diff options
Diffstat (limited to 'llvm/lib/CodeGen/GlobalMerge.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/GlobalMerge.cpp | 681 | 
1 files changed, 681 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/GlobalMerge.cpp b/llvm/lib/CodeGen/GlobalMerge.cpp new file mode 100644 index 000000000000..d4fa45fcb405 --- /dev/null +++ b/llvm/lib/CodeGen/GlobalMerge.cpp @@ -0,0 +1,681 @@ +//===- GlobalMerge.cpp - Internal globals merging -------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass merges globals with internal linkage into one. This way all the +// globals which were merged into a biggest one can be addressed using offsets +// from the same base pointer (no need for separate base pointer for each of the +// global). Such a transformation can significantly reduce the register pressure +// when many globals are involved. +// +// For example, consider the code which touches several global variables at +// once: +// +// static int foo[N], bar[N], baz[N]; +// +// for (i = 0; i < N; ++i) { +//    foo[i] = bar[i] * baz[i]; +// } +// +//  On ARM the addresses of 3 arrays should be kept in the registers, thus +//  this code has quite large register pressure (loop body): +// +//  ldr     r1, [r5], #4 +//  ldr     r2, [r6], #4 +//  mul     r1, r2, r1 +//  str     r1, [r0], #4 +// +//  Pass converts the code to something like: +// +//  static struct { +//    int foo[N]; +//    int bar[N]; +//    int baz[N]; +//  } merged; +// +//  for (i = 0; i < N; ++i) { +//    merged.foo[i] = merged.bar[i] * merged.baz[i]; +//  } +// +//  and in ARM code this becomes: +// +//  ldr     r0, [r5, #40] +//  ldr     r1, [r5, #80] +//  mul     r0, r1, r0 +//  str     r0, [r5], #4 +// +//  note that we saved 2 registers here almostly "for free". +// +// However, merging globals can have tradeoffs: +// - it confuses debuggers, tools, and users +// - it makes linker optimizations less useful (order files, LOHs, ...) +// - it forces usage of indexed addressing (which isn't necessarily "free") +// - it can increase register pressure when the uses are disparate enough. +// +// We use heuristics to discover the best global grouping we can (cf cl::opts). +// +// ===---------------------------------------------------------------------===// + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <string> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "global-merge" + +// FIXME: This is only useful as a last-resort way to disable the pass. +static cl::opt<bool> +EnableGlobalMerge("enable-global-merge", cl::Hidden, +                  cl::desc("Enable the global merge pass"), +                  cl::init(true)); + +static cl::opt<unsigned> +GlobalMergeMaxOffset("global-merge-max-offset", cl::Hidden, +                     cl::desc("Set maximum offset for global merge pass"), +                     cl::init(0)); + +static cl::opt<bool> GlobalMergeGroupByUse( +    "global-merge-group-by-use", cl::Hidden, +    cl::desc("Improve global merge pass to look at uses"), cl::init(true)); + +static cl::opt<bool> GlobalMergeIgnoreSingleUse( +    "global-merge-ignore-single-use", cl::Hidden, +    cl::desc("Improve global merge pass to ignore globals only used alone"), +    cl::init(true)); + +static cl::opt<bool> +EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden, +                         cl::desc("Enable global merge pass on constants"), +                         cl::init(false)); + +// FIXME: this could be a transitional option, and we probably need to remove +// it if only we are sure this optimization could always benefit all targets. +static cl::opt<cl::boolOrDefault> +EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden, +     cl::desc("Enable global merge pass on external linkage")); + +STATISTIC(NumMerged, "Number of globals merged"); + +namespace { + +  class GlobalMerge : public FunctionPass { +    const TargetMachine *TM = nullptr; + +    // FIXME: Infer the maximum possible offset depending on the actual users +    // (these max offsets are different for the users inside Thumb or ARM +    // functions), see the code that passes in the