diff options
Diffstat (limited to 'lib/diff_myers.c')
| -rw-r--r-- | lib/diff_myers.c | 1425 | 
1 files changed, 1425 insertions, 0 deletions
| diff --git a/lib/diff_myers.c b/lib/diff_myers.c new file mode 100644 index 000000000000..c886d1a28586 --- /dev/null +++ b/lib/diff_myers.c @@ -0,0 +1,1425 @@ +/* Myers diff algorithm implementation, invented by Eugene W. Myers [1]. + * Implementations of both the Myers Divide Et Impera (using linear space) + * and the canonical Myers algorithm (using quadratic space). */ +/* + * Copyright (c) 2020 Neels Hofmeyr <neels@hofmeyr.de> + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +#include <stdbool.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#include <stdio.h> +#include <errno.h> + +#include <arraylist.h> +#include <diff_main.h> + +#include "diff_internal.h" +#include "diff_debug.h" + +/* Myers' diff algorithm [1] is nicely explained in [2]. + * [1] http://www.xmailserver.org/diff2.pdf + * [2] https://blog.jcoglan.com/2017/02/12/the-myers-diff-algorithm-part-1/ ff. + * + * Myers approaches finding the smallest diff as a graph problem. + * The crux is that the original algorithm requires quadratic amount of memory: + * both sides' lengths added, and that squared. So if we're diffing lines of + * text, two files with 1000 lines each would blow up to a matrix of about + * 2000 * 2000 ints of state, about 16 Mb of RAM to figure out 2 kb of text. + * The solution is using Myers' "divide and conquer" extension algorithm, which + * does the original traversal from both ends of the files to reach a middle + * where these "snakes" touch, hence does not need to backtrace the traversal, + * and so gets away with only keeping a single column of that huge state matrix + * in memory. + */ + +struct diff_box { +	unsigned int left_start; +	unsigned int left_end; +	unsigned int right_start; +	unsigned int right_end; +}; + +/* If the two contents of a file are A B C D E and X B C Y, + * the Myers diff graph looks like: + * + *   k0  k1 + *    \   \ + * k-1     0 1 2 3 4 5 + *   \      A B C D E + *     0   o-o-o-o-o-o + *      X  | | | | | | + *     1   o-o-o-o-o-o + *      B  | |\| | | | + *     2   o-o-o-o-o-o + *      C  | | |\| | | + *     3   o-o-o-o-o-o + *      Y  | | | | | |\ + *     4   o-o-o-o-o-o c1 + *                  \ \ + *                 c-1 c0 + * + * Moving right means delete an atom from the left-hand-side, + * Moving down means add an atom from the right-hand-side. + * Diagonals indicate identical atoms on both sides, the challenge is to use as + * many diagonals as possible. + * + * The original Myers algorithm walks all the way from the top left to the + * bottom right, remembers all steps, and then backtraces to find the shortest + * path. However, that requires keeping the entire graph in memory, which needs + * quadratic space. + * + * Myers adds a variant that uses linear space -- note, not linear time, only + * linear space: walk forward and backward, find a meeting point in the middle, + * and recurse on the two separate sections. This is called "divide and + * conquer". + * + * d: the step number, starting with 0, a.k.a. the distance from the starting + *    point. + * k: relative index in the state array for the forward scan, indicating on + *    which diagonal through the diff graph we currently are. + * c: relative index in the state array for the backward scan, indicating the + *    diagonal number from the bottom up. + * + * The "divide and conquer" traversal through the Myers graph looks like this: + * + *      | d=   0   1   2   3      2   1   0 + *  ----+-------------------------------------------- + *  k=  |                                      c= + *   4  |                                       3 + *      | + *   3  |                 3,0    5,2            2 + *      |                /          \ + *   2  |             2,0            5,3        1 + *      |            /                 \ + *   1  |         1,0     4,3 >= 4,3    5,4<--  0 + *      |        /       /          \  / + *   0  |  -->0,0     3,3            4,4       -1 + *      |        \   /              / + *  -1  |         0,1     1,2    3,4           -2 + *      |            \   / + *  -2  |             0,2                      -3 + *      |                \ + *      |                 0,3 + *      |  forward->                 <-backward + * + * x,y pairs here are the coordinates in the Myers graph: + * x = atom index in left-side source, y = atom index in the right-side source. + * + * Only one forward column and one backward column are kept in mem, each need at + * most left.len + 1 + right.len items.  Note that each d step occupies either + * the even or the odd items of a column: if e.g. the previous column is in the + * odd items, the next column is formed in the even items, without overwriting + * the previous column's results. + * + * Also note that from the diagonal index k and the x coordinate, the y + * coordinate can be derived: + *    y = x - k + * Hence the state array only needs to keep the x coordinate, i.e. the position + * in the left-hand file, and the y coordinate, i.e. position in the right-hand + * file, is derived from the index in the state array. + * + * The two traces meet at 4,3, the first step (here found in the forward + * traversal) where a forward position is on or past a backward traced position + * on the same diagonal. + * + * This divides the problem space into: + * + *         0 1 2 3 4 5 + *          A B C D E + *     0   o-o-o-o-o + *      X  | | | | | + *     1   o-o-o-o-o + *      B  | |\| | | + *     2   o-o-o-o-o + *      C  | | |\| | + *     3   o-o-o-o-*-o   *: forward and backward meet here + *      Y          | | + *     4           o-o + * + * Doing the same on each section