aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/Utils/SimplifyLibCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Utils/SimplifyLibCalls.cpp')
-rw-r--r--lib/Transforms/Utils/SimplifyLibCalls.cpp510
1 files changed, 383 insertions, 127 deletions
diff --git a/lib/Transforms/Utils/SimplifyLibCalls.cpp b/lib/Transforms/Utils/SimplifyLibCalls.cpp
index 1bb26caa2af2..e0def81d5eee 100644
--- a/lib/Transforms/Utils/SimplifyLibCalls.cpp
+++ b/lib/Transforms/Utils/SimplifyLibCalls.cpp
@@ -1,9 +1,8 @@
//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
@@ -17,8 +16,10 @@
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
@@ -35,6 +36,7 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/Transforms/Utils/SizeOpts.h"
using namespace llvm;
using namespace PatternMatch;
@@ -105,6 +107,12 @@ static bool callHasFloatingPointArgument(const CallInst *CI) {
});
}
+static bool callHasFP128Argument(const CallInst *CI) {
+ return any_of(CI->operands(), [](const Use &OI) {
+ return OI->getType()->isFP128Ty();
+ });
+}
+
static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
if (Base < 2 || Base > 36)
// handle special zero base
@@ -334,11 +342,12 @@ Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
return ConstantInt::get(CI->getType(), Str1.compare(Str2));
if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
+ return B.CreateNeg(B.CreateZExt(
+ B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+ return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
+ CI->getType());
// strcmp(P, "x") -> memcmp(P, "x", 2)
uint64_t Len1 = GetStringLength(Str1P);
@@ -398,11 +407,12 @@ Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
}
if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
+ return B.CreateNeg(B.CreateZExt(
+ B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
+ return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
+ CI->getType());
uint64_t Len1 = GetStringLength(Str1P);
uint64_t Len2 = GetStringLength(Str2P);
@@ -591,7 +601,8 @@ Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
// strlen(x) != 0 --> *x != 0
// strlen(x) == 0 --> *x == 0
if (isOnlyUsedInZeroEqualityComparison(CI))
- return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
+ return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
+ CI->getType());
return nullptr;
}
@@ -735,7 +746,8 @@ Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
// strstr("abcd", "bc") -> gep((char*)"abcd", 1)
Value *Result = castToCStr(CI->getArgOperand(0), B);
- Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
+ Result =
+ B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
return B.CreateBitCast(Result, CI->getType());
}
@@ -773,7 +785,8 @@ Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
// It would be really nice to reuse switch lowering here but we can't change
// the CFG at this point.
//
- // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
+ // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
+ // != 0
// after bounds check.
if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
unsigned char Max =
@@ -828,27 +841,20 @@ Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
}
-Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
- Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
-
- if (LHS == RHS) // memcmp(s,s,x) -> 0
- return Constant::getNullValue(CI->getType());
-
- // Make sure we have a constant length.
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!LenC)
- return nullptr;
-
- uint64_t Len = LenC->getZExtValue();
+static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
+ uint64_t Len, IRBuilder<> &B,
+ const DataLayout &DL) {
if (Len == 0) // memcmp(s1,s2,0) -> 0
return Constant::getNullValue(CI->getType());
// memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
if (Len == 1) {
- Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
- CI->getType(), "lhsv");
- Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
- CI->getType(), "rhsv");
+ Value *LHSV =
+ B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
+ CI->getType(), "lhsv");
+ Value *RHSV =
+ B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
+ CI->getType(), "rhsv");
return B.CreateSub(LHSV, RHSV, "chardiff");
}
@@ -878,12 +884,12 @@ Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
if (!LHSV) {
Type *LHSPtrTy =
IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
- LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
+ LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
}
if (!RHSV) {
Type *RHSPtrTy =
IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
- RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
+ RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
}
return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
}
@@ -907,10 +913,48 @@ Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
Ret = 1;
return ConstantInt::get(CI->getType(), Ret);
}
+ return nullptr;
+}
+
+// Most simplifications for memcmp also apply to bcmp.
+Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
+ IRBuilder<> &B) {
+ Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
+ Value *Size = CI->getArgOperand(2);
+
+ if (LHS == RHS) // memcmp(s,s,x) -> 0
+ return Constant::getNullValue(CI->getType());
+
+ // Handle constant lengths.
+ if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size))
+ if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS,
+ LenC->getZExtValue(), B, DL))
+ return Res;
+
+ return nullptr;
+}
+
+Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
+ if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
+ return V;
+
+ // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
+ // `bcmp` can be more efficient than memcmp because it only has to know that
+ // there is a difference, not where it is.
+ if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) {
+ Value *LHS = CI->getArgOperand(0);
+ Value *RHS = CI->getArgOperand(1);
+ Value *Size = CI->getArgOperand(2);
+ return emitBCmp(LHS, RHS, Size, B, DL, TLI);
+ }
return nullptr;
}
+Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
+ return optimizeMemCmpBCmpCommon(CI, B);
+}
+
Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
// memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
@@ -1031,7 +1075,8 @@ static Value *valueHasFloatPrecision(Value *Val) {
/// Shrink double -> float functions.
static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
bool isBinary, bool isPrecise = false) {
- if (!CI->getType()->isDoubleTy())
+ Function *CalleeFn = CI->getCalledFunction();
+ if (!CI->getType()->isDoubleTy() || !CalleeFn)
return nullptr;
// If not all the uses of the function are converted to float, then bail out.
@@ -1051,15 +1096,16 @@ static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
if (!V[0] || (isBinary && !V[1]))
return nullptr;
+ StringRef CalleeNm = CalleeFn->getName();
+ AttributeList CalleeAt = CalleeFn->getAttributes();
+ bool CalleeIn = CalleeFn->isIntrinsic();
+
// If call isn't an intrinsic, check that it isn't within a function with the
// same name as the float version of this call, otherwise the result is an
// infinite loop. For example, from MinGW-w64:
//
// float expf(float val) { return (float) exp((double) val); }
- Function *CalleeFn = CI->getCalledFunction();
- StringRef CalleeNm = CalleeFn->getName();
- AttributeList CalleeAt = CalleeFn->getAttributes();
- if (CalleeFn && !CalleeFn->isIntrinsic()) {
+ if (!CalleeIn) {
const Function *Fn = CI->getFunction();
StringRef FnName = Fn->getName();
if (FnName.back() == 'f' &&
@@ -1074,7 +1120,7 @@ static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
// g((double) float) -> (double) gf(float)
Value *R;
- if (CalleeFn->isIntrinsic()) {
+ if (CalleeIn) {
Module *M = CI->getModule();
Intrinsic::ID IID = CalleeFn->getIntrinsicID();
Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
@@ -1132,10 +1178,10 @@ static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
IRBuilder<> &B) {
if (!isa<FPMathOperator>(Call))
return nullptr;
-
+
IRBuilder<>::FastMathFlagGuard Guard(B);
B.setFastMathFlags(Call->getFastMathFlags());
-
+
// TODO: Can this be shared to also handle LLVM intrinsics?
Value *X;
switch (Func) {
@@ -1189,7 +1235,8 @@ static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
}
/// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
-/// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x).
+/// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x);
+/// exp2(log2(n) * x) for pow(n, x).
Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
@@ -1276,12 +1323,12 @@ Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
APFloat BaseR = APFloat(1.0);
BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
BaseR = BaseR / *BaseF;
- bool IsInteger = BaseF->isInteger(),
- IsReciprocal = BaseR.isInteger();
+ bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
APSInt NI(64, false);
if ((IsInteger || IsReciprocal) &&
- !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) &&
+ NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
+ APFloat::opOK &&
NI > 1 && NI.isPowerOf2()) {
double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
@@ -1301,6 +1348,28 @@ Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
LibFunc_exp10l, B, Attrs);
+ // pow(n, x) -> exp2(log2(n) * x)
+ if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
+ Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
+ Value *Log = nullptr;
+ if (Ty->isFloatTy())
+ Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
+ else if (Ty->isDoubleTy())
+ Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
+
+ if (Log) {
+ Value *FMul = B.CreateFMul(Log, Expo, "mul");
+ if (Pow->doesNotAccessMemory()) {
+ return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
+ FMul, "exp2");
+ } else {
+ if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
+ LibFunc_exp2l))
+ return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
+ LibFunc_exp2l, B, Attrs);
+ }
+ }
+ }
return nullptr;
}
@@ -1364,12 +1433,22 @@ Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
return Sqrt;
}
+static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
+ IRBuilder<> &B) {
+ Value *Args[] = {Base, Expo};
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
+ return B.CreateCall(F, Args);
+}
+
Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
- Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
+ Value *Base = Pow->getArgOperand(0);
+ Value *Expo = Pow->getArgOperand(1);
Function *Callee = Pow->getCalledFunction();
StringRef Name = Callee->getName();
Type *Ty = Pow->getType();
+ Module *M = Pow->getModule();
Value *Shrunk = nullptr;
+ bool AllowApprox = Pow->hasApproxFunc();
bool Ignored;
// Bail out if simplifying libcalls to pow() is disabled.
@@ -1382,8 +1461,8 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
// Shrink pow() to powf() if the arguments are single precision,
// unless the result is expected to be double precision.
- if (UnsafeFPShrink &&
- Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
+ if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
+ hasFloatVersion(Name))
Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
// Evaluate special cases related to the base.
@@ -1403,7 +1482,7 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
// pow(x, 0.0) -> 1.0
if (match(Expo, m_SpecificFP(0.0)))
- return ConstantFP::get(Ty, 1.0);
+ return ConstantFP::get(Ty, 1.0);
// pow(x, 1.0) -> x
if (match(Expo, m_FPOne()))
@@ -1418,7 +1497,7 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
// pow(x, n) -> x * x * x * ...
const APFloat *ExpoF;
- if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) {
+ if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
// We limit to a max of 7 multiplications, thus the maximum exponent is 32.
// If the exponent is an integer+0.5 we generate a call to sqrt and an
// additional fmul.
@@ -1442,9 +1521,8 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
if (!Expo2.isInteger())
return nullptr;
- Sqrt =
- getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
- Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI);
+ Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
+ Pow->doesNotAccessMemory(), M, B, TLI);
}
// We will memoize intermediate products of the Addition Chain.
@@ -1467,6 +1545,29 @@ Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
return FMul;
}
+
+ APSInt IntExpo(32, /*isUnsigned=*/false);
+ // powf(x, n) -> powi(x, n) if n is a constant signed integer value
+ if (ExpoF->isInteger() &&
+ ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
+ APFloat::opOK) {
+ return createPowWithIntegerExponent(
+ Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
+ }
+ }
+
+ // powf(x, itofp(y)) -> powi(x, y)
+ if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
+ Value *IntExpo = cast<Instruction>(Expo)->getOperand(0);
+ Value *NewExpo = nullptr;
+ unsigned BitWidth = IntExpo->getType()->getPrimitiveSizeInBits();
+ if (isa<SIToFPInst>(Expo) && BitWidth == 32)
+ NewExpo = IntExpo;
+ else if (BitWidth < 32)
+ NewExpo = isa<SIToFPInst>(Expo) ? B.CreateSExt(IntExpo, B.getInt32Ty())
+ : B.CreateZExt(IntExpo, B.getInt32Ty());
+ if (NewExpo)
+ return createPowWithIntegerExponent(Base, NewExpo, M, B);
}
return Shrunk;
@@ -1504,9 +1605,8 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
One = ConstantExpr::getFPExtend(One, Op->getType());
Module *M = CI->getModule();
- Value *NewCallee =
- M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
- Op->getType(), B.getInt32Ty());
+ FunctionCallee NewCallee = M->getOrInsertFunction(
+ TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty());
CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
CI->setCallingConv(F->getCallingConv());
@@ -1518,40 +1618,30 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
}
Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
// If we can shrink the call to a float function rather than a double
// function, do that first.
