diff options
Diffstat (limited to 'llvm/lib/CodeGen/LiveRangeEdit.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/LiveRangeEdit.cpp | 476 | 
1 files changed, 476 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/LiveRangeEdit.cpp b/llvm/lib/CodeGen/LiveRangeEdit.cpp new file mode 100644 index 000000000000..34bac082bcd7 --- /dev/null +++ b/llvm/lib/CodeGen/LiveRangeEdit.cpp @@ -0,0 +1,476 @@ +//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// The LiveRangeEdit class represents changes done to a virtual register when it +// is spilled or split. +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/LiveRangeEdit.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "regalloc" + +STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE"); +STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); +STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE"); + +void LiveRangeEdit::Delegate::anchor() { } + +LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg, +                                                     bool createSubRanges) { +  Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); +  if (VRM) +    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); + +  LiveInterval &LI = LIS.createEmptyInterval(VReg); +  if (Parent && !Parent->isSpillable()) +    LI.markNotSpillable(); +  if (createSubRanges) { +    // Create empty subranges if the OldReg's interval has them. Do not create +    // the main range here---it will be constructed later after the subranges +    // have been finalized. +    LiveInterval &OldLI = LIS.getInterval(OldReg); +    VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator(); +    for (LiveInterval::SubRange &S : OldLI.subranges()) +      LI.createSubRange(Alloc, S.LaneMask); +  } +  return LI; +} + +unsigned LiveRangeEdit::createFrom(unsigned OldReg) { +  Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); +  if (VRM) { +    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); +  } +  // FIXME: Getting the interval here actually computes it. +  // In theory, this may not be what we want, but in practice +  // the createEmptyIntervalFrom API is used when this is not +  // the case. Generally speaking we just want to annotate the +  // LiveInterval when it gets created but we cannot do that at +  // the moment. +  if (Parent && !Parent->isSpillable()) +    LIS.getInterval(VReg).markNotSpillable(); +  return VReg; +} + +bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, +                                          const MachineInstr *DefMI, +                                          AliasAnalysis *aa) { +  assert(DefMI && "Missing instruction"); +  ScannedRemattable = true; +  if (!TII.isTriviallyReMaterializable(*DefMI, aa)) +    return false; +  Remattable.insert(VNI); +  return true; +} + +void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { +  for (VNInfo *VNI : getParent().valnos) { +    if (VNI->isUnused()) +      continue; +    unsigned Original = VRM->getOriginal(getReg()); +    LiveInterval &OrigLI = LIS.getInterval(Original); +    VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); +    if (!OrigVNI) +      continue; +    MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); +    if (!DefMI) +      continue; +    checkRematerializable(OrigVNI, DefMI, aa); +  } +  ScannedRemattable = true; +} + +bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { +  if (!ScannedRemattable) +    scanRemattable(aa); +  return !Remattable.empty(); +} + +/// allUsesAvailableAt - Return true if all registers used by OrigMI at +/// OrigIdx are also available with the same value at UseIdx. +bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, +                                       SlotIndex OrigIdx, +                                       SlotIndex UseIdx) const { +  OrigIdx = OrigIdx.getRegSlot(true); +  UseIdx = UseIdx.getRegSlot(true); +  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { +    const MachineOperand &MO = OrigMI->getOperand(i); +    if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) +      continue; + +    // We can't remat physreg uses, unless it is a constant. +    if (Register::isPhysicalRegister(MO.getReg())) { +      if (MRI.isConstantPhysReg(MO.getReg())) +        continue; +      return false; +    } + +    LiveInterval &li = LIS.getInterval(MO.getReg()); +    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); +    if (!OVNI) +      continue; + +    // Don't allow rematerialization immediately after the original def. +    // It would be incorrect if OrigMI redefines the register. +    // See PR14098. +    if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) +      return false; + +    if (OVNI != li.getVNInfoAt(UseIdx)) +      return false; +  } +  return true; +} + +bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, +                                       SlotIndex UseIdx, bool cheapAsAMove) { +  assert(ScannedRemattable && "Call anyRematerializable first"); + +  // Use scanRemattable info. +  if (!Remattable.count(OrigVNI)) +    return false; + +  // No defining instruction provided. +  SlotIndex DefIdx; +  assert(RM.OrigMI && "No defining instruction for remattable value"); +  DefIdx = LIS.getInstructionIndex(*RM.OrigMI); + +  // If only cheap remats were requested, bail out early. +  if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI)) +    return false; + +  // Verify that all used registers are available with the same values. +  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) +    return false; + +  return true; +} + +SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, +                                         MachineBasicBlock::iterator MI, +                                         unsigned DestReg, +                                         