aboutsummaryrefslogtreecommitdiff
path: root/lib/diff_myers.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/diff_myers.c')
-rw-r--r--lib/diff_myers.c1425
1 files changed, 1425 insertions, 0 deletions
diff --git a/lib/diff_myers.c b/lib/diff_myers.c
new file mode 100644
index 000000000000..c886d1a28586
--- /dev/null
+++ b/lib/diff_myers.c
@@ -0,0 +1,1425 @@
+/* Myers diff algorithm implementation, invented by Eugene W. Myers [1].
+ * Implementations of both the Myers Divide Et Impera (using linear space)
+ * and the canonical Myers algorithm (using quadratic space). */
+/*
+ * Copyright (c) 2020 Neels Hofmeyr <neels@hofmeyr.de>
+ *
+ * Permission to use, copy, modify, and distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#include <stdio.h>
+#include <errno.h>
+
+#include <arraylist.h>
+#include <diff_main.h>
+
+#include "diff_internal.h"
+#include "diff_debug.h"
+
+/* Myers' diff algorithm [1] is nicely explained in [2].
+ * [1] http://www.xmailserver.org/diff2.pdf
+ * [2] https://blog.jcoglan.com/2017/02/12/the-myers-diff-algorithm-part-1/ ff.
+ *
+ * Myers approaches finding the smallest diff as a graph problem.
+ * The crux is that the original algorithm requires quadratic amount of memory:
+ * both sides' lengths added, and that squared. So if we're diffing lines of
+ * text, two files with 1000 lines each would blow up to a matrix of about
+ * 2000 * 2000 ints of state, about 16 Mb of RAM to figure out 2 kb of text.
+ * The solution is using Myers' "divide and conquer" extension algorithm, which
+ * does the original traversal from both ends of the files to reach a middle
+ * where these "snakes" touch, hence does not need to backtrace the traversal,
+ * and so gets away with only keeping a single column of that huge state matrix
+ * in memory.
+ */
+
+struct diff_box {
+ unsigned int left_start;
+ unsigned int left_end;
+ unsigned int right_start;
+ unsigned int right_end;
+};
+
+/* If the two contents of a file are A B C D E and X B C Y,
+ * the Myers diff graph looks like:
+ *
+ * k0 k1
+ * \ \
+ * k-1 0 1 2 3 4 5
+ * \ A B C D E
+ * 0 o-o-o-o-o-o
+ * X | | | | | |
+ * 1 o-o-o-o-o-o
+ * B | |\| | | |
+ * 2 o-o-o-o-o-o
+ * C | | |\| | |
+ * 3 o-o-o-o-o-o
+ * Y | | | | | |\
+ * 4 o-o-o-o-o-o c1
+ * \ \
+ * c-1 c0
+ *
+ * Moving right means delete an atom from the left-hand-side,
+ * Moving down means add an atom from the right-hand-side.
+ * Diagonals indicate identical atoms on both sides, the challenge is to use as
+ * many diagonals as possible.
+ *
+ * The original Myers algorithm walks all the way from the top left to the
+ * bottom right, remembers all steps, and then backtraces to find the shortest
+ * path. However, that requires keeping the entire graph in memory, which needs
+ * quadratic space.
+ *
+ * Myers adds a variant that uses linear space -- note, not linear time, only
+ * linear space: walk forward and backward, find a meeting point in the middle,
+ * and recurse on the two separate sections. This is called "divide and
+ * conquer".
+ *
+ * d: the step number, starting with 0, a.k.a. the distance from the starting
+ * point.
+ * k: relative index in the state array for the forward scan, indicating on
+ * which diagonal through the diff graph we currently are.
+ * c: relative index in the state array for the backward scan, indicating the
+ * diagonal number from the bottom up.
+ *
+ * The "divide and conquer" traversal through the Myers graph looks like this:
+ *
+ * | d= 0 1 2 3 2 1 0
+ * ----+--------------------------------------------
+ * k= | c=
+ * 4 | 3
+ * |
+ * 3 | 3,0 5,2 2
+ * | / \
+ * 2 | 2,0 5,3 1
+ * | / \
+ * 1 | 1,0 4,3 >= 4,3 5,4<-- 0
+ * | / / \ /
+ * 0 | -->0,0 3,3 4,4 -1
+ * | \ / /
+ * -1 | 0,1 1,2 3,4 -2
+ * | \ /
+ * -2 | 0,2 -3
+ * | \
+ * | 0,3
+ * | forward-> <-backward
+ *
+ * x,y pairs here are the coordinates in the Myers graph:
+ * x = atom index in left-side source, y = atom index in the right-side source.
+ *
+ * Only one forward column and one backward column are kept in mem, each need at
+ * most left.len + 1 + right.len items. Note that each d step occupies either
+ * the even or the odd items of a column: if e.g. the previous column is in the
+ * odd items, the next column is formed in the even items, without overwriting
+ * the previous column's results.
+ *
+ * Also note that from the diagonal index k and the x coordinate, the y
+ * coordinate can be derived:
+ * y = x - k
+ * Hence the state array only needs to keep the x coordinate, i.e. the position
+ * in the left-hand file, and the y coordinate, i.e. position in the right-hand
+ * file, is derived from the index in the state array.
+ *
+ * The two traces meet at 4,3, the first step (here found in the forward
+ * traversal) where a forward position is on or past a backward traced position
+ * on the same diagonal.
+ *
+ * This divides the problem space into:
+ *
+ * 0 1 2 3 4 5
+ * A B C D E
+ * 0 o-o-o-o-o
+ * X | | | | |
+ * 1 o-o-o-o-o
+ * B | |\| | |
+ * 2 o-o-o-o-o
+ * C | | |\| |
+ * 3 o-o-o-o-*-o *: forward and backward meet here
+ * Y | |
+ * 4 o-o
+ *
+ * Doing the same on each section lead to:
+ *
+ * 0 1 2 3 4 5
+ * A B C D E
+ * 0 o-o
+ * X | |
+ * 1 o-b b: backward d=1 first reaches here (sliding up the snake)
+ * B \ f: then forward d=2 reaches here (sliding down the snake)
+ * 2 o As result, the box from b to f is found to be identical;
+ * C \ leaving a top box from 0,0 to 1,1 and a bottom trivial
+ * 3 f-o tail 3,3 to 4,3.