+ Function *Callee = CI->getCalledFunction();
StringRef Name = Callee->getName();
if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
return Ret;
+ // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
+ // the intrinsics for improved optimization (for example, vectorization).
+ // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
+ // From the C standard draft WG14/N1256:
+ // "Ideally, fmax would be sensitive to the sign of zero, for example
+ // fmax(-0.0, +0.0) would return +0; however, implementation in software
+ // might be impractical."
IRBuilder<>::FastMathFlagGuard Guard(B);
- FastMathFlags FMF;
- if (CI->isFast()) {
- // If the call is 'fast', then anything we create here will also be 'fast'.
- FMF.setFast();
- } else {
- // At a minimum, no-nans-fp-math must be true.
- if (!CI->hasNoNaNs())
- return nullptr;
- // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
- // "Ideally, fmax would be sensitive to the sign of zero, for example
- // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
- // might be impractical."
- FMF.setNoSignedZeros();
- FMF.setNoNaNs();
- }
+ FastMathFlags FMF = CI->getFastMathFlags();
+ FMF.setNoSignedZeros();
B.setFastMathFlags(FMF);
- // We have a relaxed floating-point environment. We can ignore NaN-handling
- // and transform to a compare and select. We do not have to consider errno or
- // exceptions, because fmin/fmax do not have those.
- Value *Op0 = CI->getArgOperand(0);
- Value *Op1 = CI->getArgOperand(1);
- Value *Cmp = Callee->getName().startswith("fmin") ?
- B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
- return B.CreateSelect(Cmp, Op0, Op1);
+ Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
+ : Intrinsic::maxnum;
+ Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
+ return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
}
Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
@@ -1654,13 +1744,13 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
// replace it with the fabs of that factor.
Module *M = Callee->getParent();
Type *ArgType = I->getType();
- Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
+ Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
if (OtherOp) {
// If we found a non-repeated factor, we still need to get its square
// root. We then multiply that by the value that was simplified out
// of the square root calculation.
- Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
+ Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
return B.CreateFMul(FabsCall, SqrtCall);
}
@@ -1728,8 +1818,8 @@ static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
}
Module *M = OrigCallee->getParent();
- Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
- ResTy, ArgTy);
+ FunctionCallee Callee =
+ M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
// If the argument is an instruction, it must dominate all uses so put our
@@ -1840,8 +1930,8 @@ Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
// ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
Value *Op = CI->getArgOperand(0);
Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
- Intrinsic::cttz, ArgType);
+ Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
+ Intrinsic::cttz, ArgType);
Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
V = B.CreateIntCast(V, B.getInt32Ty(), false);
@@ -1854,8 +1944,8 @@ Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
// fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
Value *Op = CI->getArgOperand(0);
Type *ArgType = Op->getType();
- Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
- Intrinsic::ctlz, ArgType);
+ Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
+ Intrinsic::ctlz, ArgType);
Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
V);
@@ -2026,13 +2116,27 @@ Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
// arguments.
if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *IPrintFFn =
+ FunctionCallee IPrintFFn =
M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(IPrintFFn);
B.Insert(New);
return New;
}
+
+ // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
+ // arguments.
+ if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ auto SmallPrintFFn =
+ M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
+ FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SmallPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
return nullptr;
}
@@ -2077,7 +2181,8 @@ Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
}
if (FormatStr[1] == 's') {
- // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
+ // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
+ // strlen(str)+1)
if (!CI->getArgOperand(2)->getType()->isPointerTy())
return nullptr;
@@ -2105,13 +2210,27 @@ Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
// point arguments.
if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *SIPrintFFn =
+ FunctionCallee SIPrintFFn =
M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(SIPrintFFn);
B.Insert(New);
return New;
}
+
+ // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
+ // floating point arguments.
