "liveOnEntry must clobber itself"); - return; - } - - bool FoundClobber = false; - DenseSet<MemoryAccessPair> VisitedPhis; - SmallVector<MemoryAccessPair, 8> Worklist; - Worklist.emplace_back(Start, StartLoc); - // Walk all paths from Start to ClobberAt, while looking for clobbers. If one - // is found, complain. - while (!Worklist.empty()) { - MemoryAccessPair MAP = Worklist.pop_back_val(); - // All we care about is that nothing from Start to ClobberAt clobbers Start. - // We learn nothing from revisiting nodes. - if (!VisitedPhis.insert(MAP).second) - continue; - - for (MemoryAccess *MA : def_chain(MAP.first)) { - if (MA == ClobberAt) { - if (auto *MD = dyn_cast<MemoryDef>(MA)) { - // instructionClobbersQuery isn't essentially free, so don't use `|=`, - // since it won't let us short-circuit. - // - // Also, note that this can't be hoisted out of the `Worklist` loop, - // since MD may only act as a clobber for 1 of N MemoryLocations. - FoundClobber = - FoundClobber || MSSA.isLiveOnEntryDef(MD) || - instructionClobbersQuery(MD, MAP.second, Query.Inst, AA); - } - break; - } - - // We should never hit liveOnEntry, unless it's the clobber. - assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?"); - - if (auto *MD = dyn_cast<MemoryDef>(MA)) { - (void)MD; - assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA) && - "Found clobber before reaching ClobberAt!"); - continue; - } - - assert(isa<MemoryPhi>(MA)); - Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end()); - } - } - - // If ClobberAt is a MemoryPhi, we can assume something above it acted as a - // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point. - assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) && - "ClobberAt never acted as a clobber"); -} - -/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up -/// in one class. -class ClobberWalker { - /// Save a few bytes by using unsigned instead of size_t. - using ListIndex = unsigned; - - /// Represents a span of contiguous MemoryDefs, potentially ending in a - /// MemoryPhi. - struct DefPath { - MemoryLocation Loc; - // Note that, because we always walk in reverse, Last will always dominate - // First. Also note that First and Last are inclusive. - MemoryAccess *First; - MemoryAccess *Last; - Optional<ListIndex> Previous; - - DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last, - Optional<ListIndex> Previous) - : Loc(Loc), First(First), Last(Last), Previous(Previous) {} - - DefPath(const MemoryLocation &Loc, MemoryAccess *Init, - Optional<ListIndex> Previous) - : DefPath(Loc, Init, Init, Previous) {} - }; - - const MemorySSA &MSSA; - AliasAnalysis &AA; - DominatorTree &DT; - WalkerCache &WC; - UpwardsMemoryQuery *Query; - bool UseCache; - - // Phi optimization bookkeeping - SmallVector<DefPath, 32> Paths; - DenseSet<ConstMemoryAccessPair> VisitedPhis; - DenseMap<const BasicBlock *, MemoryAccess *> WalkTargetCache; - - void setUseCache(bool Use) { UseCache = Use; } - bool shouldIgnoreCache() const { - // UseCache will only be false when we're debugging, or when expensive - // checks are enabled. In either case, we don't care deeply about speed. - return LLVM_UNLIKELY(!UseCache); - } - - void addCacheEntry(const MemoryAccess *What, MemoryAccess *To, - const MemoryLocation &Loc) const { -// EXPENSIVE_CHECKS because most of these queries are redundant. -#ifdef EXPENSIVE_CHECKS - assert(MSSA.dominates(To, What)); -#endif - if (shouldIgnoreCache()) - return; - WC.insert(What, To, Loc, Query->IsCall); - } - - MemoryAccess *lookupCache(const MemoryAccess *MA, const MemoryLocation &Loc) { - return shouldIgnoreCache() ? nullptr : WC.lookup(MA, Loc, Query->IsCall); - } - - void cacheDefPath(const DefPath &DN, MemoryAccess *Target) const { - if (shouldIgnoreCache()) - return; - - for (MemoryAccess *MA : def_chain(DN.First, DN.Last)) - addCacheEntry(MA, Target, DN.Loc); - - // DefPaths only express the path we walked. So, DN.Last could either be a - // thing we want to cache, or not. - if (DN.Last != Target) - addCacheEntry(DN.Last, Target, DN.Loc); - } - - /// Find the nearest def or phi that `From` can legally be optimized to. - /// - /// FIXME: Deduplicate this with MSSA::findDominatingDef. Ideally, MSSA should - /// keep track of this information for us, and allow us O(1) lookups of this - /// info. - MemoryAccess *getWalkTarget(const MemoryPhi *From) { - assert(From->getNumOperands() && "Phi with no operands?"); - - BasicBlock *BB = From->getBlock(); - auto At = WalkTargetCache.find(BB); - if (At != WalkTargetCache.end()) - return At->second; - - SmallVector<const BasicBlock *, 8> ToCache; - ToCache.push_back(BB); - - MemoryAccess *Result = MSSA.getLiveOnEntryDef(); - DomTreeNode *Node = DT.getNode(BB); - while ((Node = Node->getIDom())) { - auto At = WalkTargetCache.find(BB); - if (At != WalkTargetCache.end()) { - Result = At->second; - break; - } - - auto *Accesses = MSSA.getBlockAccesses(Node->getBlock()); - if (Accesses) { - auto Iter = find_if(reverse(*Accesses), [](const MemoryAccess &MA) { - return !isa<MemoryUse>(MA); - }); - if (Iter != Accesses->rend()) { - Result = const_cast<MemoryAccess *>(&*Iter); - break; - } - } - - ToCache.push_back(Node->getBlock()); - } - - for (const BasicBlock *BB : ToCache) - WalkTargetCache.insert({BB, Result}); - return Result; - } - - /// Result of calling walkToPhiOrClobber. - struct UpwardsWalkResult { - /// The "Result" of the walk. Either a clobber, the last thing we walked, or - /// both. - MemoryAccess *Result; - bool IsKnownClobber; - bool FromCache; - }; - - /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last. - /// This will update Desc.Last as it walks. It will (optionally) also stop at - /// StopAt. - /// - /// This does not test for whether StopAt is a clobber - UpwardsWalkResult walkToPhiOrClobber(DefPath &Desc, - MemoryAccess *StopAt = nullptr) { - assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world"); - - for (MemoryAccess *Current : def_chain(Desc.Last)) { - Desc.Last = Current; - if (Current == StopAt) - return {Current, false, false}; - - if (auto *MD = dyn_cast<MemoryDef>(Current)) - if (MSSA.isLiveOnEntryDef(MD) || - instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA)) - return {MD, true, false}; - - // Cache checks must be done last, because if Current is a clobber, the - // cache will contain the clobber for Current. - if (MemoryAccess *MA = lookupCache(Current, Desc.Loc)) - return {MA, true, true}; - } - - assert(isa<MemoryPhi>(Desc.Last) && - "Ended at a non-clobber that's not a phi?"); - return {Desc.Last, false, false}; - } - - void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches, - ListIndex PriorNode) { - auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}), - upward_defs_end()); - for (const MemoryAccessPair &P : UpwardDefs) { - PausedSearches.push_back(Paths.size()); - Paths.emplace_back(P.second, P.first, PriorNode); - } - } - - /// Represents a search that terminated after finding a clobber. This clobber - /// may or may not be present in the path of defs from LastNode..SearchStart, - /// since it may have been retrieved from cache. - struct TerminatedPath { - MemoryAccess *Clobber; - ListIndex LastNode; - }; - - /// Get an access that keeps us from optimizing to the given phi. - /// - /// PausedSearches is an array of indices into the Paths array. Its incoming - /// value is the indices of searches that stopped at the last phi optimization - /// target. It's left in an unspecified state. - /// - /// If this returns None, NewPaused is a vector of searches that terminated - /// at StopWhere. Otherwise, NewPaused is left in an unspecified state. - Optional<TerminatedPath> - getBlockingAccess(MemoryAccess *StopWhere, - SmallVectorImpl<ListIndex> &PausedSearches, - SmallVectorImpl<ListIndex> &NewPaused, - SmallVectorImpl<TerminatedPath> &Terminated) { - assert(!PausedSearches.empty() && "No searches to continue?"); - - // BFS vs DFS really doesn't make a difference here, so just do a DFS with - // PausedSearches as our stack. - while (!PausedSearches.empty()) { - ListIndex