offset in the ARM backend +    // for more information. +    unsigned MaxOffset; + +    /// Whether we should try to optimize for size only. +    /// Currently, this applies a dead simple heuristic: only consider globals +    /// used in minsize functions for merging. +    /// FIXME: This could learn about optsize, and be used in the cost model. +    bool OnlyOptimizeForSize = false; + +    /// Whether we should merge global variables that have external linkage. +    bool MergeExternalGlobals = false; + +    bool IsMachO; + +    bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals, +                 Module &M, bool isConst, unsigned AddrSpace) const; + +    /// Merge everything in \p Globals for which the corresponding bit +    /// in \p GlobalSet is set. +    bool doMerge(const SmallVectorImpl<GlobalVariable *> &Globals, +                 const BitVector &GlobalSet, Module &M, bool isConst, +                 unsigned AddrSpace) const; + +    /// Check if the given variable has been identified as must keep +    /// \pre setMustKeepGlobalVariables must have been called on the Module that +    ///      contains GV +    bool isMustKeepGlobalVariable(const GlobalVariable *GV) const { +      return MustKeepGlobalVariables.count(GV); +    } + +    /// Collect every variables marked as "used" or used in a landing pad +    /// instruction for this Module. +    void setMustKeepGlobalVariables(Module &M); + +    /// Collect every variables marked as "used" +    void collectUsedGlobalVariables(Module &M, StringRef Name); + +    /// Keep track of the GlobalVariable that must not be merged away +    SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables; + +  public: +    static char ID;             // Pass identification, replacement for typeid. + +    explicit GlobalMerge() +        : FunctionPass(ID), MaxOffset(GlobalMergeMaxOffset) { +      initializeGlobalMergePass(*PassRegistry::getPassRegistry()); +    } + +    explicit GlobalMerge(const TargetMachine *TM, unsigned MaximalOffset, +                         bool OnlyOptimizeForSize, bool MergeExternalGlobals) +        : FunctionPass(ID), TM(TM), MaxOffset(MaximalOffset), +          OnlyOptimizeForSize(OnlyOptimizeForSize), +          MergeExternalGlobals(MergeExternalGlobals) { +      initializeGlobalMergePass(*PassRegistry::getPassRegistry()); +    } + +    bool doInitialization(Module &M) override; +    bool runOnFunction(Function &F) override; +    bool doFinalization(Module &M) override; + +    StringRef getPassName() const override { return "Merge internal globals"; } + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.setPreservesCFG(); +      FunctionPass::getAnalysisUsage(AU); +    } +  }; + +} // end anonymous namespace + +char GlobalMerge::ID = 0; + +INITIALIZE_PASS(GlobalMerge, DEBUG_TYPE, "Merge global variables", false, false) + +bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals, +                          Module &M, bool isConst, unsigned AddrSpace) const { +  auto &DL = M.getDataLayout(); +  // FIXME: Find better heuristics +  llvm::stable_sort( +      Globals, [&DL](const GlobalVariable *GV1, const GlobalVariable *GV2) { +        return DL.getTypeAllocSize(GV1->getValueType()) < +               DL.getTypeAllocSize(GV2->getValueType()); +      }); + +  // If we want to just blindly group all globals together, do so. +  if (!GlobalMergeGroupByUse) { +    BitVector AllGlobals(Globals.size()); +    AllGlobals.set(); +    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); +  } + +  // If we want to be smarter, look at all uses of each global, to try to +  // discover all sets of globals used together, and how many times each of +  // these sets occurred. +  // +  // Keep this reasonably efficient, by having an append-only list of all sets +  // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of +  // code (currently, a Function) to the set of globals seen so far that are +  // used together in that unit (GlobalUsesByFunction). +  // +  // When we look at the Nth global, we know that any new set is either: +  // - the singleton set {N}, containing