lead to: + * + *         0 1 2 3 4 5 + *          A B C D E + *     0   o-o + *      X  | | + *     1   o-b    b: backward d=1 first reaches here (sliding up the snake) + *      B     \   f: then forward d=2 reaches here (sliding down the snake) + *     2       o     As result, the box from b to f is found to be identical; + *      C       \    leaving a top box from 0,0 to 1,1 and a bottom trivial + *     3         f-o tail 3,3 to 4,3. + * + *     3           o-* + *      Y            | + *     4             o   *: forward and backward meet here + * + * and solving the last top left box gives: + * + *         0 1 2 3 4 5 + *          A B C D E           -A + *     0   o-o                  +X + *      X    |                   B + *     1     o                   C + *      B     \                 -D + *     2       o                -E + *      C       \               +Y + *     3         o-o-o + *      Y            | + *     4             o + * + */ + +#define xk_to_y(X, K) ((X) - (K)) +#define xc_to_y(X, C, DELTA) ((X) - (C) + (DELTA)) +#define k_to_c(K, DELTA) ((K) + (DELTA)) +#define c_to_k(C, DELTA) ((C) - (DELTA)) + +/* Do one forwards step in the "divide and conquer" graph traversal. + * left: the left side to diff. + * right: the right side to diff against. + * kd_forward: the traversal state for forwards traversal, modified by this + *             function. + *             This is carried over between invocations with increasing d. + *             kd_forward points at the center of the state array, allowing + *             negative indexes. + * kd_backward: the traversal state for backwards traversal, to find a meeting + *              point. + *              Since forwards is done first, kd_backward will be valid for d - + *              1, not d. + *              kd_backward points at the center of the state array, allowing + *              negative indexes. + * d: Step or distance counter, indicating for what value of d the kd_forward + *    should be populated. + *    For d == 0, kd_forward[0] is initialized, i.e. the first invocation should + *    be for d == 0. + * meeting_snake: resulting meeting point, if any. + * Return true when a meeting point has been identified. + */ +static int +diff_divide_myers_forward(bool *found_midpoint, +			  struct diff_data *left, struct diff_data *right, +			  int *kd_forward, int *kd_backward, int d, +			  struct diff_box *meeting_snake) +{ +	int delta = (int)right->atoms.len - (int)left->atoms.len; +	int k; +	int x; +	int prev_x; +	int prev_y; +	int x_before_slide; +	*found_midpoint = false; + +	for (k = d; k >= -d; k -= 2) { +		if (k < -(int)right->atoms.len || k > (int)left->atoms.len) { +			/* This diagonal is completely outside of the Myers +			 * graph, don't calculate it. */ +			if (k < 0) { +				/* We are traversing negatively, and already +				 * below the entire graph, nothing will come of +				 * this. */ +				debug(" break\n"); +				break; +			} +			debug(" continue\n"); +			continue; +		} +		if (d == 0) { +			/* This is the initializing step. There is no prev_k +			 * yet, get the initial x from the top left of the Myers +			 * graph. */ +			x = 0; +			prev_x = x; +			prev_y = xk_to_y(x, k); +		} +		/* Favoring "-" lines first means favoring moving rightwards in +		 * the Myers graph. +		 * For this, all k should derive from k - 1, only the bottom +		 * most k derive from k + 1: +		 * +		 *      | d=   0   1   2 +		 *  ----+---------------- +		 *  k=  | +		 *   2  |             2,0 <-- from prev_k = 2 - 1 = 1 +		 *      |            / +		 *   1  |         1,0 +		 *      |        / +		 *   0  |  -->0,0     3,3 +		 *      |       \\   / +		 *  -1  |         0,1 <-- bottom most for d=1 from +		 *      |           \\    prev_k = -1 + 1 = 0 +		 *  -2  |             0,2 <-- bottom most for d=2 from +		 *                            prev_k = -2 + 1 = -1 +		 * +		 * Except when a k + 1 from a previous run already means a +		 * further advancement in the graph. +		 * If k == d, there is no k + 1 and k - 1 is the only option. +		 * If k < d, use k + 1 in case that yields a larger x. Also use +		 * k + 1 if k - 1 is outside the graph. +		 */ +		else if (k > -d +			 && (k == d +			     || (k - 1 >= -(int)right->atoms.len +				 && kd_forward[k - 1] >= kd_forward[k + 1]))) { +			/* Advance from k - 1. +			 * From position prev_k, step to the right in the Myers +			 * graph: x += 1. +			 */ +			int prev_k = k - 1; +			prev_x = kd_forward[prev_k]; +			prev_y = xk_to_y(prev_x, prev_k); +			x = prev_x + 1; +		} else { +			/* The bottom most one. +			 * From position prev_k, step to the bottom in the Myers +			 * graph: y += 1. +			 * Incrementing y is achieved by decrementing k while +			 * keeping the same x. +			 * (since we're deriving y from y = x - k). +			 */ +			int prev_k = k + 1; +			prev_x = kd_forward[prev_k]; +			prev_y = xk_to_y(prev_x, prev_k); +			x = prev_x; +		} + +		x_before_slide = x; +		/* Slide down any snake that we might find here. */ +		while (x < left->atoms.len && xk_to_y(x, k) < right->atoms.len) { +			bool same; +			int r = diff_atom_same(&same, +					       &left->atoms.head[x], +					       &right->atoms.head[ +						xk_to_y(x, k)]); +			if (r) +				return r; +			if (!same) +				break; +			x++; +		} +		kd_forward[k] = x; +#if 0 +		if (x_before_slide != x) { +			debug("  down %d similar lines\n", x - x_before_slide); +		} + +#if DEBUG +		{ +			int fi; +			for (fi = d; fi >= k; fi--) { +				debug("kd_forward[%d] = (%d, %d)\n", fi, +				      kd_forward[fi], kd_forward[fi] - fi); +			} +		} +#endif +#endif + +		if (x < 0 || x > left->atoms.len +		    || xk_to_y(x, k) < 0 || xk_to_y(x, k) > right->atoms.len) +			continue; + +		/* Figured out a new forwards traversal, see if this has gone +		 * onto or even past a preceding backwards traversal. +		 * +		 * If the delta in length is odd, then d and backwards_d hit the +		 * same state indexes: +		 *      | d=   0   1   2      1   0 +		 *  ----+----------------    ---------------- +		 *  k=  |                              c= +		 *   4  |                               3 +		 *      | +		 *   3  |                               2 +		 *      |                same +		 *   2  |             2,0====5,3        1 +		 *      |            /          \ +		 *   1  |         1,0            5,4<-- 0 +		 *      |        /              / +		 *   0  |  -->0,0     3,3====4,4       -1 +		 *      |        \   / +		 *  -1  |         0,1                  -2 +		 *      |            \ +		 *  -2  |             0,2              -3 +		 *      | +		 * +		 * If the delta is even, they end up off-by-one, i.e. on +		 * different diagonals: +		 * +		 *      | d=   0   1   2    1   0 +		 *  ----+----------------  ---------------- +		 *      |                            c= +		 *   3  |                             3 +		 *      | +		 *   2  |             2,0 off         2 +		 *      |            /   \\ +		 *   1  |         1,0      4,3        1 +		 *      |        /       //   \ +		 *   0  |  -->0,0     3,3      4,4<-- 0 +		 *      |        \   /        / +		 *  -1  |         0,1      3,4       -1 +		 *      |            \   // +		 *  -2  |             0,2            -2 +		 *      | +		 * +		 * So in the forward path, we can only match up diagonals when +		 * the delta is odd. +		 */ +		if ((delta & 1) == 0) +			continue; +		 /* Forwards is done first, so the backwards one was still at +		  * d - 1. Can't do this for d == 0. */ +		int backwards_d = d - 1; +		if (backwards_d < 0) +			continue; + +		/* If both sides have the same length, forward and backward +		 * start on the same diagonal, meaning the backwards state index +		 * c == k. +		 * As soon as the lengths are not the same, the backwards +		 * traversal starts on a different diagonal, and c = k shifted +		 * by the difference in length. +		 */ +		int c = k_to_c(k, delta); + +		/* When the file sizes are very different, the traversal trees +		 * start on far distant diagonals. +		 * They don't necessarily meet straight on. See whether this +		 * forward value is on a diagonal that is also valid in +		 * kd_backward[], and match them if so. */ +		if (c >= -backwards_d && c <= backwards_d) { +			/* Current k is on a diagonal that exists in +			 * kd_backward[]. If the two x positions have met or +			 * passed (forward walked onto or past backward), then +			 * we've found a midpoint / a mid-box. +			 * +			 * When forwards and backwards traversals meet, the +			 * endpoints of the mid-snake are not the two points in +			 * kd_forward and kd_backward, but rather the section +			 * that was slid (if any) of the current +			 * forward/backward traversal only. +			 * +			 * For example: +			 * +			 *   o +			 *    \ +			 *     o +			 *      \ +			 *       o +			 *        \ +			 *         o +			 *          \ +			 *       X o o +			 *       | | | +			 *     o-o-o o +			 *          \| +			 *           M +			 *            \ +			 *             o +			 *              \ +			 *               A o +			 *               | | +			 *             o-o-o +			 * +			 * The forward traversal reached M from the top and slid +			 * downwards to A.  The backward traversal already +			 * reached X, which is not a straight line from M +			 * anymore, so picking a mid-snake from M to X would +			 * yield a mistake. +			 * +			 * The correct mid-snake is between M and A. M is where +			 * the forward traversal hit the diagonal that the +			 * backward traversal has already passed, and A is what +			 * it reaches when sliding down identical lines. +			 */ +			int backward_x = kd_backward[c]; +			if (x >= backward_x) { +				if (x_before_slide != x) { +					/* met after sliding up a mid-snake */ +					*meeting_snake = (struct diff_box){ +						.left_start = x_before_slide, +						.left_end = x, +						.right_start = xc_to_y(x_before_slide, +								       c, delta), +						.right_end = xk_to_y(x, k), +					}; +				} else { +					/* met after a side step, non-identical +					 * line. Mark that as box divider +					 * instead. This makes sure that +					 * myers_divide never returns the same +					 * box that came as input, avoiding +					 * "infinite" looping. */ +					*meeting_snake = (struct diff_box){ +						.left_start = prev_x, +						.left_end = x, +						.right_start = prev_y, +						.right_end = xk_to_y(x, k), +					}; +				} +				debug("HIT x=(%u,%u) - y=(%u,%u)\n", +				      meeting_snake->left_start, +				      meeting_snake->right_start, +				      meeting_snake->left_end, +				      meeting_snake->right_end); +				debug_dump_myers_graph(left, right, NULL, +						       kd_forward, d, +						       kd_backward, d-1); +				*found_midpoint = true; +				return 0; +			} +		} +	} + +	return 0; +} + +/* Do one backwards step in the "divide and conquer" graph traversal. + * left: the left side to diff. + * right: the right side to diff against. + * kd_forward: the traversal state for forwards traversal, to find a meeting + *             point. + *             Since forwards is done first, after this, both kd_forward and + *             kd_backward will be valid for d. + *             kd_forward points at the center of the state array, allowing + *             negative indexes. + * kd_backward: the traversal state for backwards traversal, to find a meeting + *              point. + *              This is carried over between invocations with increasing d. + *              kd_backward points at the center of the state array, allowing + *              negative indexes. + * d: Step or distance counter, indicating