aboutsummaryrefslogtreecommitdiff
path: root/lib/builtins/divdf3.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/builtins/divdf3.c')
-rw-r--r--lib/builtins/divdf3.c46
1 files changed, 23 insertions, 23 deletions
diff --git a/lib/builtins/divdf3.c b/lib/builtins/divdf3.c
index 04a4dc5571ca..411c82ebb87a 100644
--- a/lib/builtins/divdf3.c
+++ b/lib/builtins/divdf3.c
@@ -21,36 +21,36 @@
COMPILER_RT_ABI fp_t
__divdf3(fp_t a, fp_t b) {
-
+
const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
-
+
rep_t aSignificand = toRep(a) & significandMask;
rep_t bSignificand = toRep(b) & significandMask;
int scale = 0;
-
+
// Detect if a or b is zero, denormal, infinity, or NaN.
if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
-
+
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
-
+
// NaN / anything = qNaN
if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
// anything / NaN = qNaN
if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
-
+
if (aAbs == infRep) {
// infinity / infinity = NaN
if (bAbs == infRep) return fromRep(qnanRep);
// infinity / anything else = +/- infinity
else return fromRep(aAbs | quotientSign);
}
-
+
// anything else / infinity = +/- 0
if (bAbs == infRep) return fromRep(quotientSign);
-
+
if (!aAbs) {
// zero / zero = NaN
if (!bAbs) return fromRep(qnanRep);
@@ -59,28 +59,28 @@ __divdf3(fp_t a, fp_t b) {
}
// anything else / zero = +/- infinity
if (!bAbs) return fromRep(infRep | quotientSign);
-
+
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if (aAbs < implicitBit) scale += normalize(&aSignificand);
if (bAbs < implicitBit) scale -= normalize(&bSignificand);
}
-
+
// Or in the implicit significand bit. (If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.)
aSignificand |= implicitBit;
bSignificand |= implicitBit;
int quotientExponent = aExponent - bExponent + scale;
-
+
// Align the significand of b as a Q31 fixed-point number in the range
// [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
// polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
// is accurate to about 3.5 binary digits.
const uint32_t q31b = bSignificand >> 21;
uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
-
+
// Now refine the reciprocal estimate using a Newton-Raphson iteration:
//
// x1 = x0 * (2 - x0 * b)
@@ -95,13 +95,13 @@ __divdf3(fp_t a, fp_t b) {
recip32 = (uint64_t)recip32 * correction32 >> 31;
correction32 = -((uint64_t)recip32 * q31b >> 32);
recip32 = (uint64_t)recip32 * correction32 >> 31;
-
+
// recip32 might have overflowed to exactly zero in the preceding
// computation if the high word of b is exactly 1.0. This would sabotage
// the full-width final stage of the computation that follows, so we adjust
// recip32 downward by one bit.
recip32--;
-
+
// We need to perform one more iteration to get us to 56 binary digits;
// The last iteration needs to happen with extra precision.
const uint32_t q63blo = bSignificand << 11;
@@ -110,14 +110,14 @@ __divdf3(fp_t a, fp_t b) {
uint32_t cHi = correction >> 32;
uint32_t cLo = correction;
reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
-
+
// We already adjusted the 32-bit estimate, now we need to adjust the final
// 64-bit reciprocal estimate downward to ensure that it is strictly smaller
// than the infinitely precise exact reciprocal. Because the computation
// of the Newton-Raphson step is truncating at every step, this adjustment
// is small; most of the work is already done.
reciprocal -= 2;
-
+
// The numerical reciprocal is accurate to within 2^-56, lies in the
// interval [0.5, 1.0), and is strictly smaller than the true reciprocal
// of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
@@ -127,12 +127,12 @@ __divdf3(fp_t a, fp_t b) {
// 2. q is in the interval [0.5, 2.0)
// 3. the error in q is bounded away from 2^-53 (actually, we have a
// couple of bits to spare, but this is all we need).
-
+
// We need a 64 x 64 multiply high to compute q, which isn't a basic
// operation in C, so we need to be a little bit fussy.
rep_t quotient, quotientLo;
wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
-
+
// Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
// In either case, we are going to compute a residual of the form
//
@@ -141,7 +141,7 @@ __divdf3(fp_t a, fp_t b) {
// We know from the construction of q that r satisfies:
//
// 0 <= r < ulp(q)*b
- //
+ //
// if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
// already have the correct result. The exact halfway case cannot occur.
// We also take this time to right shift quotient if it falls in the [1,2)
@@ -154,20 +154,20 @@ __divdf3(fp_t a, fp_t b) {
quotient >>= 1;
residual = (aSignificand << 52) - quotient * bSignificand;
}
-
+
const int writtenExponent = quotientExponent + exponentBias;
-
+
if (writtenExponent >= maxExponent) {
// If we have overflowed the exponent, return infinity.
return fromRep(infRep | quotientSign);
}
-
+
else if (writtenExponent < 1) {
// Flush denormals to zero. In the future, it would be nice to add
// code to round them correctly.
return fromRep(quotientSign);
}
-
+
else {
const bool round = (residual << 1) > bSignificand;
// Clear the implicit bit