this global only, or +  // - the union of {N} and a previously-discovered set, containing some +  //   combination of the previous N-1 globals. +  // Using that knowledge, when looking at the Nth global, we can keep: +  // - a reference to the singleton set {N} (CurGVOnlySetIdx) +  // - a list mapping each previous set to its union with {N} (EncounteredUGS), +  //   if it actually occurs. + +  // We keep track of the sets of globals used together "close enough". +  struct UsedGlobalSet { +    BitVector Globals; +    unsigned UsageCount = 1; + +    UsedGlobalSet(size_t Size) : Globals(Size) {} +  }; + +  // Each set is unique in UsedGlobalSets. +  std::vector<UsedGlobalSet> UsedGlobalSets; + +  // Avoid repeating the create-global-set pattern. +  auto CreateGlobalSet = [&]() -> UsedGlobalSet & { +    UsedGlobalSets.emplace_back(Globals.size()); +    return UsedGlobalSets.back(); +  }; + +  // The first set is the empty set. +  CreateGlobalSet().UsageCount = 0; + +  // We define "close enough" to be "in the same function". +  // FIXME: Grouping uses by function is way too aggressive, so we should have +  // a better metric for distance between uses. +  // The obvious alternative would be to group by BasicBlock, but that's in +  // turn too conservative.. +  // Anything in between wouldn't be trivial to compute, so just stick with +  // per-function grouping. + +  // The value type is an index into UsedGlobalSets. +  // The default (0) conveniently points to the empty set. +  DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction; + +  // Now, look at each merge-eligible global in turn. + +  // Keep track of the sets we already encountered to which we added the +  // current global. +  // Each element matches the same-index element in UsedGlobalSets. +  // This lets us efficiently tell whether a set has already been expanded to +  // include the current global. +  std::vector<size_t> EncounteredUGS; + +  for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) { +    GlobalVariable *GV = Globals[GI]; + +    // Reset the encountered sets for this global... +    std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0); +    // ...and grow it in case we created new sets for the previous global. +    EncounteredUGS.resize(UsedGlobalSets.size()); + +    // We might need to create a set that only consists of the current global. +    // Keep track of its index into UsedGlobalSets. +    size_t CurGVOnlySetIdx = 0; + +    // For each global, look at all its Uses. +    for (auto &U : GV->uses()) { +      // This Use might be a ConstantExpr.  We're interested in Instruction +      // users, so look through ConstantExpr... +      Use *UI, *UE; +      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) { +        if (CE->use_empty()) +          continue; +        UI = &*CE->use_begin(); +        UE = nullptr; +      } else if (isa<Instruction>(U.getUser())) { +        UI = &U; +        UE = UI->getNext(); +      } else { +        continue; +      } + +      // ...to iterate on all the instruction users of the global. +      // Note that we iterate on Uses and not on Users to be able to getNext(). +      for (; UI != UE; UI = UI->getNext()) { +        Instruction *I = dyn_cast<Instruction>(UI->getUser()); +        if (!I) +          continue; + +        Function *ParentFn = I->getParent()->getParent(); + +        // If we're only optimizing for size, ignore non-minsize functions. +        if (OnlyOptimizeForSize && !ParentFn->hasMinSize()) +          continue; + +        size_t UGSIdx = GlobalUsesByFunction[ParentFn]; + +        // If this is the first global the basic block uses, map it to the set +        // consisting of this global only. +        if (!UGSIdx) { +          // If that set doesn't exist yet, create it. +          if (!CurGVOnlySetIdx) { +            CurGVOnlySetIdx = UsedGlobalSets.size(); +            CreateGlobalSet().Globals.set(GI); +          } else { +            ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount; +          } + +          GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx; +          