diff options
Diffstat (limited to 'llvm/lib/Analysis/ModuleSummaryAnalysis.cpp')
| -rw-r--r-- | llvm/lib/Analysis/ModuleSummaryAnalysis.cpp | 881 | 
1 files changed, 881 insertions, 0 deletions
| diff --git a/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp b/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp new file mode 100644 index 000000000000..e25eb290a665 --- /dev/null +++ b/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp @@ -0,0 +1,881 @@ +//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass builds a ModuleSummaryIndex object for the module, to be written +// to bitcode or LLVM assembly. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ModuleSummaryAnalysis.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/IndirectCallPromotionAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/TypeMetadataUtils.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSummaryIndex.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/Object/ModuleSymbolTable.h" +#include "llvm/Object/SymbolicFile.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "module-summary-analysis" + +// Option to force edges cold which will block importing when the +// -import-cold-multiplier is set to 0. Useful for debugging. +FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = +    FunctionSummary::FSHT_None; +cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( +    "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), +    cl::desc("Force all edges in the function summary to cold"), +    cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), +               clEnumValN(FunctionSummary::FSHT_AllNonCritical, +                          "all-non-critical", "All non-critical edges."), +               clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); + +cl::opt<std::string> ModuleSummaryDotFile( +    "module-summary-dot-file", cl::init(""), cl::Hidden, +    cl::value_desc("filename"), +    cl::desc("File to emit dot graph of new summary into.")); + +// Walk through the operands of a given User via worklist iteration and populate +// the set of GlobalValue references encountered. Invoked either on an +// Instruction or a GlobalVariable (which walks its initializer). +// Return true if any of the operands contains blockaddress. This is important +// to know when computing summary for global var, because if global variable +// references basic block address we can't import it separately from function +// containing that basic block. For simplicity we currently don't import such +// global vars at all. When importing function we aren't interested if any  +// instruction in it takes an address of any basic block, because instruction +// can only take an address of basic block located in the same function. +static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, +                         SetVector<ValueInfo> &RefEdges, +                         SmallPtrSet<const User *, 8> &Visited) { +  bool HasBlockAddress = false; +  SmallVector<const User *, 32> Worklist; +  Worklist.push_back(CurUser); + +  while (!Worklist.empty()) { +    const User *U = Worklist.pop_back_val(); + +    if (!Visited.insert(U).second) +      continue; + +    ImmutableCallSite CS(U); + +    for (const auto &OI : U->operands()) { +      const User *Operand = dyn_cast<User>(OI); +      if (!Operand) +        continue; +      if (isa<BlockAddress>(Operand)) { +        HasBlockAddress = true; +        continue; +      } +      if (auto *GV = dyn_cast<GlobalValue>(Operand)) { +        // We have a reference to a global value. This should be added to +        // the reference set unless it is a callee. Callees are handled +        // specially by WriteFunction and are added to a separate list. +        if (!(CS && CS.isCallee(&OI))) +          RefEdges.insert(Index.getOrInsertValueInfo(GV)); +        continue; +      } +      Worklist.push_back(Operand); +    } +  } +  return HasBlockAddress; +} + +static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, +                                          ProfileSummaryInfo *PSI) { +  if (!PSI) +    return CalleeInfo::HotnessType::Unknown; +  if (PSI->isHotCount(ProfileCount)) +    return CalleeInfo::HotnessType::Hot; +  if (PSI->isColdCount(ProfileCount)) +    return CalleeInfo::HotnessType::Cold; +  return CalleeInfo::HotnessType::None; +} + +static bool isNonRenamableLocal(const GlobalValue &GV) { +  return GV.hasSection() && GV.hasLocalLinkage(); +} + +/// Determine whether this call