aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/TFUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Analysis/TFUtils.cpp')
-rw-r--r--llvm/lib/Analysis/TFUtils.cpp289
1 files changed, 289 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/TFUtils.cpp b/llvm/lib/Analysis/TFUtils.cpp
new file mode 100644
index 000000000000..19e6d626e238
--- /dev/null
+++ b/llvm/lib/Analysis/TFUtils.cpp
@@ -0,0 +1,289 @@
+//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements utilities for interfacing with tensorflow C APIs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/Utils/TFUtils.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/raw_ostream.h"
+
+#include "tensorflow/c/c_api.h"
+#include "tensorflow/c/c_api_experimental.h"
+
+#include <cassert>
+
+using namespace llvm;
+
+namespace {
+
+using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
+using TFSessionOptionsPtr =
+ std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
+using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
+
+struct TFInitializer {
+ TFInitializer() {
+ assert(!IsInitialized && "TFInitialized should be called only once");
+ int Argc = 1;
+ const char *Name = "";
+ const char **NamePtr = &Name;
+ TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
+ IsInitialized = true;
+ }
+ bool IsInitialized = false;
+};
+
+llvm::ManagedStatic<TFInitializer> TFLibInitializer;
+
+bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
+
+TFGraphPtr createTFGraph() {
+ return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
+}
+
+TFStatusPtr createTFStatus() {
+ return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
+}
+
+TFSessionOptionsPtr createTFSessionOptions() {
+ return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions);
+}
+} // namespace
+
+namespace llvm {
+class EvaluationResultImpl {
+public:
+ EvaluationResultImpl(size_t OutputSize)
+ : OutputSize(OutputSize), Output(OutputSize){};
+
+ ~EvaluationResultImpl() {
+ for (auto *P : Output)
+ if (P)
+ TF_DeleteTensor(P);
+ }
+
+ EvaluationResultImpl(const EvaluationResultImpl &) = delete;
+ EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
+ std::vector<TF_Tensor *> &getOutput() { return Output; }
+
+private:
+ const size_t OutputSize;
+ std::vector<TF_Tensor *> Output;
+};
+
+class TFModelEvaluatorImpl {
+public:
+ TFModelEvaluatorImpl(StringRef SavedModelPath,
+ const std::vector<std::string> &InputNames,
+ const std::vector<std::string> &OutputNames,
+ const char *Tags);
+
+ bool isValid() const { return IsValid; }
+ size_t OutputSize() const { return OutputFeed.size(); }
+
+ void evaluate(TF_Tensor **Output, TF_Status *Status) {
+ TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(),
+ Input.size(), OutputFeed.data(), Output, OutputFeed.size(),
+ nullptr, 0, nullptr, Status);
+ }
+
+ void initInput(size_t Index, TF_DataType Type,
+ const std::vector<int64_t> &Dimensions);
+ const std::vector<TF_Tensor *> &getInput() const { return Input; }
+
+ ~TFModelEvaluatorImpl();
+
+private:
+ /// The objects necessary for carrying out an evaluation of the SavedModel.
+ /// They are expensive to set up, and we maintain them accross all the
+ /// evaluations of the model.
+ TF_Session *Session = nullptr;
+ TFGraphPtr Graph;
+ TFSessionOptionsPtr Options;
+
+ /// The specification of the input nodes.
+ std::vector<TF_Output> InputFeed;
+
+ /// The input tensors. They must match by index of the corresponding InputFeed
+ /// value. We set up the tensors once and just mutate theirs scalars before
+ /// each evaluation. The input tensors keep their value after an evaluation.
+ std::vector<TF_Tensor *> Input;
+
+ /// The specification of the output nodes. When evaluating, the tensors in the
+ /// output tensor vector must match by index the corresponding element in the
+ /// OutputFeed.
+ std::vector<TF_Output> OutputFeed;
+
+ void invalidate() { IsValid = false; }
+
+ bool IsValid = true;
+
+ /// Reusable utility for ensuring we can bind the requested Name to a node in
+ /// the SavedModel Graph.