+ if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ auto SmallSPrintFFn =
+ M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
+ FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SmallSPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
return nullptr;
}
@@ -2140,7 +2259,7 @@ Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
else if (N < FormatStr.size() + 1)
return nullptr;
- // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
+ // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
// strlen(fmt)+1)
B.CreateMemCpy(
CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
@@ -2262,13 +2381,27 @@ Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
// floating point arguments.
if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *FIPrintFFn =
+ FunctionCallee FIPrintFFn =
M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
CallInst *New = cast<CallInst>(CI->clone());
New->setCalledFunction(FIPrintFFn);
B.Insert(New);
return New;
}
+
+ // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
+ // 128-bit floating point arguments.
+ if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
+ Module *M = B.GetInsertBlock()->getParent()->getParent();
+ auto SmallFPrintFFn =
+ M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
+ FT, Callee->getAttributes());
+ CallInst *New = cast<CallInst>(CI->clone());
+ New->setCalledFunction(SmallFPrintFFn);
+ B.Insert(New);
+ return New;
+ }
+
return nullptr;
}
@@ -2288,7 +2421,8 @@ Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
// If this is writing one byte, turn it into fputc.
// This optimisation is only valid, if the return value is unused.
if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
- Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
+ Value *Char = B.CreateLoad(B.getInt8Ty(),
+ castToCStr(CI->getArgOperand(0), B), "char");
Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
}
@@ -2307,7 +2441,9 @@ Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
// Don't rewrite fputs to fwrite when optimising for size because fwrite
// requires more arguments and thus extra MOVs are required.
- if (CI->getFunction()->optForSize())
+ bool OptForSize = CI->getFunction()->hasOptSize() ||
+ llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
+ if (OptForSize)
return nullptr;
// Check if has any use
@@ -2320,7 +2456,7 @@ Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
return nullptr;
}
- // fputs(s,F) --> fwrite(s,1,strlen(s),F)
+ // fputs(s,F) --> fwrite(s,strlen(s),1,F)
uint64_t Len = GetStringLength(CI->getArgOperand(0));
if (!Len)
return nullptr;
@@ -2367,18 +2503,14 @@ Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
}
Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
- // Check for a constant string.
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
+ if (!CI->use_empty())
return nullptr;
- if (Str.empty() && CI->use_empty()) {
- // puts("") -> putchar('\n')
- Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
- if (CI->use_empty() || !Res)
- return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
+ // Check for a constant string.
+ // puts("") -> putchar('\n')
+ StringRef Str;
+ if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
+ return emitPutChar(B.getInt32('\n'), B, TLI);
return nullptr;
}
@@ -2441,6 +2573,8 @@ Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
return optimizeStrStr(CI, Builder);
case LibFunc_memchr:
return optimizeMemChr(CI, Builder);
+ case LibFunc_bcmp:
+ return optimizeBCmp(CI, Builder);
case LibFunc_memcmp:
return optimizeMemCmp(CI, Builder);
case LibFunc_memcpy:
@@ -2686,9 +2820,10 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
LibCallSimplifier::LibCallSimplifier(
const DataLayout &DL, const TargetLibraryInfo *TLI,
OptimizationRemarkEmitter &ORE,
+ BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
function_ref<void(Instruction *, Value *)> Replacer,
function_ref<void(Instruction *)> Eraser)
- : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
+ : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
@@ -2735,12 +2870,23 @@ void LibCallSimplifier::eraseFromParent(Instruction *I) {
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//
-bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
- unsigned ObjSizeOp,
- unsigned SizeOp,
- bool isString) {
- if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
+bool
+FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
+ unsigned ObjSizeOp,
+ Optional<unsigned> SizeOp,
+ Optional<unsigned> StrOp,
+ Optional<unsigned> FlagOp) {
+ // If this function takes a flag argument, the implementation may use it to
+ // perform extra checks. Don't fold into the non-checking variant.
