diff options
Diffstat (limited to 'llvm/lib/CodeGen/Analysis.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/Analysis.cpp | 788 | 
1 files changed, 788 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/Analysis.cpp b/llvm/lib/CodeGen/Analysis.cpp new file mode 100644 index 000000000000..4f24f077d120 --- /dev/null +++ b/llvm/lib/CodeGen/Analysis.cpp @@ -0,0 +1,788 @@ +//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines several CodeGen-specific LLVM IR analysis utilities. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Analysis.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Transforms/Utils/GlobalStatus.h" + +using namespace llvm; + +/// Compute the linearized index of a member in a nested aggregate/struct/array +/// by recursing and accumulating CurIndex as long as there are indices in the +/// index list. +unsigned llvm::ComputeLinearIndex(Type *Ty, +                                  const unsigned *Indices, +                                  const unsigned *IndicesEnd, +                                  unsigned CurIndex) { +  // Base case: We're done. +  if (Indices && Indices == IndicesEnd) +    return CurIndex; + +  // Given a struct type, recursively traverse the elements. +  if (StructType *STy = dyn_cast<StructType>(Ty)) { +    for (StructType::element_iterator EB = STy->element_begin(), +                                      EI = EB, +                                      EE = STy->element_end(); +        EI != EE; ++EI) { +      if (Indices && *Indices == unsigned(EI - EB)) +        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); +      CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); +    } +    assert(!Indices && "Unexpected out of bound"); +    return CurIndex; +  } +  // Given an array type, recursively traverse the elements. +  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    Type *EltTy = ATy->getElementType(); +    unsigned NumElts = ATy->getNumElements(); +    // Compute the Linear offset when jumping one element of the array +    unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); +    if (Indices) { +      assert(*Indices < NumElts && "Unexpected out of bound"); +      // If the indice is inside the array, compute the index to the requested +      // elt and recurse inside the element with the end of the indices list +      CurIndex += EltLinearOffset* *Indices; +      return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); +    } +    CurIndex += EltLinearOffset*NumElts; +    return CurIndex; +  } +  // We haven't found the type we're looking for, so keep searching. +  return CurIndex + 1; +} + +/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of +/// EVTs that represent all the individual underlying +/// non-aggregate types that comprise it. +/// +/// If Offsets is non-null, it points to a vector to be filled in +/// with the in-memory offsets of each of the individual values. +/// +void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, +                           Type *Ty, SmallVectorImpl<EVT> &ValueVTs, +                           SmallVectorImpl<EVT> *MemVTs, +                           SmallVectorImpl<uint64_t> *Offsets, +                           uint64_t StartingOffset) { +  // Given a struct type, recursively traverse the elements. +  if (StructType *STy = dyn_cast<StructType>(Ty)) { +    const StructLayout *SL = DL.getStructLayout(STy); +    for (StructType::element_iterator EB = STy->element_begin(), +                                      EI = EB, +                                      EE = STy->element_end(); +         EI != EE; ++EI) +      ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, +                      StartingOffset + SL->getElementOffset(EI - EB)); +    return; +  } +  // Given an array type, recursively traverse the elements. +  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    Type *EltTy = ATy->getElementType(); +    uint64_t EltSize = DL.getTypeAllocSize(EltTy); +    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) +      ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, +                      StartingOffset + i * EltSize); +    return; +  } +  // Interpret void as zero return values. +  if (Ty->isVoidTy()) +    return; +  // Base case: we can get an EVT for this LLVM IR type. +  ValueVTs.push_back(TLI.getValueType(DL, Ty)); +  if (MemVTs) +    MemVTs->push_back(TLI.getMemValueType(DL, Ty)); +  if (Offsets) +    Offsets->push_back(StartingOffset); +} + +void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, +                           Type *Ty, SmallVectorImpl<EVT> &ValueVTs, +                           SmallVectorImpl<uint64_t> *Offsets, +                           uint64_t StartingOffset) { +  return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, +                         StartingOffset); +} + +void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, +                            SmallVectorImpl<LLT> &ValueTys, +                            SmallVectorImpl<uint64_t> *Offsets, +                            uint64_t StartingOffset) { +  // Given a struct type, recursively traverse the elements. +  if (StructType *STy = dyn_cast<StructType>(&Ty)) { +    const StructLayout *SL = DL.getStructLayout(STy); +    for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) +      computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, +                       StartingOffset + SL->getElementOffset(I)); +    return; +  } +  // Given an array type, recursively traverse the elements. +  if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { +    Type *EltTy = ATy->getElementType(); +    uint64_t EltSize = DL.getTypeAllocSize(EltTy); +    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) +      computeValueLLTs(DL, *EltTy, ValueTys, Offsets, +                       StartingOffset + i * EltSize); +    return; +  } +  // Interpret void as zero return values. +  if (Ty.isVoidTy()) +    return; +  // Base case: we can get an LLT for this LLVM IR type. +  ValueTys.push_back(getLLTForType(Ty, DL)); +  if (Offsets != nullptr) +    Offsets->push_back(StartingOffset * 8); +} + +/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. +GlobalValue *llvm::ExtractTypeInfo(Value *V) { +  V = V->stripPointerCasts(); +  GlobalValue *GV = dyn_cast<GlobalValue>(V); +  GlobalVariable *Var = dyn_cast<GlobalVariable>(V); + +  if (Var && Var->getName() == "llvm.eh.catch.all.value") { +    assert(Var->hasInitializer() && +           "The EH catch-all value must have an initializer"); +    Value *Init = Var->getInitializer(); +    GV = dyn_cast<GlobalValue>(Init); +    if (!GV) V = cast<ConstantPointerNull>(Init); +  } + +  assert((GV || isa<ConstantPointerNull>(V)) && +         "TypeInfo must be a global variable or NULL"); +  return GV; +} + +/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being +/// processed uses a memory 'm' constraint. +bool +llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, +                                const TargetLowering &TLI) { +  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { +    InlineAsm::ConstraintInfo &CI = CInfos[i]; +    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { +      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); +      if (CType == TargetLowering::C_Memory) +        return true; +    } + +    // Indirect operand accesses access memory. +    if (CI.isIndirect) +      return true; +  } + +  return false; +} + +/// getFCmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR floating-point condition code.  This includes +/// consideration of global floating-point math flags. +/// +ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { +  switch (Pred) { +  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; +  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ; +  case FCmpInst::FCMP_OGT:   return ISD::SETOGT; +  case FCmpInst::FCMP_OGE:   return ISD::SETOGE; +  case FCmpInst::FCMP_OLT:   return ISD::SETOLT; +  case FCmpInst::FCMP_OLE:   return ISD::SETOLE; +  case FCmpInst::FCMP_ONE:   return ISD::SETONE; +  case FCmpInst::FCMP_ORD:   return ISD::SETO; +  case FCmpInst::FCMP_UNO:   return ISD::SETUO; +  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ; +  case FCmpInst::FCMP_UGT:   return ISD::SETUGT; +  case FCmpInst::FCMP_UGE:   return ISD::SETUGE; +  case FCmpInst::FCMP_ULT:   return ISD::SETULT; +  case FCmpInst::FCMP_ULE:   return ISD::SETULE; +  case FCmpInst::FCMP_UNE:   return ISD::SETUNE; +  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE; +  default: llvm_unreachable("Invalid FCmp predicate opcode!"); +  } +} + +ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { +  switch (CC) { +    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; +    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; +    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; +    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; +    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; +    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; +    default: return CC; +  } +} + +/// getICmpCondCode - Return the ISD condition code corresponding to +/// the given LLVM IR integer condition code. +/// +ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { +  switch (Pred) { +  case ICmpInst::ICMP_EQ:  return ISD::SETEQ; +  case ICmpInst::ICMP_NE:  return ISD::SETNE; +  case ICmpInst::ICMP_SLE: return ISD::SETLE; +  case ICmpInst::ICMP_ULE: return ISD::SETULE; +  case ICmpInst::ICMP_SGE: return ISD::SETGE; +  case ICmpInst::ICMP_UGE: return ISD::SETUGE; +  case ICmpInst::ICMP_SLT: return ISD::SETLT; +  case ICmpInst::ICMP_ULT: return ISD::SETULT; +  case ICmpInst::ICMP_SGT: return ISD::SETGT; +  case ICmpInst::ICMP_UGT: return ISD::SETUGT; +  default: +    llvm_unreachable("Invalid ICmp predicate opcode!"); +  } +} + +static bool isNoopBitcast(Type *T1, Type *T2, +                          const TargetLoweringBase& TLI) { +  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || +         (isa<VectorType>(T1) && isa<VectorType>(T2) && +          TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); +} + +/// Look through operations that will be free to find the earliest source of +/// this value. +/// +/// @param ValLoc If V has aggegate type, we will be interested in a particular +/// scalar component. This records its address; the reverse of this list gives a +/// sequence of indices appropriate for an extractvalue to locate the important +/// value. This value is updated during the function and on exit will indicate +/// similar information for the Value returned. +/// +/// @param DataBits If this function looks through truncate instructions, this +/// will record the smallest size