diff options
Diffstat (limited to 'llvm/lib/CodeGen/MIRParser/MIParser.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/MIRParser/MIParser.cpp | 3089 | 
1 files changed, 3089 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/MIRParser/MIParser.cpp b/llvm/lib/CodeGen/MIRParser/MIParser.cpp new file mode 100644 index 000000000000..6498acc9fa51 --- /dev/null +++ b/llvm/lib/CodeGen/MIRParser/MIParser.cpp @@ -0,0 +1,3089 @@ +//===- MIParser.cpp - Machine instructions parser implementation ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the parsing of machine instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MIRParser/MIParser.h" +#include "MILexer.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/AsmParser/Parser.h" +#include "llvm/AsmParser/SlotMapping.h" +#include "llvm/CodeGen/GlobalISel/RegisterBank.h" +#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" +#include "llvm/CodeGen/MIRPrinter.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCDwarf.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/SMLoc.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cctype> +#include <cstddef> +#include <cstdint> +#include <limits> +#include <string> +#include <utility> + +using namespace llvm; + +void PerTargetMIParsingState::setTarget( +  const TargetSubtargetInfo &NewSubtarget) { + +  // If the subtarget changed, over conservatively assume everything is invalid. +  if (&Subtarget == &NewSubtarget) +    return; + +  Names2InstrOpCodes.clear(); +  Names2Regs.clear(); +  Names2RegMasks.clear(); +  Names2SubRegIndices.clear(); +  Names2TargetIndices.clear(); +  Names2DirectTargetFlags.clear(); +  Names2BitmaskTargetFlags.clear(); +  Names2MMOTargetFlags.clear(); + +  initNames2RegClasses(); +  initNames2RegBanks(); +} + +void PerTargetMIParsingState::initNames2Regs() { +  if (!Names2Regs.empty()) +    return; + +  // The '%noreg' register is the register 0. +  Names2Regs.insert(std::make_pair("noreg", 0)); +  const auto *TRI = Subtarget.getRegisterInfo(); +  assert(TRI && "Expected target register info"); + +  for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { +    bool WasInserted = +        Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) +            .second; +    (void)WasInserted; +    assert(WasInserted && "Expected registers to be unique case-insensitively"); +  } +} + +bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, +                                                unsigned &Reg) { +  initNames2Regs(); +  auto RegInfo = Names2Regs.find(RegName); +  if (RegInfo == Names2Regs.end()) +    return true; +  Reg = RegInfo->getValue(); +  return false; +} + +void PerTargetMIParsingState::initNames2InstrOpCodes() { +  if (!Names2InstrOpCodes.empty()) +    return; +  const auto *TII = Subtarget.getInstrInfo(); +  assert(TII && "Expected target instruction info"); +  for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) +    Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); +} + +bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, +                                             unsigned &OpCode) { +  initNames2InstrOpCodes(); +  auto InstrInfo = Names2InstrOpCodes.find(InstrName); +  if (InstrInfo == Names2InstrOpCodes.end()) +    return true; +  OpCode = InstrInfo->getValue(); +  return false; +} + +void PerTargetMIParsingState::initNames2RegMasks() { +  if (!Names2RegMasks.empty()) +    return; +  const auto *TRI = Subtarget.getRegisterInfo(); +  assert(TRI && "Expected target register info"); +  ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); +  ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); +  assert(RegMasks.size() == RegMaskNames.size()); +  for (size_t I = 0, E = RegMasks.size(); I < E; ++I) +    Names2RegMasks.insert( +        std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); +} + +const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { +  initNames2RegMasks(); +  auto RegMaskInfo = Names2RegMasks.find(Identifier); +  if (RegMaskInfo == Names2RegMasks.end()) +    return nullptr; +  return RegMaskInfo->getValue(); +} + +void PerTargetMIParsingState::initNames2SubRegIndices() { +  if (!Names2SubRegIndices.empty()) +    return; +  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); +  for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) +    Names2SubRegIndices.insert( +        std::make_pair(TRI->getSubRegIndexName(I), I)); +} + +unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { +  initNames2SubRegIndices(); +  auto SubRegInfo = Names2SubRegIndices.find(Name); +  if (SubRegInfo == Names2SubRegIndices.end()) +    return 0; +  return SubRegInfo->getValue(); +} + +void PerTargetMIParsingState::initNames2TargetIndices() { +  if (!Names2TargetIndices.empty()) +    return; +  const auto *TII = Subtarget.getInstrInfo(); +  assert(TII && "Expected target instruction info"); +  auto Indices = TII->getSerializableTargetIndices(); +  for (const auto &I : Indices) +    Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); +} + +bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { +  initNames2TargetIndices(); +  auto IndexInfo = Names2TargetIndices.find(Name); +  if (IndexInfo == Names2TargetIndices.end()) +    return true; +  Index = IndexInfo->second; +  return false; +} + +void PerTargetMIParsingState::initNames2DirectTargetFlags() { +  if (!Names2DirectTargetFlags.empty()) +    return; + +  const auto *TII = Subtarget.getInstrInfo(); +  assert(TII && "Expected target instruction info"); +  auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); +  for (const auto &I : Flags) +    Names2DirectTargetFlags.insert( +        std::make_pair(StringRef(I.second), I.first)); +} + +bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, +                                                  unsigned &Flag) { +  initNames2DirectTargetFlags(); +  auto FlagInfo = Names2DirectTargetFlags.find(Name); +  if (FlagInfo == Names2DirectTargetFlags.end()) +    return true; +  Flag = FlagInfo->second; +  return false; +} + +void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { +  if (!Names2BitmaskTargetFlags.empty()) +    return; + +  const auto *TII = Subtarget.getInstrInfo(); +  assert(TII && "Expected target instruction info"); +  auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); +  for (const auto &I : Flags) +    Names2BitmaskTargetFlags.insert( +        std::make_pair(StringRef(I.second), I.first)); +} + +bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, +                                                   unsigned &Flag) { +  initNames2BitmaskTargetFlags(); +  auto FlagInfo = Names2BitmaskTargetFlags.find(Name); +  if (FlagInfo == Names2BitmaskTargetFlags.end()) +    return true; +  Flag = FlagInfo->second; +  return false; +} + +void PerTargetMIParsingState::initNames2MMOTargetFlags() { +  if (!Names2MMOTargetFlags.empty()) +    return; + +  const auto *TII = Subtarget.getInstrInfo(); +  assert(TII && "Expected target instruction info"); +  auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); +  for (const auto &I : Flags) +    Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); +} + +bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, +                                               MachineMemOperand::Flags &Flag) { +  initNames2MMOTargetFlags(); +  auto FlagInfo = Names2MMOTargetFlags.find(Name); +  if (FlagInfo == Names2MMOTargetFlags.end()) +    return true; +  Flag = FlagInfo->second; +  return false; +} + +void PerTargetMIParsingState::initNames2RegClasses() { +  if (!Names2RegClasses.empty()) +    return; + +  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); +  for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { +    const auto *RC = TRI->getRegClass(I); +    Names2RegClasses.insert( +        std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); +  } +} + +void PerTargetMIParsingState::initNames2RegBanks() { +  if (!Names2RegBanks.empty()) +    return; + +  const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); +  // If the target does not support GlobalISel, we may not have a +  // register bank info. +  if (!RBI) +    return; + +  for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { +    const auto &RegBank = RBI->getRegBank(I); +    Names2RegBanks.insert( +        std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); +  } +} + +const TargetRegisterClass * +PerTargetMIParsingState::getRegClass(StringRef Name) { +  auto RegClassInfo = Names2RegClasses.find(Name); +  if (RegClassInfo == Names2RegClasses.end()) +    return nullptr; +  return RegClassInfo->getValue(); +} + +const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { +  auto RegBankInfo = Names2RegBanks.find(Name); +  if (RegBankInfo == Names2RegBanks.end()) +    return nullptr; +  return RegBankInfo->getValue(); +} + +PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, +    SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) +  : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { +} + +VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { +  auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); +  if (I.second) { +    MachineRegisterInfo &MRI = MF.getRegInfo(); +    VRegInfo *Info = new (Allocator) VRegInfo; +    Info->VReg = MRI.createIncompleteVirtualRegister(); +    I.first->second = Info; +  } +  return *I.first->second; +} + +VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { +  assert(RegName != "" && "Expected named reg."); + +  auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); +  if (I.second) { +    VRegInfo *Info = new (Allocator) VRegInfo; +    Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); +    I.first->second = Info; +  } +  return *I.first->second; +} + +namespace { + +/// A wrapper struct around the 'MachineOperand' struct that includes a source +/// range and other attributes. +struct ParsedMachineOperand { +  MachineOperand Operand; +  StringRef::iterator Begin; +  StringRef::iterator End; +  Optional<unsigned> TiedDefIdx; + +  ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, +                       StringRef::iterator End, Optional<unsigned> &TiedDefIdx) +      : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { +    if (TiedDefIdx) +      assert(Operand.isReg() && Operand.isUse() && +             "Only used register operands can be tied"); +  } +}; + +class MIParser { +  MachineFunction &MF; +  SMDiagnostic &Error; +  StringRef Source, CurrentSource; +  MIToken Token; +  PerFunctionMIParsingState &PFS; +  /// Maps from slot numbers to function's unnamed basic blocks. +  DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; +  /// Maps from slot numbers to function's unnamed values. +  DenseMap<unsigned, const Value *> Slots2Values; + +public: +  MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, +           StringRef Source); + +  /// \p SkipChar gives the number of characters to skip before looking +  /// for the next token. +  void lex(unsigned SkipChar = 0); + +  /// Report an error at the current location with the given message. +  /// +  /// This function always return true. +  bool error(const Twine &Msg); + +  /// Report an error at the given location with the given message. +  /// +  /// This function always return true. +  bool error(StringRef::iterator Loc, const Twine &Msg); + +  bool +  parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); +  bool parseBasicBlocks(); +  bool parse(MachineInstr *&MI); +  bool parseStandaloneMBB(MachineBasicBlock *&MBB); +  bool parseStandaloneNamedRegister(unsigned &Reg); +  bool parseStandaloneVirtualRegister(VRegInfo *&Info); +  bool parseStandaloneRegister(unsigned &Reg); +  bool parseStandaloneStackObject(int &FI); +  bool parseStandaloneMDNode(MDNode *&Node); + +  bool +  parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); +  bool parseBasicBlock(MachineBasicBlock &MBB, +                       MachineBasicBlock *&AddFalthroughFrom); +  bool parseBasicBlockLiveins(MachineBasicBlock &MBB); +  bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); + +  bool parseNamedRegister(unsigned &Reg); +  bool parseVirtualRegister(VRegInfo *&Info); +  bool