has all constant integer arguments (excluding +/// "this") and summarize it to VCalls or ConstVCalls as appropriate. +static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, +                          SetVector<FunctionSummary::VFuncId> &VCalls, +                          SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { +  std::vector<uint64_t> Args; +  // Start from the second argument to skip the "this" pointer. +  for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) { +    auto *CI = dyn_cast<ConstantInt>(Arg); +    if (!CI || CI->getBitWidth() > 64) { +      VCalls.insert({Guid, Call.Offset}); +      return; +    } +    Args.push_back(CI->getZExtValue()); +  } +  ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); +} + +/// If this intrinsic call requires that we add information to the function +/// summary, do so via the non-constant reference arguments. +static void addIntrinsicToSummary( +    const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, +    SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, +    SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, +    SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, +    SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, +    DominatorTree &DT) { +  switch (CI->getCalledFunction()->getIntrinsicID()) { +  case Intrinsic::type_test: { +    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); +    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); +    if (!TypeId) +      break; +    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); + +    // Produce a summary from type.test intrinsics. We only summarize type.test +    // intrinsics that are used other than by an llvm.assume intrinsic. +    // Intrinsics that are assumed are relevant only to the devirtualization +    // pass, not the type test lowering pass. +    bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { +      auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser()); +      if (!AssumeCI) +        return true; +      Function *F = AssumeCI->getCalledFunction(); +      return !F || F->getIntrinsicID() != Intrinsic::assume; +    }); +    if (HasNonAssumeUses) +      TypeTests.insert(Guid); + +    SmallVector<DevirtCallSite, 4> DevirtCalls; +    SmallVector<CallInst *, 4> Assumes; +    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); +    for (auto &Call : DevirtCalls) +      addVCallToSet(Call, Guid, TypeTestAssumeVCalls, +                    TypeTestAssumeConstVCalls); + +    break; +  } + +  case Intrinsic::type_checked_load: { +    auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); +    auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); +    if (!TypeId) +      break; +    GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); + +    SmallVector<DevirtCallSite, 4> DevirtCalls; +    SmallVector<Instruction *, 4> LoadedPtrs; +    SmallVector<Instruction *, 4> Preds; +    bool HasNonCallUses = false; +    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, +                                               HasNonCallUses, CI, DT); +    // Any non-call uses of the result of llvm.type.checked.load will +    // prevent us from optimizing away the llvm.type.test. +    if (HasNonCallUses) +      TypeTests.insert(Guid); +    for (auto &Call : DevirtCalls) +      addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, +                    TypeCheckedLoadConstVCalls); + +    break; +  } +  default: +    break; +  } +} + +static bool isNonVolatileLoad(const Instruction *I) { +  if (const auto *LI = dyn_cast<LoadInst>(I)) +    return !LI->isVolatile(); + +  return false; +} + +static bool isNonVolatileStore(const Instruction *I) { +  if (const auto *SI = dyn_cast<StoreInst>(I)) +    return !SI->isVolatile(); + +  return false; +} + +static void computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M, +                                   const Function &F, BlockFrequencyInfo *BFI, +                                   ProfileSummaryInfo *PSI, DominatorTree &DT, +                                   bool HasLocalsInUsedOrAsm, +                                   DenseSet<GlobalValue::GUID> &CantBePromoted, +                                   bool IsThinLTO) { +  // Summary not currently supported for anonymous functions, they should +  // have been named. +  assert(F.hasName()); + +  unsigned NumInsts = 0; +  // Map from callee ValueId to profile count. Used to accumulate profile +  // counts for all static calls to a