PathIndex = PausedSearches.pop_back_val(); - DefPath &Node = Paths[PathIndex]; - - // If we've already visited this path with this MemoryLocation, we don't - // need to do so again. - // - // NOTE: That we just drop these paths on the ground makes caching - // behavior sporadic. e.g. given a diamond: - // A - // B C - // D - // - // ...If we walk D, B, A, C, we'll only cache the result of phi - // optimization for A, B, and D; C will be skipped because it dies here. - // This arguably isn't the worst thing ever, since: - // - We generally query things in a top-down order, so if we got below D - // without needing cache entries for {C, MemLoc}, then chances are - // that those cache entries would end up ultimately unused. - // - We still cache things for A, so C only needs to walk up a bit. - // If this behavior becomes problematic, we can fix without a ton of extra - // work. - if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) - continue; - - UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere); - if (Res.IsKnownClobber) { - assert(Res.Result != StopWhere || Res.FromCache); - // If this wasn't a cache hit, we hit a clobber when walking. That's a - // failure. - TerminatedPath Term{Res.Result, PathIndex}; - if (!Res.FromCache || !MSSA.dominates(Res.Result, StopWhere)) - return Term; - - // Otherwise, it's a valid thing to potentially optimize to. - Terminated.push_back(Term); - continue; - } - - if (Res.Result == StopWhere) { - // We've hit our target. Save this path off for if we want to continue - // walking. - NewPaused.push_back(PathIndex); - continue; - } - - assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber"); - addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex); - } - - return None; - } - - template <typename T, typename Walker> - struct generic_def_path_iterator - : public iterator_facade_base<generic_def_path_iterator<T, Walker>, - std::forward_iterator_tag, T *> { - generic_def_path_iterator() : W(nullptr), N(None) {} - generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {} - - T &operator*() const { return curNode(); } - - generic_def_path_iterator &operator++() { - N = curNode().Previous; - return *this; - } - - bool operator==(const generic_def_path_iterator &O) const { - if (N.hasValue() != O.N.hasValue()) - return false; - return !N.hasValue() || *N == *O.N; - } - - private: - T &curNode() const { return W->Paths[*N]; } - - Walker *W; - Optional<ListIndex> N; - }; - - using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>; - using const_def_path_iterator = - generic_def_path_iterator<const DefPath, const ClobberWalker>; - - iterator_range<def_path_iterator> def_path(ListIndex From) { - return make_range(def_path_iterator(this, From), def_path_iterator()); - } - - iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const { - return make_range(const_def_path_iterator(this, From), - const_def_path_iterator()); - } - - struct OptznResult { - /// The path that contains our result. - TerminatedPath PrimaryClobber; - /// The paths that we can legally cache back from, but that aren't - /// necessarily the result of the Phi optimization. - SmallVector<TerminatedPath, 4> OtherClobbers; - }; - - ListIndex defPathIndex(const DefPath &N) const { - // The assert looks nicer if we don't need to do &N - const DefPath *NP = &N; - assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() && - "Out of bounds DefPath!"); - return NP - &Paths.front(); - } - - /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths - /// that act as legal clobbers. Note that this won't return *all* clobbers. - /// - /// Phi optimization algorithm tl;dr: - /// - Find the earliest def/phi, A, we can optimize to - /// - Find if all paths from the starting memory access ultimately reach A - /// - If not, optimization isn't possible. - /// - Otherwise, walk from A to another clobber or phi, A'. - /// - If A' is a def, we're done. - /// - If A' is a phi, try to optimize it. - /// - /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path - /// terminates when a MemoryAccess that clobbers said MemoryLocation is found. - OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start, - const MemoryLocation &Loc) { - assert(Paths.empty() && VisitedPhis.empty() && - "Reset the optimization state."); - - Paths.emplace_back(Loc, Start, Phi, None); - // Stores how many "valid" optimization nodes we had prior to calling - // addSearches/getBlockingAccess. Necessary for caching if we had a blocker. - auto PriorPathsSize = Paths.size(); - - SmallVector<ListIndex, 16> PausedSearches; - SmallVector<ListIndex, 8> NewPaused; - SmallVector<TerminatedPath, 4> TerminatedPaths; - - addSearches(Phi, PausedSearches, 0); - - // Moves the TerminatedPath with the "most dominated" Clobber to the end of - // Paths. - auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) { - assert(!Paths.empty() && "Need a path to move"); - auto Dom = Paths.begin(); - for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I) - if (!MSSA.dominates(I->Clobber, Dom->Clobber)) - Dom = I; - auto Last = Paths.end() - 1; - if (Last != Dom) - std::iter_swap(Last, Dom); - }; - - MemoryPhi *Current = Phi; - while (1) { - assert(!MSSA.isLiveOnEntryDef(Current) && - "liveOnEntry wasn't treated as a clobber?"); - - MemoryAccess *Target = getWalkTarget(Current); - // If a TerminatedPath doesn't dominate Target, then it wasn't a legal - // optimization for the prior phi. - assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) { - return MSSA.dominates(P.Clobber, Target); - })); - - // FIXME: This is broken, because the Blocker may be reported to be - // liveOnEntry, and we'll happily wait for that to disappear (read: never) - // For the moment, this is fine, since we do nothing with blocker info. - if (Optional<TerminatedPath> Blocker = getBlockingAccess( - Target, PausedSearches, NewPaused, TerminatedPaths)) { - // Cache our work on the blocking node, since we know that's correct. - cacheDefPath(Paths[Blocker->LastNode], Blocker->Clobber); - - // Find the node we started at. We can't search based on N->Last, since - // we may have gone around a loop with a different MemoryLocation. - auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) { - return defPathIndex(N) < PriorPathsSize; - }); - assert(Iter != def_path_iterator()); - - DefPath &CurNode = *Iter; - assert(CurNode.Last == Current); - - // Two things: - // A. We can't reliably cache all of NewPaused back. Consider a case - // where we have two paths in NewPaused; one of which can't optimize - // above this phi, whereas the other can. If we cache the second path - // back, we'll end up with suboptimal cache entries. We can handle - // cases like this a bit better when we either try to find all - // clobbers that block phi optimization, or when our cache starts - // supporting unfinished searches. - // B. We can't reliably cache TerminatedPaths back here without doing - // extra checks; consider a case like: - // T - // / \ - // D C - // \ / - // S - // Where T is our target, C is a node with a clobber on it, D is a - // diamond (with a clobber *only* on the left or right node, N), and - // S is our start. Say we walk to D, through the node opposite N - // (read: ignoring the clobber), and see a cache entry in the top - // node of D. That cache entry gets put into TerminatedPaths. We then - // walk up to C (N is later in our worklist), find the clobber, and - // quit. If we append TerminatedPaths to OtherClobbers, we'll cache - // the bottom part of D to the cached clobber, ignoring the clobber - // in N. Again, this problem goes away if we start tracking all - // blockers for a given phi optimization. - TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)}; - return {Result, {}}; - } - - // If there's nothing left to search, then all paths led to valid clobbers - // that we got from our cache; pick the nearest to the start, and allow - // the rest to be cached back. - if (NewPaused.empty()) { - MoveDominatedPathToEnd(TerminatedPaths); - TerminatedPath