+ bool checkReportAndInvalidate(const TF_Output &Output, StringRef Name);
+};
+} // namespace llvm
+
+TFModelEvaluatorImpl::TFModelEvaluatorImpl(
+ StringRef SavedModelPath, const std::vector<std::string> &InputNames,
+ const std::vector<std::string> &OutputNames, const char *Tags)
+ : Graph(createTFGraph()), Options(createTFSessionOptions()),
+ InputFeed(InputNames.size()), Input(InputNames.size()),
+ OutputFeed(OutputNames.size()) {
+ if (!ensureInitTF()) {
+ errs() << "Tensorflow should have been initialized";
+ return;
+ }
+ auto Status = createTFStatus();
+
+ Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
+ SavedModelPath.str().c_str(), &Tags, 1,
+ Graph.get(), nullptr, Status.get());
+ if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
+ errs() << TF_Message(Status.get());
+ invalidate();
+ }
+ for (size_t I = 0; I < InputNames.size(); ++I) {
+ InputFeed[I] = {
+ TF_GraphOperationByName(Graph.get(), (InputNames[I]).c_str()), 0};
+ if (!checkReportAndInvalidate(InputFeed[I], InputNames[I]))
+ return;
+ }
+ for (size_t I = 0; I < OutputNames.size(); ++I) {
+ OutputFeed[I] = {
+ TF_GraphOperationByName(Graph.get(), (OutputNames[I]).c_str()), 0};
+ if (!checkReportAndInvalidate(OutputFeed[I], OutputNames[I]))
+ return;
+ }
+}
+
+TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
+ const std::vector<std::string> &InputNames,
+ const std::vector<std::string> &OutputNames,
+ const char *Tags)
+ : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputNames, OutputNames,
+ Tags)) {
+ if (!Impl->isValid())
+ Impl.reset();
+}
+
+TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {
+ for (auto *T : Input) {
+ TF_DeleteTensor(T);
+ }
+ if (Session == nullptr)
+ return;
+ auto Status = createTFStatus();
+ TF_DeleteSession(Session, Status.get());
+ Session = nullptr;
+ if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
+ errs() << "Could not delete TF session";
+}
+
+bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TF_Output &Output,
+ StringRef Name) {
+ if (Output.oper)
+ return true;
+ errs() << "Could not find TF_Output named: " + Name;
+ IsValid = false;
+ return IsValid;
+}
+
+Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
+ if (!isValid())
+ return None;
+ std::unique_ptr<EvaluationResultImpl> Ret =
+ std::make_unique<EvaluationResultImpl>(Impl->OutputSize());
+ auto Status = createTFStatus();
+ Impl->evaluate(Ret->getOutput().data(), Status.get());
+ if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
+ errs() << TF_Message(Status.get());
+ Impl.reset();
+ return None;
+ }
+ return EvaluationResult(std::move(Ret));
+}
+
+void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type,
+ const std::vector<int64_t> &Dimensions) {
+ int64_t TotalSize = TF_DataTypeSize(Type);
+ for (auto &D : Dimensions)
+ TotalSize *= D;
+
+ Input[Index] =
+ TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
+ std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
+}
+
+void *TFModelEvaluator::getUntypedInput(size_t Index) {
+ return TF_TensorData(Impl->getInput()[Index]);
+}
+
+TFModelEvaluator::EvaluationResult::EvaluationResult(
+ std::unique_ptr<EvaluationResultImpl> Impl)
+ : Impl(std::move(Impl)) {}
+
+TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
+ : Impl(std::move(Other.Impl)) {}
+
+void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
+ return TF_TensorData(Impl->getOutput()[Index]);
+}
+
+void TFModelEvaluator::initInput(size_t Index, int TypeIndex,
+ const std::vector<int64_t> &Dimensions) {
+ Impl->initInput(Index, static_cast<TF_DataType>(TypeIndex), Dimensions);
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<float>() {
+ return TF_FLOAT;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<double>() {
+ return TF_DOUBLE;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<int8_t>() {
+ return TF_INT8;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<uint8_t>() {
+ return TF_UINT8;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<int16_t>() {
+ return TF_INT16;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<uint16_t>() {
+ return TF_UINT16;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<int32_t>() {
+ return TF_INT32;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<uint32_t>() {
+ return TF_UINT32;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<int64_t>() {
+ return TF_INT64;
+}
+
+template <> int TFModelEvaluator::getModelTypeIndex<uint64_t>() {
+ return TF_UINT64;
+}
+
+TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
+TFModelEvaluator::~TFModelEvaluator() {}