diff options
Diffstat (limited to 'llvm/lib/Analysis/TFUtils.cpp')
-rw-r--r-- | llvm/lib/Analysis/TFUtils.cpp | 289 |
1 files changed, 289 insertions, 0 deletions
diff --git a/llvm/lib/Analysis/TFUtils.cpp b/llvm/lib/Analysis/TFUtils.cpp new file mode 100644 index 000000000000..19e6d626e238 --- /dev/null +++ b/llvm/lib/Analysis/TFUtils.cpp @@ -0,0 +1,289 @@ +//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements utilities for interfacing with tensorflow C APIs. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Utils/TFUtils.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/raw_ostream.h" + +#include "tensorflow/c/c_api.h" +#include "tensorflow/c/c_api_experimental.h" + +#include <cassert> + +using namespace llvm; + +namespace { + +using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>; +using TFSessionOptionsPtr = + std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>; +using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>; + +struct TFInitializer { + TFInitializer() { + assert(!IsInitialized && "TFInitialized should be called only once"); + int Argc = 1; + const char *Name = ""; + const char **NamePtr = &Name; + TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr)); + IsInitialized = true; + } + bool IsInitialized = false; +}; + +llvm::ManagedStatic<TFInitializer> TFLibInitializer; + +bool ensureInitTF() { return TFLibInitializer->IsInitialized; } + +TFGraphPtr createTFGraph() { + return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph); +} + +TFStatusPtr createTFStatus() { + return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus); +} + +TFSessionOptionsPtr createTFSessionOptions() { + return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions); +} +} // namespace + +namespace llvm { +class EvaluationResultImpl { +public: + EvaluationResultImpl(size_t OutputSize) + : OutputSize(OutputSize), Output(OutputSize){}; + + ~EvaluationResultImpl() { + for (auto *P : Output) + if (P) + TF_DeleteTensor(P); + } + + EvaluationResultImpl(const EvaluationResultImpl &) = delete; + EvaluationResultImpl(EvaluationResultImpl &&Other) = delete; + std::vector<TF_Tensor *> &getOutput() { return Output; } + +private: + const size_t OutputSize; + std::vector<TF_Tensor *> Output; +}; + +class TFModelEvaluatorImpl { +public: + TFModelEvaluatorImpl(StringRef SavedModelPath, + const std::vector<std::string> &InputNames, + const std::vector<std::string> &OutputNames, + const char *Tags); + + bool isValid() const { return IsValid; } + size_t OutputSize() const { return OutputFeed.size(); } + + void evaluate(TF_Tensor **Output, TF_Status *Status) { + TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(), + Input.size(), OutputFeed.data(), Output, OutputFeed.size(), + nullptr, 0, nullptr, Status); + } + + void initInput(size_t Index, TF_DataType Type, + const std::vector<int64_t> &Dimensions); + const std::vector<TF_Tensor *> &getInput() const { return Input; } + + ~TFModelEvaluatorImpl(); + +private: + /// The objects necessary for carrying out an evaluation of the SavedModel. + /// They are expensive to set up, and we maintain them accross all the + /// evaluations of the model. + TF_Session *Session = nullptr; + TFGraphPtr Graph; + TFSessionOptionsPtr Options; + + /// The specification of the input nodes. + std::vector<TF_Output> InputFeed; + + /// The input tensors. They must match by index of the corresponding InputFeed + /// value. We set up the tensors once and just mutate theirs scalars before + /// each evaluation. The input tensors keep their value after an evaluation. + std::vector<TF_Tensor *> Input; + + /// The specification of the output nodes. When evaluating, the tensors in the + /// output tensor vector must match by index the corresponding element in the + /// OutputFeed. + std::vector<TF_Output> OutputFeed; + + void invalidate() { IsValid = false; } + + bool IsValid = true; + + /// Reusable utility for ensuring we can bind the requested Name to a node in + /// the SavedModel Graph. + bool checkReportAndInvalidate(const TF_Output &Output, StringRef Name); +}; +} // namespace llvm + +TFModelEvaluatorImpl::TFModelEvaluatorImpl( + StringRef SavedModelPath, const std::vector<std::string> &InputNames, + const std::vector<std::string> &OutputNames, const char *Tags) + : Graph(createTFGraph()), Options(createTFSessionOptions()), + InputFeed(InputNames.size()), Input(InputNames.size()), + OutputFeed(OutputNames.size()) { + if (!ensureInitTF()) { + errs() << "Tensorflow should have been initialized"; + return; + } + auto Status = createTFStatus(); + + Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr, + SavedModelPath.str().c_str(), &Tags, 1, + Graph.get(), nullptr, Status.get()); + if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { + errs() << TF_Message(Status.get()); + invalidate(); + } + for (size_t I = 0; I < InputNames.size(); ++I) { + InputFeed[I] = { + TF_GraphOperationByName(Graph.get(), (InputNames[I]).c_str()), 0}; + if (!checkReportAndInvalidate(InputFeed[I], InputNames[I])) + return; + } + for (size_t I = 0; I < OutputNames.size(); ++I) { + OutputFeed[I] = { + TF_GraphOperationByName(Graph.get(), (OutputNames[I]).c_str()), 0}; + if (!checkReportAndInvalidate(OutputFeed[I], OutputNames[I])) + return; + } +} + +TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath, + const std::vector<std::string> &InputNames, + const std::vector<std::string> &OutputNames, + const char *Tags) + : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputNames, OutputNames, + Tags)) { + if (!Impl->isValid()) + Impl.reset(); +} + +TFModelEvaluatorImpl::~TFModelEvaluatorImpl() { + for (auto *T : Input) { + TF_DeleteTensor(T); + } + if (Session == nullptr) + return; + auto Status = createTFStatus(); + TF_DeleteSession(Session, Status.get()); + Session = nullptr; + if (TF_GetCode(Status.get()) != TF_Code::TF_OK) + errs() << "Could not delete TF session"; +} + +bool TFModelEvaluatorImpl::checkReportAndInvalidate(const TF_Output &Output, + StringRef Name) { + if (Output.oper) + return true; + errs() << "Could not find TF_Output named: " + Name; + IsValid = false; + return IsValid; +} + +Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() { + if (!isValid()) + return None; + std::unique_ptr<EvaluationResultImpl> Ret = + std::make_unique<EvaluationResultImpl>(Impl->OutputSize()); + auto Status = createTFStatus(); + Impl->evaluate(Ret->getOutput().data(), Status.get()); + if (TF_GetCode(Status.get()) != TF_Code::TF_OK) { + errs() << TF_Message(Status.get()); + Impl.reset(); + return None; + } + return EvaluationResult(std::move(Ret)); +} + +void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type, + const std::vector<int64_t> &Dimensions) { + int64_t TotalSize = TF_DataTypeSize(Type); + for (auto &D : Dimensions) + TotalSize *= D; + + Input[Index] = + TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize); + std::memset(TF_TensorData(Input[Index]), 0, TotalSize); +} + +void *TFModelEvaluator::getUntypedInput(size_t Index) { + return TF_TensorData(Impl->getInput()[Index]); +} + +TFModelEvaluator::EvaluationResult::EvaluationResult( + std::unique_ptr<EvaluationResultImpl> Impl) + : Impl(std::move(Impl)) {} + +TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other) + : Impl(std::move(Other.Impl)) {} + +void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) { + return TF_TensorData(Impl->getOutput()[Index]); +} + +void TFModelEvaluator::initInput(size_t Index, int TypeIndex, + const std::vector<int64_t> &Dimensions) { + Impl->initInput(Index, static_cast<TF_DataType>(TypeIndex), Dimensions); +} + +template <> int TFModelEvaluator::getModelTypeIndex<float>() { + return TF_FLOAT; +} + +template <> int TFModelEvaluator::getModelTypeIndex<double>() { + return TF_DOUBLE; +} + +template <> int TFModelEvaluator::getModelTypeIndex<int8_t>() { + return TF_INT8; +} + +template <> int TFModelEvaluator::getModelTypeIndex<uint8_t>() { + return TF_UINT8; +} + +template <> int TFModelEvaluator::getModelTypeIndex<int16_t>() { + return TF_INT16; +} + +template <> int TFModelEvaluator::getModelTypeIndex<uint16_t>() { + return TF_UINT16; +} + +template <> int TFModelEvaluator::getModelTypeIndex<int32_t>() { + return TF_INT32; +} + +template <> int TFModelEvaluator::getModelTypeIndex<uint32_t>() { + return TF_UINT32; +} + +template <> int TFModelEvaluator::getModelTypeIndex<int64_t>() { + return TF_INT64; +} + +template <> int TFModelEvaluator::getModelTypeIndex<uint64_t>() { + return TF_UINT64; +} + +TFModelEvaluator::EvaluationResult::~EvaluationResult() {} +TFModelEvaluator::~TFModelEvaluator() {} |