given callee. +  MapVector<ValueInfo, CalleeInfo> CallGraphEdges; +  SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; +  SetVector<GlobalValue::GUID> TypeTests; +  SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, +      TypeCheckedLoadVCalls; +  SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, +      TypeCheckedLoadConstVCalls; +  ICallPromotionAnalysis ICallAnalysis; +  SmallPtrSet<const User *, 8> Visited; + +  // Add personality function, prefix data and prologue data to function's ref +  // list. +  findRefEdges(Index, &F, RefEdges, Visited); +  std::vector<const Instruction *> NonVolatileLoads; +  std::vector<const Instruction *> NonVolatileStores; + +  bool HasInlineAsmMaybeReferencingInternal = false; +  for (const BasicBlock &BB : F) +    for (const Instruction &I : BB) { +      if (isa<DbgInfoIntrinsic>(I)) +        continue; +      ++NumInsts; +      // Regular LTO module doesn't participate in ThinLTO import, +      // so no reference from it can be read/writeonly, since this +      // would require importing variable as local copy +      if (IsThinLTO) { +        if (isNonVolatileLoad(&I)) { +          // Postpone processing of non-volatile load instructions +          // See comments below +          Visited.insert(&I); +          NonVolatileLoads.push_back(&I); +          continue; +        } else if (isNonVolatileStore(&I)) { +          Visited.insert(&I); +          NonVolatileStores.push_back(&I); +          // All references from second operand of store (destination address) +          // can be considered write-only if they're not referenced by any +          // non-store instruction. References from first operand of store +          // (stored value) can't be treated either as read- or as write-only +          // so we add them to RefEdges as we do with all other instructions +          // except non-volatile load. +          Value *Stored = I.getOperand(0); +          if (auto *GV = dyn_cast<GlobalValue>(Stored)) +            // findRefEdges will try to examine GV operands, so instead +            // of calling it we should add GV to RefEdges directly. +            RefEdges.insert(Index.getOrInsertValueInfo(GV)); +          else if (auto *U = dyn_cast<User>(Stored)) +            findRefEdges(Index, U, RefEdges, Visited); +          continue; +        } +      } +      findRefEdges(Index, &I, RefEdges, Visited); +      auto CS = ImmutableCallSite(&I); +      if (!CS) +        continue; + +      const auto *CI = dyn_cast<CallInst>(&I); +      // Since we don't know exactly which local values are referenced in inline +      // assembly, conservatively mark the function as possibly referencing +      // a local value from inline assembly to ensure we don't export a +      // reference (which would require renaming and promotion of the +      // referenced value). +      if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) +        HasInlineAsmMaybeReferencingInternal = true; + +      auto *CalledValue = CS.getCalledValue(); +      auto *CalledFunction = CS.getCalledFunction(); +      if (CalledValue && !CalledFunction) { +        CalledValue = CalledValue->stripPointerCastsNoFollowAliases(); +        // Stripping pointer casts can reveal a called function. +        CalledFunction = dyn_cast<Function>(CalledValue); +      } +      // Check if this is an alias to a function. If so, get the +      // called aliasee for the checks below. +      if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { +        assert(!CalledFunction && "Expected null called function in callsite for alias"); +        CalledFunction = dyn_cast<Function>(GA->getBaseObject()); +      } +      // Check if this is a direct call to a known function or a known +      // intrinsic, or an indirect call with profile data. +      if (CalledFunction) { +        if (CI && CalledFunction->isIntrinsic()) { +          addIntrinsicToSummary( +              CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, +              TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); +          continue; +        } +        // We should have named any anonymous globals +        assert(CalledFunction->hasName()); +        auto ScaledCount = PSI->getProfileCount(&I, BFI); +        auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) +                                   : CalleeInfo::HotnessType::Unknown; +        if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) +          Hotness = CalleeInfo::HotnessType::Cold; + +        // Use the original CalledValue, in case it was an alias. We want +        // to record the call edge to the alias in that case. Eventually +        // an alias summary will be created to associate the alias and +        // aliasee. +        auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( +            cast<GlobalValue>(CalledValue))]; +        ValueInfo.updateHotness(Hotness); +        // Add the relative block frequency to CalleeInfo if there is no profile +        // information. +        if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { +          uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); +          uint64_t EntryFreq = BFI->getEntryFreq(); +          ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); +        } +      } else { +        // Skip inline assembly calls. +        if (CI && CI->isInlineAsm()) +          continue; +        // Skip direct calls. +        if (!CalledValue || isa<Constant>(CalledValue)) +          continue; + +        // Check if the instruction has a callees metadata. If so, add callees +        // to CallGraphEdges to reflect the references from the metadata, and +        // to enable importing for subsequent indirect call promotion and +        // inlining. +        if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { +          for (auto &Op : MD->operands()) { +            Function *Callee = mdconst::extract_or_null<Function>(Op); +            if (Callee) +              CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; +          } +        } + +        uint32_t NumVals, NumCandidates; +        uint64_t TotalCount; +        auto CandidateProfileData = +            ICallAnalysis.getPromotionCandidatesForInstruction( +                &I, NumVals, TotalCount, NumCandidates); +        for (auto &Candidate : CandidateProfileData) +          CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] +              .updateHotness(getHotness(Candidate.Count, PSI)); +      } +    } + +  std::vector<ValueInfo> Refs; +  if (IsThinLTO) { +    auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, +                           SetVector<ValueInfo> &Edges, +                           SmallPtrSet<const User *, 8> &Cache) { +      for (const auto *I : Instrs) { +        Cache.erase(I); +        findRefEdges(Index, I, Edges, Cache); +      } +    }; + +    // By now we processed all instructions in a function, except +    // non-volatile loads and non-volatile value stores. Let's find +    // ref edges for both of instruction sets +    AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); +    // We can add some values to the Visited set when processing load +    // instructions which are also used by stores in NonVolatileStores. +    // For example this can happen if we have following code: +    // +    // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) +    // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) +    // +    // After processing loads we'll add bitcast to the Visited set, and if +    // we use the same set while processing stores, we'll never see store +    // to @bar and @bar will be mistakenly treated as readonly. +    SmallPtrSet<const llvm::User *, 8> StoreCache; +    AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); + +    // If both load and store instruction reference the same variable +    // we won't be able to optimize it. Add all such reference edges +    // to RefEdges set. +    for (auto &VI : StoreRefEdges) +      if (LoadRefEdges.remove(VI)) +        RefEdges.insert(VI); + +    unsigned RefCnt = RefEdges.size(); +    // All new reference edges inserted in two loops below are either +    // read or write only. They will be grouped in the end of RefEdges +    // vector, so we can use a single integer value to identify them. +    for (auto &VI : LoadRefEdges) +      RefEdges.insert(VI); + +    unsigned FirstWORef = RefEdges.size(); +    for (auto &VI : StoreRefEdges) +      RefEdges.insert(VI); + +    Refs = RefEdges.takeVector(); +    for (; RefCnt < FirstWORef; ++RefCnt) +      Refs[RefCnt].setReadOnly(); + +    for (; RefCnt < Refs.size(); ++RefCnt) +      Refs[RefCnt].setWriteOnly(); +  } else { +    Refs = RefEdges.takeVector(); +  } +  // Explicit add hot edges to enforce importing for designated GUIDs for +  // sample PGO, to enable the same inlines as the profiled optimized binary. +  for (auto &I : F.getImportGUIDs()) +    CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( +        