continue; +        } + +        // If we already encountered this BB, just increment the counter. +        if (UsedGlobalSets[UGSIdx].Globals.test(GI)) { +          ++UsedGlobalSets[UGSIdx].UsageCount; +          continue; +        } + +        // If not, the previous set wasn't actually used in this function. +        --UsedGlobalSets[UGSIdx].UsageCount; + +        // If we already expanded the previous set to include this global, just +        // reuse that expanded set. +        if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) { +          ++UsedGlobalSets[ExpandedIdx].UsageCount; +          GlobalUsesByFunction[ParentFn] = ExpandedIdx; +          continue; +        } + +        // If not, create a new set consisting of the union of the previous set +        // and this global.  Mark it as encountered, so we can reuse it later. +        GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] = +            UsedGlobalSets.size(); + +        UsedGlobalSet &NewUGS = CreateGlobalSet(); +        NewUGS.Globals.set(GI); +        NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals; +      } +    } +  } + +  // Now we found a bunch of sets of globals used together.  We accumulated +  // the number of times we encountered the sets (i.e., the number of blocks +  // that use that exact set of globals). +  // +  // Multiply that by the size of the set to give us a crude profitability +  // metric. +  llvm::stable_sort(UsedGlobalSets, +                    [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) { +                      return UGS1.Globals.count() * UGS1.UsageCount < +                             UGS2.Globals.count() * UGS2.UsageCount; +                    }); + +  // We can choose to merge all globals together, but ignore globals never used +  // with another global.  This catches the obviously non-profitable cases of +  // having a single global, but is aggressive enough for any other case. +  if (GlobalMergeIgnoreSingleUse) { +    BitVector AllGlobals(Globals.size()); +    for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { +      const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; +      if (UGS.UsageCount == 0) +        continue; +      if (UGS.Globals.count() > 1) +        AllGlobals |= UGS.Globals; +    } +    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace); +  } + +  // Starting from the sets with the best (=biggest) profitability, find a +  // good combination. +  // The ideal (and expensive) solution can only be found by trying all +  // combinations, looking for the one with the best profitability. +  // Don't be smart about it, and just pick the first compatible combination, +  // starting with the sets with the best profitability. +  BitVector PickedGlobals(Globals.size()); +  bool Changed = false; + +  for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) { +    const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1]; +    if (UGS.UsageCount == 0) +      continue; +    if (PickedGlobals.anyCommon(UGS.Globals)) +      continue; +    PickedGlobals |= UGS.Globals; +    // If the set only contains one global, there's no point in merging. +    // Ignore the global for inclusion in other sets though, so keep it in +    // PickedGlobals. +    if (UGS.Globals.count() < 2) +      continue; +    Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace); +  } + +  return Changed; +} + +bool GlobalMerge::doMerge(const SmallVectorImpl<GlobalVariable *> &Globals, +                          const BitVector &GlobalSet, Module &M, bool isConst, +                          unsigned AddrSpace) const { +  assert(Globals.size() > 1); + +  Type *Int32Ty = Type::getInt32Ty(M.getContext()); +  Type *Int8Ty = Type::getInt8Ty(M.getContext()); +  auto &DL = M.getDataLayout(); + +  LLVM_DEBUG(dbgs() << " Trying to merge set, starts with #" +                    << GlobalSet.find_first() << "\n"); + +  bool Changed = false; +  ssize_t i = GlobalSet.find_first(); +  while (i != -1) { +    ssize_t j = 0; +    uint64_t MergedSize = 0; +    std::vector<Type*> Tys; +    