for what value of d the kd_backward + *    should be populated. + *    Before the first invocation, kd_backward[0] shall point at the bottom + *    right of the Myers graph (left.len, right.len). + *    The first invocation will be for d == 1. + * meeting_snake: resulting meeting point, if any. + * Return true when a meeting point has been identified. + */ +static int +diff_divide_myers_backward(bool *found_midpoint, +			   struct diff_data *left, struct diff_data *right, +			   int *kd_forward, int *kd_backward, int d, +			   struct diff_box *meeting_snake) +{ +	int delta = (int)right->atoms.len - (int)left->atoms.len; +	int c; +	int x; +	int prev_x; +	int prev_y; +	int x_before_slide; + +	*found_midpoint = false; + +	for (c = d; c >= -d; c -= 2) { +		if (c < -(int)left->atoms.len || c > (int)right->atoms.len) { +			/* This diagonal is completely outside of the Myers +			 * graph, don't calculate it. */ +			if (c < 0) { +				/* We are traversing negatively, and already +				 * below the entire graph, nothing will come of +				 * this. */ +				break; +			} +			continue; +		} +		if (d == 0) { +			/* This is the initializing step. There is no prev_c +			 * yet, get the initial x from the bottom right of the +			 * Myers graph. */ +			x = left->atoms.len; +			prev_x = x; +			prev_y = xc_to_y(x, c, delta); +		} +		/* Favoring "-" lines first means favoring moving rightwards in +		 * the Myers graph. +		 * For this, all c should derive from c - 1, only the bottom +		 * most c derive from c + 1: +		 * +		 *                                  2   1   0 +		 *  --------------------------------------------------- +		 *                                               c= +		 *                                                3 +		 * +		 *         from prev_c = c - 1 --> 5,2            2 +		 *                                    \ +		 *                                     5,3        1 +		 *                                        \ +		 *                                 4,3     5,4<-- 0 +		 *                                    \   / +		 *  bottom most for d=1 from c + 1 --> 4,4       -1 +		 *                                    / +		 *         bottom most for d=2 --> 3,4           -2 +		 * +		 * Except when a c + 1 from a previous run already means a +		 * further advancement in the graph. +		 * If c == d, there is no c + 1 and c - 1 is the only option. +		 * If c < d, use c + 1 in case that yields a larger x. +		 * Also use c + 1 if c - 1 is outside the graph. +		 */ +		else if (c > -d && (c == d +				    || (c - 1 >= -(int)right->atoms.len +					&& kd_backward[c - 1] <= kd_backward[c + 1]))) { +			/* A top one. +			 * From position prev_c, step upwards in the Myers +			 * graph: y -= 1. +			 * Decrementing y is achieved by incrementing c while +			 * keeping the same x. (since we're deriving y from +			 * y = x - c + delta). +			 */ +			int prev_c = c - 1; +			prev_x = kd_backward[prev_c]; +			prev_y = xc_to_y(prev_x, prev_c, delta); +			x = prev_x; +		} else { +			/* The bottom most one. +			 * From position prev_c, step to the left in the Myers +			 * graph: x -= 1. +			 */ +			int prev_c = c + 1; +			prev_x = kd_backward[prev_c]; +			prev_y = xc_to_y(prev_x, prev_c, delta); +			x = prev_x - 1; +		} + +		/* Slide up any snake that we might find here (sections of +		 * identical lines on both sides). */ +#if 0 +		debug("c=%d x-1=%d Yb-1=%d-1=%d\n", c, x-1, xc_to_y(x, c, +								    delta), +		      xc_to_y(x, c, delta)-1); +		if (x > 0) { +			debug("  l="); +			debug_dump_atom(left, right, &left->atoms.head[x-1]); +		} +		if (xc_to_y(x, c, delta) > 0) { +			debug("  r="); +			debug_dump_atom(right, left, +				&right->atoms.head[xc_to_y(x, c, delta)-1]); +		} +#endif +		x_before_slide = x; +		while (x > 0 && xc_to_y(x, c, delta) > 0) { +			bool same; +			int r = diff_atom_same(&same, +					       &left->atoms.head[x-1], +					       &right->atoms.head[ +						xc_to_y(x, c, delta)-1]); +			if (r) +				return r; +			if (!same) +				break; +			x--; +		} +		kd_backward[c] = x; +#if 0 +		if (x_before_slide != x) { +			debug("  up %d similar lines\n", x_before_slide - x); +		} + +		if (DEBUG) { +			int fi; +			for (fi = d; fi >= c; fi--) { +				debug("kd_backward[%d] = (%d, %d)\n", +				      fi, +				      kd_backward[fi], +				      kd_backward[fi] - fi + delta); +			} +		} +#endif + +		if (x < 0 || x > left->atoms.len +		    || xc_to_y(x, c, delta) < 0 +		    || xc_to_y(x, c, delta) > right->atoms.len) +			continue; + +		/* Figured out a new backwards traversal, see if this has gone +		 * onto or even past a preceding forwards traversal. +		 * +		 * If the delta in length is even, then d and backwards_d hit +		 * the same state indexes -- note how this is different from in +		 * the forwards traversal, because now both d are the same: +		 * +		 *      | d=   0   1   2      2   1   0 +		 *  ----+----------------    -------------------- +		 *  k=  |                                  c= +		 *   4  | +		 *      | +		 *   3  |                                   3 +		 *      |                same +		 *   2  |             2,0====5,2            2 +		 *      |            /          \ +		 *   1  |         1,0            5,3        1 +		 *      |        /              /  \ +		 *   0  |  -->0,0     3,3====4,3    5,4<--  0 +		 *      |        \   /             / +		 *  -1  |         0,1            4,4       -1 +		 *      |            \ +		 *  -2  |             0,2                  -2 +		 *      | +		 *                                      -3 +		 * If the delta is odd, they end up off-by-one, i.e. on +		 * different diagonals. +		 * So in the backward path, we can only match up diagonals when +		 * the delta is even. +		 */ +		if ((delta & 1) != 0) +			continue; +		/* Forwards was