+ *
+ * 3 o-*
+ * Y |
+ * 4 o *: forward and backward meet here
+ *
+ * and solving the last top left box gives:
+ *
+ * 0 1 2 3 4 5
+ * A B C D E -A
+ * 0 o-o +X
+ * X | B
+ * 1 o C
+ * B \ -D
+ * 2 o -E
+ * C \ +Y
+ * 3 o-o-o
+ * Y |
+ * 4 o
+ *
+ */
+
+#define xk_to_y(X, K) ((X) - (K))
+#define xc_to_y(X, C, DELTA) ((X) - (C) + (DELTA))
+#define k_to_c(K, DELTA) ((K) + (DELTA))
+#define c_to_k(C, DELTA) ((C) - (DELTA))
+
+/* Do one forwards step in the "divide and conquer" graph traversal.
+ * left: the left side to diff.
+ * right: the right side to diff against.
+ * kd_forward: the traversal state for forwards traversal, modified by this
+ * function.
+ * This is carried over between invocations with increasing d.
+ * kd_forward points at the center of the state array, allowing
+ * negative indexes.
+ * kd_backward: the traversal state for backwards traversal, to find a meeting
+ * point.
+ * Since forwards is done first, kd_backward will be valid for d -
+ * 1, not d.
+ * kd_backward points at the center of the state array, allowing
+ * negative indexes.
+ * d: Step or distance counter, indicating for what value of d the kd_forward
+ * should be populated.
+ * For d == 0, kd_forward[0] is initialized, i.e. the first invocation should
+ * be for d == 0.
+ * meeting_snake: resulting meeting point, if any.
+ * Return true when a meeting point has been identified.
+ */
+static int
+diff_divide_myers_forward(bool *found_midpoint,
+ struct diff_data *left, struct diff_data *right,
+ int *kd_forward, int *kd_backward, int d,
+ struct diff_box *meeting_snake)
+{
+ int delta = (int)right->atoms.len - (int)left->atoms.len;
+ int k;
+ int x;
+ int prev_x;
+ int prev_y;
+ int x_before_slide;
+ *found_midpoint = false;
+
+ for (k = d; k >= -d; k -= 2) {
+ if (k < -(int)right->atoms.len || k > (int)left->atoms.len) {
+ /* This diagonal is completely outside of the Myers
+ * graph, don't calculate it. */
+ if (k < 0) {
+ /* We are traversing negatively, and already
+ * below the entire graph, nothing will come of
+ * this. */
+ debug(" break\n");
+ break;
+ }
+ debug(" continue\n");
+ continue;
+ }
+ if (d == 0) {
+ /* This is the initializing step. There is no prev_k
+ * yet, get the initial x from the top left of the Myers
+ * graph. */
+ x = 0;
+ prev_x = x;
+ prev_y = xk_to_y(x, k);
+ }
+ /* Favoring "-" lines first means favoring moving rightwards in
+ * the Myers graph.
+ * For this, all k should derive from k - 1, only the bottom
+ * most k derive from k + 1:
+ *
+ * | d= 0 1 2
+ * ----+----------------
+ * k= |
+ * 2 | 2,0 <-- from prev_k = 2 - 1 = 1
+ * | /
+ * 1 | 1,0
+ * | /
+ * 0 | -->0,0 3,3
+ * | \\ /
+ * -1 | 0,1 <-- bottom most for d=1 from
+ * | \\ prev_k = -1 + 1 = 0
+ * -2 | 0,2 <-- bottom most for d=2 from
+ * prev_k = -2 + 1 = -1
+ *
+ * Except when a k + 1 from a previous run already means a
+ * further advancement in the graph.
+ * If k == d, there is no k + 1 and k - 1 is the only option.
+ * If k < d, use k + 1 in case that yields a larger x. Also use
+ * k + 1 if k - 1 is outside the graph.
+ */
+ else if (k > -d
+ && (k == d
+ || (k - 1 >= -(int)right->atoms.len
+ && kd_forward[k - 1] >= kd_forward[k + 1]))) {
+ /* Advance from k - 1.
+ * From position prev_k, step to the right in the Myers
+ * graph: x += 1.
+ */
+ int prev_k = k - 1;
+ prev_x = kd_forward[prev_k];
+ prev_y = xk_to_y(prev_x, prev_k);
+ x = prev_x + 1;
+ } else {
+ /* The bottom most one.
+ * From position prev_k, step to the bottom in the Myers
+ * graph: y += 1.
+ * Incrementing y is achieved by decrementing k while
+ * keeping the same x.
+ * (since we're deriving y from y = x - k).
+ */
+ int prev_k = k + 1;
+ prev_x = kd_forward[prev_k];
+ prev_y = xk_to_y(prev_x, prev_k);
+ x = prev_x;
+ }
+
+ x_before_slide = x;
+ /* Slide down any snake that we might find here. */
+ while (x < left->atoms.len && xk_to_y(x, k) < right->atoms.len) {
+ bool same;
+ int r = diff_atom_same(&same,
+ &left->atoms.head[x],
+ &right->atoms.head[
+ xk_to_y(x, k)]);
+ if (r)
+ return r;
+ if (!same)
+ break;
+ x++;
+ }
+ kd_forward[k] = x;
+#if 0
+ if (x_before_slide != x) {
+ debug(" down %d similar lines\n", x - x_before_slide);
+ }
+
+#if DEBUG
+ {
+ int fi;
+ for (fi = d; fi >= k; fi--) {
+ debug("kd_forward[%d] = (%d, %d)\n", fi,
+ kd_forward[fi], kd_forward[fi] - fi);
+ }
+ }
+#endif
+#endif
+
+ if (x < 0 || x > left->atoms.len
+ || xk_to_y(x, k) < 0 || xk_to_y(x, k) > right->atoms.len)
+ continue;
+
+ /* Figured out a new forwards traversal, see if this has gone
+ * onto or even past a preceding backwards traversal.