std::vector<Constant*> Inits; +    std::vector<unsigned> StructIdxs; + +    bool HasExternal = false; +    StringRef FirstExternalName; +    Align MaxAlign; +    unsigned CurIdx = 0; +    for (j = i; j != -1; j = GlobalSet.find_next(j)) { +      Type *Ty = Globals[j]->getValueType(); + +      // Make sure we use the same alignment AsmPrinter would use. +      Align Alignment(DL.getPreferredAlignment(Globals[j])); +      unsigned Padding = alignTo(MergedSize, Alignment) - MergedSize; +      MergedSize += Padding; +      MergedSize += DL.getTypeAllocSize(Ty); +      if (MergedSize > MaxOffset) { +        break; +      } +      if (Padding) { +        Tys.push_back(ArrayType::get(Int8Ty, Padding)); +        Inits.push_back(ConstantAggregateZero::get(Tys.back())); +        ++CurIdx; +      } +      Tys.push_back(Ty); +      Inits.push_back(Globals[j]->getInitializer()); +      StructIdxs.push_back(CurIdx++); + +      MaxAlign = std::max(MaxAlign, Alignment); + +      if (Globals[j]->hasExternalLinkage() && !HasExternal) { +        HasExternal = true; +        FirstExternalName = Globals[j]->getName(); +      } +    } + +    // Exit early if there is only one global to merge. +    if (Tys.size() < 2) { +      i = j; +      continue; +    } + +    // If merged variables doesn't have external linkage, we needn't to expose +    // the symbol after merging. +    GlobalValue::LinkageTypes Linkage = HasExternal +                                            ? GlobalValue::ExternalLinkage +                                            : GlobalValue::InternalLinkage; +    // Use a packed struct so we can control alignment. +    StructType *MergedTy = StructType::get(M.getContext(), Tys, true); +    Constant *MergedInit = ConstantStruct::get(MergedTy, Inits); + +    // On Darwin external linkage needs to be preserved, otherwise +    // dsymutil cannot preserve the debug info for the merged +    // variables.  If they have external linkage, use the symbol name +    // of the first variable merged as the suffix of global symbol +    // name.  This avoids a link-time naming conflict for the +    // _MergedGlobals symbols. +    Twine MergedName = +        (IsMachO && HasExternal) +            ? "_MergedGlobals_" + FirstExternalName +            : "_MergedGlobals"; +    auto MergedLinkage = IsMachO ? Linkage : GlobalValue::PrivateLinkage; +    auto *MergedGV = new GlobalVariable( +        M, MergedTy, isConst, MergedLinkage, MergedInit, MergedName, nullptr, +        GlobalVariable::NotThreadLocal, AddrSpace); + +    MergedGV->setAlignment(MaxAlign); +    MergedGV->setSection(Globals[i]->getSection()); + +    const StructLayout *MergedLayout = DL.getStructLayout(MergedTy); +    for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k), ++idx) { +      GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage(); +      std::string Name = Globals[k]->getName(); +      GlobalValue::DLLStorageClassTypes DLLStorage = +          Globals[k]->getDLLStorageClass(); + +      // Copy metadata while adjusting any debug info metadata by the original +      // global's offset within the merged global. +      MergedGV->copyMetadata(Globals[k], +                             MergedLayout->getElementOffset(StructIdxs[idx])); + +      Constant *Idx[2] = { +          ConstantInt::get(Int32Ty, 0), +          ConstantInt::get(Int32Ty, StructIdxs[idx]), +      }; +      Constant *GEP = +          ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx); +      Globals[k]->replaceAllUsesWith(GEP); +      Globals[k]->eraseFromParent(); + +      // When the linkage is not internal we must emit an alias for the original +      // variable name as it may be accessed from another object. On non-Mach-O +      // we can also emit an alias for internal linkage as it's safe to do so. +      // It's not safe on Mach-O as the alias (and thus the portion of the +      // MergedGlobals variable) may be dead stripped at link time. +      if (Linkage != GlobalValue::InternalLinkage || !IsMachO) { +        GlobalAlias *GA = GlobalAlias::create(Tys[StructIdxs[idx]], AddrSpace, +                                              