Result = TerminatedPaths.pop_back_val(); - return {Result, std::move(TerminatedPaths)}; - } - - MemoryAccess *DefChainEnd = nullptr; - SmallVector<TerminatedPath, 4> Clobbers; - for (ListIndex Paused : NewPaused) { - UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]); - if (WR.IsKnownClobber) - Clobbers.push_back({WR.Result, Paused}); - else - // Micro-opt: If we hit the end of the chain, save it. - DefChainEnd = WR.Result; - } - - if (!TerminatedPaths.empty()) { - // If we couldn't find the dominating phi/liveOnEntry in the above loop, - // do it now. - if (!DefChainEnd) - for (MemoryAccess *MA : def_chain(Target)) - DefChainEnd = MA; - - // If any of the terminated paths don't dominate the phi we'll try to - // optimize, we need to figure out what they are and quit. - const BasicBlock *ChainBB = DefChainEnd->getBlock(); - for (const TerminatedPath &TP : TerminatedPaths) { - // Because we know that DefChainEnd is as "high" as we can go, we - // don't need local dominance checks; BB dominance is sufficient. - if (DT.dominates(ChainBB, TP.Clobber->getBlock())) - Clobbers.push_back(TP); - } - } - - // If we have clobbers in the def chain, find the one closest to Current - // and quit. - if (!Clobbers.empty()) { - MoveDominatedPathToEnd(Clobbers); - TerminatedPath Result = Clobbers.pop_back_val(); - return {Result, std::move(Clobbers)}; - } - - assert(all_of(NewPaused, - [&](ListIndex I) { return Paths[I].Last == DefChainEnd; })); - - // Because liveOnEntry is a clobber, this must be a phi. - auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd); - - PriorPathsSize = Paths.size(); - PausedSearches.clear(); - for (ListIndex I : NewPaused) - addSearches(DefChainPhi, PausedSearches, I); - NewPaused.clear(); - - Current = DefChainPhi; - } - } - - /// Caches everything in an OptznResult. - void cacheOptResult(const OptznResult &R) { - if (R.OtherClobbers.empty()) { - // If we're not going to be caching OtherClobbers, don't bother with - // marking visited/etc. - for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode)) - cacheDefPath(N, R.PrimaryClobber.Clobber); - return; - } - - // PrimaryClobber is our answer. If we can cache anything back, we need to - // stop caching when we visit PrimaryClobber. - SmallBitVector Visited(Paths.size()); - for (const DefPath &N : const_def_path(R.PrimaryClobber.LastNode)) { - Visited[defPathIndex(N)] = true; - cacheDefPath(N, R.PrimaryClobber.Clobber); - } - - for (const TerminatedPath &P : R.OtherClobbers) { - for (const DefPath &N : const_def_path(P.LastNode)) { - ListIndex NIndex = defPathIndex(N); - if (Visited[NIndex]) - break; - Visited[NIndex] = true; - cacheDefPath(N, P.Clobber); - } - } - } - - void verifyOptResult(const OptznResult &R) const { - assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) { - return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber); - })); - } - - void resetPhiOptznState() { - Paths.clear(); - VisitedPhis.clear(); - } - -public: - ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT, - WalkerCache &WC) - : MSSA(MSSA), AA(AA), DT(DT), WC(WC), UseCache(true) {} - - void reset() { WalkTargetCache.clear(); } - - /// Finds the nearest clobber for the given query, optimizing phis if - /// possible. - MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q, - bool UseWalkerCache = true) { - setUseCache(UseWalkerCache); - Query = &Q; - - MemoryAccess *Current = Start; - // This walker pretends uses don't exist. If we're handed one, silently grab - // its def. (This has the nice side-effect of ensuring we never cache uses) - if (auto *MU = dyn_cast<MemoryUse>(Start)) - Current = MU->getDefiningAccess(); - - DefPath FirstDesc(Q.StartingLoc, Current, Current, None); - // Fast path for the overly-common case (no crazy phi optimization - // necessary) - UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc); - MemoryAccess *Result; - if (WalkResult.IsKnownClobber) { - cacheDefPath(FirstDesc, WalkResult.Result); - Result = WalkResult.Result; - } else { - OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last), - Current, Q.StartingLoc); - verifyOptResult(OptRes); - cacheOptResult(OptRes); - resetPhiOptznState(); - Result = OptRes.PrimaryClobber.Clobber; - } - -#ifdef EXPENSIVE_CHECKS - checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA); -#endif - return Result; - } - - void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); } -}; - -struct RenamePassData { - DomTreeNode *DTN; - DomTreeNode::const_iterator ChildIt; - MemoryAccess *IncomingVal; - - RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, - MemoryAccess *M) - : DTN(D), ChildIt(It), IncomingVal(M) {} - void swap(RenamePassData &RHS) { - std::swap(DTN, RHS.DTN); - std::swap(ChildIt, RHS.ChildIt); - std::swap(IncomingVal, RHS.IncomingVal); - } -}; -} // anonymous namespace - -namespace llvm { -/// \brief A MemorySSAWalker that does AA walks and caching of lookups to -/// disambiguate accesses. -/// -/// FIXME: The current implementation of this can take quadratic space in rare -/// cases. This can be fixed, but it is something to note until it is fixed. -/// -/// In order to trigger this behavior, you need to store to N distinct locations -/// (that AA can prove don't alias), perform M stores to other memory -/// locations that AA can prove don't alias any of the initial N locations, and -/// then load from all of the N locations. In this case, we insert M cache -/// entries for each of the N loads. -/// -/// For example: -/// define i32 @foo() { -/// %a = alloca i32, align 4 -/// %b = alloca i32, align 4 -/// store i32 0, i32* %a, align 4 -/// store i32 0, i32* %b, align 4 -/// -/// ; Insert M stores to other memory that doesn't alias %a or %b here -/// -/// %c = load i32, i32* %a, align 4 ; Caches M entries in -/// ; CachedUpwardsClobberingAccess for the -/// ; MemoryLocation %a -/// %d = load i32, i32* %b, align 4 ; Caches M entries in -/// ; CachedUpwardsClobberingAccess for the -/// ; MemoryLocation %b -/// -/// ; For completeness' sake, loading %a or %b again would not cache *another* -/// ; M entries. -/// %r = add i32 %c, %d -/// ret i32 %r -/// } -class MemorySSA::CachingWalker final : public MemorySSAWalker { - WalkerCache Cache; - ClobberWalker Walker; - bool AutoResetWalker; - - MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); - void verifyRemoved(MemoryAccess *); - -public: - CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); - ~CachingWalker() override; - - using MemorySSAWalker::getClobberingMemoryAccess; - MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override; - MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, - const MemoryLocation &) override; - void invalidateInfo(MemoryAccess *) override; - - /// Whether we call resetClobberWalker() after each time we *actually* walk to - /// answer a clobber query. - void setAutoResetWalker(bool AutoReset) { AutoResetWalker = AutoReset; } - - /// Drop the walker's persistent data structures. At the moment, this means - /// "drop the walker's cache of BasicBlocks -> - /// earliest-MemoryAccess-we-can-optimize-to". This is necessary if we're - /// going to have DT updates, if we remove MemoryAccesses, etc. - void resetClobberWalker() { Walker.reset(); } - - void verify(const MemorySSA *MSSA) override { - MemorySSAWalker::verify(MSSA); - Walker.verify(MSSA); - } -}; - -/// \brief Rename a single basic block into MemorySSA form. -/// Uses the standard SSA renaming algorithm. -/// \returns The new incoming value. -MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, - MemoryAccess *IncomingVal) { - auto It = PerBlockAccesses.find(BB); - // Skip most processing if the list is empty. - if (It != PerBlockAccesses.end()) { - AccessList *Accesses = It->second.get(); - for (MemoryAccess &L : *Accesses) { - if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) { - if (MUD->getDefiningAccess() == nullptr) - MUD->setDefiningAccess(IncomingVal); - if (isa<MemoryDef>(&L)) - IncomingVal = &L; - } else { - IncomingVal = &L; - } - } - } - - // Pass through values to our