+ *
+ * If the delta in length is odd, then d and backwards_d hit the
+ * same state indexes:
+ * | d= 0 1 2 1 0
+ * ----+---------------- ----------------
+ * k= | c=
+ * 4 | 3
+ * |
+ * 3 | 2
+ * | same
+ * 2 | 2,0====5,3 1
+ * | / \
+ * 1 | 1,0 5,4<-- 0
+ * | / /
+ * 0 | -->0,0 3,3====4,4 -1
+ * | \ /
+ * -1 | 0,1 -2
+ * | \
+ * -2 | 0,2 -3
+ * |
+ *
+ * If the delta is even, they end up off-by-one, i.e. on
+ * different diagonals:
+ *
+ * | d= 0 1 2 1 0
+ * ----+---------------- ----------------
+ * | c=
+ * 3 | 3
+ * |
+ * 2 | 2,0 off 2
+ * | / \\
+ * 1 | 1,0 4,3 1
+ * | / // \
+ * 0 | -->0,0 3,3 4,4<-- 0
+ * | \ / /
+ * -1 | 0,1 3,4 -1
+ * | \ //
+ * -2 | 0,2 -2
+ * |
+ *
+ * So in the forward path, we can only match up diagonals when
+ * the delta is odd.
+ */
+ if ((delta & 1) == 0)
+ continue;
+ /* Forwards is done first, so the backwards one was still at
+ * d - 1. Can't do this for d == 0. */
+ int backwards_d = d - 1;
+ if (backwards_d < 0)
+ continue;
+
+ /* If both sides have the same length, forward and backward
+ * start on the same diagonal, meaning the backwards state index
+ * c == k.
+ * As soon as the lengths are not the same, the backwards
+ * traversal starts on a different diagonal, and c = k shifted
+ * by the difference in length.
+ */
+ int c = k_to_c(k, delta);
+
+ /* When the file sizes are very different, the traversal trees
+ * start on far distant diagonals.
+ * They don't necessarily meet straight on. See whether this
+ * forward value is on a diagonal that is also valid in
+ * kd_backward[], and match them if so. */
+ if (c >= -backwards_d && c <= backwards_d) {
+ /* Current k is on a diagonal that exists in
+ * kd_backward[]. If the two x positions have met or
+ * passed (forward walked onto or past backward), then
+ * we've found a midpoint / a mid-box.
+ *
+ * When forwards and backwards traversals meet, the
+ * endpoints of the mid-snake are not the two points in
+ * kd_forward and kd_backward, but rather the section
+ * that was slid (if any) of the current
+ * forward/backward traversal only.
+ *
+ * For example:
+ *
+ * o
+ * \
+ * o
+ * \
+ * o
+ * \
+ * o
+ * \
+ * X o o
+ * | | |
+ * o-o-o o
+ * \|
+ * M
+ * \
+ * o
+ * \
+ * A o
+ * | |
+ * o-o-o
+ *
+ * The forward traversal reached M from the top and slid
+ * downwards to A. The backward traversal already
+ * reached X, which is not a straight line from M
+ * anymore, so picking a mid-snake from M to X would
+ * yield a mistake.
+ *
+ * The correct mid-snake is between M and A. M is where
+ * the forward traversal hit the diagonal that the
+ * backward traversal has already passed, and A is what
+ * it reaches when sliding down identical lines.
+ */
+ int backward_x = kd_backward[c];
+ if (x >= backward_x) {
+ if (x_before_slide != x) {
+ /* met after sliding up a mid-snake */
+ *meeting_snake = (struct diff_box){
+ .left_start = x_before_slide,
+ .left_end = x,
+ .right_start = xc_to_y(x_before_slide,
+ c, delta),
+ .right_end = xk_to_y(x, k),
+ };
+ } else {
+ /* met after a side step, non-identical
+ * line. Mark that as box divider
+ * instead. This makes sure that
+ * myers_divide never returns the same
+ * box that came as input, avoiding
+ * "infinite" looping. */
+ *meeting_snake = (struct diff_box){
+ .left_start = prev_x,
+ .left_end = x,
+ .right_start = prev_y,
+ .right_end = xk_to_y(x, k),
+ };
+ }
+ debug("HIT x=(%u,%u) - y=(%u,%u)\n",
+ meeting_snake->left_start,
+ meeting_snake->right_start,
+ meeting_snake->left_end,
+ meeting_snake->right_end);
+ debug_dump_myers_graph(left, right, NULL,
+ kd_forward, d,
+ kd_backward, d-1);
+ *found_midpoint = true;
+ return 0;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/* Do one backwards step in the "divide and conquer" graph traversal.
+ * left: the left side to diff.
+ * right: the right side to diff against.
+ * kd_forward: the traversal state for forwards traversal, to find a meeting
+ * point.
+ * Since forwards is done first, after this, both kd_forward and
+ * kd_backward will be valid for d.
+ * kd_forward points at the center of the state array, allowing
+ * negative indexes.
+ * kd_backward: the traversal state for backwards traversal, to find a meeting
+ * point.
+ * This is carried over between invocations with increasing d.
+ * kd_backward points at the center of the state array, allowing
+ * negative indexes.
+ * d: Step or distance counter, indicating for what value of d the kd_backward
+ * should be populated.
+ * Before the first invocation, kd_backward[0] shall point at the bottom
+ * right of the Myers graph (left.len, right.len).
+ * The first invocation will be for d == 1.
+ * meeting_snake: resulting meeting point, if any.
+ * Return true when a meeting point has been identified.