done first, now both d are the same. */ +		int forwards_d = d; + +		/* As soon as the lengths are not the same, the +		 * backwards traversal starts on a different diagonal, +		 * and c = k shifted by the difference in length. +		 */ +		int k = c_to_k(c, delta); + +		/* When the file sizes are very different, the traversal trees +		 * start on far distant diagonals. +		 * They don't necessarily meet straight on. See whether this +		 * backward value is also on a valid diagonal in kd_forward[], +		 * and match them if so. */ +		if (k >= -forwards_d && k <= forwards_d) { +			/* Current c is on a diagonal that exists in +			 * kd_forward[]. If the two x positions have met or +			 * passed (backward walked onto or past forward), then +			 * we've found a midpoint / a mid-box. +			 * +			 * When forwards and backwards traversals meet, the +			 * endpoints of the mid-snake are not the two points in +			 * kd_forward and kd_backward, but rather the section +			 * that was slid (if any) of the current +			 * forward/backward traversal only. +			 * +			 * For example: +			 * +			 *   o-o-o +			 *   | | +			 *   o A +			 *   |  \ +			 *   o   o +			 *        \ +			 *         M +			 *         |\ +			 *         o o-o-o +			 *         | | | +			 *         o o X +			 *          \ +			 *           o +			 *            \ +			 *             o +			 *              \ +			 *               o +			 * +			 * The backward traversal reached M from the bottom and +			 * slid upwards.  The forward traversal already reached +			 * X, which is not a straight line from M anymore, so +			 * picking a mid-snake from M to X would yield a +			 * mistake. +			 * +			 * The correct mid-snake is between M and A. M is where +			 * the backward traversal hit the diagonal that the +			 * forwards traversal has already passed, and A is what +			 * it reaches when sliding up identical lines. +			 */ + +			int forward_x = kd_forward[k]; +			if (forward_x >= x) { +				if (x_before_slide != x) { +					/* met after sliding down a mid-snake */ +					*meeting_snake = (struct diff_box){ +						.left_start = x, +						.left_end = x_before_slide, +						.right_start = xc_to_y(x, c, delta), +						.right_end = xk_to_y(x_before_slide, k), +					}; +				} else { +					/* met after a side step, non-identical +					 * line. Mark that as box divider +					 * instead. This makes sure that +					 * myers_divide never returns the same +					 * box that came as input, avoiding +					 * "infinite" looping. */ +					*meeting_snake = (struct diff_box){ +						.left_start = x, +						.left_end = prev_x, +						.right_start = xc_to_y(x, c, delta), +						.right_end = prev_y, +					}; +				} +				debug("HIT x=%u,%u - y=%u,%u\n", +				      meeting_snake->left_start, +				      meeting_snake->right_start, +				      meeting_snake->left_end, +				      meeting_snake->right_end); +				debug_dump_myers_graph(left, right, NULL, +						       kd_forward, d, +						       kd_backward, d); +				*found_midpoint = true; +				return 0; +			} +		} +	} +	return 0; +} + +/* Integer square root approximation */ +static int +shift_sqrt(int val) +{ +	int i; +        for (i = 1; val > 0; val >>= 2) +		i <<= 1; +        return i; +} + +#define DIFF_EFFORT_MIN 1024 + +/* Myers "Divide et Impera": tracing forwards from the start and backwards from + * the end to find a midpoint that divides the problem into smaller chunks. + * Requires only linear amounts of memory. */ +int +diff_algo_myers_divide(const struct diff_algo_config *algo_config, +		       struct diff_state *state) +{ +	int rc = ENOMEM; +	struct diff_data *left = &state->left; +	struct diff_data *right = &state->right; +	int *kd_buf; + +	debug("\n** %s\n", __func__); +	debug("left:\n"); +	debug_dump(left); +	debug("right:\n"); +	debug_dump(right); + +	/* Allocate two columns of a Myers graph, one for the forward and one +	 * for the backward traversal. */ +	unsigned int max = left->atoms.len + right->atoms.len; +	size_t kd_len = max + 1; +	size_t kd_buf_size = kd_len << 1; + +	if (state->kd_buf_size < kd_buf_size) { +		kd_buf = reallocarray(state->kd_buf, kd_buf_size, +		    sizeof(int)); +		if (!kd_buf) +			return ENOMEM; +		state->kd_buf = kd_buf; +		state->kd_buf_size = kd_buf_size; +	} else +		kd_buf = state->kd_buf; +	int i; +	for (i = 0; i < kd_buf_size; i++) +		kd_buf[i] = -1; +	int *kd_forward = kd_buf; +	int *kd_backward = kd_buf + kd_len; +	int max_effort = shift_sqrt(max/2); + +	if (max_effort < DIFF_EFFORT_MIN) +		max_effort = DIFF_EFFORT_MIN; + +	/* The 'k' axis in Myers spans positive and negative indexes, so point +	 * the kd to the middle. +	 * It is then possible to index from -max/2 .. max/2. */ +	kd_forward += max/2; +	kd_backward += max/2; + +	int d; +	struct diff_box mid_snake = {}; +	bool found_midpoint = false; +	for (d = 0; d <= (max/2); d++) { +		int r; +		r = diff_divide_myers_forward(&found_midpoint, left, right, +					      kd_forward, kd_backward, d, +					      &mid_snake); +		if (r) +			return r; +		if (found_midpoint) +			break; +		r = diff_divide_myers_backward(&found_midpoint, left, right, +					       kd_forward, kd_backward, d, +					       &mid_snake); +		if (r) +			return r; +		if (found_midpoint) +			break; + +		/* Limit the effort spent looking for a mid snake. If files have +		 * very few lines in common, the effort spent to find nice mid +		 * snakes is just not worth it, the diff result will still be +		 * essentially minus everything on the left, plus everything on +		 * the right, with a few useless matches here and there. */ +		if (d > max_effort) { +			/* pick the furthest reaching point from +			 * kd_forward and kd_backward, and use that as a +			 * midpoint, to not step into another diff algo +			 * recursion with unchanged box. */ +			