diff options
Diffstat (limited to 'lib/VMCore/Constants.cpp')
-rw-r--r-- | lib/VMCore/Constants.cpp | 1223 |
1 files changed, 812 insertions, 411 deletions
diff --git a/lib/VMCore/Constants.cpp b/lib/VMCore/Constants.cpp index a84a046bb998..6dbc1449f245 100644 --- a/lib/VMCore/Constants.cpp +++ b/lib/VMCore/Constants.cpp @@ -40,6 +40,8 @@ using namespace llvm; // Constant Class //===----------------------------------------------------------------------===// +void Constant::anchor() { } + bool Constant::isNegativeZeroValue() const { // Floating point values have an explicit -0.0 value. if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) @@ -71,17 +73,27 @@ bool Constant::isAllOnesValue() const { if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); - // Check for constant vectors + // Check for constant vectors which are splats of -1 values. if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) - return CV->isAllOnesValue(); + if (Constant *Splat = CV->getSplatValue()) + return Splat->isAllOnesValue(); + + // Check for constant vectors which are splats of -1 values. + if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) + if (Constant *Splat = CV->getSplatValue()) + return Splat->isAllOnesValue(); return false; } + // Constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(Type *Ty) { switch (Ty->getTypeID()) { case Type::IntegerTyID: return ConstantInt::get(Ty, 0); + case Type::HalfTyID: + return ConstantFP::get(Ty->getContext(), + APFloat::getZero(APFloat::IEEEhalf)); case Type::FloatTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEsingle)); @@ -105,8 +117,7 @@ Constant *Constant::getNullValue(Type *Ty) { return ConstantAggregateZero::get(Ty); default: // Function, Label, or Opaque type? - assert(0 && "Cannot create a null constant of that type!"); - return 0; + llvm_unreachable("Cannot create a null constant of that type!"); } } @@ -122,7 +133,7 @@ Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { // Broadcast a scalar to a vector, if necessary. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C)); + C = ConstantVector::getSplat(VTy->getNumElements(), C); return C; } @@ -138,13 +149,44 @@ Constant *Constant::getAllOnesValue(Type *Ty) { return ConstantFP::get(Ty->getContext(), FL); } - SmallVector<Constant*, 16> Elts; VectorType *VTy = cast<VectorType>(Ty); - Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); - assert(Elts[0] && "Invalid AllOnes value!"); - return cast<ConstantVector>(ConstantVector::get(Elts)); + return ConstantVector::getSplat(VTy->getNumElements(), + getAllOnesValue(VTy->getElementType())); } +/// getAggregateElement - For aggregates (struct/array/vector) return the +/// constant that corresponds to the specified element if possible, or null if +/// not. This can return null if the element index is a ConstantExpr, or if +/// 'this' is a constant expr. +Constant *Constant::getAggregateElement(unsigned Elt) const { + if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) + return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; + + if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) + return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; + + if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) + return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; + + if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) + return CAZ->getElementValue(Elt); + + if (const UndefValue *UV = dyn_cast<UndefValue>(this)) + return UV->getElementValue(Elt); + + if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) + return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; + return 0; +} + +Constant *Constant::getAggregateElement(Constant *Elt) const { + assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) + return getAggregateElement(CI->getZExtValue()); + return 0; +} + + void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These @@ -163,8 +205,7 @@ void Constant::destroyConstantImpl() { } #endif assert(isa<Constant>(V) && "References remain to Constant being destroyed"); - Constant *CV = cast<Constant>(V); - CV->destroyConstant(); + cast<Constant>(V)->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() != V) && "Constant not removed!"); @@ -270,36 +311,6 @@ Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { return Result; } - -/// getVectorElements - This method, which is only valid on constant of vector -/// type, returns the elements of the vector in the specified smallvector. -/// This handles breaking down a vector undef into undef elements, etc. For -/// constant exprs and other cases we can't handle, we return an empty vector. -void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const { - assert(getType()->isVectorTy() && "Not a vector constant!"); - - if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) { - for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) - Elts.push_back(CV->getOperand(i)); - return; - } - - VectorType *VT = cast<VectorType>(getType()); - if (isa<ConstantAggregateZero>(this)) { - Elts.assign(VT->getNumElements(), - Constant::getNullValue(VT->getElementType())); - return; - } - - if (isa<UndefValue>(this)) { - Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType())); - return; - } - - // Unknown type, must be constant expr etc. -} - - /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove /// it. This involves recursively eliminating any dead users of the /// constantexpr. @@ -358,6 +369,8 @@ void Constant::removeDeadConstantUsers() const { // ConstantInt //===----------------------------------------------------------------------===// +void ConstantInt::anchor() { } + ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); @@ -385,9 +398,8 @@ Constant *ConstantInt::getTrue(Type *Ty) { } assert(VTy->getElementType()->isIntegerTy(1) && "True must be vector of i1 or i1."); - SmallVector<Constant*, 16> Splat(VTy->getNumElements(), - ConstantInt::getTrue(Ty->getContext())); - return ConstantVector::get(Splat); + return ConstantVector::getSplat(VTy->getNumElements(), + ConstantInt::getTrue(Ty->getContext())); } Constant *ConstantInt::getFalse(Type *Ty) { @@ -398,9 +410,8 @@ Constant *ConstantInt::getFalse(Type *Ty) { } assert(VTy->getElementType()->isIntegerTy(1) && "False must be vector of i1 or i1."); - SmallVector<Constant*, 16> Splat(VTy->getNumElements(), - ConstantInt::getFalse(Ty->getContext())); - return ConstantVector::get(Splat); + return ConstantVector::getSplat(VTy->getNumElements(), + ConstantInt::getFalse(Ty->getContext())); } @@ -424,18 +435,17 @@ Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::get(SmallVector<Constant*, - 16>(VTy->getNumElements(), C)); + return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } -ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V, +ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); } -ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) { +ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { return get(Ty, V, true); } @@ -443,20 +453,19 @@ Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { return get(Ty, V, true); } -Constant *ConstantInt::get(Type* Ty, const APInt& V) { +Constant *ConstantInt::get(Type *Ty, const APInt& V) { ConstantInt *C = get(Ty->getContext(), V); assert(C->getType() == Ty->getScalarType() && "ConstantInt type doesn't match the type implied by its value!"); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::get( - SmallVector<Constant *, 16>(VTy->getNumElements(), C)); + return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } -ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str, +ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); } @@ -466,6 +475,8 @@ ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str, //===----------------------------------------------------------------------===// static const fltSemantics *TypeToFloatSemantics(Type *Ty) { + if (Ty->isHalfTy()) + return &APFloat::IEEEhalf; if (Ty->isFloatTy()) return &APFloat::IEEEsingle; if (Ty->isDoubleTy()) @@ -479,10 +490,12 @@ static const fltSemantics *TypeToFloatSemantics(Type *Ty) { return &APFloat::PPCDoubleDouble; } +void ConstantFP::anchor() { } + /// get() - This returns a constant fp for the specified value in the /// specified type. This should only be used for simple constant values like /// 2.0/1.0 etc, that are known-valid both as double and as the target format. -Constant *ConstantFP::get(Type* Ty, double V) { +Constant *ConstantFP::get(Type *Ty, double V) { LLVMContext &Context = Ty->getContext(); APFloat FV(V); @@ -493,14 +506,13 @@ Constant *ConstantFP::get(Type* Ty, double V) { // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::get( - SmallVector<Constant *, 16>(VTy->getNumElements(), C)); + return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } -Constant *ConstantFP::get(Type* Ty, StringRef Str) { +Constant *ConstantFP::get(Type *Ty, StringRef Str) { LLVMContext &Context = Ty->getContext(); APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); @@ -508,31 +520,28 @@ Constant *ConstantFP::get(Type* Ty, StringRef Str) { // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) - return ConstantVector::get( - SmallVector<Constant *, 16>(VTy->getNumElements(), C)); + return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } -ConstantFP* ConstantFP::getNegativeZero(Type* Ty) { +ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { LLVMContext &Context = Ty->getContext(); - APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); + APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); apf.changeSign(); return get(Context, apf); } -Constant *ConstantFP::getZeroValueForNegation(Type* Ty) { - if (VectorType *PTy = dyn_cast<VectorType>(Ty)) - if (PTy->getElementType()->isFloatingPointTy()) { - SmallVector<Constant*, 16> zeros(PTy->getNumElements(), - getNegativeZero(PTy->getElementType())); - return ConstantVector::get(zeros); - } - - if (Ty->isFloatingPointTy()) - return getNegativeZero(Ty); +Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { + Type *ScalarTy = Ty->getScalarType(); + if (ScalarTy->isFloatingPointTy()) { + Constant *C = getNegativeZero(ScalarTy); + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return ConstantVector::getSplat(VTy->getNumElements(), C); + return C; + } return Constant::getNullValue(Ty); } @@ -548,7 +557,9 @@ ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { if (!Slot) { Type *Ty; - if (&V.getSemantics() == &APFloat::IEEEsingle) + if (&V.getSemantics() == &APFloat::IEEEhalf) + Ty = Type::getHalfTy(Context); + else if (&V.getSemantics() == &APFloat::IEEEsingle) Ty = Type::getFloatTy(Context); else if (&V.getSemantics() == &APFloat::IEEEdouble) Ty = Type::getDoubleTy(Context); @@ -584,9 +595,83 @@ bool ConstantFP::isExactlyValue(const APFloat &V) const { } //===----------------------------------------------------------------------===// +// ConstantAggregateZero Implementation +//===----------------------------------------------------------------------===// + +/// getSequentialElement - If this CAZ has array or vector type, return a zero +/// with the right element type. +Constant *ConstantAggregateZero::getSequentialElement() const { + return Constant::getNullValue(getType()->getSequentialElementType()); +} + +/// getStructElement - If this CAZ has struct type, return a zero with the +/// right element type for the specified element. +Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { + return Constant::getNullValue(getType()->getStructElementType(Elt)); +} + +/// getElementValue - Return a zero of the right value for the specified GEP +/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). +Constant *ConstantAggregateZero::getElementValue(Constant *C) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(cast<ConstantInt>(C)->getZExtValue()); +} + +/// getElementValue - Return a zero of the right value for the specified GEP +/// index. +Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(Idx); +} + + +//===----------------------------------------------------------------------===// +// UndefValue Implementation +//===----------------------------------------------------------------------===// + +/// getSequentialElement - If this undef has array or vector type, return an +/// undef with the right element type. +UndefValue *UndefValue::getSequentialElement() const { + return UndefValue::get(getType()->getSequentialElementType()); +} + +/// getStructElement - If this undef has struct type, return a zero with the +/// right element type for the specified element. +UndefValue *UndefValue::getStructElement(unsigned Elt) const { + return UndefValue::get(getType()->getStructElementType(Elt)); +} + +/// getElementValue - Return an undef of the right value for the specified GEP +/// index if we can, otherwise return null (e.g. if C is a ConstantExpr). +UndefValue *UndefValue::getElementValue(Constant *C) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(cast<ConstantInt>(C)->getZExtValue()); +} + +/// getElementValue - Return an undef of the right value for the specified GEP +/// index. +UndefValue *UndefValue::getElementValue(unsigned Idx) const { + if (isa<SequentialType>(getType())) + return getSequentialElement(); + return getStructElement(Idx); +} + + + +//===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// +template <typename ItTy, typename EltTy> +static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { + for (; Start != End; ++Start) + if (*Start != Elt) + return false; + return true; +} ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) : Constant(T, ConstantArrayVal, @@ -601,45 +686,97 @@ ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) } Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { + // Empty arrays are canonicalized to ConstantAggregateZero. + if (V.empty()) + return ConstantAggregateZero::get(Ty); + for (unsigned i = 0, e = V.size(); i != e; ++i) { assert(V[i]->getType() == Ty->getElementType() && "Wrong type in array element initializer"); } LLVMContextImpl *pImpl = Ty->getContext().pImpl; - // If this is an all-zero array, return a ConstantAggregateZero object - if (!V.empty()) { - Constant *C = V[0]; - if (!C->isNullValue()) - return pImpl->ArrayConstants.getOrCreate(Ty, V); - - for (unsigned i = 1, e = V.size(); i != e; ++i) - if (V[i] != C) - return pImpl->ArrayConstants.getOrCreate(Ty, V); - } - return ConstantAggregateZero::get(Ty); -} + // If this is an all-zero array, return a ConstantAggregateZero object. If + // all undef, return an UndefValue, if "all simple", then return a + // ConstantDataArray. + Constant *C = V[0]; + if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) + return UndefValue::get(Ty); -/// ConstantArray::get(const string&) - Return an array that is initialized to -/// contain the specified string. If length is zero then a null terminator is -/// added to the specified string so that it may be used in a natural way. -/// Otherwise, the length parameter specifies how much of the string to use -/// and it won't be null terminated. -/// -Constant *ConstantArray::get(LLVMContext &Context, StringRef Str, - bool AddNull) { - std::vector<Constant*> ElementVals; - ElementVals.reserve(Str.size() + size_t(AddNull)); - for (unsigned i = 0; i < Str.size(); ++i) - ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i])); - - // Add a null terminator to the string... - if (AddNull) { - ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0)); + if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) + return ConstantAggregateZero::get(Ty); + + // Check to see if all of the elements are ConstantFP or ConstantInt and if + // the element type is compatible with ConstantDataVector. If so, use it. + if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { + // We speculatively build the elements here even if it turns out that there + // is a constantexpr or something else weird in the array, since it is so + // uncommon for that to happen. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (CI->getType()->isIntegerTy(8)) { + SmallVector<uint8_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(16)) { + SmallVector<uint16_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(32)) { + SmallVector<uint32_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(64)) { + SmallVector<uint64_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } + } + + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + if (CFP->getType()->isFloatTy()) { + SmallVector<float, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToFloat()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } else if (CFP->getType()->isDoubleTy()) { + SmallVector<double, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToDouble()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataArray::get(C->getContext(), Elts); + } + } } - ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size()); - return get(ATy, ElementVals); + // Otherwise, we really do want to create a ConstantArray. + return pImpl->ArrayConstants.getOrCreate(Ty, V); } /// getTypeForElements - Return an anonymous struct type to use for a constant @@ -647,9 +784,10 @@ Constant *ConstantArray::get(LLVMContext &Context, StringRef Str, StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, ArrayRef<Constant*> V, bool Packed) { - SmallVector<Type*, 16> EltTypes; - for (unsigned i = 0, e = V.size(); i != e; ++i) - EltTypes.push_back(V[i]->getType()); + unsigned VecSize = V.size(); + SmallVector<Type*, 16> EltTypes(VecSize); + for (unsigned i = 0; i != VecSize; ++i) + EltTypes[i] = V[i]->getType(); return StructType::get(Context, EltTypes, Packed); } @@ -677,14 +815,31 @@ ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) // ConstantStruct accessors. Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { - // Create a ConstantAggregateZero value if all elements are zeros. - for (unsigned i = 0, e = V.size(); i != e; ++i) - if (!V[i]->isNullValue()) - return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); - assert((ST->isOpaque() || ST->getNumElements() == V.size()) && "Incorrect # elements specified to ConstantStruct::get"); - return ConstantAggregateZero::get(ST); + + // Create a ConstantAggregateZero value if all elements are zeros. + bool isZero = true; + bool isUndef = false; + + if (!V.empty()) { + isUndef = isa<UndefValue>(V[0]); + isZero = V[0]->isNullValue(); + if (isUndef || isZero) { + for (unsigned i = 0, e = V.size(); i != e; ++i) { + if (!V[i]->isNullValue()) + isZero = false; + if (!isa<UndefValue>(V[i])) + isUndef = false; + } + } + } + if (isZero) + return ConstantAggregateZero::get(ST); + if (isUndef) + return UndefValue::get(ST); + + return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); } Constant *ConstantStruct::get(StructType *T, ...) { @@ -731,10 +886,93 @@ Constant *ConstantVector::get(ArrayRef<Constant*> V) { return ConstantAggregateZero::get(T); if (isUndef) return UndefValue::get(T); + + // Check to see if all of the elements are ConstantFP or ConstantInt and if + // the element type is compatible with ConstantDataVector. If so, use it. + if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { + // We speculatively build the elements here even if it turns out that there + // is a constantexpr or something else weird in the array, since it is so + // uncommon for that to happen. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (CI->getType()->isIntegerTy(8)) { + SmallVector<uint8_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(16)) { + SmallVector<uint16_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(32)) { + SmallVector<uint32_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CI->getType()->isIntegerTy(64)) { + SmallVector<uint64_t, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) + Elts.push_back(CI->getZExtValue()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } + } + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + if (CFP->getType()->isFloatTy()) { + SmallVector<float, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToFloat()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } else if (CFP->getType()->isDoubleTy()) { + SmallVector<double, 16> Elts; + for (unsigned i = 0, e = V.size(); i != e; ++i) + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) + Elts.push_back(CFP->getValueAPF().convertToDouble()); + else + break; + if (Elts.size() == V.size()) + return ConstantDataVector::get(C->getContext(), Elts); + } + } + } + + // Otherwise, the element type isn't compatible with ConstantDataVector, or + // the operand list constants a ConstantExpr or something else strange. return pImpl->VectorConstants.getOrCreate(T, V); } +Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { + // If this splat is compatible with ConstantDataVector, use it instead of + // ConstantVector. + if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && + ConstantDataSequential::isElementTypeCompatible(V->getType())) + return ConstantDataVector::getSplat(NumElts, V); + + SmallVector<Constant*, 32> Elts(NumElts, V); + return