+ */
+static int
+diff_divide_myers_backward(bool *found_midpoint,
+ struct diff_data *left, struct diff_data *right,
+ int *kd_forward, int *kd_backward, int d,
+ struct diff_box *meeting_snake)
+{
+ int delta = (int)right->atoms.len - (int)left->atoms.len;
+ int c;
+ int x;
+ int prev_x;
+ int prev_y;
+ int x_before_slide;
+
+ *found_midpoint = false;
+
+ for (c = d; c >= -d; c -= 2) {
+ if (c < -(int)left->atoms.len || c > (int)right->atoms.len) {
+ /* This diagonal is completely outside of the Myers
+ * graph, don't calculate it. */
+ if (c < 0) {
+ /* We are traversing negatively, and already
+ * below the entire graph, nothing will come of
+ * this. */
+ break;
+ }
+ continue;
+ }
+ if (d == 0) {
+ /* This is the initializing step. There is no prev_c
+ * yet, get the initial x from the bottom right of the
+ * Myers graph. */
+ x = left->atoms.len;
+ prev_x = x;
+ prev_y = xc_to_y(x, c, delta);
+ }
+ /* Favoring "-" lines first means favoring moving rightwards in
+ * the Myers graph.
+ * For this, all c should derive from c - 1, only the bottom
+ * most c derive from c + 1:
+ *
+ * 2 1 0
+ * ---------------------------------------------------
+ * c=
+ * 3
+ *
+ * from prev_c = c - 1 --> 5,2 2
+ * \
+ * 5,3 1
+ * \
+ * 4,3 5,4<-- 0
+ * \ /
+ * bottom most for d=1 from c + 1 --> 4,4 -1
+ * /
+ * bottom most for d=2 --> 3,4 -2
+ *
+ * Except when a c + 1 from a previous run already means a
+ * further advancement in the graph.
+ * If c == d, there is no c + 1 and c - 1 is the only option.
+ * If c < d, use c + 1 in case that yields a larger x.
+ * Also use c + 1 if c - 1 is outside the graph.
+ */
+ else if (c > -d && (c == d
+ || (c - 1 >= -(int)right->atoms.len
+ && kd_backward[c - 1] <= kd_backward[c + 1]))) {
+ /* A top one.
+ * From position prev_c, step upwards in the Myers
+ * graph: y -= 1.
+ * Decrementing y is achieved by incrementing c while
+ * keeping the same x. (since we're deriving y from
+ * y = x - c + delta).
+ */
+ int prev_c = c - 1;
+ prev_x = kd_backward[prev_c];
+ prev_y = xc_to_y(prev_x, prev_c, delta);
+ x = prev_x;
+ } else {
+ /* The bottom most one.
+ * From position prev_c, step to the left in the Myers
+ * graph: x -= 1.
+ */
+ int prev_c = c + 1;
+ prev_x = kd_backward[prev_c];
+ prev_y = xc_to_y(prev_x, prev_c, delta);
+ x = prev_x - 1;
+ }
+
+ /* Slide up any snake that we might find here (sections of
+ * identical lines on both sides). */
+#if 0
+ debug("c=%d x-1=%d Yb-1=%d-1=%d\n", c, x-1, xc_to_y(x, c,
+ delta),
+ xc_to_y(x, c, delta)-1);
+ if (x > 0) {
+ debug(" l=");
+ debug_dump_atom(left, right, &left->atoms.head[x-1]);
+ }
+ if (xc_to_y(x, c, delta) > 0) {
+ debug(" r=");
+ debug_dump_atom(right, left,
+ &right->atoms.head[xc_to_y(x, c, delta)-1]);
+ }
+#endif
+ x_before_slide = x;
+ while (x > 0 && xc_to_y(x, c, delta) > 0) {
+ bool same;
+ int r = diff_atom_same(&same,
+ &left->atoms.head[x-1],
+ &right->atoms.head[
+ xc_to_y(x, c, delta)-1]);
+ if (r)
+ return r;
+ if (!same)
+ break;
+ x--;
+ }
+ kd_backward[c] = x;
+#if 0
+ if (x_before_slide != x) {
+ debug(" up %d similar lines\n", x_before_slide - x);
+ }
+
+ if (DEBUG) {
+ int fi;
+ for (fi = d; fi >= c; fi--) {
+ debug("kd_backward[%d] = (%d, %d)\n",
+ fi,
+ kd_backward[fi],
+ kd_backward[fi] - fi + delta);
+ }
+ }
+#endif
+
+ if (x < 0 || x > left->atoms.len
+ || xc_to_y(x, c, delta) < 0
+ || xc_to_y(x, c, delta) > right->atoms.len)
+ continue;
+
+ /* Figured out a new backwards traversal, see if this has gone
+ * onto or even past a preceding forwards traversal.
+ *
+ * If the delta in length is even, then d and backwards_d hit
+ * the same state indexes -- note how this is different from in
+ * the forwards traversal, because now both d are the same:
+ *
+ * | d= 0 1 2 2 1 0
+ * ----+---------------- --------------------
+ * k= | c=
+ * 4 |
+ * |
+ * 3 | 3
+ * | same
+ * 2 | 2,0====5,2 2
+ * | / \
+ * 1 | 1,0 5,3 1
+ * | / / \
+ * 0 | -->0,0 3,3====4,3 5,4<-- 0
+ * | \ / /
+ * -1 | 0,1 4,4 -1
+ * | \
+ * -2 | 0,2 -2
+ * |
+ * -3
+ * If the delta is odd, they end up off-by-one, i.e. on
+ * different diagonals.
+ * So in the backward path, we can only match up diagonals when
+ * the delta is even.
+ */
+ if ((delta & 1) != 0)
+ continue;
+ /* Forwards was done first, now both d are the same. */
+ int forwards_d = d;
+
+ /* As soon as the lengths are not the same, the
+ * backwards traversal starts on a different diagonal,
+ * and c = k shifted by the difference in length.
+ */
+ int k = c_to_k(c, delta);
+
+ /* When the file sizes are very different, the traversal trees
+ * start on far distant diagonals.
+ * They don't necessarily meet straight on. See whether this
+ * backward value is also on a valid diagonal in kd_forward[],
+ * and match them if so. */
+ if (k >= -forwards_d && k <= forwards_d) {
+ /* Current c is on a diagonal that exists in
+ * kd_forward[]. If the two x positions have met or
+ * passed (backward walked onto or past forward), then
+ * we've found a midpoint / a mid-box.
+ *
+ * When forwards and backwards traversals meet, the
+ * endpoints of the mid-snake are not the two points in
+ * kd_forward and kd_backward, but rather the section
+ * that was slid (if any) of the current
+ * forward/backward traversal only.