ForceSummaryEdgesCold == FunctionSummary::FSHT_All +            ? CalleeInfo::HotnessType::Cold +            : CalleeInfo::HotnessType::Critical); + +  bool NonRenamableLocal = isNonRenamableLocal(F); +  bool NotEligibleForImport = +      NonRenamableLocal || HasInlineAsmMaybeReferencingInternal; +  GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport, +                                    /* Live = */ false, F.isDSOLocal(), +                                    F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr()); +  FunctionSummary::FFlags FunFlags{ +      F.hasFnAttribute(Attribute::ReadNone), +      F.hasFnAttribute(Attribute::ReadOnly), +      F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), +      // FIXME: refactor this to use the same code that inliner is using. +      // Don't try to import functions with noinline attribute. +      F.getAttributes().hasFnAttribute(Attribute::NoInline)}; +  auto FuncSummary = llvm::make_unique<FunctionSummary>( +      Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), +      CallGraphEdges.takeVector(), TypeTests.takeVector(), +      TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), +      TypeTestAssumeConstVCalls.takeVector(), +      TypeCheckedLoadConstVCalls.takeVector()); +  if (NonRenamableLocal) +    CantBePromoted.insert(F.getGUID()); +  Index.addGlobalValueSummary(F, std::move(FuncSummary)); +} + +/// Find function pointers referenced within the given vtable initializer +/// (or subset of an initializer) \p I. The starting offset of \p I within +/// the vtable initializer is \p StartingOffset. Any discovered function +/// pointers are added to \p VTableFuncs along with their cumulative offset +/// within the initializer. +static void findFuncPointers(const Constant *I, uint64_t StartingOffset, +                             const Module &M, ModuleSummaryIndex &Index, +                             VTableFuncList &VTableFuncs) { +  // First check if this is a function pointer. +  if (I->getType()->isPointerTy()) { +    auto Fn = dyn_cast<Function>(I->stripPointerCasts()); +    // We can disregard __cxa_pure_virtual as a possible call target, as +    // calls to pure virtuals are UB. +    if (Fn && Fn->getName() != "__cxa_pure_virtual") +      VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); +    return; +  } + +  // Walk through the elements in the constant struct or array and recursively +  // look for virtual function pointers. +  const DataLayout &DL = M.getDataLayout(); +  if (auto *C = dyn_cast<ConstantStruct>(I)) { +    StructType *STy = dyn_cast<StructType>(C->getType()); +    assert(STy); +    const StructLayout *SL = DL.getStructLayout(C->getType()); + +    for (StructType::element_iterator EB = STy->element_begin(), EI = EB, +                                      EE = STy->element_end(); +         EI != EE; ++EI) { +      auto Offset = SL->getElementOffset(EI - EB); +      unsigned Op = SL->getElementContainingOffset(Offset); +      findFuncPointers(cast<Constant>(I->getOperand(Op)), +                       StartingOffset + Offset, M, Index, VTableFuncs); +    } +  } else if (auto *C = dyn_cast<ConstantArray>(I)) { +    ArrayType *ATy = C->getType(); +    Type *EltTy = ATy->getElementType(); +    uint64_t EltSize = DL.getTypeAllocSize(EltTy); +    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { +      findFuncPointers(cast<Constant>(I->getOperand(i)), +                       StartingOffset + i * EltSize, M, Index, VTableFuncs); +    } +  } +} + +// Identify the function pointers referenced by vtable definition \p V. +static void computeVTableFuncs(ModuleSummaryIndex &Index, +                               const GlobalVariable &V, const Module &M, +                               VTableFuncList &VTableFuncs) { +  if (!V.isConstant()) +    return; + +  findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, +                   VTableFuncs); + +#ifndef NDEBUG +  // Validate that the VTableFuncs list is ordered by offset. +  uint64_t PrevOffset = 0; +  for (auto &P : VTableFuncs) { +    // The findVFuncPointers traversal should have encountered the +    // functions in offset order. We need to use ">=" since PrevOffset +    // starts at 0. +    assert(P.VTableOffset >= PrevOffset); +    PrevOffset = P.VTableOffset; +  } +#endif +} + +/// Record vtable definition \p V for each type metadata it references. +static void +recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, +                                       