int delta = (int)right->atoms.len - (int)left->atoms.len; +			int x = 0; +			int y; +			int i; +			int best_forward_i = 0; +			int best_forward_distance = 0; +			int best_backward_i = 0; +			int best_backward_distance = 0; +			int distance; +			int best_forward_x; +			int best_forward_y; +			int best_backward_x; +			int best_backward_y; + +			debug("~~~ HIT d = %d > max_effort = %d\n", d, max_effort); +			debug_dump_myers_graph(left, right, NULL, +					       kd_forward, d, +					       kd_backward, d); + +			for (i = d; i >= -d; i -= 2) { +				if (i >= -(int)right->atoms.len && i <= (int)left->atoms.len) { +					x = kd_forward[i]; +					y = xk_to_y(x, i); +					distance = x + y; +					if (distance > best_forward_distance) { +						best_forward_distance = distance; +						best_forward_i = i; +					} +				} + +				if (i >= -(int)left->atoms.len && i <= (int)right->atoms.len) { +					x = kd_backward[i]; +					y = xc_to_y(x, i, delta); +					distance = (right->atoms.len - x) +						+ (left->atoms.len - y); +					if (distance >= best_backward_distance) { +						best_backward_distance = distance; +						best_backward_i = i; +					} +				} +			} + +			/* The myers-divide didn't meet in the middle. We just +			 * figured out the places where the forward path +			 * advanced the most, and the backward path advanced the +			 * most. Just divide at whichever one of those two is better. +			 * +			 *   o-o +			 *     | +			 *     o +			 *      \ +			 *       o +			 *        \ +			 *         F <-- cut here +			 * +			 * +			 * +			 *           or here --> B +			 *                        \ +			 *                         o +			 *                          \ +			 *                           o +			 *                           | +			 *                           o-o +			 */ +			best_forward_x = kd_forward[best_forward_i]; +			best_forward_y = xk_to_y(best_forward_x, best_forward_i); +			best_backward_x = kd_backward[best_backward_i]; +			best_backward_y = xc_to_y(best_backward_x, best_backward_i, delta); + +			if (best_forward_distance >= best_backward_distance) { +				x = best_forward_x; +				y = best_forward_y; +			} else { +				x = best_backward_x; +				y = best_backward_y; +			} + +			debug("max_effort cut at x=%d y=%d\n", x, y); +			if (x < 0 || y < 0 +			    || x > left->atoms.len || y > right->atoms.len) +				break; + +			found_midpoint = true; +			mid_snake = (struct diff_box){ +				.left_start = x, +				.left_end = x, +				.right_start = y, +				.right_end = y, +			}; +			break; +		} +	} + +	if (!found_midpoint) { +		/* Divide and conquer failed to find a meeting point. Use the +		 * fallback_algo defined in the algo_config (leave this to the +		 * caller). This is just paranoia/sanity, we normally should +		 * always find a midpoint. +		 */ +		debug(" no midpoint \n"); +		rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK; +		goto return_rc; +	} else { +		debug(" mid snake L: %u to %u of %u   R: %u to %u of %u\n", +		      mid_snake.left_start, mid_snake.left_end, left->atoms.len, +		      mid_snake.right_start, mid_snake.right_end, +		      right->atoms.len); + +		/* Section before the mid-snake.  */ +		debug("Section before the mid-snake\n"); + +		struct diff_atom *left_atom = &left->atoms.head[0]; +		unsigned int left_section_len = mid_snake.left_start; +		struct diff_atom *right_atom = &right->atoms.head[0]; +		unsigned int right_section_len = mid_snake.right_start; + +		if (left_section_len && right_section_len) { +			/* Record an unsolved chunk, the caller will apply +			 * inner_algo() on this chunk. */ +			if (!diff_state_add_chunk(state, false, +						  left_atom, left_section_len, +						  right_atom, +						  right_section_len)) +				goto return_rc; +		} else if (left_section_len && !right_section_len) { +			/* Only left atoms and none on the right, they form a +			 * "minus" chunk, then. */ +			if (!diff_state_add_chunk(state, true, +						  left_atom, left_section_len, +						  right_atom, 0)) +				goto return_rc; +		} else if (!left_section_len && right_section_len) { +			/* No left atoms, only atoms on the right, they form a +			 * "plus" chunk, then. */ +			if (!diff_state_add_chunk(state, true, +						  left_atom, 0, +						  right_atom, +						  right_section_len)) +				goto return_rc; +		} +		/* else: left_section_len == 0 and right_section_len == 0, i.e. +		 * nothing before the mid-snake. */ + +		if (mid_snake.left_end > mid_snake.left_start +		    || mid_snake.right_end > mid_snake.right_start) { +			/* The midpoint is a section of identical data on both +			 * sides, or a certain differing line: that section +			 * immediately becomes a solved chunk. */ +			debug("the mid-snake\n"); +			if (!diff_state_add_chunk(state, true, +				  &left->atoms.head[mid_snake.left_start], +				  mid_snake.left_end - mid_snake.left_start, +				  &right->atoms.head[mid_snake.right_start], +				  mid_snake.right_end - mid_snake.right_start)) +				goto return_rc; +		} + +		/* Section after the mid-snake. */ +		debug("Section after the mid-snake\n"); +		debug("  left_end %u  right_end %u\n", +		      mid_snake.left_end, mid_snake.right_end); +		debug("  left_count %u  right_count %u\n", +		      left->atoms.len, right->atoms.len); +		left_atom = &left->atoms.head[mid_snake.left_end]; +		left_section_len = left->atoms.len - mid_snake.left_end; +		right_atom = &right->atoms.head[mid_snake.right_end]; +		right_section_len = right->atoms.len - mid_snake.right_end; + +		if (left_section_len && right_section_len) { +			/* Record an unsolved chunk, the caller will apply +			 * inner_algo() on this chunk. */ +			if (!diff_state_add_chunk(state, false, +						  left_atom, left_section_len, +						  right_atom, +						  right_section_len)) +				goto return_rc; +		} else