+ *
+ * For example:
+ *
+ * o-o-o
+ * | |
+ * o A
+ * | \
+ * o o
+ * \
+ * M
+ * |\
+ * o o-o-o
+ * | | |
+ * o o X
+ * \
+ * o
+ * \
+ * o
+ * \
+ * o
+ *
+ * The backward traversal reached M from the bottom and
+ * slid upwards. The forward traversal already reached
+ * X, which is not a straight line from M anymore, so
+ * picking a mid-snake from M to X would yield a
+ * mistake.
+ *
+ * The correct mid-snake is between M and A. M is where
+ * the backward traversal hit the diagonal that the
+ * forwards traversal has already passed, and A is what
+ * it reaches when sliding up identical lines.
+ */
+
+ int forward_x = kd_forward[k];
+ if (forward_x >= x) {
+ if (x_before_slide != x) {
+ /* met after sliding down a mid-snake */
+ *meeting_snake = (struct diff_box){
+ .left_start = x,
+ .left_end = x_before_slide,
+ .right_start = xc_to_y(x, c, delta),
+ .right_end = xk_to_y(x_before_slide, k),
+ };
+ } else {
+ /* met after a side step, non-identical
+ * line. Mark that as box divider
+ * instead. This makes sure that
+ * myers_divide never returns the same
+ * box that came as input, avoiding
+ * "infinite" looping. */
+ *meeting_snake = (struct diff_box){
+ .left_start = x,
+ .left_end = prev_x,
+ .right_start = xc_to_y(x, c, delta),
+ .right_end = prev_y,
+ };
+ }
+ debug("HIT x=%u,%u - y=%u,%u\n",
+ meeting_snake->left_start,
+ meeting_snake->right_start,
+ meeting_snake->left_end,
+ meeting_snake->right_end);
+ debug_dump_myers_graph(left, right, NULL,
+ kd_forward, d,
+ kd_backward, d);
+ *found_midpoint = true;
+ return 0;
+ }
+ }
+ }
+ return 0;
+}
+
+/* Integer square root approximation */
+static int
+shift_sqrt(int val)
+{
+ int i;
+ for (i = 1; val > 0; val >>= 2)
+ i <<= 1;
+ return i;
+}
+
+#define DIFF_EFFORT_MIN 1024
+
+/* Myers "Divide et Impera": tracing forwards from the start and backwards from
+ * the end to find a midpoint that divides the problem into smaller chunks.
+ * Requires only linear amounts of memory. */
+int
+diff_algo_myers_divide(const struct diff_algo_config *algo_config,
+ struct diff_state *state)
+{
+ int rc = ENOMEM;
+ struct diff_data *left = &state->left;
+ struct diff_data *right = &state->right;
+ int *kd_buf;
+
+ debug("\n** %s\n", __func__);
+ debug("left:\n");
+ debug_dump(left);
+ debug("right:\n");
+ debug_dump(right);
+
+ /* Allocate two columns of a Myers graph, one for the forward and one
+ * for the backward traversal. */
+ unsigned int max = left->atoms.len + right->atoms.len;
+ size_t kd_len = max + 1;
+ size_t kd_buf_size = kd_len << 1;
+
+ if (state->kd_buf_size < kd_buf_size) {
+ kd_buf = reallocarray(state->kd_buf, kd_buf_size,
+ sizeof(int));
+ if (!kd_buf)
+ return ENOMEM;
+ state->kd_buf = kd_buf;
+ state->kd_buf_size = kd_buf_size;
+ } else
+ kd_buf = state->kd_buf;
+ int i;
+ for (i = 0; i < kd_buf_size; i++)
+ kd_buf[i] = -1;
+ int *kd_forward = kd_buf;
+ int *kd_backward = kd_buf + kd_len;
+ int max_effort = shift_sqrt(max/2);
+
+ if (max_effort < DIFF_EFFORT_MIN)
+ max_effort = DIFF_EFFORT_MIN;
+
+ /* The 'k' axis in Myers spans positive and negative indexes, so point
+ * the kd to the middle.
+ * It is then possible to index from -max/2 .. max/2. */
+ kd_forward += max/2;
+ kd_backward += max/2;
+
+ int d;
+ struct diff_box mid_snake = {};
+ bool found_midpoint = false;
+ for (d = 0; d <= (max/2); d++) {
+ int r;
+ r = diff_divide_myers_forward(&found_midpoint, left, right,
+ kd_forward, kd_backward, d,
+ &mid_snake);
+ if (r)
+ return r;
+ if (found_midpoint)
+ break;
+ r = diff_divide_myers_backward(&found_midpoint, left, right,
+ kd_forward, kd_backward, d,
+ &mid_snake);
+ if (r)
+ return r;
+ if (found_midpoint)
+ break;
+
+ /* Limit the effort spent looking for a mid snake. If files have
+ * very few lines in common, the effort spent to find nice mid
+ * snakes is just not worth it, the diff result will still be
+ * essentially minus everything on the left, plus everything on
+ * the right, with a few useless matches here and there. */
+ if (d > max_effort) {
+ /* pick the furthest reaching point from
+ * kd_forward and kd_backward, and use that as a
+ * midpoint, to not step into another diff algo
+ * recursion with unchanged box. */
+ int delta = (int)right->atoms.len - (int)left->atoms.len;
+ int x = 0;
+ int y;
+ int i;
+ int best_forward_i = 0;
+ int best_forward_distance = 0;
+ int best_backward_i = 0;
+ int best_backward_distance = 0;
+ int distance;
+ int best_forward_x;
+ int best_forward_y;
+ int best_backward_x;
+ int best_backward_y;
+
+ debug("~~~ HIT d = %d > max_effort = %d\n", d, max_effort);
+ debug_dump_myers_graph(left, right, NULL,
+ kd_forward, d,
+ kd_backward, d);
+
+ for (i = d; i >= -d; i -= 2) {
+ if (i >= -(int)right->atoms.len && i <= (int)left->atoms.len) {
+ x = kd_forward[i];
+ y = xk_to_y(x, i);
+ distance = x + y;
+ if (distance > best_forward_distance) {
+ best_forward_distance = distance;
+ best_forward_i = i;
+ }
+ }
+
+ if (i >= -(int)left->atoms.len && i <= (int)right->atoms.len) {
+ x = kd_backward[i];
+ y = xc_to_y(x, i, delta);
+ distance = (right->atoms.len - x)
+ + (left->atoms.len - y);
+ if (distance >= best_backward_distance) {
+ best_backward_distance = distance;
+ best_backward_i = i;
+ }
+ }
+ }
+
+ /* The myers-divide didn't meet in the middle. We just
+ * figured out the places where the forward path
+ * advanced the most, and the backward path advanced the
+ * most. Just divide at whichever one of those two is better.