const GlobalVariable &V, +                                       SmallVectorImpl<MDNode *> &Types) { +  for (MDNode *Type : Types) { +    auto TypeID = Type->getOperand(1).get(); + +    uint64_t Offset = +        cast<ConstantInt>( +            cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) +            ->getZExtValue(); + +    if (auto *TypeId = dyn_cast<MDString>(TypeID)) +      Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) +          .push_back({Offset, Index.getOrInsertValueInfo(&V)}); +  } +} + +static void computeVariableSummary(ModuleSummaryIndex &Index, +                                   const GlobalVariable &V, +                                   DenseSet<GlobalValue::GUID> &CantBePromoted, +                                   const Module &M, +                                   SmallVectorImpl<MDNode *> &Types) { +  SetVector<ValueInfo> RefEdges; +  SmallPtrSet<const User *, 8> Visited; +  bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); +  bool NonRenamableLocal = isNonRenamableLocal(V); +  GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal, +                                    /* Live = */ false, V.isDSOLocal(), +                                    V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr()); + +  VTableFuncList VTableFuncs; +  // If splitting is not enabled, then we compute the summary information +  // necessary for index-based whole program devirtualization. +  if (!Index.enableSplitLTOUnit()) { +    Types.clear(); +    V.getMetadata(LLVMContext::MD_type, Types); +    if (!Types.empty()) { +      // Identify the function pointers referenced by this vtable definition. +      computeVTableFuncs(Index, V, M, VTableFuncs); + +      // Record this vtable definition for each type metadata it references. +      recordTypeIdCompatibleVtableReferences(Index, V, Types); +    } +  } + +  // Don't mark variables we won't be able to internalize as read/write-only. +  bool CanBeInternalized = +      !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && +      !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); +  GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, CanBeInternalized); +  auto GVarSummary = llvm::make_unique<GlobalVarSummary>(Flags, VarFlags, +                                                         RefEdges.takeVector()); +  if (NonRenamableLocal) +    CantBePromoted.insert(V.getGUID()); +  if (HasBlockAddress) +    GVarSummary->setNotEligibleToImport(); +  if (!VTableFuncs.empty()) +    GVarSummary->setVTableFuncs(VTableFuncs); +  Index.addGlobalValueSummary(V, std::move(GVarSummary)); +} + +static void +computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, +                    DenseSet<GlobalValue::GUID> &CantBePromoted) { +  bool NonRenamableLocal = isNonRenamableLocal(A); +  GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal, +                                    /* Live = */ false, A.isDSOLocal(), +                                    A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr()); +  auto AS = llvm::make_unique<AliasSummary>(Flags); +  auto *Aliasee = A.getBaseObject(); +  auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); +  assert(AliaseeVI && "Alias expects aliasee summary to be available"); +  assert(AliaseeVI.getSummaryList().size() == 1 && +         "Expected a single entry per aliasee in per-module index"); +  AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); +  if (NonRenamableLocal) +    CantBePromoted.insert(A.getGUID()); +  Index.addGlobalValueSummary(A, std::move(AS)); +} + +// Set LiveRoot flag on entries matching the given value name. +static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { +  if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) +    for (auto &Summary : VI.getSummaryList()) +      Summary->setLive(true); +} + +ModuleSummaryIndex llvm::buildModuleSummaryIndex( +    const Module &M, +    std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, +    ProfileSummaryInfo *PSI) { +  assert(PSI); +  bool EnableSplitLTOUnit = false; +  if (auto *MD = mdconst::extract_or_null<ConstantInt>( +          M.getModuleFlag("EnableSplitLTOUnit"))) +    EnableSplitLTOUnit = MD->getZExtValue(); +  ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); + +  // Identify the local values in the llvm.used and llvm.compiler.used sets, +  // which should not be exported as they would then require renaming and +  // promotion, but we may have opaque uses