successors - for (const BasicBlock *S : successors(BB)) { - auto It = PerBlockAccesses.find(S); - // Rename the phi nodes in our successor block - if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) - continue; - AccessList *Accesses = It->second.get(); - auto *Phi = cast<MemoryPhi>(&Accesses->front()); - Phi->addIncoming(IncomingVal, BB); - } - - return IncomingVal; -} - -/// \brief This is the standard SSA renaming algorithm. -/// -/// We walk the dominator tree in preorder, renaming accesses, and then filling -/// in phi nodes in our successors. -void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, - SmallPtrSet<BasicBlock *, 16> &Visited) { - SmallVector<RenamePassData, 32> WorkStack; - IncomingVal = renameBlock(Root->getBlock(), IncomingVal); - WorkStack.push_back({Root, Root->begin(), IncomingVal}); - Visited.insert(Root->getBlock()); - - while (!WorkStack.empty()) { - DomTreeNode *Node = WorkStack.back().DTN; - DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; - IncomingVal = WorkStack.back().IncomingVal; - - if (ChildIt == Node->end()) { - WorkStack.pop_back(); - } else { - DomTreeNode *Child = *ChildIt; - ++WorkStack.back().ChildIt; - BasicBlock *BB = Child->getBlock(); - Visited.insert(BB); - IncomingVal = renameBlock(BB, IncomingVal); - WorkStack.push_back({Child, Child->begin(), IncomingVal}); - } - } -} - -/// \brief Compute dominator levels, used by the phi insertion algorithm above. -void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) { - for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode()); - DFI != DFE; ++DFI) - DomLevels[*DFI] = DFI.getPathLength() - 1; -} - -/// \brief This handles unreachable block accesses by deleting phi nodes in -/// unreachable blocks, and marking all other unreachable MemoryAccess's as -/// being uses of the live on entry definition. -void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { - assert(!DT->isReachableFromEntry(BB) && - "Reachable block found while handling unreachable blocks"); - - // Make sure phi nodes in our reachable successors end up with a - // LiveOnEntryDef for our incoming edge, even though our block is forward - // unreachable. We could just disconnect these blocks from the CFG fully, - // but we do not right now. - for (const BasicBlock *S : successors(BB)) { - if (!DT->isReachableFromEntry(S)) - continue; - auto It = PerBlockAccesses.find(S); - // Rename the phi nodes in our successor block - if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) - continue; - AccessList *Accesses = It->second.get(); - auto *Phi = cast<MemoryPhi>(&Accesses->front()); - Phi->addIncoming(LiveOnEntryDef.get(), BB); - } - - auto It = PerBlockAccesses.find(BB); - if (It == PerBlockAccesses.end()) - return; - - auto &Accesses = It->second; - for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { - auto Next = std::next(AI); - // If we have a phi, just remove it. We are going to replace all - // users with live on entry. - if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) - UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); - else - Accesses->erase(AI); - AI = Next; - } -} - -MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) - : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), - NextID(INVALID_MEMORYACCESS_ID) { - buildMemorySSA(); -} - -MemorySSA::~MemorySSA() { - // Drop all our references - for (const auto &Pair : PerBlockAccesses) - for (MemoryAccess &MA : *Pair.second) - MA.dropAllReferences(); -} - -MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { - auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); - - if (Res.second) - Res.first->second = make_unique<AccessList>(); - return Res.first->second.get(); -} - -/// This class is a batch walker of all MemoryUse's in the program, and points -/// their defining access at the thing that actually clobbers them. Because it -/// is a batch walker that touches everything, it does not operate like the -/// other walkers. This walker is basically performing a top-down SSA renaming -/// pass, where the version stack is used as the cache. This enables it to be -/// significantly more time and memory efficient than using the regular walker, -/// which is walking bottom-up. -class MemorySSA::OptimizeUses { -public: - OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA, - DominatorTree *DT) - : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) { - Walker = MSSA->getWalker(); - } - - void optimizeUses(); - -private: - /// This represents where a given memorylocation is in the stack. - struct MemlocStackInfo { - // This essentially is keeping track of versions of the stack. Whenever - // the stack changes due to pushes or pops, these versions increase. - unsigned long StackEpoch; - unsigned long PopEpoch; - // This is the lower bound of places on the stack to check. It is equal to - // the place the last stack walk ended. - // Note: Correctness depends on this being initialized to 0, which densemap - // does - unsigned long LowerBound; - const BasicBlock *LowerBoundBlock; - // This is where the last walk for this memory location ended. - unsigned long LastKill; - bool LastKillValid; - }; - void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &, - SmallVectorImpl<MemoryAccess *> &, - DenseMap<MemoryLocOrCall, MemlocStackInfo> &); - MemorySSA *MSSA; - MemorySSAWalker *Walker; - AliasAnalysis *AA; - DominatorTree *DT; -}; - -/// Optimize the uses in a given block This is basically the SSA renaming -/// algorithm, with one caveat: We are able to use a single stack for all -/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is -/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just -/// going to be some position in that stack of possible ones. -/// -/// We track the stack positions that each MemoryLocation needs -/// to check, and last ended at. This is because we only want to check the -/// things that changed since last time. The same MemoryLocation should -/// get clobbered by the same store (getModRefInfo does not use invariantness or -/// things like this, and if they start, we can modify MemoryLocOrCall to -/// include relevant data) -void MemorySSA::OptimizeUses::optimizeUsesInBlock( - const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch, - SmallVectorImpl<MemoryAccess *> &VersionStack, - DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) { - - /// If no accesses, nothing to do. - MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB); - if (Accesses == nullptr) - return; - - // Pop everything that doesn't dominate the current block off the stack, - // increment the PopEpoch to account for this. - while (!VersionStack.empty()) { - BasicBlock *BackBlock = VersionStack.back()->getBlock(); - if (DT->dominates(BackBlock, BB)) - break; - while (VersionStack.back()->getBlock() == BackBlock) - VersionStack.pop_back(); - ++PopEpoch; - } - for (MemoryAccess &MA : *Accesses) { - auto *MU = dyn_cast<MemoryUse>(&MA); - if (!MU) { - VersionStack.push_back(&MA); - ++StackEpoch; - continue; - } - - if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) { - MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true); - continue; - } - - MemoryLocOrCall UseMLOC(MU); - auto &LocInfo = LocStackInfo[UseMLOC]; - // If the pop epoch changed, it means we've removed stuff from top of - // stack due to changing blocks. We may have to reset the lower bound or - // last kill info. - if (LocInfo.PopEpoch != PopEpoch) { - LocInfo.PopEpoch = PopEpoch; - LocInfo.StackEpoch = StackEpoch; - // If the lower bound was in something that no longer dominates us, we - // have to reset it. - // We can't simply track stack size, because the stack may have had - // pushes/pops in the meantime. - // XXX: This is non-optimal, but only is slower cases with heavily - // branching dominator trees. To get the optimal number of queries would - // be to make lowerbound and lastkill a per-loc stack, and pop it until - // the top of that stack dominates us. This does not seem worth it ATM. - // A much cheaper optimization would be to always explore