+ *
+ * o-o
+ * |
+ * o
+ * \
+ * o
+ * \
+ * F <-- cut here
+ *
+ *
+ *
+ * or here --> B
+ * \
+ * o
+ * \
+ * o
+ * |
+ * o-o
+ */
+ best_forward_x = kd_forward[best_forward_i];
+ best_forward_y = xk_to_y(best_forward_x, best_forward_i);
+ best_backward_x = kd_backward[best_backward_i];
+ best_backward_y = xc_to_y(best_backward_x, best_backward_i, delta);
+
+ if (best_forward_distance >= best_backward_distance) {
+ x = best_forward_x;
+ y = best_forward_y;
+ } else {
+ x = best_backward_x;
+ y = best_backward_y;
+ }
+
+ debug("max_effort cut at x=%d y=%d\n", x, y);
+ if (x < 0 || y < 0
+ || x > left->atoms.len || y > right->atoms.len)
+ break;
+
+ found_midpoint = true;
+ mid_snake = (struct diff_box){
+ .left_start = x,
+ .left_end = x,
+ .right_start = y,
+ .right_end = y,
+ };
+ break;
+ }
+ }
+
+ if (!found_midpoint) {
+ /* Divide and conquer failed to find a meeting point. Use the
+ * fallback_algo defined in the algo_config (leave this to the
+ * caller). This is just paranoia/sanity, we normally should
+ * always find a midpoint.
+ */
+ debug(" no midpoint \n");
+ rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
+ goto return_rc;
+ } else {
+ debug(" mid snake L: %u to %u of %u R: %u to %u of %u\n",
+ mid_snake.left_start, mid_snake.left_end, left->atoms.len,
+ mid_snake.right_start, mid_snake.right_end,
+ right->atoms.len);
+
+ /* Section before the mid-snake. */
+ debug("Section before the mid-snake\n");
+
+ struct diff_atom *left_atom = &left->atoms.head[0];
+ unsigned int left_section_len = mid_snake.left_start;
+ struct diff_atom *right_atom = &right->atoms.head[0];
+ unsigned int right_section_len = mid_snake.right_start;
+
+ if (left_section_len && right_section_len) {
+ /* Record an unsolved chunk, the caller will apply
+ * inner_algo() on this chunk. */
+ if (!diff_state_add_chunk(state, false,
+ left_atom, left_section_len,
+ right_atom,
+ right_section_len))
+ goto return_rc;
+ } else if (left_section_len && !right_section_len) {
+ /* Only left atoms and none on the right, they form a
+ * "minus" chunk, then. */
+ if (!diff_state_add_chunk(state, true,
+ left_atom, left_section_len,
+ right_atom, 0))
+ goto return_rc;
+ } else if (!left_section_len && right_section_len) {
+ /* No left atoms, only atoms on the right, they form a
+ * "plus" chunk, then. */
+ if (!diff_state_add_chunk(state, true,
+ left_atom, 0,
+ right_atom,
+ right_section_len))
+ goto return_rc;
+ }
+ /* else: left_section_len == 0 and right_section_len == 0, i.e.
+ * nothing before the mid-snake. */
+
+ if (mid_snake.left_end > mid_snake.left_start
+ || mid_snake.right_end > mid_snake.right_start) {
+ /* The midpoint is a section of identical data on both
+ * sides, or a certain differing line: that section
+ * immediately becomes a solved chunk. */
+ debug("the mid-snake\n");
+ if (!diff_state_add_chunk(state, true,
+ &left->atoms.head[mid_snake.left_start],
+ mid_snake.left_end - mid_snake.left_start,
+ &right->atoms.head[mid_snake.right_start],
+ mid_snake.right_end - mid_snake.right_start))
+ goto return_rc;
+ }
+
+ /* Section after the mid-snake. */
+ debug("Section after the mid-snake\n");
+ debug(" left_end %u right_end %u\n",
+ mid_snake.left_end, mid_snake.right_end);
+ debug(" left_count %u right_count %u\n",
+ left->atoms.len, right->atoms.len);
+ left_atom = &left->atoms.head[mid_snake.left_end];
+ left_section_len = left->atoms.len - mid_snake.left_end;
+ right_atom = &right->atoms.head[mid_snake.right_end];
+ right_section_len = right->atoms.len - mid_snake.right_end;
+
+ if (left_section_len && right_section_len) {
+ /* Record an unsolved chunk, the caller will apply
+ * inner_algo() on this chunk. */
+ if (!diff_state_add_chunk(state, false,
+ left_atom, left_section_len,
+ right_atom,
+ right_section_len))
+ goto return_rc;
+ } else if (left_section_len && !right_section_len) {
+ /* Only left atoms and none on the right, they form a
+ * "minus" chunk, then. */
+ if (!diff_state_add_chunk(state, true,
+ left_atom, left_section_len,
+ right_atom, 0))
+ goto return_rc;
+ } else if (!left_section_len && right_section_len) {
+ /* No left atoms, only atoms on the right, they form a
+ * "plus" chunk, then. */
+ if (!diff_state_add_chunk(state, true,
+ left_atom, 0,
+ right_atom,
+ right_section_len))
+ goto return_rc;
+ }
+ /* else: left_section_len == 0 and right_section_len == 0, i.e.