e.g. in inline asm. We collect them +  // here because we use this information to mark functions containing inline +  // assembly calls as not importable. +  SmallPtrSet<GlobalValue *, 8> LocalsUsed; +  SmallPtrSet<GlobalValue *, 8> Used; +  // First collect those in the llvm.used set. +  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false); +  // Next collect those in the llvm.compiler.used set. +  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true); +  DenseSet<GlobalValue::GUID> CantBePromoted; +  for (auto *V : Used) { +    if (V->hasLocalLinkage()) { +      LocalsUsed.insert(V); +      CantBePromoted.insert(V->getGUID()); +    } +  } + +  bool HasLocalInlineAsmSymbol = false; +  if (!M.getModuleInlineAsm().empty()) { +    // Collect the local values defined by module level asm, and set up +    // summaries for these symbols so that they can be marked as NoRename, +    // to prevent export of any use of them in regular IR that would require +    // renaming within the module level asm. Note we don't need to create a +    // summary for weak or global defs, as they don't need to be flagged as +    // NoRename, and defs in module level asm can't be imported anyway. +    // Also, any values used but not defined within module level asm should +    // be listed on the llvm.used or llvm.compiler.used global and marked as +    // referenced from there. +    ModuleSymbolTable::CollectAsmSymbols( +        M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { +          // Symbols not marked as Weak or Global are local definitions. +          if (Flags & (object::BasicSymbolRef::SF_Weak | +                       object::BasicSymbolRef::SF_Global)) +            return; +          HasLocalInlineAsmSymbol = true; +          GlobalValue *GV = M.getNamedValue(Name); +          if (!GV) +            return; +          assert(GV->isDeclaration() && "Def in module asm already has definition"); +          GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage, +                                              /* NotEligibleToImport = */ true, +                                              /* Live = */ true, +                                              /* Local */ GV->isDSOLocal(), +                                              GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr()); +          CantBePromoted.insert(GV->getGUID()); +          // Create the appropriate summary type. +          if (Function *F = dyn_cast<Function>(GV)) { +            std::unique_ptr<FunctionSummary> Summary = +                llvm::make_unique<FunctionSummary>( +                    GVFlags, /*InstCount=*/0, +                    FunctionSummary::FFlags{ +                        F->hasFnAttribute(Attribute::ReadNone), +                        F->hasFnAttribute(Attribute::ReadOnly), +                        F->hasFnAttribute(Attribute::NoRecurse), +                        F->returnDoesNotAlias(), +                        /* NoInline = */ false}, +                    /*EntryCount=*/0, ArrayRef<ValueInfo>{}, +                    ArrayRef<FunctionSummary::EdgeTy>{}, +                    ArrayRef<GlobalValue::GUID>{}, +                    ArrayRef<FunctionSummary::VFuncId>{}, +                    ArrayRef<FunctionSummary::VFuncId>{}, +                    ArrayRef<FunctionSummary::ConstVCall>{}, +                    ArrayRef<FunctionSummary::ConstVCall>{}); +            Index.addGlobalValueSummary(*GV, std::move(Summary)); +          } else { +            std::unique_ptr<GlobalVarSummary> Summary = +                llvm::make_unique<GlobalVarSummary>( +                    GVFlags, GlobalVarSummary::GVarFlags(false, false), +                    ArrayRef<ValueInfo>{}); +            Index.addGlobalValueSummary(*GV, std::move(Summary)); +          } +        }); +  } + +  bool IsThinLTO = true; +  if (auto *MD = +          mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) +    IsThinLTO = MD->getZExtValue(); + +  // Compute summaries for all functions defined in module, and save in the +  // index. +  for (auto &F : M) { +    if (F.isDeclaration()) +      continue; + +    DominatorTree DT(const_cast<Function &>(F)); +    BlockFrequencyInfo *BFI = nullptr; +    std::unique_ptr<BlockFrequencyInfo> BFIPtr; +    if (GetBFICallback) +      BFI = GetBFICallback(F); +    else if (F.hasProfileData()) { +      LoopInfo LI{DT}; +      BranchProbabilityInfo BPI{F, LI}; +      BFIPtr = llvm::make_unique<BlockFrequencyInfo>(F, BPI, LI); +      