parseNamedVirtualRegister(VRegInfo *&Info); +  bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); +  bool parseRegisterFlag(unsigned &Flags); +  bool parseRegisterClassOrBank(VRegInfo &RegInfo); +  bool parseSubRegisterIndex(unsigned &SubReg); +  bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); +  bool parseRegisterOperand(MachineOperand &Dest, +                            Optional<unsigned> &TiedDefIdx, bool IsDef = false); +  bool parseImmediateOperand(MachineOperand &Dest); +  bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, +                       const Constant *&C); +  bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); +  bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); +  bool parseTypedImmediateOperand(MachineOperand &Dest); +  bool parseFPImmediateOperand(MachineOperand &Dest); +  bool parseMBBReference(MachineBasicBlock *&MBB); +  bool parseMBBOperand(MachineOperand &Dest); +  bool parseStackFrameIndex(int &FI); +  bool parseStackObjectOperand(MachineOperand &Dest); +  bool parseFixedStackFrameIndex(int &FI); +  bool parseFixedStackObjectOperand(MachineOperand &Dest); +  bool parseGlobalValue(GlobalValue *&GV); +  bool parseGlobalAddressOperand(MachineOperand &Dest); +  bool parseConstantPoolIndexOperand(MachineOperand &Dest); +  bool parseSubRegisterIndexOperand(MachineOperand &Dest); +  bool parseJumpTableIndexOperand(MachineOperand &Dest); +  bool parseExternalSymbolOperand(MachineOperand &Dest); +  bool parseMCSymbolOperand(MachineOperand &Dest); +  bool parseMDNode(MDNode *&Node); +  bool parseDIExpression(MDNode *&Expr); +  bool parseDILocation(MDNode *&Expr); +  bool parseMetadataOperand(MachineOperand &Dest); +  bool parseCFIOffset(int &Offset); +  bool parseCFIRegister(unsigned &Reg); +  bool parseCFIEscapeValues(std::string& Values); +  bool parseCFIOperand(MachineOperand &Dest); +  bool parseIRBlock(BasicBlock *&BB, const Function &F); +  bool parseBlockAddressOperand(MachineOperand &Dest); +  bool parseIntrinsicOperand(MachineOperand &Dest); +  bool parsePredicateOperand(MachineOperand &Dest); +  bool parseShuffleMaskOperand(MachineOperand &Dest); +  bool parseTargetIndexOperand(MachineOperand &Dest); +  bool parseCustomRegisterMaskOperand(MachineOperand &Dest); +  bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); +  bool parseMachineOperand(MachineOperand &Dest, +                           Optional<unsigned> &TiedDefIdx); +  bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, +                                         Optional<unsigned> &TiedDefIdx); +  bool parseOffset(int64_t &Offset); +  bool parseAlignment(unsigned &Alignment); +  bool parseAddrspace(unsigned &Addrspace); +  bool parseOperandsOffset(MachineOperand &Op); +  bool parseIRValue(const Value *&V); +  bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); +  bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); +  bool parseMachinePointerInfo(MachinePointerInfo &Dest); +  bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); +  bool parseOptionalAtomicOrdering(AtomicOrdering &Order); +  bool parseMachineMemoryOperand(MachineMemOperand *&Dest); +  bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); + +private: +  /// Convert the integer literal in the current token into an unsigned integer. +  /// +  /// Return true if an error occurred. +  bool getUnsigned(unsigned &Result); + +  /// Convert the integer literal in the current token into an uint64. +  /// +  /// Return true if an error occurred. +  bool getUint64(uint64_t &Result); + +  /// Convert the hexadecimal literal in the current token into an unsigned +  ///  APInt with a minimum bitwidth required to represent the value. +  /// +  /// Return true if the literal does not represent an integer value. +  bool getHexUint(APInt &Result); + +  /// If the current token is of the given kind, consume it and return false. +  /// Otherwise report an error and return true. +  bool expectAndConsume(MIToken::TokenKind TokenKind); + +  /// If the current token is of the given kind, consume it and return true. +  /// Otherwise return false. +  bool consumeIfPresent(MIToken::TokenKind TokenKind); + +  bool parseInstruction(unsigned &OpCode, unsigned &Flags); + +  bool assignRegisterTies(MachineInstr &MI, +                          ArrayRef<ParsedMachineOperand> Operands); + +  bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, +                              const MCInstrDesc &MCID); + +  const BasicBlock *getIRBlock(unsigned Slot); +  const BasicBlock *getIRBlock(unsigned Slot, const Function &F); + +  const Value *getIRValue(unsigned Slot); + +  /// Get or create an MCSymbol for a given name. +  MCSymbol *getOrCreateMCSymbol(StringRef Name); + +  /// parseStringConstant +  ///   ::= StringConstant +  bool parseStringConstant(std::string &Result); +}; + +} // end anonymous namespace + +MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, +                   StringRef Source) +    : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) +{} + +void MIParser::lex(unsigned SkipChar) { +  CurrentSource = lexMIToken( +      CurrentSource.data() + SkipChar, Token, +      [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); +} + +bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } + +bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { +  const SourceMgr &SM = *PFS.SM; +  assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); +  const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); +  if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { +    // Create an ordinary diagnostic when the source manager's buffer is the +    // source string. +    Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); +    return true; +  } +  // Create a diagnostic for a YAML string literal. +  Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, +                       Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), +                       Source, None, None); +  return true; +} + +static const char *toString(MIToken::TokenKind TokenKind) { +  switch (TokenKind) { +  case MIToken::comma: +    return "','"; +  case MIToken::equal: +    return "'='"; +  case MIToken::colon: +    return "':'"; +  case MIToken::lparen: +    return "'('"; +  case MIToken::rparen: +    return "')'"; +  default: +    return "<unknown token>"; +  } +} + +bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { +  if (Token.isNot(TokenKind)) +    return error(Twine("expected ") + toString(TokenKind)); +  lex(); +  return false; +} + +bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { +  if (Token.isNot(TokenKind)) +    return false; +  lex(); +  return true; +} + +bool MIParser::parseBasicBlockDefinition( +    DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { +  assert(Token.is(MIToken::MachineBasicBlockLabel)); +  unsigned ID = 0; +  if (getUnsigned(ID)) +    return true; +  auto Loc = Token.location(); +  auto Name = Token.stringValue(); +  lex(); +  bool HasAddressTaken = false; +  bool IsLandingPad = false; +  unsigned Alignment = 0; +  BasicBlock *BB = nullptr; +  if (consumeIfPresent(MIToken::lparen)) { +    do { +      // TODO: Report an error when multiple same attributes are specified. +      switch (Token.kind()) { +      case MIToken::kw_address_taken: +        HasAddressTaken = true; +        lex(); +        break; +      case MIToken::kw_landing_pad: +        IsLandingPad = true; +        lex(); +        break; +      case MIToken::kw_align: +        if (parseAlignment(Alignment)) +          return true; +        break; +      case MIToken::IRBlock: +        // TODO: Report an error when both name and ir block are specified. +        if (parseIRBlock(BB, MF.getFunction())) +          return true; +        lex(); +        break; +      default: +        break; +      } +    } while (consumeIfPresent(MIToken::comma)); +    if (expectAndConsume(MIToken::rparen)) +      return true; +  } +  if (expectAndConsume(MIToken::colon)) +    return true; + +  if (!Name.empty()) { +    BB = dyn_cast_or_null<BasicBlock>( +        MF.getFunction().getValueSymbolTable()->lookup(Name)); +    if (!BB) +      return error(Loc, Twine("basic block '") + Name + +                            "' is not defined in the function '" + +                            MF.getName() + "'"); +  } +  auto *MBB = MF.CreateMachineBasicBlock(BB); +  MF.insert(MF.end(), MBB); +  bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; +  if (!WasInserted) +    return error(Loc, Twine("redefinition of machine basic block with id #") + +                          Twine(ID)); +  if (Alignment) +    MBB->setAlignment(Align(Alignment)); +  if (HasAddressTaken) +    MBB->setHasAddressTaken(); +  MBB->setIsEHPad(IsLandingPad); +  return false; +} + +bool MIParser::parseBasicBlockDefinitions( +    DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { +  lex(); +  // Skip until the first machine basic block. +  while (Token.is(MIToken::Newline)) +    lex(); +  if (Token.isErrorOrEOF()) +    return Token.isError(); +  if (Token.isNot(MIToken::MachineBasicBlockLabel)) +    return error("expected a basic block definition before instructions"); +  unsigned BraceDepth = 0; +  do { +    if (parseBasicBlockDefinition(MBBSlots)) +      return true; +    bool IsAfterNewline = false; +    // Skip until the next machine basic block. +    while (true) { +      if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || +          Token.isErrorOrEOF()) +        break; +      else if (Token.is(MIToken::MachineBasicBlockLabel)) +        return error("basic block definition should be located at the start of " +                     "the line"); +      else if (consumeIfPresent(MIToken::Newline)) { +        IsAfterNewline = true; +        continue; +      } +      IsAfterNewline = false; +      if (Token.is(MIToken::lbrace)) +        ++BraceDepth; +      if (Token.is(MIToken::rbrace)) { +        if (!BraceDepth) +          return error("extraneous closing brace ('}')"); +        --BraceDepth; +      } +      lex(); +    } +    // Verify that we closed all of the '{' at the end of a file or a block. +    if (!Token.isError() && BraceDepth) +      return error("expected '}'"); // FIXME: Report a note that shows '{'. +  } while (!Token.isErrorOrEOF()); +  return Token.isError(); +} + +bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { +  assert(Token.is(MIToken::kw_liveins)); +  lex(); +  if (expectAndConsume(MIToken::colon)) +    return true; +  if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. +    return false; +  do { +    if (Token.isNot(MIToken::NamedRegister)) +      return error("expected a named register"); +    unsigned Reg = 0; +    if (parseNamedRegister(Reg)) +      return true; +    lex(); +    LaneBitmask Mask = LaneBitmask::getAll(); +    if (consumeIfPresent(MIToken::colon)) { +      // Parse lane mask. +      if (Token.isNot(MIToken::IntegerLiteral) && +          Token.isNot(MIToken::HexLiteral)) +        return error("expected a lane mask"); +      static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), +                    "Use correct get-function for lane mask"); +      LaneBitmask::Type V; +      if (getUnsigned(V)) +        return error("invalid lane mask value"); +      Mask = LaneBitmask(V); +      lex(); +    } +    MBB.addLiveIn(Reg, Mask); +  } while (consumeIfPresent(MIToken::comma)); +  return false; +} + +bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { +  assert(Token.is(MIToken::kw_successors)); +  lex(); +  if (expectAndConsume(MIToken::colon)) +    return true; +  if (Token.isNewlineOrEOF()) // Allow an empty list of successors. +    return false; +  do { +    if (Token.isNot(MIToken::MachineBasicBlock)) +      return error("expected a machine basic block reference"); +    MachineBasicBlock *SuccMBB = nullptr; +    if (parseMBBReference(SuccMBB)) +      return true; +    lex(); +    unsigned Weight = 0; +    if (consumeIfPresent(MIToken::lparen)) { +      if (Token.isNot(MIToken::IntegerLiteral) && +          Token.isNot(MIToken::HexLiteral)) +        return error("expected an integer literal after '('"); +      if (getUnsigned(Weight)) +        