const Remat &RM, +                                         const TargetRegisterInfo &tri, +                                         bool Late) { +  assert(RM.OrigMI && "Invalid remat"); +  TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri); +  // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg +  // to false anyway in case the isDead flag of RM.OrigMI's dest register +  // is true. +  (*--MI).getOperand(0).setIsDead(false); +  Rematted.insert(RM.ParentVNI); +  return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); +} + +void LiveRangeEdit::eraseVirtReg(unsigned Reg) { +  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) +    LIS.removeInterval(Reg); +} + +bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, +                               SmallVectorImpl<MachineInstr*> &Dead) { +  MachineInstr *DefMI = nullptr, *UseMI = nullptr; + +  // Check that there is a single def and a single use. +  for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { +    MachineInstr *MI = MO.getParent(); +    if (MO.isDef()) { +      if (DefMI && DefMI != MI) +        return false; +      if (!MI->canFoldAsLoad()) +        return false; +      DefMI = MI; +    } else if (!MO.isUndef()) { +      if (UseMI && UseMI != MI) +        return false; +      // FIXME: Targets don't know how to fold subreg uses. +      if (MO.getSubReg()) +        return false; +      UseMI = MI; +    } +  } +  if (!DefMI || !UseMI) +    return false; + +  // Since we're moving the DefMI load, make sure we're not extending any live +  // ranges. +  if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), +                          LIS.getInstructionIndex(*UseMI))) +    return false; + +  // We also need to make sure it is safe to move the load. +  // Assume there are stores between DefMI and UseMI. +  bool SawStore = true; +  if (!DefMI->isSafeToMove(nullptr, SawStore)) +    return false; + +  LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI +                    << "       into single use: " << *UseMI); + +  SmallVector<unsigned, 8> Ops; +  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) +    return false; + +  MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS); +  if (!FoldMI) +    return false; +  LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI); +  LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); +  if (UseMI->isCall()) +    UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI); +  UseMI->eraseFromParent(); +  DefMI->addRegisterDead(LI->reg, nullptr); +  Dead.push_back(DefMI); +  ++NumDCEFoldedLoads; +  return true; +} + +bool LiveRangeEdit::useIsKill(const LiveInterval &LI, +                              const MachineOperand &MO) const { +  const MachineInstr &MI = *MO.getParent(); +  SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); +  if (LI.Query(Idx).isKill()) +    return true; +  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); +  unsigned SubReg = MO.getSubReg(); +  LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); +  for (const LiveInterval::SubRange &S : LI.subranges()) { +    if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill()) +      return true; +  } +  return false; +} + +/// Find all live intervals that need to shrink, then remove the instruction. +void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink, +                                     AliasAnalysis *AA) { +  assert(MI->allDefsAreDead() && "Def isn't really dead"); +  SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); + +  // Never delete a bundled instruction. +  if (MI->isBundled()) { +    return; +  } +  // Never delete inline asm. +  if (MI->isInlineAsm()) { +    LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); +    return; +  } + +  // Use the same criteria as DeadMachineInstructionElim. +  bool SawStore = false; +  if (!MI->isSafeToMove(nullptr, SawStore)) { +    LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); +    return; +  } + +  LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); + +  // Collect virtual registers to be erased after MI is gone. +  SmallVector<unsigned, 8> RegsToErase; +  bool ReadsPhysRegs = false; +  bool isOrigDef = false; +  unsigned Dest; +  // Only optimize rematerialize case when the instruction has one def, since +  // otherwise we could leave some dead defs in the code.  This case is +  // extremely rare. +  if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() && +      MI->getDesc().getNumDefs() == 1) { +    Dest = MI->getOperand(0).getReg(); +    unsigned Original = VRM->getOriginal(Dest); +    LiveInterval &OrigLI = LIS.getInterval(Original); +    VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); +    // The original live-range may have been shrunk to +    // an empty live-range. It happens when it is dead, but +    // we still keep it around to be able to rematerialize +    // other values that depend on it. +    if (OrigVNI) +      isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); +  } + +  // Check for live intervals that may shrink +  for (MachineInstr::mop_iterator MOI = MI->operands_begin(), +         MOE = MI->operands_end(); MOI != MOE; ++MOI) { +    if (!MOI->isReg()) +      continue; +    Register Reg = MOI->getReg(); +    if (!Register::isVirtualRegister(Reg)) { +      // Check if MI reads any unreserved physregs. +      if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) +        ReadsPhysRegs = true; +      else if (MOI->isDef()) +        LIS.removePhysRegDefAt(Reg, Idx); +      continue; +    } +    LiveInterval &LI = LIS.getInterval(Reg); + +    // Shrink read registers, unless it is likely to be expensive and +    // unlikely to change anything. We typically don't want to shrink the +    // PIC base register that