Linkage, Name, GEP, &M); +        GA->setDLLStorageClass(DLLStorage); +      } + +      NumMerged++; +    } +    Changed = true; +    i = j; +  } + +  return Changed; +} + +void GlobalMerge::collectUsedGlobalVariables(Module &M, StringRef Name) { +  // Extract global variables from llvm.used array +  const GlobalVariable *GV = M.getGlobalVariable(Name); +  if (!GV || !GV->hasInitializer()) return; + +  // Should be an array of 'i8*'. +  const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer()); + +  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) +    if (const GlobalVariable *G = +        dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts())) +      MustKeepGlobalVariables.insert(G); +} + +void GlobalMerge::setMustKeepGlobalVariables(Module &M) { +  collectUsedGlobalVariables(M, "llvm.used"); +  collectUsedGlobalVariables(M, "llvm.compiler.used"); + +  for (Function &F : M) { +    for (BasicBlock &BB : F) { +      Instruction *Pad = BB.getFirstNonPHI(); +      if (!Pad->isEHPad()) +        continue; + +      // Keep globals used by landingpads and catchpads. +      for (const Use &U : Pad->operands()) { +        if (const GlobalVariable *GV = +                dyn_cast<GlobalVariable>(U->stripPointerCasts())) +          MustKeepGlobalVariables.insert(GV); +      } +    } +  } +} + +bool GlobalMerge::doInitialization(Module &M) { +  if (!EnableGlobalMerge) +    return false; + +  IsMachO = Triple(M.getTargetTriple()).isOSBinFormatMachO(); + +  auto &DL = M.getDataLayout(); +  DenseMap<std::pair<unsigned, StringRef>, SmallVector<GlobalVariable *, 16>> +      Globals, ConstGlobals, BSSGlobals; +  bool Changed = false; +  setMustKeepGlobalVariables(M); + +  // Grab all non-const globals. +  for (auto &GV : M.globals()) { +    // Merge is safe for "normal" internal or external globals only +    if (GV.isDeclaration() || GV.isThreadLocal() || GV.hasImplicitSection()) +      continue; + +    // It's not safe to merge globals that may be preempted +    if (TM && !TM->shouldAssumeDSOLocal(M, &GV)) +      continue; + +    if (!(MergeExternalGlobals && GV.hasExternalLinkage()) && +        !GV.hasInternalLinkage()) +      continue; + +    PointerType *PT = dyn_cast<PointerType>(GV.getType()); +    assert(PT && "Global variable is not a pointer!"); + +    unsigned AddressSpace = PT->getAddressSpace(); +    StringRef Section = GV.getSection(); + +    // Ignore all 'special' globals. +    if (GV.getName().startswith("llvm.") || +        GV.getName().startswith(".llvm.")) +      continue; + +    // Ignore all "required" globals: +    if (isMustKeepGlobalVariable(&GV)) +      continue; + +    Type *Ty = GV.getValueType(); +    if (DL.getTypeAllocSize(Ty) < MaxOffset) { +      if (TM && +          TargetLoweringObjectFile::getKindForGlobal(&GV, *TM).isBSS()) +        BSSGlobals[{AddressSpace, Section}].push_back(&GV); +      else if (GV.isConstant()) +        ConstGlobals[{AddressSpace, Section}].push_back(&GV); +      else +        Globals[{AddressSpace, Section}].push_back(&GV); +    } +  } + +  for (auto &P : Globals) +    if (P.second.size() > 1) +      Changed |= doMerge(P.second, M, false, P.first.first); + +  for (auto &P : BSSGlobals) +    if (P.second.size() > 1) +      Changed |= doMerge(P.second, M, false, P.first.first); + +  if (EnableGlobalMergeOnConst) +    for (auto &P : ConstGlobals) +      if (P.second.size() > 1) +        Changed |= doMerge(P.second, M, true, P.first.first); + +  return Changed; +} + +bool GlobalMerge::runOnFunction(Function &F) { +  return false; +} + +bool GlobalMerge::doFinalization(Module &M) { +  MustKeepGlobalVariables.clear(); +  return false; +} + +Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset, +                                  bool OnlyOptimizeForSize, +                                  bool MergeExternalByDefault) { +  bool MergeExternal = (EnableGlobalMergeOnExternal == cl::BOU_UNSET) ? +    MergeExternalByDefault : (EnableGlobalMergeOnExternal == cl::BOU_TRUE); +  return new GlobalMerge(TM, Offset, OnlyOptimizeForSize, MergeExternal); +}  | 