return true; +      lex(); +      if (expectAndConsume(MIToken::rparen)) +        return true; +    } +    MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); +  } while (consumeIfPresent(MIToken::comma)); +  MBB.normalizeSuccProbs(); +  return false; +} + +bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, +                               MachineBasicBlock *&AddFalthroughFrom) { +  // Skip the definition. +  assert(Token.is(MIToken::MachineBasicBlockLabel)); +  lex(); +  if (consumeIfPresent(MIToken::lparen)) { +    while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) +      lex(); +    consumeIfPresent(MIToken::rparen); +  } +  consumeIfPresent(MIToken::colon); + +  // Parse the liveins and successors. +  // N.B: Multiple lists of successors and liveins are allowed and they're +  // merged into one. +  // Example: +  //   liveins: %edi +  //   liveins: %esi +  // +  // is equivalent to +  //   liveins: %edi, %esi +  bool ExplicitSuccessors = false; +  while (true) { +    if (Token.is(MIToken::kw_successors)) { +      if (parseBasicBlockSuccessors(MBB)) +        return true; +      ExplicitSuccessors = true; +    } else if (Token.is(MIToken::kw_liveins)) { +      if (parseBasicBlockLiveins(MBB)) +        return true; +    } else if (consumeIfPresent(MIToken::Newline)) { +      continue; +    } else +      break; +    if (!Token.isNewlineOrEOF()) +      return error("expected line break at the end of a list"); +    lex(); +  } + +  // Parse the instructions. +  bool IsInBundle = false; +  MachineInstr *PrevMI = nullptr; +  while (!Token.is(MIToken::MachineBasicBlockLabel) && +         !Token.is(MIToken::Eof)) { +    if (consumeIfPresent(MIToken::Newline)) +      continue; +    if (consumeIfPresent(MIToken::rbrace)) { +      // The first parsing pass should verify that all closing '}' have an +      // opening '{'. +      assert(IsInBundle); +      IsInBundle = false; +      continue; +    } +    MachineInstr *MI = nullptr; +    if (parse(MI)) +      return true; +    MBB.insert(MBB.end(), MI); +    if (IsInBundle) { +      PrevMI->setFlag(MachineInstr::BundledSucc); +      MI->setFlag(MachineInstr::BundledPred); +    } +    PrevMI = MI; +    if (Token.is(MIToken::lbrace)) { +      if (IsInBundle) +        return error("nested instruction bundles are not allowed"); +      lex(); +      // This instruction is the start of the bundle. +      MI->setFlag(MachineInstr::BundledSucc); +      IsInBundle = true; +      if (!Token.is(MIToken::Newline)) +        // The next instruction can be on the same line. +        continue; +    } +    assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); +    lex(); +  } + +  // Construct successor list by searching for basic block machine operands. +  if (!ExplicitSuccessors) { +    SmallVector<MachineBasicBlock*,4> Successors; +    bool IsFallthrough; +    guessSuccessors(MBB, Successors, IsFallthrough); +    for (MachineBasicBlock *Succ : Successors) +      MBB.addSuccessor(Succ); + +    if (IsFallthrough) { +      AddFalthroughFrom = &MBB; +    } else { +      MBB.normalizeSuccProbs(); +    } +  } + +  return false; +} + +bool MIParser::parseBasicBlocks() { +  lex(); +  // Skip until the first machine basic block. +  while (Token.is(MIToken::Newline)) +    lex(); +  if (Token.isErrorOrEOF()) +    return Token.isError(); +  // The first parsing pass should have verified that this token is a MBB label +  // in the 'parseBasicBlockDefinitions' method. +  assert(Token.is(MIToken::MachineBasicBlockLabel)); +  MachineBasicBlock *AddFalthroughFrom = nullptr; +  do { +    MachineBasicBlock *MBB = nullptr; +    if (parseMBBReference(MBB)) +      return true; +    if (AddFalthroughFrom) { +      if (!AddFalthroughFrom->isSuccessor(MBB)) +        AddFalthroughFrom->addSuccessor(MBB); +      AddFalthroughFrom->normalizeSuccProbs(); +      AddFalthroughFrom = nullptr; +    } +    if (parseBasicBlock(*MBB, AddFalthroughFrom)) +      return true; +    // The method 'parseBasicBlock' should parse the whole block until the next +    // block or the end of file. +    assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); +  } while (Token.isNot(MIToken::Eof)); +  return false; +} + +bool MIParser::parse(MachineInstr *&MI) { +  // Parse any register operands before '=' +  MachineOperand MO = MachineOperand::CreateImm(0); +  SmallVector<ParsedMachineOperand, 8> Operands; +  while (Token.isRegister() || Token.isRegisterFlag()) { +    auto Loc = Token.location(); +    Optional<unsigned> TiedDefIdx; +    if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) +      return true; +    Operands.push_back( +        ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); +    if (Token.isNot(MIToken::comma)) +      break; +    lex(); +  } +  if (!Operands.empty() && expectAndConsume(MIToken::equal)) +    return true; + +  unsigned OpCode, Flags = 0; +  if (Token.isError() || parseInstruction(OpCode, Flags)) +    return true; + +  // Parse the remaining machine operands. +  while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && +         Token.isNot(MIToken::kw_post_instr_symbol) && +         Token.isNot(MIToken::kw_debug_location) && +         Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { +    auto Loc = Token.location(); +    Optional<unsigned> TiedDefIdx; +    if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) +      return true; +    if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) +      MO.setIsDebug(); +    Operands.push_back( +        ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); +    if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || +        Token.is(MIToken::lbrace)) +      break; +    if (Token.isNot(MIToken::comma)) +      return error("expected ',' before the next machine operand"); +    lex(); +  } + +  MCSymbol *PreInstrSymbol = nullptr; +  if (Token.is(MIToken::kw_pre_instr_symbol)) +    if (parsePreOrPostInstrSymbol(PreInstrSymbol)) +      return true; +  MCSymbol *PostInstrSymbol = nullptr; +  if (Token.is(MIToken::kw_post_instr_symbol)) +    if (parsePreOrPostInstrSymbol(PostInstrSymbol)) +      return true; + +  DebugLoc DebugLocation; +  if (Token.is(MIToken::kw_debug_location)) { +    lex(); +    MDNode *Node = nullptr; +    if (Token.is(MIToken::exclaim)) { +      if (parseMDNode(Node)) +        return true; +    } else if (Token.is(MIToken::md_dilocation)) { +      if (parseDILocation(Node)) +        return true; +    } else +      return error("expected a metadata node after 'debug-location'"); +    if (!isa<DILocation>(Node)) +      return error("referenced metadata is not a DILocation"); +    DebugLocation = DebugLoc(Node); +  } + +  // Parse the machine memory operands. +  SmallVector<MachineMemOperand *, 2> MemOperands; +  if (Token.is(MIToken::coloncolon)) { +    lex(); +    while (!Token.isNewlineOrEOF()) { +      MachineMemOperand *MemOp = nullptr; +      if (parseMachineMemoryOperand(MemOp)) +        return true; +      MemOperands.push_back(MemOp); +      if (Token.isNewlineOrEOF()) +        break; +      if (Token.isNot(MIToken::comma)) +        return error("expected ',' before the next machine memory operand"); +      lex(); +    } +  } + +  const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); +  if (!MCID.isVariadic()) { +    // FIXME: Move the implicit operand verification to the machine verifier. +    if (verifyImplicitOperands(Operands, MCID)) +      return true; +  } + +  // TODO: Check for extraneous machine operands. +  MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); +  MI->setFlags(Flags); +  for (const auto &Operand : Operands) +    MI->addOperand(MF, Operand.Operand); +  if (assignRegisterTies(*MI, Operands)) +    return true; +  if (PreInstrSymbol) +    MI->setPreInstrSymbol(MF, PreInstrSymbol); +  if (PostInstrSymbol) +    MI->setPostInstrSymbol(MF, PostInstrSymbol); +  if (!MemOperands.empty()) +    MI->setMemRefs(MF, MemOperands); +  return false; +} + +bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { +  lex(); +  if (Token.isNot(MIToken::MachineBasicBlock)) +    return error("expected a machine basic block reference"); +  if (parseMBBReference(MBB)) +    return true; +  lex(); +  if (Token.isNot(MIToken::Eof)) +    return error( +        "expected end of string after the machine basic block reference"); +  return false; +} + +bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { +  lex(); +  if (Token.isNot(MIToken::NamedRegister)) +    return error("expected a named register"); +  if (parseNamedRegister(Reg)) +    return true; +  lex(); +  if (Token.isNot(MIToken::Eof)) +    return error("expected end of string after the register reference"); +  return false; +} + +bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { +  lex(); +  if (Token.isNot(MIToken::VirtualRegister)) +    return error("expected a virtual register"); +  if (parseVirtualRegister(Info)) +    return true; +  lex(); +  if (Token.isNot(MIToken::Eof)) +    return error("expected end of string after the register reference"); +  return false; +} + +bool MIParser::parseStandaloneRegister(unsigned &Reg) { +  lex(); +  if (Token.isNot(MIToken::NamedRegister) && +      Token.isNot(MIToken::VirtualRegister)) +    return error("expected either a named or virtual register"); + +  VRegInfo *Info; +  if (parseRegister(Reg, Info)) +    return true; + +  lex(); +  if (Token.isNot(MIToken::Eof)) +    return error("expected end of string after the register reference"); +  return false; +} + +bool MIParser::parseStandaloneStackObject(int &FI) { +  lex(); +  if (Token.isNot(MIToken::StackObject)) +    return error("expected a stack object"); +  if (parseStackFrameIndex(FI)) +    return true; +  if (Token.isNot(MIToken::Eof)) +    return error("expected end of string after the stack object reference"); +  return false; +} + +bool MIParser::parseStandaloneMDNode(MDNode *&Node) { +  lex(); +  if (Token.is(MIToken::exclaim)) { +    if (parseMDNode(Node)) +      return true; +  } else if (Token.is(MIToken::md_diexpr)) { +    if (parseDIExpression(Node)) +      return true; +  } else if (Token.is(MIToken::md_dilocation)) { +    if (parseDILocation(Node)) +      return true; +  } else +    return error("expected a metadata node"); +  if (Token.isNot(MIToken::Eof)) +    return error("expected end of string after the metadata node"); +  return false; +} + +static const char *printImplicitRegisterFlag(const MachineOperand &MO) { +  assert(MO.isImplicit()); +  return MO.isDef() ? "implicit-def" : "implicit"; +} + +static std::string getRegisterName(const TargetRegisterInfo *TRI, +                                   unsigned Reg) { +  assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); +  return StringRef(TRI->getName(Reg)).lower(); +} + +/// Return true if the parsed machine operands contain a given machine operand. +static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, +                                ArrayRef<ParsedMachineOperand> Operands) { +  for (const auto &I : Operands) { +    if (ImplicitOperand.isIdenticalTo(I.Operand)) +      return true; +  } +  return false; +} + +bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, +                                      const MCInstrDesc &MCID) { +  if (MCID.isCall()) +    // We can't verify call instructions as they can contain arbitrary implicit +    // register and register mask operands. +    return false; + +  // Gather all the expected implicit operands. +  SmallVector<MachineOperand, 4> ImplicitOperands; +  if (MCID.ImplicitDefs) +    for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) +      ImplicitOperands.push_back( +          MachineOperand::CreateReg(*ImpDefs, true, true)); +  if (MCID.ImplicitUses) +    for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) +      ImplicitOperands.push_back( +          MachineOperand::CreateReg(*ImpUses, false, true)); + +  const auto *TRI = MF.getSubtarget().getRegisterInfo(); +  assert(TRI && "Expected target register info"); +  for (const auto &I : ImplicitOperands) { +    if (isImplicitOperandIn(I, Operands)) +      continue; +    return error(Operands.empty() ? Token.location() : Operands.back().End, +                 