get(Elts); +} + + // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into // Constant.h @@ -793,66 +1031,16 @@ unsigned ConstantExpr::getPredicate() const { /// one, but with the specified operand set to the specified value. Constant * ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { - assert(OpNo < getNumOperands() && "Operand num is out of range!"); assert(Op->getType() == getOperand(OpNo)->getType() && "Replacing operand with value of different type!"); if (getOperand(OpNo) == Op) return const_cast<ConstantExpr*>(this); + + SmallVector<Constant*, 8> NewOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + NewOps.push_back(i == OpNo ? Op : getOperand(i)); - Constant *Op0, *Op1, *Op2; - switch (getOpcode()) { - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::PtrToInt: - case Instruction::IntToPtr: - case Instruction::BitCast: - return ConstantExpr::getCast(getOpcode(), Op, getType()); - case Instruction::Select: - Op0 = (OpNo == 0) ? Op : getOperand(0); - Op1 = (OpNo == 1) ? Op : getOperand(1); - Op2 = (OpNo == 2) ? Op : getOperand(2); - return ConstantExpr::getSelect(Op0, Op1, Op2); - case Instruction::InsertElement: - Op0 = (OpNo == 0) ? Op : getOperand(0); - Op1 = (OpNo == 1) ? Op : getOperand(1); - Op2 = (OpNo == 2) ? Op : getOperand(2); - return ConstantExpr::getInsertElement(Op0, Op1, Op2); - case Instruction::ExtractElement: - Op0 = (OpNo == 0) ? Op : getOperand(0); - Op1 = (OpNo == 1) ? Op : getOperand(1); - return ConstantExpr::getExtractElement(Op0, Op1); - case Instruction::ShuffleVector: - Op0 = (OpNo == 0) ? Op : getOperand(0); - Op1 = (OpNo == 1) ? Op : getOperand(1); - Op2 = (OpNo == 2) ? Op : getOperand(2); - return ConstantExpr::getShuffleVector(Op0, Op1, Op2); - case Instruction::GetElementPtr: { - SmallVector<Constant*, 8> Ops; - Ops.resize(getNumOperands()-1); - for (unsigned i = 1, e = getNumOperands(); i != e; ++i) - Ops[i-1] = getOperand(i); - if (OpNo == 0) - return - ConstantExpr::getGetElementPtr(Op, Ops, - cast<GEPOperator>(this)->isInBounds()); - Ops[OpNo-1] = Op; - return - ConstantExpr::getGetElementPtr(getOperand(0), Ops, - cast<GEPOperator>(this)->isInBounds()); - } - default: - assert(getNumOperands() == 2 && "Must be binary operator?"); - Op0 = (OpNo == 0) ? Op : getOperand(0); - Op1 = (OpNo == 1) ? Op : getOperand(1); - return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData); - } + return getWithOperands(NewOps); } /// getWithOperands - This returns the current constant expression with the @@ -888,12 +1076,15 @@ getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: return ConstantExpr::getExtractElement(Ops[0], Ops[1]); + case Instruction::InsertValue: + return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); + case Instruction::ExtractValue: + return ConstantExpr::getExtractValue(Ops[0], getIndices()); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: - return - ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), - cast<GEPOperator>(this)->isInBounds()); + return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), + cast<GEPOperator>(this)->isInBounds()); case Instruction::ICmp: case Instruction::FCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); @@ -908,8 +1099,8 @@ getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { // isValueValidForType implementations bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { - unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay - if (Ty == Type::getInt1Ty(Ty->getContext())) + unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay + if (Ty->isIntegerTy(1)) return Val == 0 || Val == 1; if (NumBits >= 64) return true; // always true, has to fit in largest type @@ -918,8 +1109,8 @@ bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { } bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { - unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay - if (Ty == Type::getInt1Ty(Ty->getContext())) + unsigned NumBits = Ty->getIntegerBitWidth(); + if (Ty->isIntegerTy(1)) return Val == 0 || Val == 1 || Val == -1; if (NumBits >= 64) return true; // always true, has to fit in largest type @@ -937,6 +1128,12 @@ bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { return false; // These can't be represented as floating point! // FIXME rounding mode needs to be more flexible + case Type::HalfTyID: { + if (&Val2.getSemantics() == &APFloat::IEEEhalf) + return true; + Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); + return !losesInfo; + } case Type::FloatTyID: { if (&Val2.getSemantics() == &APFloat::IEEEsingle) return true; @@ -944,42 +1141,50 @@ bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { return !losesInfo; } case Type::DoubleTyID: { - if (&Val2.getSemantics() == &APFloat::IEEEsingle || + if (&Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble) return true; Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::X86_FP80TyID: - return &Val2.getSemantics() == &APFloat::IEEEsingle || + return &Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::x87DoubleExtended; case Type::FP128TyID: - return &Val2.getSemantics() == &APFloat::IEEEsingle || + return &Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::IEEEquad; case Type::PPC_FP128TyID: - return &Val2.getSemantics() == &APFloat::IEEEsingle || + return &Val2.getSemantics() == &APFloat::IEEEhalf || + &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::PPCDoubleDouble; } } + //===----------------------------------------------------------------------===// // Factory Function Implementation -ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) { +ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && "Cannot create an aggregate zero of non-aggregate type!"); - LLVMContextImpl *pImpl = Ty->getContext().pImpl; - return pImpl->AggZeroConstants.getOrCreate(Ty, 0); + ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; + if (Entry == 0) + Entry = new ConstantAggregateZero(Ty); + + return Entry; } -/// destroyConstant - Remove the constant from the constant table... +/// destroyConstant - Remove the constant from the constant table. /// void ConstantAggregateZero::destroyConstant() { - getType()->getContext().pImpl->AggZeroConstants.remove(this); + getContext().pImpl->CAZConstants.erase(getType()); destroyConstantImpl(); } @@ -990,69 +1195,6 @@ void ConstantArray::destroyConstant() { destroyConstantImpl(); } -/// isString - This method returns true if the array is an array of i8, and -/// if the elements of the array are all ConstantInt's. -bool ConstantArray::isString() const { - // Check the element type for i8... - if (!getType()->getElementType()->isIntegerTy(8)) - return false; - // Check the elements to make sure they are all integers, not constant - // expressions. - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (!isa<ConstantInt>(getOperand(i))) - return false; - return true; -} - -/// isCString - This method returns true if the array is a string (see -/// isString) and it ends in a null byte \\0 and does not contains any other -/// null bytes except its terminator. -bool ConstantArray::isCString() const { - // Check the element type for i8... - if (!getType()->getElementType()->isIntegerTy(8)) - return false; - - // Last element must be a null. - if (!getOperand(getNumOperands()-1)->isNullValue()) - return false; - // Other elements must be non-null integers. - for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) { - if (!isa<ConstantInt>(getOperand(i))) - return false; - if (getOperand(i)->isNullValue()) - return false; - } - return true; -} - - -/// convertToString - Helper function for getAsString() and getAsCString(). -static std::string convertToString(const User *U, unsigned len) { - std::string Result; - Result.reserve(len); - for (unsigned i = 0; i != len; ++i) - Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue()); - return Result; -} - -/// getAsString - If this array is isString(), then this method converts the -/// array to an std::string and returns it. Otherwise, it asserts out. -/// -std::string ConstantArray::getAsString() const { - assert(isString() && "Not a string!"); - return convertToString(this, getNumOperands()); -} - - -/// getAsCString - If this array is isCString(), then this method converts the -/// array (without the trailing null byte) to an std::string and returns it. -/// Otherwise, it asserts out. -/// -std::string ConstantArray::getAsCString() const { - assert(isCString() && "Not a string!"); - return convertToString(this, getNumOperands() - 1); -} - //---- ConstantStruct::get() implementation... // @@ -1071,26 +1213,6 @@ void ConstantVector::destroyConstant() { destroyConstantImpl(); } -/// This function will return true iff every element in this vector constant -/// is set to all ones. -/// @returns true iff this constant's elements are all set to all ones. -/// @brief Determine if the value is all ones. -bool ConstantVector::isAllOnesValue() const { - // Check out first element. - const Constant *Elt = getOperand(0); - const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); - const ConstantFP *CF = dyn_cast<ConstantFP>(Elt); - - // Then make sure all remaining elements point to the same value. - for (unsigned I = 1, E = getNumOperands(); I < E; ++I) - if (getOperand(I) != Elt) - return false; - - // First value is all-ones. - return (CI && CI->isAllOnesValue()) || - (CF && CF->isAllOnesValue()); -} - /// getSplatValue - If this is a splat constant, where all of the /// elements have the same value, return that value. Otherwise return null. Constant *ConstantVector::getSplatValue() const { @@ -1107,13 +1229,18 @@ Constant *ConstantVector::getSplatValue() const { // ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { - return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0); + ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; + if (Entry == 0) + Entry = new ConstantPointerNull(Ty); + + return Entry; } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { - getType()->getContext().pImpl->NullPtrConstants.remove(this); + getContext().pImpl->CPNConstants.erase(getType()); + // Free the constant and any dangling references to it. destroyConstantImpl(); } @@ -1122,13 +1249,18 @@ void ConstantPointerNull::destroyConstant() { // UndefValue *UndefValue::get(Type *Ty) { - return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0); + UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; + if (Entry == 0) + Entry = new UndefValue(Ty); + + return Entry; } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { - getType()->getContext().pImpl->UndefValueConstants.remove(this); + // Free the constant and any dangling references to it. + getContext().pImpl->UVConstants.erase(getType()); destroyConstantImpl(); } @@ -1236,7 +1368,6 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { switch (opc) { default: llvm_unreachable("Invalid cast opcode"); - break; case Instruction::Trunc: return getTrunc(C, Ty); case Instruction::ZExt: return getZExt(C, Ty); case Instruction::SExt: return getSExt(C, Ty); @@ -1250,7 +1381,6 @@ Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { case Instruction::IntToPtr: return getIntToPtr(C, Ty); case Instruction::BitCast: return getBitCast(C, Ty); } - return 0; } Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { @@ -1416,14 +1546,26 @@ Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { } Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { - assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer"); - assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral"); + assert(C->getType()->getScalarType()->isPointerTy() && + "PtrToInt source must be pointer or pointer vector"); + assert(DstTy->getScalarType()->isIntegerTy() && + "PtrToInt destination must be integer or integer vector"); + assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); + if (isa<VectorType>(C->getType())) + assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& + "Invalid cast between a different number of vector elements"); return getFoldedCast(Instruction::PtrToInt, C, DstTy); } Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { - assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral"); - assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer"); + assert(C->getType()->getScalarType()->isIntegerTy() && + "IntToPtr source must be integer or integer vector"); + assert(DstTy->getScalarType()->isPointerTy() && + "IntToPtr destination must be a pointer or pointer vector"); + assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); + if (isa<VectorType>(C->getType())) + assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& + "Invalid cast between a different number of vector elements"); return getFoldedCast(Instruction::IntToPtr, C, DstTy); } @@ -1603,7 +1745,7 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, // Get the result type of the getelementptr! Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); assert(Ty && "GEP indices invalid!"); - unsigned AS = cast<PointerType>(C->getType())->getAddressSpace(); + unsigned AS = C->getType()->getPointerAddressSpace(); Type *ReqTy = Ty->getPointerTo(AS); assert(C->getType()->isPointerTy() && @@ -1683,7 +1825,7 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec); LLVMContextImpl *pImpl = Val->getContext().pImpl; - Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); + Type *ReqTy = Val->getType()->getVectorElementType(); return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } @@ -1691,8 +1833,8 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx) { assert(Val->getType()->isVectorTy() && "Tried to create insertelement operation on non-vector type!"); - assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() - && "Insertelement types must match!"); + assert(Elt->getType() == Val->getType()->getVectorElementType() && + "Insertelement types must match!"); assert(Idx->getType()->isIntegerTy(32) && "Insertelement index must be i32 type!"); @@ -1716,8 +1858,8 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) return FC; // Fold