has lots of uses everywhere. +    // Always shrink COPY uses that probably come from live range splitting. +    if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || +        (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) +      ToShrink.insert(&LI); + +    // Remove defined value. +    if (MOI->isDef()) { +      if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) +        TheDelegate->LRE_WillShrinkVirtReg(LI.reg); +      LIS.removeVRegDefAt(LI, Idx); +      if (LI.empty()) +        RegsToErase.push_back(Reg); +    } +  } + +  // Currently, we don't support DCE of physreg live ranges. If MI reads +  // any unreserved physregs, don't erase the instruction, but turn it into +  // a KILL instead. This way, the physreg live ranges don't end up +  // dangling. +  // FIXME: It would be better to have something like shrinkToUses() for +  // physregs. That could potentially enable more DCE and it would free up +  // the physreg. It would not happen often, though. +  if (ReadsPhysRegs) { +    MI->setDesc(TII.get(TargetOpcode::KILL)); +    // Remove all operands that aren't physregs. +    for (unsigned i = MI->getNumOperands(); i; --i) { +      const MachineOperand &MO = MI->getOperand(i-1); +      if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) +        continue; +      MI->RemoveOperand(i-1); +    } +    LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI); +  } else { +    // If the dest of MI is an original reg and MI is reMaterializable, +    // don't delete the inst. Replace the dest with a new reg, and keep +    // the inst for remat of other siblings. The inst is saved in +    // LiveRangeEdit::DeadRemats and will be deleted after all the +    // allocations of the func are done. +    if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) { +      LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false); +      VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); +      NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); +      pop_back(); +      DeadRemats->insert(MI); +      const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); +      MI->substituteRegister(Dest, NewLI.reg, 0, TRI); +      MI->getOperand(0).setIsDead(true); +    } else { +      if (TheDelegate) +        TheDelegate->LRE_WillEraseInstruction(MI); +      LIS.RemoveMachineInstrFromMaps(*MI); +      MI->eraseFromParent(); +      ++NumDCEDeleted; +    } +  } + +  // Erase any virtregs that are now empty and unused. There may be <undef> +  // uses around. Keep the empty live range in that case. +  for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { +    unsigned Reg = RegsToErase[i]; +    if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { +      ToShrink.remove(&LIS.getInterval(Reg)); +      eraseVirtReg(Reg); +    } +  } +} + +void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, +                                      ArrayRef<unsigned> RegsBeingSpilled, +                                      AliasAnalysis *AA) { +  ToShrinkSet ToShrink; + +  for (;;) { +    // Erase all dead defs. +    while (!Dead.empty()) +      eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA); + +    if (ToShrink.empty()) +      break; + +    // Shrink just one live interval. Then delete new dead defs. +    LiveInterval *LI = ToShrink.back(); +    ToShrink.pop_back(); +    if (foldAsLoad(LI, Dead)) +      continue; +    unsigned VReg = LI->reg; +    if (TheDelegate) +      TheDelegate->LRE_WillShrinkVirtReg(VReg); +    if (!LIS.shrinkToUses(LI, &Dead)) +      continue; + +    // Don't create new intervals for a register being spilled. +    // The new intervals would have to be spilled anyway so its not worth it. +    // Also they currently aren't spilled so creating them and not spilling +    // them results in incorrect code. +    bool BeingSpilled = false; +    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { +      if (VReg == RegsBeingSpilled[i]) { +        BeingSpilled = true; +        break; +      } +    } + +    if (BeingSpilled) continue; + +    // LI may have been separated, create new intervals. +    LI->RenumberValues(); +    SmallVector<LiveInterval*, 8> SplitLIs; +    LIS.splitSeparateComponents(*LI, SplitLIs); +    if (!SplitLIs.empty()) +      ++NumFracRanges; + +    unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; +    for (const LiveInterval *SplitLI : SplitLIs) { +      // If LI is an original interval that hasn't been split yet, make the new +      // intervals their own originals instead of referring to LI. The original +      // interval must contain all the split products, and LI doesn't. +      if (Original != VReg && Original != 0) +        VRM->setIsSplitFromReg(SplitLI->reg, Original); +      if (TheDelegate) +        TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); +    } +  } +} + +// Keep track of new virtual registers created via +// MachineRegisterInfo::createVirtualRegister. +void +LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) +{ +  if (VRM) +    VRM->grow(); + +  NewRegs.push_back(VReg); +} + +void +LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, +                                        const MachineLoopInfo &Loops, +                                        const MachineBlockFrequencyInfo &MBFI) { +  VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); +  for (unsigned I = 0, Size = size(); I < Size; ++I) { +    LiveInterval &LI = LIS.getInterval(get(I)); +    if (MRI.recomputeRegClass(LI.reg)) +      LLVM_DEBUG({ +        const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); +        dbgs() << "Inflated " << printReg(LI.reg) << " to " +               << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; +      }); +    VRAI.calculateSpillWeightAndHint(LI); +  } +} | 