if (left_section_len && !right_section_len) { +			/* Only left atoms and none on the right, they form a +			 * "minus" chunk, then. */ +			if (!diff_state_add_chunk(state, true, +						  left_atom, left_section_len, +						  right_atom, 0)) +				goto return_rc; +		} else if (!left_section_len && right_section_len) { +			/* No left atoms, only atoms on the right, they form a +			 * "plus" chunk, then. */ +			if (!diff_state_add_chunk(state, true, +						  left_atom, 0, +						  right_atom, +						  right_section_len)) +				goto return_rc; +		} +		/* else: left_section_len == 0 and right_section_len == 0, i.e. +		 * nothing after the mid-snake. */ +	} + +	rc = DIFF_RC_OK; + +return_rc: +	debug("** END %s\n", __func__); +	return rc; +} + +/* Myers Diff tracing from the start all the way through to the end, requiring + * quadratic amounts of memory. This can fail if the required space surpasses + * algo_config->permitted_state_size. */ +int +diff_algo_myers(const struct diff_algo_config *algo_config, +		struct diff_state *state) +{ +	/* do a diff_divide_myers_forward() without a _backward(), so that it +	 * walks forward across the entire files to reach the end. Keep each +	 * run's state, and do a final backtrace. */ +	int rc = ENOMEM; +	struct diff_data *left = &state->left; +	struct diff_data *right = &state->right; +	int *kd_buf; + +	debug("\n** %s\n", __func__); +	debug("left:\n"); +	debug_dump(left); +	debug("right:\n"); +	debug_dump(right); +	debug_dump_myers_graph(left, right, NULL, NULL, 0, NULL, 0); + +	/* Allocate two columns of a Myers graph, one for the forward and one +	 * for the backward traversal. */ +	unsigned int max = left->atoms.len + right->atoms.len; +	size_t kd_len = max + 1 + max; +	size_t kd_buf_size = kd_len * kd_len; +	size_t kd_state_size = kd_buf_size * sizeof(int); +	debug("state size: %zu\n", kd_state_size); +	if (kd_buf_size < kd_len /* overflow? */ +	    || (SIZE_MAX / kd_len ) < kd_len +	    || kd_state_size > algo_config->permitted_state_size) { +		debug("state size %zu > permitted_state_size %zu, use fallback_algo\n", +		      kd_state_size, algo_config->permitted_state_size); +		return DIFF_RC_USE_DIFF_ALGO_FALLBACK; +	} + +	if (state->kd_buf_size < kd_buf_size) { +		kd_buf = reallocarray(state->kd_buf, kd_buf_size, +		    sizeof(int)); +		if (!kd_buf) +			return ENOMEM; +		state->kd_buf = kd_buf; +		state->kd_buf_size = kd_buf_size; +	} else +		kd_buf = state->kd_buf; + +	int i; +	for (i = 0; i < kd_buf_size; i++) +		kd_buf[i] = -1; + +	/* The 'k' axis in Myers spans positive and negative indexes, so point +	 * the kd to the middle. +	 * It is then possible to index from -max .. max. */ +	int *kd_origin = kd_buf + max; +	int *kd_column = kd_origin; + +	int d; +	int backtrack_d = -1; +	int backtrack_k = 0; +	int k; +	int x, y; +	for (d = 0; d <= max; d++, kd_column += kd_len) { +		debug("-- %s d=%d\n", __func__, d); + +		for (k = d; k >= -d; k -= 2) { +			if (k < -(int)right->atoms.len +			    || k > (int)left->atoms.len) { +				/* This diagonal is completely outside of the +				 * Myers graph, don't calculate it. */ +				if (k < -(int)right->atoms.len) +					debug(" %d k <" +					      " -(int)right->atoms.len %d\n", +					      k, -(int)right->atoms.len); +				else +					debug(" %d k > left->atoms.len %d\n", k, +					      left->atoms.len); +				if (k < 0) { +					/* We are traversing negatively, and +					 * already below the entire graph, +					 * nothing will come of this. */ +					debug(" break\n"); +					break; +				} +				debug(" continue\n"); +				continue; +			} + +			if (d == 0) { +				/* This is the initializing step. There is no +				 * prev_k yet, get the initial x from the top +				 * left of the Myers graph. */ +				x = 0; +			} else { +				int *kd_prev_column = kd_column - kd_len; + +				/* Favoring "-" lines first means favoring +				 * moving rightwards in the Myers graph. +				 * For this, all k should derive from k - 1, +				 * only the bottom most k derive from k + 1: +				 * +				 *      | d=   0   1   2 +				 *  ----+---------------- +				 *  k=  | +				 *   2  |             2,0 <-- from +				 *      |            /        prev_k = 2 - 1 = 1 +				 *   1  |         1,0 +				 *      |        / +				 *   0  |  -->0,0     3,3 +				 *      |       \\   / +				 *  -1  |         0,1 <-- bottom most for d=1 +				 *      |           \\    from prev_k = -1+1 = 0 +				 *  -2  |             0,2 <-- bottom most for +				 *                            d=2 from +				 *                            prev_k = -2+1 = -1 +				 * +				 * Except when a k + 1 from a previous run +				 * already means a further advancement in the +				 * graph. +				 * If k == d, there is no k + 1 and k - 1 is the +				 * only option. +				 * If k < d, use k + 1 in case that yields a +				 * larger x. Also use k + 1 if k - 1 is outside +				 * the graph. +				 */ +				if (k > -d +				    && (k == d +					|| (k - 1 >= -(int)right->atoms.len +					    && kd_prev_column[k - 1] +					       >= kd_prev_column[k + 1]))) { +					/* Advance from k - 1. +					 * From position prev_k, step to the +					 * right in the Myers graph: x += 1. +					 */ +					int prev_k = k - 1; +					int prev_x = kd_prev_column[prev_k]; +					x = prev_x + 1; +				} else { +					/* The bottom most one. +					 * From position prev_k, step to the +					 * bottom in the Myers graph: y += 1. +					 * Incrementing y is achieved by +					 * decrementing k while keeping the same +					 * x. (since we're deriving y from y = +					 * x - k). +					 */ +					int prev_k = k + 1; +					int prev_x = kd_prev_column[prev_k]; +					x = prev_x; +				} +			} + +			/* Slide down any snake that we might find here. */ +			while (x < left->atoms.len +			       && xk_to_y(x, k) < right->atoms.len) { +				