a few common cases. - unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements(); - Type *EltTy = cast<VectorType>(V1->getType())->getElementType(); + unsigned NElts = Mask->getType()->getVectorNumElements(); + Type *EltTy = V1->getType()->getVectorElementType(); Type *ShufTy = VectorType::get(EltTy, NElts); // Look up the constant in the table first to ensure uniqueness @@ -1879,7 +2021,7 @@ const char *ConstantExpr::getOpcodeName() const { GetElementPtrConstantExpr:: -GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, +GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, Type *DestTy) : ConstantExpr(DestTy, Instruction::GetElementPtr, OperandTraits<GetElementPtrConstantExpr>::op_end(this) @@ -1889,6 +2031,341 @@ GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList, OperandList[i+1] = IdxList[i]; } +//===----------------------------------------------------------------------===// +// ConstantData* implementations + +void ConstantDataArray::anchor() {} +void ConstantDataVector::anchor() {} + +/// getElementType - Return the element type of the array/vector. +Type *ConstantDataSequential::getElementType() const { + return getType()->getElementType(); +} + +StringRef ConstantDataSequential::getRawDataValues() const { + return StringRef(DataElements, getNumElements()*getElementByteSize()); +} + +/// isElementTypeCompatible - Return true if a ConstantDataSequential can be +/// formed with a vector or array of the specified element type. +/// ConstantDataArray only works with normal float and int types that are +/// stored densely in memory, not with things like i42 or x86_f80. +bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { + if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; + if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { + switch (IT->getBitWidth()) { + case 8: + case 16: + case 32: + case 64: + return true; + default: break; + } + } + return false; +} + +/// getNumElements - Return the number of elements in the array or vector. +unsigned ConstantDataSequential::getNumElements() const { + if (ArrayType *AT = dyn_cast<ArrayType>(getType())) + return AT->getNumElements(); + return getType()->getVectorNumElements(); +} + + +/// getElementByteSize - Return the size in bytes of the elements in the data. +uint64_t ConstantDataSequential::getElementByteSize() const { + return getElementType()->getPrimitiveSizeInBits()/8; +} + +/// getElementPointer - Return the start of the specified element. +const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { + assert(Elt < getNumElements() && "Invalid Elt"); + return DataElements+Elt*getElementByteSize(); +} + + +/// isAllZeros - return true if the array is empty or all zeros. +static bool isAllZeros(StringRef Arr) { + for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) + if (*I != 0) + return false; + return true; +} + +/// getImpl - This is the underlying implementation of all of the +/// ConstantDataSequential::get methods. They all thunk down to here, providing +/// the correct element type. We take the bytes in as a StringRef because +/// we *want* an underlying "char*" to avoid TBAA type punning violations. +Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { + assert(isElementTypeCompatible(Ty->getSequentialElementType())); + // If the elements are all zero or there are no elements, return a CAZ, which + // is more dense and canonical. + if (isAllZeros(Elements)) + return ConstantAggregateZero::get(Ty); + + // Do a lookup to see if we have already formed one of these. + StringMap<ConstantDataSequential*>::MapEntryTy &Slot = + Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); + + // The bucket can point to a linked list of different CDS's that have the same + // body but different types. For example, 0,0,0,1 could be a 4 element array + // of i8, or a 1-element array of i32. They'll both end up in the same + /// StringMap bucket, linked up by their Next pointers. Walk the list. + ConstantDataSequential **Entry = &Slot.getValue(); + for (ConstantDataSequential *Node = *Entry; Node != 0; + Entry = &Node->Next, Node = *Entry) + if (Node->getType() == Ty) + return Node; + + // Okay, we didn't get a hit. Create a node of the right class, link it in, + // and return it. + if (isa<ArrayType>(Ty)) + return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); + + assert(isa<VectorType>(Ty)); + return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); +} + +void ConstantDataSequential::destroyConstant() { + // Remove the constant from the StringMap. + StringMap<ConstantDataSequential*> &CDSConstants = + getType()->getContext().pImpl->CDSConstants; + + StringMap<ConstantDataSequential*>::iterator Slot = + CDSConstants.find(getRawDataValues()); + + assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); + + ConstantDataSequential **Entry = &Slot->getValue(); + + // Remove the entry from the hash table. + if ((*Entry)->Next == 0) { + // If there is only one value in the bucket (common case) it must be this + // entry, and removing the entry should remove the bucket completely. + assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); + getContext().pImpl->CDSConstants.erase(Slot); + } else { + // Otherwise, there are multiple entries linked off the bucket, unlink the + // node we care about but keep the bucket around. + for (ConstantDataSequential *Node = *Entry; ; + Entry = &Node->Next, Node = *Entry) { + assert(Node && "Didn't find entry in its uniquing hash table!"); + // If we found our entry, unlink it from the list and we're done. + if (Node == this) { + *Entry = Node->Next; + break; + } + } + } + + // If we were part of a list, make sure that we don't delete the list that is + // still owned by the uniquing map. + Next = 0; + + // Finally, actually delete it. + destroyConstantImpl(); +} + +/// get() constructors - Return a constant with array type with an element +/// count and element type matching the ArrayRef passed in. Note that this +/// can return a ConstantAggregateZero object. +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { + Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ + Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ + Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ + Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { + Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); +} +Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { + Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); +} + +/// getString - This method constructs a CDS and initializes it with a text +/// string. The default behavior (AddNull==true) causes a null terminator to +/// be placed at the end of the array (increasing the length of the string by +/// one more than the StringRef would normally indicate. Pass AddNull=false +/// to disable this behavior. +Constant *ConstantDataArray::getString(LLVMContext &Context, + StringRef Str, bool AddNull) { + if (!AddNull) + return get(Context, ArrayRef<uint8_t>((uint8_t*)Str.data(), Str.size())); + + SmallVector<uint8_t, 