attained. +static const Value *getNoopInput(const Value *V, +                                 SmallVectorImpl<unsigned> &ValLoc, +                                 unsigned &DataBits, +                                 const TargetLoweringBase &TLI, +                                 const DataLayout &DL) { +  while (true) { +    // Try to look through V1; if V1 is not an instruction, it can't be looked +    // through. +    const Instruction *I = dyn_cast<Instruction>(V); +    if (!I || I->getNumOperands() == 0) return V; +    const Value *NoopInput = nullptr; + +    Value *Op = I->getOperand(0); +    if (isa<BitCastInst>(I)) { +      // Look through truly no-op bitcasts. +      if (isNoopBitcast(Op->getType(), I->getType(), TLI)) +        NoopInput = Op; +    } else if (isa<GetElementPtrInst>(I)) { +      // Look through getelementptr +      if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) +        NoopInput = Op; +    } else if (isa<IntToPtrInst>(I)) { +      // Look through inttoptr. +      // Make sure this isn't a truncating or extending cast.  We could +      // support this eventually, but don't bother for now. +      if (!isa<VectorType>(I->getType()) && +          DL.getPointerSizeInBits() == +              cast<IntegerType>(Op->getType())->getBitWidth()) +        NoopInput = Op; +    } else if (isa<PtrToIntInst>(I)) { +      // Look through ptrtoint. +      // Make sure this isn't a truncating or extending cast.  We could +      // support this eventually, but don't bother for now. +      if (!isa<VectorType>(I->getType()) && +          DL.getPointerSizeInBits() == +              cast<IntegerType>(I->getType())->getBitWidth()) +        NoopInput = Op; +    } else if (isa<TruncInst>(I) && +               TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { +      DataBits = std::min((uint64_t)DataBits, +                         I->getType()->getPrimitiveSizeInBits().getFixedSize()); +      NoopInput = Op; +    } else if (auto CS = ImmutableCallSite(I)) { +      const Value *ReturnedOp = CS.getReturnedArgOperand(); +      if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) +        NoopInput = ReturnedOp; +    } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { +      // Value may come from either the aggregate or the scalar +      ArrayRef<unsigned> InsertLoc = IVI->getIndices(); +      if (ValLoc.size() >= InsertLoc.size() && +          std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { +        // The type being inserted is a nested sub-type of the aggregate; we +        // have to remove those initial indices to get the location we're +        // interested in for the operand. +        ValLoc.resize(ValLoc.size() - InsertLoc.size()); +        NoopInput = IVI->getInsertedValueOperand(); +      } else { +        // The struct we're inserting into has the value we're interested in, no +        // change of address. +        NoopInput = Op; +      } +    } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { +      // The part we're interested in will inevitably be some sub-section of the +      // previous aggregate. Combine the two paths to obtain the true address of +      // our element. +      ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); +      ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); +      NoopInput = Op; +    } +    // Terminate if we couldn't find anything to look through. +    if (!NoopInput) +      return V; + +    V = NoopInput; +  } +} + +/// Return true if this scalar return value only has bits discarded on its path +/// from the "tail call" to the "ret". This includes the obvious noop +/// instructions handled by getNoopInput above as well as free truncations (or +/// extensions prior to the call). +static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, +                                 SmallVectorImpl<unsigned> &RetIndices, +                                 SmallVectorImpl<unsigned> &CallIndices, +                                 bool AllowDifferingSizes, +                                 const TargetLoweringBase &TLI, +                                 const DataLayout &DL) { + +  // Trace the sub-value needed by the return value as far back up the graph as +  // possible, in the hope that it will intersect with the value produced by the +  // call. In the simple case with no "returned" attribute, the hope is actually +  // that we end up back at the tail call instruction itself. +  unsigned BitsRequired = UINT_MAX; +  RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); + +  // If this slot in the value returned is undef, it doesn't matter what the +  // call puts there, it'll be fine. +  if (isa<UndefValue>(RetVal)) +    return true; + +  // Now do a similar search up through the graph to find where the value +  // actually returned by the "tail call" comes from. In the simple case without +  // a "returned" attribute, the search will be blocked immediately and the loop +  // a Noop. +  unsigned BitsProvided = UINT_MAX; +  CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); + +  // There's no hope if we can't actually trace them to (the same part of!) the +  // same value. +  if (CallVal != RetVal || CallIndices != RetIndices) +    return false; + +  // However, intervening truncates may have made the call non-tail. Make sure +  // all the bits that are needed by the "ret" have been provided by the "tail +  // call". FIXME: with sufficiently cunning bit-tracking, we could look through +  // extensions too. +  if (BitsProvided < BitsRequired || +      (!AllowDifferingSizes && BitsProvided != BitsRequired)) +    return false; + +  return true; +} + +/// For an aggregate type, determine whether a given index is within bounds or +/// not. +static bool indexReallyValid(CompositeType *T, unsigned Idx) { +  if (ArrayType *AT = dyn_cast<ArrayType>(T)) +    return Idx < AT->getNumElements(); + +  return Idx < cast<StructType>(T)->getNumElements(); +} + +/// Move the given iterators to the next leaf type in depth first traversal. +/// +/// Performs a depth-first traversal of the type as specified by its arguments, +/// stopping at the next leaf node (which may be a legitimate scalar type or an +/// empty struct or array). +/// +/// @param SubTypes List of the partial components making up the type from +/// outermost to innermost non-empty aggregate. The element currently +/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). +/// +/// @param Path Set of extractvalue indices leading from the outermost type +/// (SubTypes[0]) to the leaf node currently represented. +/// +/// @returns true if a new type was found, false otherwise. Calling this +/// function again on a finished iterator will repeatedly return +/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty +/// aggregate or a non-aggregate +static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, +                                  SmallVectorImpl<unsigned> &Path) { +  // First march back up the tree until we can successfully increment one of the +  // coordinates in Path. +  while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { +    Path.pop_back(); +    SubTypes.pop_back(); +  } + +  // If we reached the top, then the iterator is done. +  if (Path.empty()) +    return false; + +  // We know there's *some* valid leaf now, so march back down the tree picking +  // out the left-most element at each node. +  ++Path.back(); +  Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); +  while (DeeperType->isAggregateType()) { +    CompositeType *CT = cast<CompositeType>(DeeperType); +    if (!indexReallyValid(CT, 0)) +      return true; + +    SubTypes.push_back(CT); +    Path.push_back(0); + +    DeeperType = CT->getTypeAtIndex(0U); +  } + +  return true; +} + +/// Find the first non-empty, scalar-like type in Next and setup the iterator +/// components. +/// +/// Assuming Next is an aggregate of some kind, this function will traverse the +/// tree from left to right (i.e. depth-first) looking for the first +/// non-aggregate type which will play a role in function return. +/// +/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup +/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first +/// i32 in that type. +static bool firstRealType(Type *Next, +                          SmallVectorImpl<CompositeType *> &SubTypes, +                          SmallVectorImpl<unsigned> &Path) { +  // First initialise the iterator components to the first "leaf" node +  // (i.e. node with no valid sub-type at any index, so {} does count as a leaf +  // despite nominally being an aggregate). +  while (Next->isAggregateType() && +         indexReallyValid(cast<CompositeType>(Next), 0)) { +    SubTypes.push_back(cast<CompositeType>(Next)); +    Path.push_back(0); +    Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); +  } + +  // If there's no Path now, Next was originally scalar already (or empty +  // leaf). We're done. +  if (Path.empty()) +    return true; + +  // Otherwise, use normal iteration to keep looking through the tree until we +  // find a non-aggregate type. +  while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { +    if (!advanceToNextLeafType(SubTypes, Path)) +      return false; +  } + +  return true; +} + +/// Set the iterator data-structures to the next non-empty, non-aggregate +/// subtype. +static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, +                         SmallVectorImpl<unsigned> &Path) { +  do { +    if (!advanceToNextLeafType(SubTypes, Path)) +      return false; + +    assert(!Path.empty() && "found a leaf but didn't set the path?"); +  } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); + +  return true; +} + + +/// Test if the given instruction is in a position to be optimized +/// with a tail-call. This roughly means that it's in a block with +/// a return and there's nothing that needs to be scheduled +/// between it and the return. +/// +/// This function only tests target-independent requirements. +bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { +  const Instruction *I = CS.getInstruction(); +  const BasicBlock *ExitBB = I->getParent(); +  const Instruction *Term = ExitBB->getTerminator(); +  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); + +  // The block must end in a return statement or unreachable. +  // +  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in +  // an unreachable, for now. The way tailcall optimization is currently +  // implemented means it will add an epilogue followed by a jump. That is +  // not profitable. Also, if the callee is a special function (e.g. +  // longjmp on x86), it can end up causing miscompilation that has not +  // been fully understood. +  if (!Ret && +      ((!TM.Options.GuaranteedTailCallOpt && +        CS.