bool same; +				int r = diff_atom_same(&same, +						       &left->atoms.head[x], +						       &right->atoms.head[ +							xk_to_y(x, k)]); +				if (r) +					return r; +				if (!same) +					break; +				x++; +			} +			kd_column[k] = x; + +			if (x == left->atoms.len +			    && xk_to_y(x, k) == right->atoms.len) { +				/* Found a path */ +				backtrack_d = d; +				backtrack_k = k; +				debug("Reached the end at d = %d, k = %d\n", +				      backtrack_d, backtrack_k); +				break; +			} +		} + +		if (backtrack_d >= 0) +			break; +	} + +	debug_dump_myers_graph(left, right, kd_origin, NULL, 0, NULL, 0); + +	/* backtrack. A matrix spanning from start to end of the file is ready: +	 * +	 *      | d=   0   1   2   3   4 +	 *  ----+--------------------------------- +	 *  k=  | +	 *   3  | +	 *      | +	 *   2  |             2,0 +	 *      |            / +	 *   1  |         1,0     4,3 +	 *      |        /       /   \ +	 *   0  |  -->0,0     3,3     4,4 --> backtrack_d = 4, backtrack_k = 0 +	 *      |        \   /   \ +	 *  -1  |         0,1     3,4 +	 *      |            \ +	 *  -2  |             0,2 +	 *      | +	 * +	 * From (4,4) backwards, find the previous position that is the largest, and remember it. +	 * +	 */ +	for (d = backtrack_d, k = backtrack_k; d >= 0; d--) { +		x = kd_column[k]; +		y = xk_to_y(x, k); + +		/* When the best position is identified, remember it for that +		 * kd_column. +		 * That kd_column is no longer needed otherwise, so just +		 * re-purpose kd_column[0] = x and kd_column[1] = y, +		 * so that there is no need to allocate more memory. +		 */ +		kd_column[0] = x; +		kd_column[1] = y; +		debug("Backtrack d=%d: xy=(%d, %d)\n", +		      d, kd_column[0], kd_column[1]); + +		/* Don't access memory before kd_buf */ +		if (d == 0) +			break; +		int *kd_prev_column = kd_column - kd_len; + +		/* When y == 0, backtracking downwards (k-1) is the only way. +		 * When x == 0, backtracking upwards (k+1) is the only way. +		 * +		 *      | d=   0   1   2   3   4 +		 *  ----+--------------------------------- +		 *  k=  | +		 *   3  | +		 *      |                ..y == 0 +		 *   2  |             2,0 +		 *      |            / +		 *   1  |         1,0     4,3 +		 *      |        /       /   \ +		 *   0  |  -->0,0     3,3     4,4 --> backtrack_d = 4, +		 *      |        \   /   \            backtrack_k = 0 +		 *  -1  |         0,1     3,4 +		 *      |            \ +		 *  -2  |             0,2__ +		 *      |                  x == 0 +		 */ +		if (y == 0 +		    || (x > 0 +			&& kd_prev_column[k - 1] >= kd_prev_column[k + 1])) { +			k = k - 1; +			debug("prev k=k-1=%d x=%d y=%d\n", +			      k, kd_prev_column[k], +			      xk_to_y(kd_prev_column[k], k)); +		} else { +			k = k + 1; +			debug("prev k=k+1=%d x=%d y=%d\n", +			      k, kd_prev_column[k], +			      xk_to_y(kd_prev_column[k], k)); +		} +		kd_column = kd_prev_column; +	} + +	/* Forwards again, this time recording the diff chunks. +	 * Definitely start from 0,0. kd_column[0] may actually point to the +	 * bottom of a snake starting at 0,0 */ +	x = 0; +	y = 0; + +	kd_column = kd_origin; +	for (d = 0; d <= backtrack_d; d++, kd_column += kd_len) { +		int next_x = kd_column[0]; +		int next_y = kd_column[1]; +		debug("Forward track from xy(%d,%d) to xy(%d,%d)\n", +		      x, y, next_x, next_y); + +		struct diff_atom *left_atom = &left->atoms.head[x]; +		int left_section_len = next_x - x; +		struct diff_atom *right_atom = &right->atoms.head[y]; +		int right_section_len = next_y - y; + +		rc = ENOMEM; +		if (left_section_len && right_section_len) { +			/* This must be a snake slide. +			 * Snake slides have a straight line leading into them +			 * (except when starting at (0,0)). Find out whether the +			 * lead-in is horizontal or vertical: +			 * +			 *     left +			 *  ----------> +			 *  | +			 * r|   o-o        o +			 * i|      \       | +			 * g|       o      o +			 * h|        \      \ +			 * t|         o      o +			 *  v +			 * +			 * If left_section_len > right_section_len, the lead-in +			 * is horizontal, meaning first remove one atom from the +			 * left before sliding down the snake. +			 * If right_section_len > left_section_len, the lead-in +			 * is vetical, so add one atom from the right before +			 * sliding down the snake. */ +			if (left_section_len == right_section_len + 1) { +				if (!diff_state_add_chunk(state, true, +							  left_atom, 1, +							  right_atom, 0)) +					goto return_rc; +				left_atom++; +				left_section_len--; +			} else if (right_section_len == left_section_len + 1) { +				if (!diff_state_add_chunk(state, true, +							  left_atom, 0, +							  right_atom, 1)) +					goto return_rc; +				right_atom++; +				right_section_len--; +			} else if (left_section_len != right_section_len) { +				/* The numbers are making no sense. Should never +				 * happen. */ +				rc = DIFF_RC_USE_DIFF_ALGO_FALLBACK; +				goto return_rc; +			} + +			if (!diff_state_add_chunk(state, true, +						  left_atom, left_section_len, +						  right_atom, +						  right_section_len)) +				goto return_rc; +		} else if (left_section_len && !right_section_len) { +			/* Only left atoms and none on the right, they form a +			 * "minus" chunk, then. */ +			if (!diff_state_add_chunk(state, true, +						  left_atom, left_section_len, +						  right_atom, 0)) +				goto return_rc; +		} else if (!left_section_len && right_section_len) { +			/* No left atoms, only atoms on the right, they form a +			 * "plus" chunk, then. */ +			if (!diff_state_add_chunk(state, true, +						  left_atom, 0, +						  right_atom, +						  right_section_len)) +				goto return_rc; +		} + +		x = next_x; +		y = next_y; +	} + +	rc = DIFF_RC_OK; + +return_rc: +	debug("** END %s rc=%d\n", __func__, rc); +	return rc; +} | 