BFI = BFIPtr.get(); +    } + +    computeFunctionSummary(Index, M, F, BFI, PSI, DT, +                           !LocalsUsed.empty() || HasLocalInlineAsmSymbol, +                           CantBePromoted, IsThinLTO); +  } + +  // Compute summaries for all variables defined in module, and save in the +  // index. +  SmallVector<MDNode *, 2> Types; +  for (const GlobalVariable &G : M.globals()) { +    if (G.isDeclaration()) +      continue; +    computeVariableSummary(Index, G, CantBePromoted, M, Types); +  } + +  // Compute summaries for all aliases defined in module, and save in the +  // index. +  for (const GlobalAlias &A : M.aliases()) +    computeAliasSummary(Index, A, CantBePromoted); + +  for (auto *V : LocalsUsed) { +    auto *Summary = Index.getGlobalValueSummary(*V); +    assert(Summary && "Missing summary for global value"); +    Summary->setNotEligibleToImport(); +  } + +  // The linker doesn't know about these LLVM produced values, so we need +  // to flag them as live in the index to ensure index-based dead value +  // analysis treats them as live roots of the analysis. +  setLiveRoot(Index, "llvm.used"); +  setLiveRoot(Index, "llvm.compiler.used"); +  setLiveRoot(Index, "llvm.global_ctors"); +  setLiveRoot(Index, "llvm.global_dtors"); +  setLiveRoot(Index, "llvm.global.annotations"); + +  for (auto &GlobalList : Index) { +    // Ignore entries for references that are undefined in the current module. +    if (GlobalList.second.SummaryList.empty()) +      continue; + +    assert(GlobalList.second.SummaryList.size() == 1 && +           "Expected module's index to have one summary per GUID"); +    auto &Summary = GlobalList.second.SummaryList[0]; +    if (!IsThinLTO) { +      Summary->setNotEligibleToImport(); +      continue; +    } + +    bool AllRefsCanBeExternallyReferenced = +        llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { +          return !CantBePromoted.count(VI.getGUID()); +        }); +    if (!AllRefsCanBeExternallyReferenced) { +      Summary->setNotEligibleToImport(); +      continue; +    } + +    if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { +      bool AllCallsCanBeExternallyReferenced = llvm::all_of( +          FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { +            return !CantBePromoted.count(Edge.first.getGUID()); +          }); +      if (!AllCallsCanBeExternallyReferenced) +        Summary->setNotEligibleToImport(); +    } +  } + +  if (!ModuleSummaryDotFile.empty()) { +    std::error_code EC; +    raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::F_None); +    if (EC) +      report_fatal_error(Twine("Failed to open dot file ") + +                         ModuleSummaryDotFile + ": " + EC.message() + "\n"); +    Index.exportToDot(OSDot); +  } + +  return Index; +} + +AnalysisKey ModuleSummaryIndexAnalysis::Key; + +ModuleSummaryIndex +ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { +  ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); +  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); +  return buildModuleSummaryIndex( +      M, +      [&FAM](const Function &F) { +        return &FAM.getResult<BlockFrequencyAnalysis>( +            *const_cast<Function *>(&F)); +      }, +      &PSI); +} + +char ModuleSummaryIndexWrapperPass::ID = 0; + +INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", +                      "Module Summary Analysis", false, true) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", +                    "Module Summary Analysis", false, true) + +ModulePass *llvm::createModuleSummaryIndexWrapperPass() { +  return new ModuleSummaryIndexWrapperPass(); +} + +ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() +    : ModulePass(ID) { +  initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); +} + +bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { +  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); +  Index.emplace(buildModuleSummaryIndex( +      M, +      [this](const Function &F) { +        return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( +                         *const_cast<Function *>(&F)) +                     .getBFI()); +      }, +      PSI)); +  return false; +} + +bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { +  Index.reset(); +  return false; +} + +void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { +  AU.setPreservesAll(); +  AU.addRequired<BlockFrequencyInfoWrapperPass>(); +  AU.addRequired<ProfileSummaryInfoWrapperPass>(); +} | 