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term))) +    return false; + +  // If I will have a chain, make sure no other instruction that will have a +  // chain interposes between I and the return. +  if (I->mayHaveSideEffects() || I->mayReadFromMemory() || +      !isSafeToSpeculativelyExecute(I)) +    for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { +      if (&*BBI == I) +        break; +      // Debug info intrinsics do not get in the way of tail call optimization. +      if (isa<DbgInfoIntrinsic>(BBI)) +        continue; +      // A lifetime end or assume intrinsic should not stop tail call +      // optimization. +      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) +        if (II->getIntrinsicID() == Intrinsic::lifetime_end || +            II->getIntrinsicID() == Intrinsic::assume) +          continue; +      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || +          !isSafeToSpeculativelyExecute(&*BBI)) +        return false; +    } + +  const Function *F = ExitBB->getParent(); +  return returnTypeIsEligibleForTailCall( +      F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); +} + +bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, +                                    const ReturnInst *Ret, +                                    const TargetLoweringBase &TLI, +                                    bool *AllowDifferingSizes) { +  // ADS may be null, so don't write to it directly. +  bool DummyADS; +  bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; +  ADS = true; + +  AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); +  AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), +                          AttributeList::ReturnIndex); + +  // NoAlias and NonNull are completely benign as far as calling convention +  // goes, they shouldn't affect whether the call is a tail call. +  CallerAttrs.removeAttribute(Attribute::NoAlias); +  CalleeAttrs.removeAttribute(Attribute::NoAlias); +  CallerAttrs.removeAttribute(Attribute::NonNull); +  CalleeAttrs.removeAttribute(Attribute::NonNull); + +  if (CallerAttrs.contains(Attribute::ZExt)) { +    if (!CalleeAttrs.contains(Attribute::ZExt)) +      return false; + +    ADS = false; +    CallerAttrs.removeAttribute(Attribute::ZExt); +    CalleeAttrs.removeAttribute(Attribute::ZExt); +  } else if (CallerAttrs.contains(Attribute::SExt)) { +    if (!CalleeAttrs.contains(Attribute::SExt)) +      return false; + +    ADS = false; +    CallerAttrs.removeAttribute(Attribute::SExt); +    CalleeAttrs.removeAttribute(Attribute::SExt); +  } + +  // Drop sext and zext return attributes if the result is not used. +  // This enables tail calls for code like: +  // +  // define void @caller() { +  // entry: +  //   %unused_result = tail call zeroext i1 @callee() +  //   br label %retlabel +  // retlabel: +  //   ret void +  // } +  if (I->use_empty()) { +    CalleeAttrs.removeAttribute(Attribute::SExt); +    CalleeAttrs.removeAttribute(Attribute::ZExt); +  } + +  // If they're still different, there's some facet we don't understand +  // (currently only "inreg", but in future who knows). It may be OK but the +  // only safe option is to reject the tail call. +  return CallerAttrs == CalleeAttrs; +} + +bool llvm::returnTypeIsEligibleForTailCall(const Function *F, +                                           const Instruction *I, +                                           const ReturnInst *Ret, +                                           const TargetLoweringBase &TLI) { +  // If the block ends with a void return or unreachable, it doesn't matter +  // what the call's return type is. +  if (!Ret || Ret->getNumOperands() == 0) return true; + +  // If the return value is undef, it doesn't matter what the call's +  // return type is. +  if (isa<UndefValue>(Ret->getOperand(0))) return true; + +  // Make sure the attributes attached to each return are compatible. +  bool AllowDifferingSizes; +  if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) +    return false; + +  const Value *RetVal = Ret->getOperand(0), *CallVal = I; +  // Intrinsic like llvm.memcpy has no return value, but the expanded +  // libcall may or may not have return value. On most platforms, it +  // will be expanded as memcpy in libc, which returns the first +  // argument. On other platforms like arm-none-eabi, memcpy may be +  // expanded as library call without return value, like __aeabi_memcpy. +  const CallInst *Call = cast<CallInst>(I); +  if (Function *F = Call->getCalledFunction()) { +    Intrinsic::ID IID = F->getIntrinsicID(); +    if (((IID == Intrinsic::memcpy && +          TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || +         (IID == Intrinsic::memmove && +          TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || +         (IID == Intrinsic::memset && +          TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && +        RetVal == Call->getArgOperand(0)) +      return true; +  } + +  SmallVector<unsigned, 4> RetPath, CallPath; +  SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; + +  bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); +  bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); + +  // Nothing's actually returned, it doesn't matter what the callee put there +  // it's a valid tail