the deepest - // branch of the dominator tree first. This will guarantee this resets on - // the smallest set of blocks. - if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB && - !DT->dominates(LocInfo.LowerBoundBlock, BB)) { - // Reset the lower bound of things to check. - // TODO: Some day we should be able to reset to last kill, rather than - // 0. - LocInfo.LowerBound = 0; - LocInfo.LowerBoundBlock = VersionStack[0]->getBlock(); - LocInfo.LastKillValid = false; - } - } else if (LocInfo.StackEpoch != StackEpoch) { - // If all that has changed is the StackEpoch, we only have to check the - // new things on the stack, because we've checked everything before. In - // this case, the lower bound of things to check remains the same. - LocInfo.PopEpoch = PopEpoch; - LocInfo.StackEpoch = StackEpoch; - } - if (!LocInfo.LastKillValid) { - LocInfo.LastKill = VersionStack.size() - 1; - LocInfo.LastKillValid = true; - } - - // At this point, we should have corrected last kill and LowerBound to be - // in bounds. - assert(LocInfo.LowerBound < VersionStack.size() && - "Lower bound out of range"); - assert(LocInfo.LastKill < VersionStack.size() && - "Last kill info out of range"); - // In any case, the new upper bound is the top of the stack. - unsigned long UpperBound = VersionStack.size() - 1; - - if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) { - DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " (" - << *(MU->getMemoryInst()) << ")" - << " because there are " << UpperBound - LocInfo.LowerBound - << " stores to disambiguate\n"); - // Because we did not walk, LastKill is no longer valid, as this may - // have been a kill. - LocInfo.LastKillValid = false; - continue; - } - bool FoundClobberResult = false; - while (UpperBound > LocInfo.LowerBound) { - if (isa<MemoryPhi>(VersionStack[UpperBound])) { - // For phis, use the walker, see where we ended up, go there - Instruction *UseInst = MU->getMemoryInst(); - MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst); - // We are guaranteed to find it or something is wrong - while (VersionStack[UpperBound] != Result) { - assert(UpperBound != 0); - --UpperBound; - } - FoundClobberResult = true; - break; - } - - MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]); - // If the lifetime of the pointer ends at this instruction, it's live on - // entry. - if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) { - // Reset UpperBound to liveOnEntryDef's place in the stack - UpperBound = 0; - FoundClobberResult = true; - break; - } - if (instructionClobbersQuery(MD, MU, UseMLOC, *AA)) { - FoundClobberResult = true; - break; - } - --UpperBound; - } - // At the end of this loop, UpperBound is either a clobber, or lower bound - // PHI walking may cause it to be < LowerBound, and in fact, < LastKill. - if (FoundClobberResult || UpperBound < LocInfo.LastKill) { - MU->setDefiningAccess(VersionStack[UpperBound], true); - // We were last killed now by where we got to - LocInfo.LastKill = UpperBound; - } else { - // Otherwise, we checked all the new ones, and now we know we can get to - // LastKill. - MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true); - } - LocInfo.LowerBound = VersionStack.size() - 1; - LocInfo.LowerBoundBlock = BB; - } -} - -/// Optimize uses to point to their actual clobbering definitions. -void MemorySSA::OptimizeUses::optimizeUses() { - - // We perform a non-recursive top-down dominator tree walk - struct StackInfo { - const DomTreeNode *Node; - DomTreeNode::const_iterator Iter; - }; - - SmallVector<MemoryAccess *, 16> VersionStack; - SmallVector<StackInfo, 16> DomTreeWorklist; - DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo; - VersionStack.push_back(MSSA->getLiveOnEntryDef()); - - unsigned long StackEpoch = 1; - unsigned long PopEpoch = 1; - for (const auto *DomNode : depth_first(DT->getRootNode())) - optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack, - LocStackInfo); -} - -void MemorySSA::placePHINodes( - const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks, - const DenseMap<const BasicBlock *, unsigned int> &BBNumbers) { - // Determine where our MemoryPhi's should go - ForwardIDFCalculator IDFs(*DT); - IDFs.setDefiningBlocks(DefiningBlocks); - SmallVector<BasicBlock *, 32> IDFBlocks; - IDFs.calculate(IDFBlocks); - - std::sort(IDFBlocks.begin(), IDFBlocks.end(), - [&BBNumbers](const BasicBlock *A, const BasicBlock *B) { - return BBNumbers.lookup(A) < BBNumbers.lookup(B); - }); - - // Now place MemoryPhi nodes. - for (auto &BB : IDFBlocks) { - // Insert phi node - AccessList *Accesses = getOrCreateAccessList(BB); - MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); - ValueToMemoryAccess[BB] = Phi; - // Phi's always are placed at the front of the block. - Accesses->push_front(Phi); - } -} - -void MemorySSA::buildMemorySSA() { - // We create an access to represent "live on entry", for things like - // arguments or users of globals, where the memory they use is defined before - // the beginning of the function. We do not actually insert it into the IR. - // We do not define a live on exit for the immediate uses, and thus our - // semantics do *not* imply that something with no immediate uses can simply - // be removed. - BasicBlock &StartingPoint = F.getEntryBlock(); - LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, - &StartingPoint, NextID++); - DenseMap<const BasicBlock *, unsigned int> BBNumbers; - unsigned NextBBNum = 0; - - // We maintain lists of memory accesses per-block, trading memory for time. We - // could just look up the memory access for every possible instruction in the - // stream. - SmallPtrSet<BasicBlock *, 32> DefiningBlocks; - SmallPtrSet<BasicBlock *, 32> DefUseBlocks; - // Go through each block, figure out where defs occur, and chain together all - // the accesses. - for (BasicBlock &B : F) { - BBNumbers[&B] = NextBBNum++; - bool InsertIntoDef = false; - AccessList *Accesses = nullptr; - for (Instruction &I : B) { - MemoryUseOrDef *MUD = createNewAccess(&I); - if (!MUD) - continue; - InsertIntoDef |= isa<MemoryDef>(MUD); - - if (!Accesses) - Accesses = getOrCreateAccessList(&B); - Accesses->push_back(MUD); - } - if (InsertIntoDef) - DefiningBlocks.insert(&B); - if (Accesses) - DefUseBlocks.insert(&B); - } - placePHINodes(DefiningBlocks, BBNumbers); - - // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get - // filled in with all blocks. - SmallPtrSet<BasicBlock *, 16> Visited; - renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); - - CachingWalker *Walker = getWalkerImpl(); - - // We're doing a batch of updates; don't drop useful caches between them. - Walker->setAutoResetWalker(false); - OptimizeUses(this, Walker, AA, DT).optimizeUses(); - Walker->setAutoResetWalker(true); - Walker->resetClobberWalker(); - - // Mark the uses in unreachable blocks as live on entry, so that they go - // somewhere. - for (auto &BB : F) - if (!Visited.count(&BB)) - markUnreachableAsLiveOnEntry(&BB); -} - -MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); } - -MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() { - if (Walker) - return Walker.get(); - - Walker = make_unique<CachingWalker>(this, AA, DT); - return Walker.get(); -} - -MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { - assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); - AccessList *Accesses = getOrCreateAccessList(BB); - MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); - ValueToMemoryAccess[BB] = Phi; - // Phi's always are placed at the front of the block. - Accesses->push_front(Phi); - BlockNumberingValid.erase(BB); - return Phi; -} - -MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, - MemoryAccess *Definition) { - assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); - MemoryUseOrDef *NewAccess = createNewAccess(I); - assert( - NewAccess != nullptr && - "Tried to create a memory access for a non-memory touching instruction"); - NewAccess->setDefiningAccess(Definition); - return NewAccess; -} - -MemoryAccess *MemorySSA::createMemoryAccessInBB(Instruction *I, - MemoryAccess *Definition, - const BasicBlock *BB, - InsertionPlace Point) { - MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); - auto *Accesses = getOrCreateAccessList(BB); - if (Point == Beginning) { - // It goes after any phi nodes - auto AI = find_if( - *Accesses, [](const MemoryAccess &MA) { return !isa<MemoryPhi>(MA); }); - - Accesses->insert(AI, NewAccess); - } else { - Accesses->push_back(NewAccess); - } - BlockNumberingValid.erase(BB); - return NewAccess; -} - -MemoryUseOrDef *MemorySSA::createMemoryAccessBefore(Instruction *I, - MemoryAccess *Definition, - MemoryUseOrDef *InsertPt) { - assert(I->getParent() == InsertPt->getBlock() && - "New and old access must be in the same block"); - MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); - auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); - Accesses->insert(AccessList::iterator(InsertPt), NewAccess); - BlockNumberingValid.erase(InsertPt->getBlock()); - return NewAccess; -} - -MemoryUseOrDef *MemorySSA::createMemoryAccessAfter(Instruction *I, - MemoryAccess *Definition, - MemoryAccess *InsertPt) { - assert(I->getParent() == InsertPt->getBlock() && - "New and old access must be in the same block"); - MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); - auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); - Accesses->insertAfter(AccessList::iterator(InsertPt), NewAccess); - BlockNumberingValid.erase(InsertPt->getBlock()); - return NewAccess; -} - -void MemorySSA::spliceMemoryAccessAbove(MemoryDef *Where, - MemoryUseOrDef *What) { - assert(What != getLiveOnEntryDef() && - Where != getLiveOnEntryDef() && "Can't splice (above) LOE."); - assert(dominates(Where, What) && "Only upwards splices are permitted."); - - if (Where == What) - return; - if (isa<MemoryDef>(What)) { - // TODO: possibly use removeMemoryAccess' more efficient RAUW - What->replaceAllUsesWith(What->getDefiningAccess()); - What->setDefiningAccess(Where->getDefiningAccess()); - Where->setDefiningAccess(What); - } - AccessList *Src = getWritableBlockAccesses(What->getBlock()); - AccessList *Dest = getWritableBlockAccesses(Where->getBlock()); - Dest->splice(AccessList::iterator(Where), *Src, What); - - BlockNumberingValid.erase(What->getBlock()); - if (What->getBlock() != Where->getBlock()) - BlockNumberingValid.erase(Where->getBlock()); -} - -/// \brief Helper function to create new memory accesses -MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { - // The assume intrinsic has a control dependency which we model by claiming - // that it writes arbitrarily. Ignore that fake memory dependency here. - // FIXME: Replace this special casing with a more accurate modelling of - // assume's control dependency. - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) - if (II->getIntrinsicID() == Intrinsic::assume) - return nullptr; - - // Find out what affect this instruction has on memory. - ModRefInfo ModRef = AA->getModRefInfo(I); - bool Def = bool(ModRef & MRI_Mod); - bool Use = bool(ModRef & MRI_Ref); - - // It's possible for an instruction to not modify memory at all. During - // construction, we ignore them. - if (!Def && !Use) - return nullptr; - - assert((Def || Use) && - "Trying to create a memory access with a non-memory instruction"); - - MemoryUseOrDef *MUD; - if (Def) - MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); - else - MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); - ValueToMemoryAccess[I] = MUD; - return MUD; -} - -MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock, - enum InsertionPlace Where) { - // Handle the initial case - if (Where == Beginning) - // The only thing that could define us at the beginning is a phi node - if (MemoryPhi *Phi = getMemoryAccess(UseBlock)) - return Phi; - - DomTreeNode *CurrNode = DT->getNode(UseBlock); - // Need to be defined by our dominator - if (Where == Beginning) - CurrNode = CurrNode->getIDom(); - Where = End; - while (CurrNode) { - auto It = PerBlockAccesses.find(CurrNode->getBlock()); - if (It != PerBlockAccesses.end()) { - auto &Accesses = It->second; - for (MemoryAccess &RA : reverse(*Accesses)) { - if (isa<MemoryDef>(RA) || isa<MemoryPhi>(RA)) - return &RA; - } - } - CurrNode = CurrNode->getIDom(); - } - return LiveOnEntryDef.get(); -} - -/// \brief Returns true if \p Replacer dominates \p Replacee . -bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, - const MemoryAccess *Replacee) const { - if (isa<MemoryUseOrDef>(Replacee)) - return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); - const auto *MP = cast<MemoryPhi>(Replacee); - // For a phi node, the use occurs in the predecessor block of the phi node. - // Since we may occur multiple times in the phi node, we have to check each - // operand to ensure Replacer dominates each operand where Replacee occurs. - for (const Use &Arg : MP->operands()) { - if (Arg.get() != Replacee && - !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) - return false; - } - return true; -} - -/// \brief If all arguments of a MemoryPHI are defined by the same incoming -/// argument, return that argument. -static MemoryAccess *onlySingleValue(MemoryPhi *MP) { - MemoryAccess *MA = nullptr; - - for (auto &Arg : MP->operands()) { - if (!MA) - MA = cast<MemoryAccess>(Arg); - else if (MA != Arg) - return nullptr; - } - return MA; -} - -/// \brief Properly remove \p MA from all of MemorySSA's lookup tables. -/// -/// Because of the way the intrusive list and use lists work, it is important to -/// do removal in the right order. -void MemorySSA::removeFromLookups(MemoryAccess *MA) { - assert(MA->use_empty() && - "Trying to remove memory access that still has uses"); - BlockNumbering.erase(MA); - if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) - MUD->setDefiningAccess(nullptr); - // Invalidate our walker's cache if necessary - if (!isa<MemoryUse>(MA)) - Walker->invalidateInfo(MA); - // The call below to erase will destroy MA, so we can't change the order we - // are doing things here - Value *MemoryInst; - if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { - MemoryInst = MUD->getMemoryInst(); - } else { - MemoryInst = MA->getBlock(); - } - auto VMA = ValueToMemoryAccess.find(MemoryInst); - if (VMA->second == MA) - ValueToMemoryAccess.erase(VMA); - - auto AccessIt = PerBlockAccesses.find(MA->getBlock()); - std::unique_ptr<AccessList> &Accesses = AccessIt->second; - Accesses->erase(MA); - if (Accesses->empty()) - PerBlockAccesses.erase(AccessIt); -} - -void MemorySSA::removeMemoryAccess(MemoryAccess *MA) { - assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); - // We can only delete phi nodes if they have no uses, or we can replace all - // uses with a single definition. - MemoryAccess *NewDefTarget = nullptr; - if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { - // Note that it is sufficient to know that all edges of the phi node have - // the same argument. If they do, by the definition of dominance frontiers - // (which we used to place this phi), that argument must dominate this phi, - // and thus, must dominate the phi's uses, and so we will not hit the assert - // below. - NewDefTarget = onlySingleValue(MP); - assert((NewDefTarget || MP->use_empty()) && - "We can't delete this memory phi"); - } else { - NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); - } - - // Re-point the uses at our defining access - if (!MA->use_empty()) { - // Reset optimized on users of this store, and reset the uses. - // A few notes: - // 1. This is a slightly modified version of RAUW to avoid walking the - // uses twice here. - // 2. If we wanted to be complete, we would have to reset the optimized - // flags on users of phi nodes if doing the below makes a phi node have all - // the same arguments. Instead, we prefer users to removeMemoryAccess those - // phi nodes, because doing it here would be N^3. - if (MA->hasValueHandle()) - ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); - // Note: We assume MemorySSA is not used in metadata since it's not really - // part of the IR. - - while (!MA->use_empty()) { - Use &U = *MA->use_begin(); - if (MemoryUse *MU = dyn_cast<MemoryUse>(U.getUser())) - MU->resetOptimized(); - U.set(NewDefTarget); - } - } - - // The call below to erase will destroy MA, so we can't change the order we - // are doing things here - removeFromLookups(MA); -} - -void MemorySSA::print(raw_ostream &OS) const { - MemorySSAAnnotatedWriter Writer(this); - F.print(OS, &Writer); -} - -void MemorySSA::dump() const { - MemorySSAAnnotatedWriter Writer(this); - F.print(dbgs(), &Writer); -} - -void MemorySSA::verifyMemorySSA() const { - verifyDefUses(F); - verifyDomination(F); - verifyOrdering(F); - Walker->verify(this); -} - -/// \brief Verify that the order and existence of MemoryAccesses matches the -/// order and existence of memory affecting instructions. -void MemorySSA::verifyOrdering(Function &F) const { - // Walk all the blocks, comparing what the lookups think and what the access - // lists think, as well as the order in the blocks vs the order in the access - // lists. - SmallVector<MemoryAccess *, 32> ActualAccesses; - for (BasicBlock &B : F) { - const AccessList *AL = getBlockAccesses(&B); - MemoryAccess *Phi = getMemoryAccess(&B); - if (Phi) - ActualAccesses.push_back(Phi); - for (Instruction &I : B) { - MemoryAccess *MA = getMemoryAccess(&I); - assert((!MA || AL) && "We have memory affecting instructions " - "in this block but they are not in the " - "access list"); - if (MA) - ActualAccesses.push_back(MA); - } - // Either we hit the assert, really have no accesses, or we have both - // accesses and an access list - if (!AL) - continue; - assert(AL->size() == ActualAccesses.size() && - "We don't have the same number of accesses in the block as on the " - "access list"); - auto ALI = AL->begin(); - auto AAI = ActualAccesses.begin(); - while (ALI != AL->end() && AAI != ActualAccesses.end()) { - assert(&*ALI == *AAI && "Not the same accesses in the same order"); - ++ALI; - ++AAI; - } - ActualAccesses.clear(); - } -} - -/// \brief Verify the domination properties of MemorySSA by checking that each -/// definition dominates all of its uses. -void MemorySSA::verifyDomination(Function &F) const { -#ifndef NDEBUG - for (BasicBlock &B : F) { - // Phi nodes are attached to basic blocks - if (MemoryPhi *MP = getMemoryAccess(&B)) - for (const Use &U : MP->uses()) - assert(dominates(MP, U) && "Memory PHI does not dominate it's uses"); - - for (Instruction &I : B) { - MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); - if (!MD) - continue; - - for (const Use &U : MD->uses()) - assert(dominates(MD, U) && "Memory Def does not dominate it's uses"); - } - } -#endif -} - -/// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use -/// appears in the use list of \p Def. - -void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { -#ifndef NDEBUG - // The live on entry use may cause us to get a NULL def here - if (!Def) - assert(isLiveOnEntryDef(Use) && - "Null def but use not point to live on entry def"); - else - assert(is_contained(Def->users(), Use) && - "Did not find use in def's use list"); -#endif -} - -/// \brief Verify the immediate use information, by walking all the memory -/// accesses and verifying that, for each use, it appears in the -/// appropriate def's use list -void MemorySSA::verifyDefUses(Function &F) const { - for (BasicBlock &B : F) { - // Phi nodes are attached to basic blocks - if (MemoryPhi *Phi = getMemoryAccess(&B)) { - assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( - pred_begin(&B), pred_end(&B))) && - "Incomplete MemoryPhi Node"); - for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) - verifyUseInDefs(Phi->getIncomingValue(I), Phi); - } - - for (Instruction &I : B) { - if (MemoryUseOrDef *MA = getMemoryAccess(&I)) { - verifyUseInDefs(MA->getDefiningAccess(), MA); - } - } - } -} - -MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const { - return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I)); -} - -MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { - return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB))); -} - -/// Perform a local numbering on blocks so that instruction ordering can be -/// determined in constant time. -/// TODO: We currently just number in order. If we numbered by N, we could -/// allow at least N-1 sequences of insertBefore or insertAfter (and at least -/// log2(N) sequences of mixed before and after) without needing to invalidate -/// the numbering. -void MemorySSA::renumberBlock(const BasicBlock *B) const { - // The pre-increment ensures the numbers really start at 1. - unsigned long CurrentNumber = 0; - const AccessList *AL = getBlockAccesses(B); - assert(AL != nullptr && "Asking to renumber an empty block"); - for (const auto &I : *AL) - BlockNumbering[&I] = ++CurrentNumber; - BlockNumberingValid.insert(B); -} - -/// \brief Determine, for two memory accesses in the same block, -/// whether \p Dominator dominates \p Dominatee. -/// \returns True if \p Dominator dominates \p Dominatee. -bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, - const MemoryAccess *Dominatee) const { - - const BasicBlock *DominatorBlock = Dominator->getBlock(); - - assert((DominatorBlock == Dominatee->getBlock()) && - "Asking for local domination when accesses are in different blocks!"); - // A node dominates itself. - if (Dominatee == Dominator) - return true; - - // When Dominatee is defined on function entry, it is not dominated by another - // memory access. - if (isLiveOnEntryDef(Dominatee)) - return false; - - // When Dominator is defined on function entry, it dominates the other memory - // access. - if (isLiveOnEntryDef(Dominator)) - return true; - - if (!BlockNumberingValid.count(DominatorBlock)) - renumberBlock(DominatorBlock); - - unsigned long DominatorNum = BlockNumbering.lookup(Dominator); - // All numbers start with 1 - assert(DominatorNum != 0 && "Block was not numbered properly"); - unsigned long DominateeNum = BlockNumbering.lookup(Dominatee); - assert(DominateeNum != 0 && "Block was not numbered properly"); - return DominatorNum < DominateeNum; -} - -bool MemorySSA::dominates(const MemoryAccess *Dominator, - const MemoryAccess *Dominatee) const { - if (Dominator == Dominatee) - return true; - - if (isLiveOnEntryDef(Dominatee)) - return false; - - if (Dominator->getBlock() != Dominatee->getBlock()) - return DT->dominates(Dominator->getBlock(), Dominatee->getBlock()); - return locallyDominates(Dominator, Dominatee); -} - -bool MemorySSA::dominates(const MemoryAccess *Dominator, - const Use &Dominatee) const { - if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) { - BasicBlock *UseBB = MP->getIncomingBlock(Dominatee); - // The def must dominate the incoming block of the phi. - if (UseBB != Dominator->getBlock()) - return DT->dominates(Dominator->getBlock(), UseBB); - // If the UseBB and the DefBB are the same, compare locally. - return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee)); - } - // If it's not a PHI node use, the normal dominates can already handle it. - return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser())); -} - -const static char LiveOnEntryStr[] = "liveOnEntry"; - -void MemoryDef::print(raw_ostream &OS) const { - MemoryAccess *UO = getDefiningAccess(); - - OS << getID() << " = MemoryDef("; - if (UO && UO->getID()) - OS << UO->getID(); - else - OS << LiveOnEntryStr; - OS << ')'; -} - -void MemoryPhi::print(raw_ostream &OS) const { - bool First = true; - OS << getID() << " = MemoryPhi("; - for (const auto &Op : operands()) { - BasicBlock *BB = getIncomingBlock(Op); - MemoryAccess *MA = cast<MemoryAccess>(Op); - if (!First) - OS << ','; - else - First = false; - - OS << '{'; - if (BB->hasName()) - OS << BB->getName(); - else - BB->printAsOperand(OS, false); - OS << ','; - if (unsigned ID = MA->getID()) - OS << ID; - else - OS << LiveOnEntryStr; - OS << '}'; - } - OS << ')'; -} - -MemoryAccess::~MemoryAccess() {} - -void MemoryUse::print(raw_ostream &OS) const { - MemoryAccess *UO = getDefiningAccess(); - OS << "MemoryUse("; - if (UO && UO->getID()) - OS << UO->getID(); - else - OS << LiveOnEntryStr; - OS << ')'; -} - -void MemoryAccess::dump() const { - print(dbgs()); - dbgs() << "\n"; -} - -char MemorySSAPrinterLegacyPass::ID = 0; - -MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { - initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); -} - -void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequired<MemorySSAWrapperPass>(); - AU.addPreserved<MemorySSAWrapperPass>(); -} - -bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { - auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); - MSSA.print(dbgs()); - if (VerifyMemorySSA) - MSSA.verifyMemorySSA(); - return false; -} - -AnalysisKey MemorySSAAnalysis::Key; - -MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F, - FunctionAnalysisManager &AM) { - auto &DT = AM.getResult<DominatorTreeAnalysis>(F); - auto &AA = AM.getResult<AAManager>(F); - return MemorySSAAnalysis::Result(make_unique<MemorySSA>(F, &AA, &DT)); -} - -PreservedAnalyses MemorySSAPrinterPass::run(Function &F, - FunctionAnalysisManager &AM) { - OS << "MemorySSA for function: " << F.getName() << "\n"; - AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS); - - return PreservedAnalyses::all(); -} - -PreservedAnalyses MemorySSAVerifierPass::run(Function &F, - FunctionAnalysisManager &AM) { - AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA(); - - return PreservedAnalyses::all(); -} - -char MemorySSAWrapperPass::ID = 0; - -MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { - initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); -} - -void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } - -void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesAll(); - AU.addRequiredTransitive<DominatorTreeWrapperPass>(); - AU.addRequiredTransitive<AAResultsWrapperPass>(); -} - -bool MemorySSAWrapperPass::runOnFunction(Function &F) { - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); - MSSA.reset(new MemorySSA(F, &AA, &DT)); - return false; -} - -void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } - -void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { - MSSA->print(OS); -} - -MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} - -MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, - DominatorTree *D) - : MemorySSAWalker(M), Walker(*M, *A, *D, Cache), AutoResetWalker(true) {} - -MemorySSA::CachingWalker::~CachingWalker() {} - -void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { - // TODO: We can do much better cache invalidation with differently stored - // caches. For now, for MemoryUses, we simply remove them - // from the cache, and kill the entire call/non-call cache for everything - // else. The problem is for phis or defs, currently we'd need to follow use - // chains down and invalidate anything below us in the chain that currently - // terminates at this access. - - // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse - // is by definition never a barrier, so nothing in the cache could point to - // this use. In that case, we only need invalidate the info for the use - // itself. - - if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) { - UpwardsMemoryQuery Q(MU->getMemoryInst(), MU); - Cache.remove(MU, Q.StartingLoc, Q.IsCall); - MU->resetOptimized(); - } else { - // If it is not a use, the best we can do right now is destroy the cache. - Cache.clear(); - } - -#ifdef EXPENSIVE_CHECKS - verifyRemoved(MA); -#endif -} - -/// \brief Walk the use-def chains starting at \p MA and find -/// the MemoryAccess that actually clobbers Loc. -/// -/// \returns our clobbering memory access -MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( - MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { - MemoryAccess *New = Walker.findClobber(StartingAccess, Q); -#ifdef EXPENSIVE_CHECKS - MemoryAccess *NewNoCache = - Walker.findClobber(StartingAccess, Q, /*UseWalkerCache=*/false); - assert(NewNoCache == New && "Cache made us hand back a different result?"); -#endif - if (AutoResetWalker) - resetClobberWalker(); - return New; -} - -MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( - MemoryAccess *StartingAccess, const MemoryLocation &Loc) { - if (isa<MemoryPhi>(StartingAccess)) - return StartingAccess; - - auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); - if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) - return StartingUseOrDef; - - Instruction *I = StartingUseOrDef->getMemoryInst(); - - // Conservatively, fences are always clobbers, so don't perform the walk if we - // hit a fence. - if (!ImmutableCallSite(I) && I->isFenceLike()) - return StartingUseOrDef; - - UpwardsMemoryQuery Q; - Q.OriginalAccess = StartingUseOrDef; - Q.StartingLoc = Loc; - Q.Inst = I; - Q.IsCall = false; - - if (auto *CacheResult = Cache.lookup(StartingUseOrDef, Loc, Q.IsCall)) - return CacheResult; - - // Unlike the other function, do not walk to the def of a def, because we are - // handed something we already believe is the clobbering access. - MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) - ? StartingUseOrDef->getDefiningAccess() - : StartingUseOrDef; - - MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); - DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); - DEBUG(dbgs() << *StartingUseOrDef << "\n"); - DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); - DEBUG(dbgs() << *Clobber << "\n"); - return Clobber; -} - -MemoryAccess * -MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) { - auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA); - // If this is a MemoryPhi, we can't do anything. - if (!StartingAccess) - return MA; - - // If this is an already optimized use or def, return the optimized result. - // Note: Currently, we do not store the optimized def result because we'd need - // a separate field, since we can't use it as the defining access. - if (MemoryUse *MU = dyn_cast<MemoryUse>(StartingAccess)) - if (MU->isOptimized()) - return MU->getDefiningAccess(); - - const Instruction *I = StartingAccess->getMemoryInst(); - UpwardsMemoryQuery Q(I, StartingAccess); - // We can't sanely do anything with a fences, they conservatively - // clobber all memory, and have no locations to get pointers from to - // try to disambiguate. - if (!Q.IsCall && I->isFenceLike()) - return StartingAccess; - - if (auto *CacheResult = Cache.lookup(StartingAccess, Q.StartingLoc, Q.IsCall)) - return CacheResult; - - if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) { - MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef(); - Cache.insert(StartingAccess, LiveOnEntry, Q.StartingLoc, Q.IsCall); - if (MemoryUse *MU = dyn_cast<MemoryUse>(StartingAccess)) - MU->setDefiningAccess(LiveOnEntry, true); - return LiveOnEntry; - } - - // Start with the thing we already think clobbers this location - MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); - - // At this point, DefiningAccess may be the live on entry def. - // If it is, we will not get a better result. - if (MSSA->isLiveOnEntryDef(DefiningAccess)) - return DefiningAccess; - - MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); - DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); - DEBUG(dbgs() << *DefiningAccess << "\n"); - DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); - DEBUG(dbgs() << *Result << "\n"); - if (MemoryUse *MU = dyn_cast<MemoryUse>(StartingAccess)) - MU->setDefiningAccess(Result, true); - - return Result; -} - -// Verify that MA doesn't exist in any of the caches. -void MemorySSA::CachingWalker::verifyRemoved(MemoryAccess *MA) { - assert(!Cache.contains(MA) && "Found removed MemoryAccess in cache."); -} - -MemoryAccess * -DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) { - if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) - return Use->getDefiningAccess(); - return MA; -} - -MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( - MemoryAccess *StartingAccess, const MemoryLocation &) { - if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) - return Use->getDefiningAccess(); - return StartingAccess; -} -} // namespace llvm |