+ if (FlagOp) {
+ ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
+ if (!Flag || !Flag->isZero())
+ return false;
+ }
+
+ if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
return true;
+
if (ConstantInt *ObjSizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
if (ObjSizeCI->isMinusOne())
@@ -2748,23 +2894,27 @@ bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
// If the object size wasn't -1 (unknown), bail out if we were asked to.
if (OnlyLowerUnknownSize)
return false;
- if (isString) {
- uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
+ if (StrOp) {
+ uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
// If the length is 0 we don't know how long it is and so we can't
// remove the check.
if (Len == 0)
return false;
return ObjSizeCI->getZExtValue() >= Len;
}
- if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
- return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
+
+ if (SizeOp) {
+ if (ConstantInt *SizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
+ return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
+ }
}
return false;
}
Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
IRBuilder<> &B) {
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
CI->getArgOperand(2));
return CI->getArgOperand(0);
@@ -2774,7 +2924,7 @@ Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
IRBuilder<> &B) {
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
CI->getArgOperand(2));
return CI->getArgOperand(0);
@@ -2786,7 +2936,7 @@ Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
IRBuilder<> &B) {
// TODO: Try foldMallocMemset() here.
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
return CI->getArgOperand(0);
@@ -2797,8 +2947,6 @@ Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
IRBuilder<> &B,
LibFunc Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
const DataLayout &DL = CI->getModule()->getDataLayout();
Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
*ObjSize = CI->getArgOperand(2);
@@ -2814,8 +2962,12 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
// st[rp]cpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
- if (isFortifiedCallFoldable(CI, 2, 1, true))
- return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
+ if (isFortifiedCallFoldable(CI, 2, None, 1)) {
+ if (Func == LibFunc_strcpy_chk)
+ return emitStrCpy(Dst, Src, B, TLI);
+ else
+ return emitStpCpy(Dst, Src, B, TLI);
+ }
if (OnlyLowerUnknownSize)
return nullptr;
@@ -2838,13 +2990,99 @@ Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
IRBuilder<> &B,
LibFunc Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
- return Ret;
+ if (isFortifiedCallFoldable(CI, 3, 2)) {
+ if (Func == LibFunc_strncpy_chk)
+ return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+ else
+ return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
}
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 4, 3))
+ return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
+ SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
+ return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(4), VariadicArgs, B, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
+ SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
+ return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
+ B, TLI);
+ }
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 2))
+ return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 3))
+ return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 3))
+ return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 3))
+ return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(2), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
+ return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
+ CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
+
+ return nullptr;
+}
+
+Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
+ IRBuilder<> &B) {
+ if (isFortifiedCallFoldable(CI, 2, None, None, 1))
+ return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
+ CI->getArgOperand(4), B, TLI);
+
return nullptr;
}
@@ -2892,6 +3130,24 @@ Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
case LibFunc_stpncpy_chk:
case LibFunc_strncpy_chk:
return optimizeStrpNCpyChk(CI, Builder, Func);
+ case LibFunc_memccpy_chk:
+ return optimizeMemCCpyChk(CI, Builder);
+ case LibFunc_snprintf_chk:
+ return optimizeSNPrintfChk(CI, Builder);
+ case LibFunc_sprintf_chk:
+ return optimizeSPrintfChk(CI, Builder);
+ case LibFunc_strcat_chk:
+ return optimizeStrCatChk(CI, Builder);
+ case LibFunc_strlcat_chk:
+ return optimizeStrLCat(CI, Builder);
+ case LibFunc_strncat_chk:
+ return optimizeStrNCatChk(CI, Builder);
+ case LibFunc_strlcpy_chk:
+ return optimizeStrLCpyChk(CI, Builder);
+ case LibFunc_vsnprintf_chk:
+ return optimizeVSNPrintfChk(CI, Builder);
+ case LibFunc_vsprintf_chk:
+ return optimizeVSPrintfChk(CI, Builder);
default:
break;
}