Twine("missing implicit register operand '") + +                     printImplicitRegisterFlag(I) + " $" + +                     getRegisterName(TRI, I.getReg()) + "'"); +  } +  return false; +} + +bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { +  // Allow frame and fast math flags for OPCODE +  while (Token.is(MIToken::kw_frame_setup) || +         Token.is(MIToken::kw_frame_destroy) || +         Token.is(MIToken::kw_nnan) || +         Token.is(MIToken::kw_ninf) || +         Token.is(MIToken::kw_nsz) || +         Token.is(MIToken::kw_arcp) || +         Token.is(MIToken::kw_contract) || +         Token.is(MIToken::kw_afn) || +         Token.is(MIToken::kw_reassoc) || +         Token.is(MIToken::kw_nuw) || +         Token.is(MIToken::kw_nsw) || +         Token.is(MIToken::kw_exact) || +         Token.is(MIToken::kw_fpexcept)) { +    // Mine frame and fast math flags +    if (Token.is(MIToken::kw_frame_setup)) +      Flags |= MachineInstr::FrameSetup; +    if (Token.is(MIToken::kw_frame_destroy)) +      Flags |= MachineInstr::FrameDestroy; +    if (Token.is(MIToken::kw_nnan)) +      Flags |= MachineInstr::FmNoNans; +    if (Token.is(MIToken::kw_ninf)) +      Flags |= MachineInstr::FmNoInfs; +    if (Token.is(MIToken::kw_nsz)) +      Flags |= MachineInstr::FmNsz; +    if (Token.is(MIToken::kw_arcp)) +      Flags |= MachineInstr::FmArcp; +    if (Token.is(MIToken::kw_contract)) +      Flags |= MachineInstr::FmContract; +    if (Token.is(MIToken::kw_afn)) +      Flags |= MachineInstr::FmAfn; +    if (Token.is(MIToken::kw_reassoc)) +      Flags |= MachineInstr::FmReassoc; +    if (Token.is(MIToken::kw_nuw)) +      Flags |= MachineInstr::NoUWrap; +    if (Token.is(MIToken::kw_nsw)) +      Flags |= MachineInstr::NoSWrap; +    if (Token.is(MIToken::kw_exact)) +      Flags |= MachineInstr::IsExact; +    if (Token.is(MIToken::kw_fpexcept)) +      Flags |= MachineInstr::FPExcept; + +    lex(); +  } +  if (Token.isNot(MIToken::Identifier)) +    return error("expected a machine instruction"); +  StringRef InstrName = Token.stringValue(); +  if (PFS.Target.parseInstrName(InstrName, OpCode)) +    return error(Twine("unknown machine instruction name '") + InstrName + "'"); +  lex(); +  return false; +} + +bool MIParser::parseNamedRegister(unsigned &Reg) { +  assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); +  StringRef Name = Token.stringValue(); +  if (PFS.Target.getRegisterByName(Name, Reg)) +    return error(Twine("unknown register name '") + Name + "'"); +  return false; +} + +bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { +  assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); +  StringRef Name = Token.stringValue(); +  // TODO: Check that the VReg name is not the same as a physical register name. +  //       If it is, then print a warning (when warnings are implemented). +  Info = &PFS.getVRegInfoNamed(Name); +  return false; +} + +bool MIParser::parseVirtualRegister(VRegInfo *&Info) { +  if (Token.is(MIToken::NamedVirtualRegister)) +    return parseNamedVirtualRegister(Info); +  assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); +  unsigned ID; +  if (getUnsigned(ID)) +    return true; +  Info = &PFS.getVRegInfo(ID); +  return false; +} + +bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { +  switch (Token.kind()) { +  case MIToken::underscore: +    Reg = 0; +    return false; +  case MIToken::NamedRegister: +    return parseNamedRegister(Reg); +  case MIToken::NamedVirtualRegister: +  case MIToken::VirtualRegister: +    if (parseVirtualRegister(Info)) +      return true; +    Reg = Info->VReg; +    return false; +  // TODO: Parse other register kinds. +  default: +    llvm_unreachable("The current token should be a register"); +  } +} + +bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { +  if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) +    return error("expected '_', register class, or register bank name"); +  StringRef::iterator Loc = Token.location(); +  StringRef Name = Token.stringValue(); + +  // Was it a register class? +  const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); +  if (RC) { +    lex(); + +    switch (RegInfo.Kind) { +    case VRegInfo::UNKNOWN: +    case VRegInfo::NORMAL: +      RegInfo.Kind = VRegInfo::NORMAL; +      if (RegInfo.Explicit && RegInfo.D.RC != RC) { +        const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); +        return error(Loc, Twine("conflicting register classes, previously: ") + +                     Twine(TRI.getRegClassName(RegInfo.D.RC))); +      } +      RegInfo.D.RC = RC; +      RegInfo.Explicit = true; +      return false; + +    case VRegInfo::GENERIC: +    case VRegInfo::REGBANK: +      return error(Loc, "register class specification on generic register"); +    } +    llvm_unreachable("Unexpected register kind"); +  } + +  // Should be a register bank or a generic register. +  const RegisterBank *RegBank = nullptr; +  if (Name != "_") { +    RegBank = PFS.Target.getRegBank(Name); +    if (!RegBank) +      return error(Loc, "expected '_', register class, or register bank name"); +  } + +  lex(); + +  switch (RegInfo.Kind) { +  case VRegInfo::UNKNOWN: +  case VRegInfo::GENERIC: +  case VRegInfo::REGBANK: +    RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; +    if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) +      return error(Loc, "conflicting generic register banks"); +    RegInfo.D.RegBank = RegBank; +    RegInfo.Explicit = true; +    return false; + +  case VRegInfo::NORMAL: +    return error(Loc, "register bank specification on normal register"); +  } +  llvm_unreachable("Unexpected register kind"); +} + +bool MIParser::parseRegisterFlag(unsigned &Flags) { +  const unsigned OldFlags = Flags; +  switch (Token.kind()) { +  case MIToken::kw_implicit: +    Flags |= RegState::Implicit; +    break; +  case MIToken::kw_implicit_define: +    Flags |= RegState::ImplicitDefine; +    break; +  case MIToken::kw_def: +    Flags |= RegState::Define; +    break; +  case MIToken::kw_dead: +    Flags |= RegState::Dead; +    break; +  case MIToken::kw_killed: +    Flags |= RegState::Kill; +    break; +  case MIToken::kw_undef: +    Flags |= RegState::Undef; +    break; +  case MIToken::kw_internal: +    Flags |= RegState::InternalRead; +    break; +  case MIToken::kw_early_clobber: +    Flags |= RegState::EarlyClobber; +    break; +  case MIToken::kw_debug_use: +    Flags |= RegState::Debug; +    break; +  case MIToken::kw_renamable: +    Flags |= RegState::Renamable; +    break; +  default: +    llvm_unreachable("The current token should be a register flag"); +  } +  if (OldFlags == Flags) +    // We know that the same flag is specified more than once when the flags +    // weren't modified. +    return error("duplicate '" + Token.stringValue() + "' register flag"); +  lex(); +  return false; +} + +bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { +  assert(Token.is(MIToken::dot)); +  lex(); +  if (Token.isNot(MIToken::Identifier)) +    return error("expected a subregister index after '.'"); +  auto Name = Token.stringValue(); +  SubReg = PFS.Target.getSubRegIndex(Name); +  if (!SubReg) +    return error(Twine("use of unknown subregister index '") + Name + "'"); +  lex(); +  return false; +} + +bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { +  if (!consumeIfPresent(MIToken::kw_tied_def)) +    return true; +  if (Token.isNot(MIToken::IntegerLiteral)) +    return error("expected an integer literal after 'tied-def'"); +  if (getUnsigned(TiedDefIdx)) +    return true; +  lex(); +  if (expectAndConsume(MIToken::rparen)) +    return true; +  return false; +} + +bool MIParser::assignRegisterTies(MachineInstr &MI, +                                  ArrayRef<ParsedMachineOperand> Operands) { +  SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; +  for (unsigned I = 0, E = Operands.size(); I != E; ++I) { +    if (!Operands[I].TiedDefIdx) +      continue; +    // The parser ensures that this operand is a register use, so we just have +    // to check the tied-def operand. +    unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); +    if (DefIdx >= E) +      return error(Operands[I].Begin, +                   Twine("use of invalid tied-def operand index '" + +                         Twine(DefIdx) + "'; instruction has only ") + +                       Twine(E) + " operands"); +    const auto &DefOperand = Operands[DefIdx].Operand; +    if (!DefOperand.isReg() || !DefOperand.isDef()) +      // FIXME: add note with the def operand. +      return error(Operands[I].Begin, +                   Twine("use of invalid tied-def operand index '") + +                       Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + +                       " isn't a defined register"); +    // Check that the tied-def operand wasn't tied elsewhere. +    for (const auto &TiedPair : TiedRegisterPairs) { +      if (TiedPair.first == DefIdx) +        return error(Operands[I].Begin, +                     Twine("the tied-def operand #") + Twine(DefIdx) + +                         " is already tied with another register operand"); +    } +    TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); +  } +  // FIXME: Verify that for non INLINEASM instructions, the def and use tied +  // indices must be less than tied max. +  for (const auto &TiedPair : TiedRegisterPairs) +    MI.tieOperands(TiedPair.first, TiedPair.second); +  return false; +} + +bool MIParser::parseRegisterOperand(MachineOperand &Dest, +                                    Optional<unsigned> &TiedDefIdx, +                                    bool IsDef) { +  unsigned Flags = IsDef ? RegState::Define : 0; +  while (Token.isRegisterFlag()) { +    if (parseRegisterFlag(Flags)) +      return true; +  } +  if (!Token.isRegister()) +    return error("expected a register after register flags"); +  unsigned Reg; +  VRegInfo *RegInfo; +  if (parseRegister(Reg, RegInfo)) +    return true; +  lex(); +  unsigned SubReg = 0; +  if (Token.is(MIToken::dot)) { +    if (parseSubRegisterIndex(SubReg)) +      return true; +    if (!Register::isVirtualRegister(Reg)) +      return error("subregister index expects a virtual register"); +  } +  if (Token.is(MIToken::colon)) { +    if (!Register::isVirtualRegister(Reg)) +      return error("register class specification expects a virtual register"); +    lex(); +    if (parseRegisterClassOrBank(*RegInfo)) +        return true; +  } +  MachineRegisterInfo &MRI = MF.getRegInfo(); +  if ((Flags & RegState::Define) == 0) { +    if (consumeIfPresent(MIToken::lparen)) { +      unsigned Idx; +      if (!parseRegisterTiedDefIndex(Idx)) +        TiedDefIdx = Idx; +      else { +        // Try a redundant low-level type. +        LLT Ty; +        if (parseLowLevelType(Token.location(), Ty)) +          return error("expected tied-def or low-level type after '('"); + +        if (expectAndConsume(MIToken::rparen)) +          return true; + +        if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) +          return error("inconsistent type for generic virtual register"); + +        MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); +        MRI.setType(Reg, Ty); +      } +    } +  } else if (consumeIfPresent(MIToken::lparen)) { +    // Virtual registers may have a tpe with GlobalISel. +    if (!Register::isVirtualRegister(Reg)) +      return error("unexpected type on physical register"); + +    LLT Ty; +    if (parseLowLevelType(Token.location(), Ty)) +      return true; + +    if (expectAndConsume(MIToken::rparen)) +      return true; + +    if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) +      return error("inconsistent type for generic virtual register"); + +    MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); +    MRI.setType(Reg, Ty); +  } else if (Register::isVirtualRegister(Reg)) { +    // Generic virtual registers must have a type. +    // If we end up here this means the type hasn't been specified and +    // this is bad! +    if (RegInfo->Kind == VRegInfo::GENERIC || +        RegInfo->Kind == VRegInfo::REGBANK) +      return error("generic