64> ElementVals; + ElementVals.append(Str.begin(), Str.end()); + ElementVals.push_back(0); + return get(Context, ElementVals); +} + +/// get() constructors - Return a constant with vector type with an element +/// count and element type matching the ArrayRef passed in. Note that this +/// can return a ConstantAggregateZero object. +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ + Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*1), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ + Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*2), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ + Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ + Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { + Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*4), Ty); +} +Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { + Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); + return getImpl(StringRef((char*)Elts.data(), Elts.size()*8), Ty); +} + +Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { + assert(isElementTypeCompatible(V->getType()) && + "Element type not compatible with ConstantData"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + if (CI->getType()->isIntegerTy(8)) { + SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + if (CI->getType()->isIntegerTy(16)) { + SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + if (CI->getType()->isIntegerTy(32)) { + SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); + SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); + return get(V->getContext(), Elts); + } + + if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { + if (CFP->getType()->isFloatTy()) { + SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); + return get(V->getContext(), Elts); + } + if (CFP->getType()->isDoubleTy()) { + SmallVector<double, 16> Elts(NumElts, + CFP->getValueAPF().convertToDouble()); + return get(V->getContext(), Elts); + } + } + return ConstantVector::getSplat(NumElts, V); +} + + +/// getElementAsInteger - If this is a sequential container of integers (of +/// any size), return the specified element in the low bits of a uint64_t. +uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { + assert(isa<IntegerType>(getElementType()) && + "Accessor can only be used when element is an integer"); + const char *EltPtr = getElementPointer(Elt); + + // The data is stored in host byte order, make sure to cast back to the right + // type to load with the right endianness. + switch (getElementType()->getIntegerBitWidth()) { + default: llvm_unreachable("Invalid bitwidth for CDS"); + case 8: return *(uint8_t*)EltPtr; + case 16: return *(uint16_t*)EltPtr; + case 32: return *(uint32_t*)EltPtr; + case 64: return *(uint64_t*)EltPtr; + } +} + +/// getElementAsAPFloat - If this is a sequential container of floating point +/// type, return the specified element as an APFloat. +APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { + const char *EltPtr = getElementPointer(Elt); + + switch (getElementType()->getTypeID()) { + default: + llvm_unreachable("Accessor can only be used when element is float/double!"); + case Type::FloatTyID: return APFloat(*(float*)EltPtr); + case Type::DoubleTyID: return APFloat(*(double*)EltPtr); + } +} + +/// getElementAsFloat - If this is an sequential container of floats, return +/// the specified element as a float. +float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { + assert(getElementType()->isFloatTy() && + "Accessor can only be used when element is a 'float'"); + return *(float*)getElementPointer(Elt); +} + +/// getElementAsDouble - If this is an sequential container of doubles, return +/// the specified element as a float. +double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { + assert(getElementType()->isDoubleTy() && + "Accessor can only be used when element is a 'float'"); + return *(double*)getElementPointer(Elt); +} + +/// getElementAsConstant - Return a Constant for a specified index's element. +/// Note that this has to compute a new constant to return, so it isn't as +/// efficient as getElementAsInteger/Float/Double. +Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { + if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) + return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); + + return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); +} + +/// isString - This method returns true if this is an array of i8. +bool ConstantDataSequential::isString() const { + return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); +} + +/// isCString - This method returns true if the array "isString", ends with a +/// nul byte, and does not contains any other nul bytes. +bool ConstantDataSequential::isCString() const { + if (!isString()) + return false; + + StringRef Str = getAsString(); + + // The last value must be nul. + if (Str.back() != 0) return false; + + // Other elements must be non-nul. + return Str.drop_back().find(0) == StringRef::npos; +} + +/// getSplatValue - If this is a splat constant, meaning that all of the +/// elements have the same value, return that value. Otherwise return NULL. +Constant *ConstantDataVector::getSplatValue() const { + const char *Base = getRawDataValues().data(); + + // Compare elements 1+ to the 0'th element. + unsigned EltSize = getElementByteSize(); + for (unsigned i = 1, e = getNumElements(); i != e; ++i) + if (memcmp(Base, Base+i*EltSize, EltSize)) + return 0; + + // If they're all the same, return the 0th one as a representative. + return getElementAsConstant(0); +} //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations @@ -1911,56 +2388,46 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, LLVMContextImpl *pImpl = getType()->getContext().pImpl; - std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup; - Lookup.first.first = cast<ArrayType>(getType()); - Lookup.second = this; - - std::vector<Constant*> &Values = Lookup.first.second; + SmallVector<Constant*, 8> Values; + LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; + Lookup.first = cast<ArrayType>(getType()); Values.reserve(getNumOperands()); // Build replacement array. // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. - bool isAllZeros = false; unsigned NumUpdated = 0; - if (!ToC->isNullValue()) { - for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { - Constant *Val = cast<Constant>(O->get()); - if (Val == From) { - Val = ToC; - ++NumUpdated; - } - Values.push_back(Val); - } - } else { - isAllZeros = true; - for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) { - Constant *Val = cast<Constant>(O->get()); - if (Val == From) { - Val = ToC; - ++NumUpdated; - } - Values.push_back(Val); - if (isAllZeros) isAllZeros = Val->isNullValue(); + + // Keep track of whether all the values in the array are "ToC". + bool AllSame = true; + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + if (Val == From) { + Val = ToC; + ++NumUpdated; } + Values.push_back(Val); + AllSame &= Val == ToC; } Constant *Replacement = 0; - if (isAllZeros) { + if (AllSame && ToC->isNullValue()) { Replacement = ConstantAggregateZero::get(getType()); + } else if (AllSame && isa<UndefValue>(ToC)) { + Replacement = UndefValue::get(getType()); } else { // Check to see if we have this array type already. - bool Exists; + Lookup.second = makeArrayRef(Values); LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = - pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists); + pImpl->ArrayConstants.find(Lookup); - if (Exists) { - Replacement = I->second; + if (I != pImpl->ArrayConstants.map_end()) { + Replacement = I->first; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - pImpl->ArrayConstants.MoveConstantToNewSlot(this, I); + pImpl->ArrayConstants.remove(this); // Update to the new value. Optimize for the case when we have a single // operand that we're changing, but handle bulk updates efficiently. @@ -1974,6 +2441,7 @@ void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, if (getOperand(i) == From) setOperand(i, ToC); } + pImpl->ArrayConstants.insert(this); return; } } @@ -1996,26 +2464,32 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); - std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup; - Lookup.first.first = cast<StructType>(getType()); - Lookup.second = this; - std::vector<Constant*> &Values = Lookup.first.second; + SmallVector<Constant*, 8> Values; + LLVMContextImpl::StructConstantsTy::LookupKey Lookup; + Lookup.first = cast<StructType>(getType()); Values.reserve(getNumOperands()); // Build replacement struct. - // Fill values with the modified operands of the constant struct. Also, // compute whether this turns into an all-zeros struct. bool isAllZeros = false; - if (!ToC->isNullValue()) { - for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) - Values.push_back(cast<Constant>(O->get())); - } else { + bool isAllUndef = false; + if (ToC->isNullValue()) { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast<Constant>(O->get()); Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } + } else if (isa<UndefValue>(ToC)) { + isAllUndef = true; + for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { + Constant *Val = cast<Constant>(O->get()); + Values.push_back(Val); + if (isAllUndef) isAllUndef = isa<UndefValue>(Val); + } + } else { + for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) + Values.push_back(cast<Constant>(O->get())); } Values[OperandToUpdate] = ToC; @@ -2024,23 +2498,26 @@ void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, Constant *Replacement = 0; if (isAllZeros) { Replacement = ConstantAggregateZero::get(getType()); + } else if (isAllUndef) { + Replacement = UndefValue::get(getType()); } else { // Check to see if we have this struct type already. - bool Exists; + Lookup.second = makeArrayRef(Values); LLVMContextImpl::StructConstantsTy::MapTy::iterator I = - pImpl->StructConstants.InsertOrGetItem(Lookup, Exists); + pImpl->StructConstants.find(Lookup); - if (Exists) { - Replacement = I->second; + if (I != pImpl->StructConstants.map_end()) { + Replacement = I->first; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant struct, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! - pImpl->StructConstants.MoveConstantToNewSlot(this, I); + pImpl->StructConstants.remove(this); // Update to the new value. setOperand(OperandToUpdate, ToC); + pImpl->StructConstants.insert(this); return; } } @@ -2058,7 +2535,7 @@ void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); - std::vector<Constant*> Values; + SmallVector<Constant*, 8> Values; Values.reserve(getNumOperands()); // Build replacement array... for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); @@ -2081,89 +2558,13 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); Constant *To = cast<Constant>(ToV); - Constant *Replacement = 0; - if (getOpcode() == Instruction::GetElementPtr) { - SmallVector<Constant*, 8> Indices; - Constant *Pointer = getOperand(0); - Indices.reserve(getNumOperands()-1); - if (Pointer == From) Pointer = To; - - for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { - Constant *Val = getOperand(i); - if (Val == From) Val = To; - Indices.push_back(Val); - } - Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices, - cast<GEPOperator>(this)->isInBounds()); - } else if (getOpcode() == Instruction::ExtractValue) { - Constant *Agg = getOperand(0); - if (Agg == From) Agg = To; - - ArrayRef<unsigned> Indices = getIndices(); - Replacement = ConstantExpr::getExtractValue(Agg, Indices); - } else if (getOpcode() == Instruction::InsertValue) { - Constant *Agg = getOperand(0); - Constant *Val = getOperand(1); - if (Agg == From) Agg = To; - if (Val == From) Val = To; - - ArrayRef<unsigned> Indices = getIndices(); - Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices); - } else if (isCast()) { - assert(getOperand(0) == From && "Cast only has one use!"); - Replacement = ConstantExpr::getCast(getOpcode(), To, getType()); - } else if (getOpcode() == Instruction::Select) { - Constant *C1 = getOperand(0); - Constant *C2 = getOperand(1); - Constant *C3 = getOperand(2); - if (C1 == From) C1 = To; - if (C2 == From) C2 = To; - if (C3 == From) C3 = To; - Replacement = ConstantExpr::getSelect(C1, C2, C3); - } else if (getOpcode() == Instruction::ExtractElement) { - Constant *C1 = getOperand(0); - Constant *C2 = getOperand(1); - if (C1 == From) C1 = To; - if (C2 == From) C2 = To; - Replacement = ConstantExpr::getExtractElement(C1, C2); - } else if (getOpcode() == Instruction::InsertElement) { - Constant *C1 = getOperand(0); - Constant *C2 = getOperand(1); - Constant *C3 = getOperand(1); - if (C1 == From) C1 = To; - if (C2 == From) C2 = To; - if (C3 == From) C3 = To; - Replacement = ConstantExpr::getInsertElement(C1, C2, C3); - } else if (getOpcode() == Instruction::ShuffleVector) { - Constant *C1 = getOperand(0); - Constant *C2 = getOperand(1); - Constant *C3 = getOperand(2); - if (C1 == From) C1 = To; - if (C2 == From) C2 = To; - if (C3 == From) C3 = To; - Replacement = ConstantExpr::getShuffleVector(C1, C2, C3); - } else if (isCompare()) { - Constant *C1 = getOperand(0); - Constant *C2 = getOperand(1); - if (C1 == From) C1 = To; - if (C2 == From) C2 = To; - if (getOpcode() == Instruction::ICmp) - Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2); - else { - assert(getOpcode() == Instruction::FCmp); - Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2); - } - } else if (getNumOperands() == 2) { - Constant *C1 = getOperand(0); - Constant *C2 = getOperand(1); - if (C1 == From) C1 = To; - if (C2 == From) C2 = To; - Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData); - } else { - llvm_unreachable("Unknown ConstantExpr type!"); - return; + SmallVector<Constant*, 8> NewOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + Constant *Op = getOperand(i); + NewOps.push_back(Op == From ? To : Op); } + Constant *Replacement = getWithOperands(NewOps); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. |