call. +  if (RetEmpty) +    return true; + +  // Iterate pairwise through each of the value types making up the tail call +  // and the corresponding return. For each one we want to know whether it's +  // essentially going directly from the tail call to the ret, via operations +  // that end up not generating any code. +  // +  // We allow a certain amount of covariance here. For example it's permitted +  // for the tail call to define more bits than the ret actually cares about +  // (e.g. via a truncate). +  do { +    if (CallEmpty) { +      // We've exhausted the values produced by the tail call instruction, the +      // rest are essentially undef. The type doesn't really matter, but we need +      // *something*. +      Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); +      CallVal = UndefValue::get(SlotType); +    } + +    // The manipulations performed when we're looking through an insertvalue or +    // an extractvalue would happen at the front of the RetPath list, so since +    // we have to copy it anyway it's more efficient to create a reversed copy. +    SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); +    SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); + +    // Finally, we can check whether the value produced by the tail call at this +    // index is compatible with the value we return. +    if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, +                              AllowDifferingSizes, TLI, +                              F->getParent()->getDataLayout())) +      return false; + +    CallEmpty  = !nextRealType(CallSubTypes, CallPath); +  } while(nextRealType(RetSubTypes, RetPath)); + +  return true; +} + +static void collectEHScopeMembers( +    DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, +    const MachineBasicBlock *MBB) { +  SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; +  while (!Worklist.empty()) { +    const MachineBasicBlock *Visiting = Worklist.pop_back_val(); +    // Don't follow blocks which start new scopes. +    if (Visiting->isEHPad() && Visiting != MBB) +      continue; + +    // Add this MBB to our scope. +    auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); + +    // Don't revisit blocks. +    if (!P.second) { +      assert(P.first->second == EHScope && "MBB is part of two scopes!"); +      continue; +    } + +    // Returns are boundaries where scope transfer can occur, don't follow +    // successors. +    if (Visiting->isEHScopeReturnBlock()) +      continue; + +    for (const MachineBasicBlock *Succ : Visiting->successors()) +      Worklist.push_back(Succ); +  } +} + +DenseMap<const MachineBasicBlock *, int> +llvm::getEHScopeMembership(const MachineFunction &MF) { +  DenseMap<const MachineBasicBlock *, int> EHScopeMembership; + +  // We don't have anything to do if there aren't any EH pads. +  if (!MF.hasEHScopes()) +    return EHScopeMembership; + +  int EntryBBNumber = MF.front().getNumber(); +  bool IsSEH = isAsynchronousEHPersonality( +      classifyEHPersonality(MF.getFunction().getPersonalityFn())); + +  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); +  SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; +  SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; +  SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; +  SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; +  for (const MachineBasicBlock &MBB : MF) { +    if (MBB.isEHScopeEntry()) { +      EHScopeBlocks.push_back(&MBB); +    } else if (IsSEH && MBB.isEHPad()) { +      SEHCatchPads.push_back(&MBB); +    } else if (MBB.pred_empty()) { +      UnreachableBlocks.push_back(&MBB); +    } + +    MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); + +    // CatchPads are not scopes for SEH so do not consider CatchRet to +    // transfer control to another scope. +    if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) +      continue; + +    // FIXME: SEH CatchPads are not necessarily in the parent function: +    // they could be inside a finally block. +    const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); +    const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); +    CatchRetSuccessors.push_back( +        {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); +  } + +  // We don't have anything to do if there aren't any EH pads. +  if (EHScopeBlocks.empty()) +    return EHScopeMembership; + +  // Identify all the basic blocks reachable from the function entry. +  collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); +  // All blocks not part of a scope are in the parent function. +  for (const MachineBasicBlock *MBB : UnreachableBlocks) +    collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); +  // Next, identify all the blocks inside the scopes. +  for (const MachineBasicBlock *MBB : EHScopeBlocks) +    collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); +  // SEH CatchPads aren't really scopes, handle them separately. +  for (const MachineBasicBlock *MBB : SEHCatchPads) +    collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); +  // Finally, identify all the targets of a catchret. +  for (std::pair<const MachineBasicBlock *, int> CatchRetPair : +       CatchRetSuccessors) +    collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, +                          CatchRetPair.first); +  return EHScopeMembership; +} | 