+ * nothing after the mid-snake. */
+ }
+
+ rc = DIFF_RC_OK;
+
+return_rc:
+ debug("** END %s\n", __func__);
+ return rc;
+}
+
+/* Myers Diff tracing from the start all the way through to the end, requiring
+ * quadratic amounts of memory. This can fail if the required space surpasses
+ * algo_config->permitted_state_size. */
+int
+diff_algo_myers(const struct diff_algo_config *algo_config,
+ struct diff_state *state)
+{
+ /* do a diff_divide_myers_forward() without a _backward(), so that it
+ * walks forward across the entire files to reach the end. Keep each
+ * run's state, and do a final backtrace. */
+ int rc = ENOMEM;
+ struct diff_data *left = &state->left;
+ struct diff_data *right = &state->right;
+ int *kd_buf;
+
+ debug("\n** %s\n", __func__);
+ debug("left:\n");
+ debug_dump(left);
+ debug("right:\n");
+ debug_dump(right);
+ debug_dump_myers_graph(left, right, NULL, NULL, 0, NULL, 0);
+
+ /* Allocate two columns of a Myers graph, one for the forward and one
+ * for the backward traversal. */
+ unsigned int max = left->atoms.len + right->atoms.len;
+ size_t kd_len = max + 1 + max;
+ size_t kd_buf_size = kd_len * kd_len;
+ size_t kd_state_size = kd_buf_size * sizeof(int);
+ debug("state size: %zu\n", kd_state_size);
+ if (kd_buf_size < kd_len /* overflow? */
+ || (SIZE_MAX / kd_len ) < kd_len
+ || kd_state_size > algo_config->permitted_state_size) {
+ debug("state size %zu > permitted_state_size %zu, use fallback_algo\n",
+ kd_state_size, algo_config->permitted_state_size);
+ return DIFF_RC_USE_DIFF_ALGO_FALLBACK;
+ }
+
+ if (state->kd_buf_size < kd_buf_size) {
+ kd_buf = reallocarray(state->kd_buf, kd_buf_size,
+ sizeof(int));
+ if (!kd_buf)
+ return ENOMEM;
+ state->kd_buf = kd_buf;
+ state->kd_buf_size = kd_buf_size;
+ } else
+ kd_buf = state->kd_buf;
+
+ int i;
+ for (i = 0; i < kd_buf_size; i++)
+ kd_buf[i] = -1;
+
+ /* The 'k' axis in Myers spans positive and negative indexes, so point
+ * the kd to the middle.
+ * It is then possible to index from -max .. max. */
+ int *kd_origin = kd_buf + max;
+ int *kd_column = kd_origin;
+
+ int d;
+ int backtrack_d = -1;
+ int backtrack_k = 0;
+ int k;
+ int x, y;
+ for (d = 0; d <= max; d++, kd_column += kd_len) {
+ debug("-- %s d=%d\n", __func__, d);
+
+ for (k = d; k >= -d; k -= 2) {
+ if (k < -(int)right->atoms.len
+ || k > (int)left->atoms.len) {
+ /* This diagonal is completely outside of the
+ * Myers graph, don't calculate it. */
+ if (k < -(int)right->atoms.len)
+ debug(" %d k <"
+ " -(int)right->atoms.len %d\n",
+ k, -(int)right->atoms.len);
+ else
+ debug(" %d k > left->atoms.len %d\n", k,
+ left->atoms.len);
+ if (k < 0) {
+ /* We are traversing negatively, and
+ * already below the entire graph,
+ * nothing will come of this. */
+ debug(" break\n");
+ break;
+ }
+ debug(" continue\n");
+ continue;
+ }
+
+ if (d == 0) {
+ /* This is the initializing step. There is no
+ * prev_k yet, get the initial x from the top
+ * left of the Myers graph. */
+ x = 0;
+ } else {
+ int *kd_prev_column = kd_column - kd_len;
+
+ /* Favoring "-" lines first means favoring
+ * moving rightwards in the Myers graph.
+ * For this, all k should derive from k - 1,
+ * only the bottom most k derive from k + 1:
+ *
+ * | d= 0 1 2
+ * ----+----------------
+ * k= |
+ * 2 | 2,0 <-- from
+ * | / prev_k = 2 - 1 = 1
+ * 1 | 1,0
+ * | /
+ * 0 | -->0,0 3,3
+ * | \\ /
+ * -1 | 0,1 <-- bottom most for d=1
+ * | \\ from prev_k = -1+1 = 0
+ * -2 | 0,2 <-- bottom most for
+ * d=2 from
+ * prev_k = -2+1 = -1
+ *
+ * Except when a k + 1 from a previous run
+ * already means a further advancement in the
+ * graph.
+ * If k == d, there is no k + 1 and k - 1 is the
+ * only option.
+ * If k < d, use k + 1 in case that yields a
+ * larger x. Also use k + 1 if k - 1 is outside
+ * the graph.
+ */
+ if (k > -d
+ && (k == d
+ || (k - 1 >= -(int)right->atoms.len
+ && kd_prev_column[k - 1]
+ >= kd_prev_column[k + 1]))) {
+ /* Advance from k - 1.
+ * From position prev_k, step to the
+ * right in the Myers graph: x += 1.
+ */
+ int prev_k = k - 1;
+ int prev_x = kd_prev_column[prev_k];
+ x = prev_x + 1;
+ } else {
+ /* The bottom most one.
+ * From position prev_k, step to the
+ * bottom in the Myers graph: y += 1.
+ * Incrementing y is achieved by
+ * decrementing k while keeping the same
+ * x. (since we're deriving y from y =
+ * x - k).