virtual registers must have a type"); +  } +  Dest = MachineOperand::CreateReg( +      Reg, Flags & RegState::Define, Flags & RegState::Implicit, +      Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, +      Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, +      Flags & RegState::InternalRead, Flags & RegState::Renamable); + +  return false; +} + +bool MIParser::parseImmediateOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::IntegerLiteral)); +  const APSInt &Int = Token.integerValue(); +  if (Int.getMinSignedBits() > 64) +    return error("integer literal is too large to be an immediate operand"); +  Dest = MachineOperand::CreateImm(Int.getExtValue()); +  lex(); +  return false; +} + +bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, +                               const Constant *&C) { +  auto Source = StringValue.str(); // The source has to be null terminated. +  SMDiagnostic Err; +  C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), +                         &PFS.IRSlots); +  if (!C) +    return error(Loc + Err.getColumnNo(), Err.getMessage()); +  return false; +} + +bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { +  if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) +    return true; +  lex(); +  return false; +} + +// See LLT implemntation for bit size limits. +static bool verifyScalarSize(uint64_t Size) { +  return Size != 0 && isUInt<16>(Size); +} + +static bool verifyVectorElementCount(uint64_t NumElts) { +  return NumElts != 0 && isUInt<16>(NumElts); +} + +static bool verifyAddrSpace(uint64_t AddrSpace) { +  return isUInt<24>(AddrSpace); +} + +bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { +  if (Token.range().front() == 's' || Token.range().front() == 'p') { +    StringRef SizeStr = Token.range().drop_front(); +    if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) +      return error("expected integers after 's'/'p' type character"); +  } + +  if (Token.range().front() == 's') { +    auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); +    if (!verifyScalarSize(ScalarSize)) +      return error("invalid size for scalar type"); + +    Ty = LLT::scalar(ScalarSize); +    lex(); +    return false; +  } else if (Token.range().front() == 'p') { +    const DataLayout &DL = MF.getDataLayout(); +    uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); +    if (!verifyAddrSpace(AS)) +      return error("invalid address space number"); + +    Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); +    lex(); +    return false; +  } + +  // Now we're looking for a vector. +  if (Token.isNot(MIToken::less)) +    return error(Loc, +                 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); +  lex(); + +  if (Token.isNot(MIToken::IntegerLiteral)) +    return error(Loc, "expected <M x sN> or <M x pA> for vector type"); +  uint64_t NumElements = Token.integerValue().getZExtValue(); +  if (!verifyVectorElementCount(NumElements)) +    return error("invalid number of vector elements"); + +  lex(); + +  if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") +    return error(Loc, "expected <M x sN> or <M x pA> for vector type"); +  lex(); + +  if (Token.range().front() != 's' && Token.range().front() != 'p') +    return error(Loc, "expected <M x sN> or <M x pA> for vector type"); +  StringRef SizeStr = Token.range().drop_front(); +  if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) +    return error("expected integers after 's'/'p' type character"); + +  if (Token.range().front() == 's') { +    auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); +    if (!verifyScalarSize(ScalarSize)) +      return error("invalid size for scalar type"); +    Ty = LLT::scalar(ScalarSize); +  } else if (Token.range().front() == 'p') { +    const DataLayout &DL = MF.getDataLayout(); +    uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); +    if (!verifyAddrSpace(AS)) +      return error("invalid address space number"); + +    Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); +  } else +    return error(Loc, "expected <M x sN> or <M x pA> for vector type"); +  lex(); + +  if (Token.isNot(MIToken::greater)) +    return error(Loc, "expected <M x sN> or <M x pA> for vector type"); +  lex(); + +  Ty = LLT::vector(NumElements, Ty); +  return false; +} + +bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::Identifier)); +  StringRef TypeStr = Token.range(); +  if (TypeStr.front() != 'i' && TypeStr.front() != 's' && +      TypeStr.front() != 'p') +    return error( +        "a typed immediate operand should start with one of 'i', 's', or 'p'"); +  StringRef SizeStr = Token.range().drop_front(); +  if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) +    return error("expected integers after 'i'/'s'/'p' type character"); + +  auto Loc = Token.location(); +  lex(); +  if (Token.isNot(MIToken::IntegerLiteral)) { +    if (Token.isNot(MIToken::Identifier) || +        !(Token.range() == "true" || Token.range() == "false")) +      return error("expected an integer literal"); +  } +  const Constant *C = nullptr; +  if (parseIRConstant(Loc, C)) +    return true; +  Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); +  return false; +} + +bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { +  auto Loc = Token.location(); +  lex(); +  if (Token.isNot(MIToken::FloatingPointLiteral) && +      Token.isNot(MIToken::HexLiteral)) +    return error("expected a floating point literal"); +  const Constant *C = nullptr; +  if (parseIRConstant(Loc, C)) +    return true; +  Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); +  return false; +} + +bool MIParser::getUnsigned(unsigned &Result) { +  if (Token.hasIntegerValue()) { +    const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; +    uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); +    if (Val64 == Limit) +      return error("expected 32-bit integer (too large)"); +    Result = Val64; +    return false; +  } +  if (Token.is(MIToken::HexLiteral)) { +    APInt A; +    if (getHexUint(A)) +      return true; +    if (A.getBitWidth() > 32) +      return error("expected 32-bit integer (too large)"); +    Result = A.getZExtValue(); +    return false; +  } +  return true; +} + +bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { +  assert(Token.is(MIToken::MachineBasicBlock) || +         Token.is(MIToken::MachineBasicBlockLabel)); +  unsigned Number; +  if (getUnsigned(Number)) +    return true; +  auto MBBInfo = PFS.MBBSlots.find(Number); +  if (MBBInfo == PFS.MBBSlots.end()) +    return error(Twine("use of undefined machine basic block #") + +                 Twine(Number)); +  MBB = MBBInfo->second; +  // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once +  // we drop the <irname> from the bb.<id>.<irname> format. +  if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) +    return error(Twine("the name of machine basic block #") + Twine(Number) + +                 " isn't '" + Token.stringValue() + "'"); +  return false; +} + +bool MIParser::parseMBBOperand(MachineOperand &Dest) { +  MachineBasicBlock *MBB; +  if (parseMBBReference(MBB)) +    return true; +  Dest = MachineOperand::CreateMBB(MBB); +  lex(); +  return false; +} + +bool MIParser::parseStackFrameIndex(int &FI) { +  assert(Token.is(MIToken::StackObject)); +  unsigned ID; +  if (getUnsigned(ID)) +    return true; +  auto ObjectInfo = PFS.StackObjectSlots.find(ID); +  if (ObjectInfo == PFS.StackObjectSlots.end()) +    return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + +                 "'"); +  StringRef Name; +  if (const auto *Alloca = +          MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) +    Name = Alloca->getName(); +  if (!Token.stringValue().empty() && Token.stringValue() != Name) +    return error(Twine("the name of the stack object '%stack.") + Twine(ID) + +                 "' isn't '" + Token.stringValue() + "'"); +  lex(); +  FI = ObjectInfo->second; +  return false; +} + +bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { +  int FI; +  if (parseStackFrameIndex(FI)) +    return true; +  Dest = MachineOperand::CreateFI(FI); +  return false; +} + +bool MIParser::parseFixedStackFrameIndex(int &FI) { +  assert(Token.is(MIToken::FixedStackObject)); +  unsigned ID; +  if (getUnsigned(ID)) +    return true; +  auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); +  if (ObjectInfo == PFS.FixedStackObjectSlots.end()) +    return error(Twine("use of undefined fixed stack object '%fixed-stack.") + +                 Twine(ID) + "'"); +  lex(); +  FI = ObjectInfo->second; +  return false; +} + +bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { +  int FI; +  if (parseFixedStackFrameIndex(FI)) +    return true; +  Dest = MachineOperand::CreateFI(FI); +  return false; +} + +bool MIParser::parseGlobalValue(GlobalValue *&GV) { +  switch (Token.kind()) { +  case MIToken::NamedGlobalValue: { +    const Module *M = MF.getFunction().getParent(); +    GV = M->getNamedValue(Token.stringValue()); +    if (!GV) +      return error(Twine("use of undefined global value '") + Token.range() + +                   "'"); +    break; +  } +  case MIToken::GlobalValue: { +    unsigned GVIdx; +    if (getUnsigned(GVIdx)) +      return true; +    if (GVIdx >= PFS.IRSlots.GlobalValues.size()) +      return error(Twine("use of undefined global value '@") + Twine(GVIdx) + +                   "'"); +    GV = PFS.IRSlots.GlobalValues[GVIdx]; +    break; +  } +  default: +    llvm_unreachable("The current token should be a global value"); +  } +  return false; +} + +bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { +  GlobalValue *GV = nullptr; +  if (parseGlobalValue(GV)) +    return true; +  lex(); +  Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); +  if (parseOperandsOffset(Dest)) +    return true; +  return false; +} + +bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::ConstantPoolItem)); +  unsigned ID; +  if (getUnsigned(ID)) +    return true; +  auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); +  if (ConstantInfo == PFS.ConstantPoolSlots.end()) +    return error("use of undefined constant '%const." + Twine(ID) + "'"); +  lex(); +  Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); +  if (parseOperandsOffset(Dest)) +    return true; +  return false; +} + +bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::JumpTableIndex)); +  unsigned ID; +  if (getUnsigned(ID)) +    return true; +  auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); +  if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) +    return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); +  lex(); +  Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); +  return false; +} + +bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::ExternalSymbol)); +  const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); +  lex(); +  Dest = MachineOperand::CreateES(Symbol); +  if (parseOperandsOffset(Dest)) +    return true; +  return false; +} + +bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::MCSymbol)); +  MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); +  lex(); +  Dest = MachineOperand::CreateMCSymbol(Symbol); +  if (parseOperandsOffset(Dest)) +    return true; +  return false; +} + +bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::SubRegisterIndex)); +  StringRef Name = Token.stringValue(); +  unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); +  if (SubRegIndex == 0) +    return error(Twine("unknown subregister index '") + Name + "'"); +  lex(); +  Dest = MachineOperand::CreateImm(SubRegIndex); +  return false; +} + +bool MIParser::parseMDNode(MDNode *&Node) { +  assert(Token.is(MIToken::exclaim)); + +  auto Loc = Token.location(); +  lex(); +  if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) +    return error("expected metadata id after '!'"); +  unsigned ID; +  if (getUnsigned(ID)) +    return true; +  auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); +  if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) +    return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); +  lex(); +  Node = NodeInfo->second.get(); +  return false; +} + +bool MIParser::parseDIExpression(MDNode *&Expr) { +  assert(Token.is(MIToken::md_diexpr)); +  lex(); + +  // FIXME: Share this parsing with the IL parser. +  SmallVector<uint64_t, 8> Elements; + +  if (expectAndConsume(MIToken::lparen)) +    return true; + +  if (Token.isNot(MIToken::rparen)) { +    do { +      if (Token.is(MIToken::Identifier)) { +        if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { +          lex(); +          Elements.push_back(Op); +          continue; +        } +        if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { +          lex(); +          Elements.push_back(Enc); +          continue; +        } +        return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); +      } + +      if (Token.isNot(MIToken::IntegerLiteral) || +          Token.integerValue().isSigned()) +        return error("expected unsigned integer"); + +      auto &U = Token.integerValue(); +      if (U.ugt(UINT64_MAX)) +        return error("element too large, limit is " + Twine(UINT64_MAX)); +      Elements.push_back(U.getZExtValue()); +      lex(); + +    } while (consumeIfPresent(MIToken::comma)); +  } + +  if (expectAndConsume(MIToken::rparen)) +    return true; + +  Expr = DIExpression::get(MF.getFunction().getContext(), Elements); +  return false; +} + +bool MIParser::parseDILocation(MDNode *&Loc) { +  assert(Token.is(MIToken::md_dilocation)); +  lex(); + +  bool HaveLine = false; +  unsigned Line = 0; +  unsigned Column = 0; +  MDNode *Scope = nullptr; +  MDNode *InlinedAt = nullptr; +  bool ImplicitCode = false; + +  if (expectAndConsume(MIToken::lparen)) +    return true; + +  if (Token.isNot(MIToken::rparen)) { +    do { +      if (Token.is(MIToken::Identifier)) { +        if (Token.stringValue() == "line") { +          lex(); +          if (expectAndConsume(MIToken::colon)) +            return true; +          if (Token.isNot(MIToken::IntegerLiteral) || +              Token.integerValue().isSigned()) +            return error("expected unsigned integer"); +          Line = Token.integerValue().getZExtValue(); +          HaveLine = true; +          lex(); +          continue; +        } +        if (Token.stringValue() == "column") { +          lex(); +          if (expectAndConsume(MIToken::colon)) +            return true; +          if (Token.isNot(MIToken::IntegerLiteral) || +              Token.integerValue().isSigned()) +            return error("expected unsigned integer"); +          Column = Token.integerValue().getZExtValue(); +          lex(); +          continue; +        } +        if (Token.stringValue() == "scope") { +          lex(); +          if (expectAndConsume(MIToken::colon)) +            return true; +          if (parseMDNode(Scope)) +            return error("expected metadata node"); +          if (!isa<DIScope>(Scope)) +            return error("expected DIScope node"); +          continue; +        } +        if (Token.stringValue() == "inlinedAt") { +          lex(); +          if (expectAndConsume(MIToken::colon)) +            return true; +          if (Token.is(MIToken::exclaim)) { +            if (parseMDNode(InlinedAt)) +              return true; +          } else if (Token.is(MIToken::md_dilocation)) { +            if (parseDILocation(InlinedAt)) +              return true; +          } else +            return error("expected metadata node"); +          if (!isa<DILocation>(InlinedAt)) +            return error("expected DILocation node"); +          continue; +        } +        if (Token.stringValue() == "isImplicitCode") { +          lex(); +          if (expectAndConsume(MIToken::colon)) +            return true; +          if (!Token.is(MIToken::Identifier)) +            return error("expected true/false"); +          // As far as I can see, we don't have any existing need for parsing +          // true/false in MIR yet. Do it ad-hoc until there's something else +          // that needs it. +          if (Token.stringValue() == "true") +            ImplicitCode = true; +          else if (Token.stringValue() == "false") +            ImplicitCode = false; +          else +            return error("expected true/false"); +          lex(); +          continue; +        } +      } +      return error(Twine("invalid DILocation argument '") + +                   Token.stringValue() + "'"); +    } while (consumeIfPresent(MIToken::comma)); +  } + +  if (expectAndConsume(MIToken::rparen)) +    return true; + +  if (!HaveLine) +    return error("DILocation requires line number"); +  if (!Scope) +    return error("DILocation requires a scope"); + +  Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, +                        InlinedAt, ImplicitCode); +  return false; +} + +bool MIParser::parseMetadataOperand(MachineOperand &Dest) { +  MDNode *Node = nullptr; +  if (Token.is(MIToken::exclaim)) { +    if (parseMDNode(Node)) +      return true; +  } else if (Token.is(MIToken::md_diexpr)) { +    if (parseDIExpression(Node)) +      return true; +  } +  Dest = MachineOperand::CreateMetadata(Node); +  return false; +} + +bool MIParser::parseCFIOffset(int &Offset) { +  if (Token.isNot(MIToken::IntegerLiteral)) +    return error("expected a cfi offset"); +  if (Token.integerValue().getMinSignedBits() > 32) +    return error("expected a 32 bit integer (the cfi offset is too large)"); +  Offset = (int)Token.integerValue().getExtValue(); +  lex(); +  return false; +} + +bool MIParser::parseCFIRegister(unsigned &Reg) { +  if (Token.isNot(MIToken::NamedRegister)) +    return error("expected a cfi register"); +  unsigned LLVMReg; +  if (parseNamedRegister(LLVMReg)) +    return true; +  const auto *TRI = MF.getSubtarget().getRegisterInfo(); +  assert(TRI && "Expected target register info"); +  int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); +  if (DwarfReg < 0) +    return error("invalid DWARF register"); +  Reg = (unsigned)DwarfReg; +  lex(); +  return false; +} + +bool MIParser::parseCFIEscapeValues(std::string &Values) { +  do { +    if (Token.isNot(MIToken::HexLiteral)) +      return error("expected a hexadecimal literal"); +    unsigned Value; +    if (getUnsigned(Value)) +      return true; +    if (Value > UINT8_MAX) +      return error("expected a 8-bit integer (too large)"); +    Values.push_back(static_cast<uint8_t>(Value)); +    lex(); +  } while (consumeIfPresent(MIToken::comma)); +  return false; +} + +bool MIParser::parseCFIOperand(MachineOperand &Dest) { +  auto Kind = Token.kind(); +  lex(); +  int Offset; +  unsigned Reg; +  unsigned CFIIndex; +  switch (Kind) { +  case MIToken::kw_cfi_same_value: +    if (parseCFIRegister(Reg)) +      return true; +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); +    break; +  case MIToken::kw_cfi_offset: +    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || +        parseCFIOffset(Offset)) +      return true; +    CFIIndex = +        MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); +    break; +  case MIToken::kw_cfi_rel_offset: +    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || +        parseCFIOffset(Offset)) +      return true; +    CFIIndex = MF.addFrameInst( +        MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); +    break; +  case MIToken::kw_cfi_def_cfa_register: +    if (parseCFIRegister(Reg)) +      return true; +    CFIIndex = +        MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); +    break; +  case MIToken::kw_cfi_def_cfa_offset: +    if (parseCFIOffset(Offset)) +      return true; +    // NB: MCCFIInstruction::createDefCfaOffset negates the offset. +    CFIIndex = MF.addFrameInst( +        MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); +    break; +  case MIToken::kw_cfi_adjust_cfa_offset: +    if (parseCFIOffset(Offset)) +      return true; +    CFIIndex = MF.addFrameInst( +        MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); +    break; +  case MIToken::kw_cfi_def_cfa: +    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || +        parseCFIOffset(Offset)) +      return true; +    // NB: MCCFIInstruction::createDefCfa negates the offset. +    CFIIndex = +        MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); +    break; +  case MIToken::kw_cfi_remember_state: +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); +    break; +  case MIToken::kw_cfi_restore: +    if (parseCFIRegister(Reg)) +      return true; +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); +    break; +  case MIToken::kw_cfi_restore_state: +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); +    break; +  case MIToken::kw_cfi_undefined: +    if (parseCFIRegister(Reg)) +      return true; +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); +    break; +  case MIToken::kw_cfi_register: { +    unsigned Reg2; +    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || +        parseCFIRegister(Reg2)) +      return true; + +    CFIIndex = +        MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); +    break; +  } +  case MIToken::kw_cfi_window_save: +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); +    break; +  case MIToken::kw_cfi_aarch64_negate_ra_sign_state: +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); +    break; +  case MIToken::kw_cfi_escape: { +    std::string Values; +    if (parseCFIEscapeValues(Values)) +      return true; +    CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); +    break; +  } +  default: +    // TODO: Parse the other CFI operands. +    llvm_unreachable("The current token should be a cfi operand"); +  } +  Dest = MachineOperand::CreateCFIIndex(CFIIndex); +  return false; +} + +bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { +  switch (Token.kind()) { +  case MIToken::NamedIRBlock: { +    BB = dyn_cast_or_null<BasicBlock>( +        F.getValueSymbolTable()->lookup(Token.stringValue())); +    if (!BB) +      return error(Twine("use of undefined IR block '") + Token.range() + "'"); +    break; +  } +  case MIToken::IRBlock: { +    unsigned SlotNumber = 0; +    if (getUnsigned(SlotNumber)) +      return true; +    BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); +    if (!BB) +      return error(Twine("use of undefined IR block '%ir-block.") + +                   Twine(SlotNumber) + "'"); +    break; +  } +  default: +    llvm_unreachable("The current token should be an IR block reference"); +  } +  return false; +} + +bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::kw_blockaddress)); +  lex(); +  if (expectAndConsume(MIToken::lparen)) +    return true; +  if (Token.isNot(MIToken::GlobalValue) && +      Token.isNot(MIToken::NamedGlobalValue)) +    return error("expected a global value"); +  GlobalValue *GV = nullptr; +  if (parseGlobalValue(GV)) +    return true; +  auto *F = dyn_cast<Function>(GV); +  if (!F) +    return error("expected an IR function reference"); +  lex(); +  if (expectAndConsume(MIToken::comma)) +    return true; +  BasicBlock *BB = nullptr; +  if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) +    return error("expected an IR block reference"); +  if (parseIRBlock(BB, *F)) +    return true; +  lex(); +  if (expectAndConsume(MIToken::rparen)) +    return true; +  Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); +  if (parseOperandsOffset(Dest)) +    return true; +  return false; +} + +bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::kw_intrinsic)); +  lex(); +  if (expectAndConsume(MIToken::lparen)) +    return error("expected syntax intrinsic(@llvm.whatever)"); + +  if (Token.isNot(MIToken::NamedGlobalValue)) +    return error("expected syntax intrinsic(@llvm.whatever)"); + +  std::string Name = Token.stringValue(); +  lex(); + +  if (expectAndConsume(MIToken::rparen)) +    return error("expected ')' to terminate intrinsic name"); + +  // Find out what intrinsic we're dealing with, first try the global namespace +  // and then the target's private intrinsics if that fails. +  const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); +  Intrinsic::ID ID = Function::lookupIntrinsicID(Name); +  if (ID == Intrinsic::not_intrinsic && TII) +    ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); + +  if (ID == Intrinsic::not_intrinsic) +    return error("unknown intrinsic name"); +  Dest = MachineOperand::CreateIntrinsicID(ID); + +  return false; +} + +bool MIParser::parsePredicateOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); +  bool IsFloat = Token.is(MIToken::kw_floatpred); +  lex(); + +  if (expectAndConsume(MIToken::lparen)) +    return error("expected syntax intpred(whatever) or floatpred(whatever"); + +  if (Token.isNot(MIToken::Identifier)) +    return error("whatever"); + +  CmpInst::Predicate Pred; +  if (IsFloat) { +    Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) +               .Case("false", CmpInst::FCMP_FALSE) +               .Case("oeq", CmpInst::FCMP_OEQ) +               .Case("ogt", CmpInst::FCMP_OGT) +               .Case("oge", CmpInst::FCMP_OGE) +               .Case("olt", CmpInst::FCMP_OLT) +               .Case("ole", CmpInst::FCMP_OLE) +               .Case("one", CmpInst::FCMP_ONE) +               .Case("ord", CmpInst::FCMP_ORD) +               .Case("uno", CmpInst::FCMP_UNO) +               .Case("ueq", CmpInst::FCMP_UEQ) +               .Case("ugt", CmpInst::FCMP_UGT) +               .Case("uge", CmpInst::FCMP_UGE) +               .Case("ult", CmpInst::FCMP_ULT) +               .Case("ule", CmpInst::FCMP_ULE) +               .Case("une", CmpInst::FCMP_UNE) +               .Case("true", CmpInst::FCMP_TRUE) +               .Default(CmpInst::BAD_FCMP_PREDICATE); +    if (!CmpInst::isFPPredicate(Pred)) +      return error("invalid floating-point predicate"); +  } else { +    Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) +               .Case("eq", CmpInst::ICMP_EQ) +               .Case("ne", CmpInst::ICMP_NE) +               .Case("sgt", CmpInst::ICMP_SGT) +               .Case("sge", CmpInst::ICMP_SGE) +               .Case("slt", CmpInst::ICMP_SLT) +               .Case("sle", CmpInst::ICMP_SLE) +               .Case("ugt", CmpInst::ICMP_UGT) +               .Case("uge", CmpInst::ICMP_UGE) +               .Case("ult", CmpInst::ICMP_ULT) +               .Case("ule", CmpInst::ICMP_ULE) +               .Default(CmpInst::BAD_ICMP_PREDICATE); +    if (!CmpInst::isIntPredicate(Pred)) +      return error("invalid integer predicate"); +  } + +  lex(); +  Dest = MachineOperand::CreatePredicate(Pred); +  if (expectAndConsume(MIToken::rparen)) +    return error("predicate should be terminated by ')'."); + +  return false; +} + +bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::kw_shufflemask)); + +  lex(); +  if (expectAndConsume(MIToken::lparen)) +    return error("expected syntax shufflemask(<integer or undef>, ...)"); + +  SmallVector<Constant *, 32> ShufMask; +  LLVMContext &Ctx = MF.getFunction().getContext(); +  Type *I32Ty = Type::getInt32Ty(Ctx); + +  bool AllZero = true; +  bool AllUndef = true; + +  do { +    if (Token.is(MIToken::kw_undef)) { +      ShufMask.push_back(UndefValue::get(I32Ty)); +      AllZero = false; +    } else if (Token.is(MIToken::IntegerLiteral)) { +      AllUndef = false; +      const APSInt &Int = Token.integerValue(); +      if (!Int.isNullValue()) +        AllZero = false; +      ShufMask.push_back(ConstantInt::get(I32Ty, Int.getExtValue())); +    } else +      return error("expected integer constant"); + +    lex(); +  } while (consumeIfPresent(MIToken::comma)); + +  if (expectAndConsume(MIToken::rparen)) +    return error("shufflemask should be terminated by ')'."); + +  if (AllZero || AllUndef) { +    VectorType *VT = VectorType::get(I32Ty, ShufMask.size()); +    Constant *C = AllZero ? Constant::getNullValue(VT) : UndefValue::get(VT); +    Dest = MachineOperand::CreateShuffleMask(C); +  } else +    Dest = MachineOperand::CreateShuffleMask(ConstantVector::get(ShufMask)); + +  return false; +} + +bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::kw_target_index)); +  lex(); +  if (expectAndConsume(MIToken::lparen)) +    return true; +  if (Token.isNot(MIToken::Identifier)) +    return error("expected the name of the target index"); +  int Index = 0; +  if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) +    return error("use of undefined target index '" + Token.stringValue() + "'"); +  lex(); +  if (expectAndConsume(MIToken::rparen)) +    return true; +  Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); +  if (parseOperandsOffset(Dest)) +    return true; +  return false; +} + +bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { +  assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); +  lex(); +  if (expectAndConsume(MIToken::lparen)) +    return true; + +  uint32_t *Mask = MF.allocateRegMask(); +  while (true) { +    if (Token.isNot(MIToken::NamedRegister)) +      return error("expected a named register"); +    unsigned Reg; +    if (parseNamedRegister(Reg)) +      return true; +    lex(); +    Mask[Reg / 32] |= 1U << (Reg % 32); +    // TODO: Report an error if the same register is used more than once. +    if (Token.isNot(MIToken::comma)) +      break; +    lex(); +  } + +  if (expectAndConsume(MIToken::rparen)) +    return true; +  Dest = MachineOperand::CreateRegMask(Mask); +  return false; +} + +bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { +  assert(Token.is(MIToken::kw_liveout)); +  uint32_t *Mask = MF.allocateRegMask(); +  lex(); +  if (expectAndConsume(MIToken::lparen)) +    return true; +  while (true) { +    if (Token.isNot(MIToken::NamedRegister)) +      return error("expected a named register"); +    unsigned Reg; +    if (parseNamedRegister(Reg)) +      return true; +    lex(); +    Mask[Reg / 32] |= 1U << (Reg % 32); +    // TODO: Report an error if the same register is used more than once. +    if (Token.isNot(MIToken::comma)) +      break; +    lex(); +  } +  if (expectAndConsume(MIToken::rparen)) +    return true; +  Dest = MachineOperand::CreateRegLiveOut(Mask); +  return false; +} + +bool MIParser::parseMachineOperand(MachineOperand &Dest, +                                   Optional<unsigned> &TiedDefIdx) { +  switch (Token.kind()) { +  case MIToken::kw_implicit: +  case MIToken::kw_implicit_define: +  case MIToken::kw_def: +  case MIToken::kw_dead: +  case MIToken::kw_killed: +  case MIToken::kw_undef: +  case MIToken::kw_internal: +  case MIToken::kw_early_clobber: +  case MIToken::kw_debug_use: +  case MIToken::kw_renamable: +  case MIToken::underscore: +  case MIToken::NamedRegister: +  case MIToken::VirtualRegister: +  case MIToken::NamedVirtualRegister: +    return parseRegisterOperand(Dest, TiedDefIdx); +  case MIToken::IntegerLiteral: +    return parseImmediateOperand(Dest); +  case MIToken::kw_half: +  case MIToken::kw_float: +  case MIToken::kw_double: +  case MIToken::kw_x86_fp80: +  case MIToken::kw_fp128: +  case MIToken::kw_ppc_fp128: +    return parseFPImmediateOperand(Dest); +  case MIToken::MachineBasicBlock: +    return parseMBBOperand(Dest); +  case MIToken::StackObject: +    return parseStackObjectOperand(Dest); +  case MIToken::FixedStackObject: +    return parseFixedStackObjectOperand(Dest); +  case MIToken::GlobalValue: +  case MIToken::NamedGlobalValue: +    return parseGlobalAddressOperand(Dest); +  case MIToken::ConstantPoolItem: +    return parseConstantPoolIndexOperand(Dest); +  case MIToken::JumpTableIndex: +    return parseJumpTableIndexOperand(Dest); +  case MIToken::ExternalSymbol: +    return parseExternalSymbolOperand(Dest); +  case MIToken::MCSymbol: +    return parseMCSymbolOperand(Dest); +  case MIToken::SubRegisterIndex: +    return parseSubRegisterIndexOperand(Dest); +  case MIToken::md_diexpr: +  case MIToken::exclaim: +    return parseMetadataOperand(Dest); +  case MIToken::kw_cfi_same_value: +  case MIToken::kw_cfi_offset: +  case MIToken::kw_cfi_rel_offset: +  case MIToken::kw_cfi_def_cfa_register: +  case MIToken::kw_cfi_def_cfa_offset: +  case MIToken::kw_cfi_adjust_cfa_offset: +  case MIToken::kw_cfi_escape: +  case MIToken::kw_cfi_def_cfa: +  case MIToken::kw_cfi_register: +  case MIToken::kw_cfi_remember_state: +  case MIToken::kw_cfi_restore: +  case MIToken::kw_cfi_restore_state: +  case MIToken::kw_cfi_undefined: +  case MIToken::kw_cfi_window_save: +  case MIToken::kw_cfi_aarch64_negate_ra_sign_state: +    return parseCFIOperand(Dest); +  case MIToken::kw_blockaddress: +    return parseBlockAddressOperand(Dest); +  case MIToken::kw_intrinsic: +    return parseIntrinsicOperand(Dest); +  case MIToken::kw_target_index: +    return parseTargetIndexOperand(Dest); +  case MIToken::kw_liveout: +    return parseLiveoutRegisterMaskOperand(Dest); +  case MIToken::kw_floatpred: +  case MIToken::kw_intpred: +    return parsePredicateOperand(Dest); +  case MIToken::kw_shufflemask: +    return parseShuffleMaskOperand(Dest); +  case MIToken::Error: +    return true; +  case MIToken::Identifier: +    if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { +      Dest = MachineOperand::CreateRegMask(RegMask); +      lex(); +      break; +    } else if (Token.stringValue() == "CustomRegMask") { +      return parseCustomRegisterMaskOperand(Dest); +    } else +      return parseTypedImmediateOperand(Dest); +  default: +    // FIXME: Parse the MCSymbol machine operand. +    return error("expected a machine operand"); +  } +  return false; +} + +bool MIParser::parseMachineOperandAndTargetFlags( +    MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { +  unsigned TF = 0; +  bool HasTargetFlags = false; +  if (Token.is(MIToken::kw_target_flags)) { +    HasTargetFlags = true; +    lex(); +    if (expectAndConsume(MIToken::lparen)) +      return true; +    if (Token.isNot(MIToken::Identifier)) +      return error("expected the name of the target flag"); +    if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { +      if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) +        return error("use of undefined target flag '" + Token.stringValue() + +                     "'"); +    } +    lex(); +    while (Token.is(MIToken::comma)) { +      lex(); +      if (Token.isNot(MIToken::Identifier)) +        return error("expected the name of the target flag"); +      unsigned BitFlag = 0; +      if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) +        return error("use of undefined target flag '" + Token.stringValue() + +                     "'"); +      // TODO: Report an error when using a duplicate bit target flag. +      TF |= BitFlag; +      lex(); +    } +    if (expectAndConsume(MIToken::rparen)) +      return true; +  } +  auto Loc = Token.location(); +  if (parseMachineOperand(Dest, TiedDefIdx)) +    return true; +  if (!HasTargetFlags) +    return false; +  if (Dest.isReg()) +    return error(Loc, "register operands can't have target flags"); +  Dest.setTargetFlags(TF); +  return false; +} + +bool MIParser::parseOffset(int64_t &Offset) { +  if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) +    return false; +  StringRef Sign = Token.range(); +  bool IsNegative = Token.is(MIToken::minus); +  lex(); +  if (Token.isNot(MIToken::IntegerLiteral)) +    return error("expected an integer literal after '" + Sign + "'"); +  if (Token.integerValue().getMinSignedBits() > 64) +    return error("expected 64-bit integer (too large)"); +  Offset = Token.integerValue().getExtValue(); +  if (IsNegative) +    Offset = -Offset; +  lex(); +  return false; +} + +bool MIParser::parseAlignment(unsigned &Alignment) { +  assert(Token.is(MIToken::kw_align)); +  lex(); +  if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) +    return error("expected an integer literal after 'align'"); +  if (getUnsigned(Alignment)) +    return true; +  lex(); + +  if (!isPowerOf2_32(Alignment)) +    return error("expected a power-of-2 literal after 'align'"); + +  return false; +} + +bool MIParser::parseAddrspace(unsigned &Addrspace) { +  assert(Token.is(MIToken::kw_addrspace)); +  lex(); +  if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) +    return error("expected an integer literal after 'addrspace'"); +  if (getUnsigned(Addrspace)) +    return true; +  lex(); +  return false; +} + +bool MIParser::parseOperandsOffset(MachineOperand &Op) { +  int64_t Offset = 0; +  if (parseOffset(Offset)) +    