+ */
+ int prev_k = k + 1;
+ int prev_x = kd_prev_column[prev_k];
+ x = prev_x;
+ }
+ }
+
+ /* Slide down any snake that we might find here. */
+ while (x < left->atoms.len
+ && xk_to_y(x, k) < right->atoms.len) {
+ bool same;
+ int r = diff_atom_same(&same,
+ &left->atoms.head[x],
+ &right->atoms.head[
+ xk_to_y(x, k)]);
+ if (r)
+ return r;
+ if (!same)
+ break;
+ x++;
+ }
+ kd_column[k] = x;
+
+ if (x == left->atoms.len
+ && xk_to_y(x, k) == right->atoms.len) {
+ /* Found a path */
+ backtrack_d = d;
+ backtrack_k = k;
+ debug("Reached the end at d = %d, k = %d\n",
+ backtrack_d, backtrack_k);
+ break;
+ }
+ }
+
+ if (backtrack_d >= 0)
+ break;
+ }
+
+ debug_dump_myers_graph(left, right, kd_origin, NULL, 0, NULL, 0);
+
+ /* backtrack. A matrix spanning from start to end of the file is ready:
+ *
+ * | d= 0 1 2 3 4
+ * ----+---------------------------------
+ * k= |
+ * 3 |
+ * |
+ * 2 | 2,0
+ * | /
+ * 1 | 1,0 4,3
+ * | / / \
+ * 0 | -->0,0 3,3 4,4 --> backtrack_d = 4, backtrack_k = 0
+ * | \ / \
+ * -1 | 0,1 3,4
+ * | \
+ * -2 | 0,2
+ * |
+ *
+ * From (4,4) backwards, find the previous position that is the largest, and remember it.
+ *
+ */
+ for (d = backtrack_d, k = backtrack_k; d >= 0; d--) {
+ x = kd_column[k];
+ y = xk_to_y(x, k);
+
+ /* When the best position is identified, remember it for that
+ * kd_column.
+ * That kd_column is no longer needed otherwise, so just
+ * re-purpose kd_column[0] = x and kd_column[1] = y,
+ * so that there is no need to allocate more memory.
+ */
+ kd_column[0] = x;
+ kd_column[1] = y;
+ debug("Backtrack d=%d: xy=(%d, %d)\n",
+ d, kd_column[0], kd_column[1]);
+
+ /* Don't access memory before kd_buf */
+ if (d == 0)
+ break;
+ int *kd_prev_column = kd_column - kd_len;
+
+ /* When y == 0, backtracking downwards (k-1) is the only way.
+ * When x == 0, backtracking upwards (k+1) is the only way.
+ *
+ * | d= 0 1 2 3 4
+ * ----+---------------------------------
+ * k= |
+ * 3 |
+ * | ..y == 0
+ * 2 | 2,0
+ * | /
+ * 1 | 1,0 4,3
+ * | / / \
+ * 0 | -->0,0 3,3 4,4 --> backtrack_d = 4,
+ * | \ / \ backtrack_k = 0
+ * -1 | 0,1 3,4
+ * | \
+ * -2 | 0,2__
+ * | x == 0
+ */
+ if (y == 0
+ || (x > 0
+ && kd_prev_column[k - 1] >= kd_prev_column[k + 1])) {
+ k = k - 1;
+ debug("prev k=k-1=%d x=%d y=%d\n",
+ k, kd_prev_column[k],
+ xk_to_y(kd_prev_column[k], k));
+ } else {
+ k = k + 1;
+ debug("prev k=k+1=%d x=%d y=%d\n",
+ k, kd_prev_column[k],
+ xk_to_y(kd_prev_column[k], k));
+ }
+ kd_column = kd_prev_column;
+ }
+
+ /* Forwards again, this time recording the diff chunks.
+ * Definitely start from 0,0. kd_column[0] may actually point to the
+ * bottom of a snake starting at 0,0 */
+ x = 0;
+ y = 0;
+
+ kd_column = kd_origin;
+ for (d = 0; d <= backtrack_d; d++, kd_column += kd_len) {
+ int next_x = kd_column[0];
+ int next_y = kd_column[1];
+ debug("Forward track from xy(%d,%d) to xy(%d,%d)\n",
+ x, y, next_x, next_y);
+
+ struct diff_atom *left_atom = &left->atoms.head[x];
+ int left_section_len = next_x - x;
+ struct diff_atom *right_atom = &right->atoms.head[y];
+ int right_section_len = next_y - y;
+
+ rc = ENOMEM;
+ if (left_section_len && right_section_len) {
+ /* This must be a snake slide.
+ * Snake slides have a straight line leading into them
+ * (except when starting at (0,0)). Find out whether the
+ * lead-in is horizontal or vertical:
+ *
+ * left
+ * ---------->
+ * |
+ * r| o-o o
+ * i| \ |
+ * g| o o
+ * h| \ \
+ * t| o o
+ * v
+ *
+ * If left_section_len > right_section_len, the lead-in
+ * is horizontal, meaning first remove one atom from the
+ * left before sliding down the snake.
+ * If right_section_len > left_section_len, the lead-in
+ * is vetical, so add one atom from the right before
+ * sliding down the snake. */
+ if (left_section_len == right_section_len + 1) {
+ if (!diff_state_add_chunk(state, true,
+ left_atom, 1,
+ right_atom, 0))
+ goto return_rc;
+ left_atom++;
+ left_section_len--;
+ } else if (right_section_len == left_section_len + 1) {
+ if (!diff_state_add_chunk(state, true,
+ left_atom, 0,
+ right_atom, 1))
+ goto return_rc;
+ right_atom++;
+ right_section_len--;
+ } else if (left_section_len != right_section_len) {
+ /* The numbers are making no sense. Should never
+ * happen. */
+ rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK;
+ goto return_rc;
+ }
+
+ if (!diff_state_add_chunk(state, true,
+ left_atom, left_section_len,
+ right_atom,
+ right_section_len))
+ goto return_rc;
+ } else if (left_section_len && !right_section_len) {
+ /* Only left atoms and none on the right, they form a
+ * "minus" chunk, then. */
+ if (!diff_state_add_chunk(state, true,
+ left_atom, left_section_len,
+ right_atom, 0))
+ goto return_rc;
+ } else if (!left_section_len && right_section_len) {
+ /* No left atoms, only atoms on the right, they form a
+ * "plus" chunk, then. */
+ if (!diff_state_add_chunk(state, true,
+ left_atom, 0,
+ right_atom,
+ right_section_len))
+ goto return_rc;
+ }
+
+ x = next_x;
+ y = next_y;
+ }
+
+ rc = DIFF_RC_OK;
+
+return_rc:
+ debug("** END %s rc=%d\n", __func__, rc);
+ return rc;
+}