return true; +  Op.setOffset(Offset); +  return false; +} + +bool MIParser::parseIRValue(const Value *&V) { +  switch (Token.kind()) { +  case MIToken::NamedIRValue: { +    V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); +    break; +  } +  case MIToken::IRValue: { +    unsigned SlotNumber = 0; +    if (getUnsigned(SlotNumber)) +      return true; +    V = getIRValue(SlotNumber); +    break; +  } +  case MIToken::NamedGlobalValue: +  case MIToken::GlobalValue: { +    GlobalValue *GV = nullptr; +    if (parseGlobalValue(GV)) +      return true; +    V = GV; +    break; +  } +  case MIToken::QuotedIRValue: { +    const Constant *C = nullptr; +    if (parseIRConstant(Token.location(), Token.stringValue(), C)) +      return true; +    V = C; +    break; +  } +  default: +    llvm_unreachable("The current token should be an IR block reference"); +  } +  if (!V) +    return error(Twine("use of undefined IR value '") + Token.range() + "'"); +  return false; +} + +bool MIParser::getUint64(uint64_t &Result) { +  if (Token.hasIntegerValue()) { +    if (Token.integerValue().getActiveBits() > 64) +      return error("expected 64-bit integer (too large)"); +    Result = Token.integerValue().getZExtValue(); +    return false; +  } +  if (Token.is(MIToken::HexLiteral)) { +    APInt A; +    if (getHexUint(A)) +      return true; +    if (A.getBitWidth() > 64) +      return error("expected 64-bit integer (too large)"); +    Result = A.getZExtValue(); +    return false; +  } +  return true; +} + +bool MIParser::getHexUint(APInt &Result) { +  assert(Token.is(MIToken::HexLiteral)); +  StringRef S = Token.range(); +  assert(S[0] == '0' && tolower(S[1]) == 'x'); +  // This could be a floating point literal with a special prefix. +  if (!isxdigit(S[2])) +    return true; +  StringRef V = S.substr(2); +  APInt A(V.size()*4, V, 16); + +  // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make +  // sure it isn't the case before constructing result. +  unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); +  Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); +  return false; +} + +bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { +  const auto OldFlags = Flags; +  switch (Token.kind()) { +  case MIToken::kw_volatile: +    Flags |= MachineMemOperand::MOVolatile; +    break; +  case MIToken::kw_non_temporal: +    Flags |= MachineMemOperand::MONonTemporal; +    break; +  case MIToken::kw_dereferenceable: +    Flags |= MachineMemOperand::MODereferenceable; +    break; +  case MIToken::kw_invariant: +    Flags |= MachineMemOperand::MOInvariant; +    break; +  case MIToken::StringConstant: { +    MachineMemOperand::Flags TF; +    if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) +      return error("use of undefined target MMO flag '" + Token.stringValue() + +                   "'"); +    Flags |= TF; +    break; +  } +  default: +    llvm_unreachable("The current token should be a memory operand flag"); +  } +  if (OldFlags == Flags) +    // We know that the same flag is specified more than once when the flags +    // weren't modified. +    return error("duplicate '" + Token.stringValue() + "' memory operand flag"); +  lex(); +  return false; +} + +bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { +  switch (Token.kind()) { +  case MIToken::kw_stack: +    PSV = MF.getPSVManager().getStack(); +    break; +  case MIToken::kw_got: +    PSV = MF.getPSVManager().getGOT(); +    break; +  case MIToken::kw_jump_table: +    PSV = MF.getPSVManager().getJumpTable(); +    break; +  case MIToken::kw_constant_pool: +    PSV = MF.getPSVManager().getConstantPool(); +    break; +  case MIToken::FixedStackObject: { +    int FI; +    if (parseFixedStackFrameIndex(FI)) +      return true; +    PSV = MF.getPSVManager().getFixedStack(FI); +    // The token was already consumed, so use return here instead of break. +    return false; +  } +  case MIToken::StackObject: { +    int FI; +    if (parseStackFrameIndex(FI)) +      return true; +    PSV = MF.getPSVManager().getFixedStack(FI); +    // The token was already consumed, so use return here instead of break. +    return false; +  } +  case MIToken::kw_call_entry: +    lex(); +    switch (Token.kind()) { +    case MIToken::GlobalValue: +    case MIToken::NamedGlobalValue: { +      GlobalValue *GV = nullptr; +      if (parseGlobalValue(GV)) +        return true; +      PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); +      break; +    } +    case MIToken::ExternalSymbol: +      PSV = MF.getPSVManager().getExternalSymbolCallEntry( +          MF.createExternalSymbolName(Token.stringValue())); +      break; +    default: +      return error( +          "expected a global value or an external symbol after 'call-entry'"); +    } +    break; +  default: +    llvm_unreachable("The current token should be pseudo source value"); +  } +  lex(); +  return false; +} + +bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { +  if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || +      Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || +      Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || +      Token.is(MIToken::kw_call_entry)) { +    const PseudoSourceValue *PSV = nullptr; +    if (parseMemoryPseudoSourceValue(PSV)) +      return true; +    int64_t Offset = 0; +    if (parseOffset(Offset)) +      return true; +    Dest = MachinePointerInfo(PSV, Offset); +    return false; +  } +  if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && +      Token.isNot(MIToken::GlobalValue) && +      Token.isNot(MIToken::NamedGlobalValue) && +      Token.isNot(MIToken::QuotedIRValue)) +    return error("expected an IR value reference"); +  const Value *V = nullptr; +  if (parseIRValue(V)) +    return true; +  if (!V->getType()->isPointerTy()) +    return error("expected a pointer IR value"); +  lex(); +  int64_t Offset = 0; +  if (parseOffset(Offset)) +    return true; +  Dest = MachinePointerInfo(V, Offset); +  return false; +} + +bool MIParser::parseOptionalScope(LLVMContext &Context, +                                  SyncScope::ID &SSID) { +  SSID = SyncScope::System; +  if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { +    lex(); +    if (expectAndConsume(MIToken::lparen)) +      return error("expected '(' in syncscope"); + +    std::string SSN; +    if (parseStringConstant(SSN)) +      return true; + +    SSID = Context.getOrInsertSyncScopeID(SSN); +    if (expectAndConsume(MIToken::rparen)) +      return error("expected ')' in syncscope"); +  } + +  return false; +} + +bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { +  Order = AtomicOrdering::NotAtomic; +  if (Token.isNot(MIToken::Identifier)) +    return false; + +  Order = StringSwitch<AtomicOrdering>(Token.stringValue()) +              .Case("unordered", AtomicOrdering::Unordered) +              .Case("monotonic", AtomicOrdering::Monotonic) +              .Case("acquire", AtomicOrdering::Acquire) +              .Case("release", AtomicOrdering::Release) +              .Case("acq_rel", AtomicOrdering::AcquireRelease) +              .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) +              .Default(AtomicOrdering::NotAtomic); + +  if (Order != AtomicOrdering::NotAtomic) { +    lex(); +    return false; +  } + +  return error("expected an atomic scope, ordering or a size specification"); +} + +bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { +  if (expectAndConsume(MIToken::lparen)) +    return true; +  MachineMemOperand::Flags Flags = MachineMemOperand::MONone; +  while (Token.isMemoryOperandFlag()) { +    if (parseMemoryOperandFlag(Flags)) +      return true; +  } +  if (Token.isNot(MIToken::Identifier) || +      (Token.stringValue() != "load" && Token.stringValue() != "store")) +    return error("expected 'load' or 'store' memory operation"); +  if (Token.stringValue() == "load") +    Flags |= MachineMemOperand::MOLoad; +  else +    Flags |= MachineMemOperand::MOStore; +  lex(); + +  // Optional 'store' for operands that both load and store. +  if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { +    Flags |= MachineMemOperand::MOStore; +    lex(); +  } + +  // Optional synchronization scope. +  SyncScope::ID SSID; +  if (parseOptionalScope(MF.getFunction().getContext(), SSID)) +    return true; + +  // Up to two atomic orderings (cmpxchg provides guarantees on failure). +  AtomicOrdering Order, FailureOrder; +  if (parseOptionalAtomicOrdering(Order)) +    return true; + +  if (parseOptionalAtomicOrdering(FailureOrder)) +    return true; + +  if (Token.isNot(MIToken::IntegerLiteral) && +      Token.isNot(MIToken::kw_unknown_size)) +    return error("expected the size integer literal or 'unknown-size' after " +                 "memory operation"); +  uint64_t Size; +  if (Token.is(MIToken::IntegerLiteral)) { +    if (getUint64(Size)) +      return true; +  } else if (Token.is(MIToken::kw_unknown_size)) { +    Size = MemoryLocation::UnknownSize; +  } +  lex(); + +  MachinePointerInfo Ptr = MachinePointerInfo(); +  if (Token.is(MIToken::Identifier)) { +    const char *Word = +        ((Flags & MachineMemOperand::MOLoad) && +         (Flags & MachineMemOperand::MOStore)) +            ? "on" +            : Flags & MachineMemOperand::MOLoad ? "from" : "into"; +    if (Token.stringValue() != Word) +      return error(Twine("expected '") + Word + "'"); +    lex(); + +    if (parseMachinePointerInfo(Ptr)) +      return true; +  } +  unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); +  AAMDNodes AAInfo; +  MDNode *Range = nullptr; +  while (consumeIfPresent(MIToken::comma)) { +    switch (Token.kind()) { +    case MIToken::kw_align: +      if (parseAlignment(BaseAlignment)) +        return true; +      break; +    case MIToken::kw_addrspace: +      if (parseAddrspace(Ptr.AddrSpace)) +        return true; +      break; +    case MIToken::md_tbaa: +      lex(); +      if (parseMDNode(AAInfo.TBAA)) +        return true; +      break; +    case MIToken::md_alias_scope: +      lex(); +      if (parseMDNode(AAInfo.Scope)) +        return true; +      break; +    case MIToken::md_noalias: +      lex(); +      if (parseMDNode(AAInfo.NoAlias)) +        return true; +      break; +    case MIToken::md_range: +      lex(); +      if (parseMDNode(Range)) +        return true; +      break; +    // TODO: Report an error on duplicate metadata nodes. +    default: +      return error("expected 'align' or '!tbaa' or '!alias.scope' or " +                   "'!noalias' or '!range'"); +    } +  } +  if (expectAndConsume(MIToken::rparen)) +    return true; +  Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, +                                 SSID, Order, FailureOrder); +  return false; +} + +bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { +  assert((Token.is(MIToken::kw_pre_instr_symbol) || +          Token.is(MIToken::kw_post_instr_symbol)) && +         "Invalid token for a pre- post-instruction symbol!"); +  lex(); +  if (Token.isNot(MIToken::MCSymbol)) +    return error("expected a symbol after 'pre-instr-symbol'"); +  Symbol = getOrCreateMCSymbol(Token.stringValue()); +  lex(); +  if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || +      Token.is(MIToken::lbrace)) +    return false; +  if (Token.isNot(MIToken::comma)) +    return error("expected ',' before the next machine operand"); +  lex(); +  return false; +} + +static void initSlots2BasicBlocks( +    const Function &F, +    DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { +  ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); +  MST.incorporateFunction(F); +  for (auto &BB : F) { +    if (BB.hasName()) +      continue; +    int Slot = MST.getLocalSlot(&BB); +    if (Slot == -1) +      continue; +    Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); +  } +} + +static const BasicBlock *getIRBlockFromSlot( +    unsigned Slot, +    const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { +  auto BlockInfo = Slots2BasicBlocks.find(Slot); +  if (BlockInfo == Slots2BasicBlocks.end()) +    return nullptr; +  return BlockInfo->second; +} + +const BasicBlock *MIParser::getIRBlock(unsigned Slot) { +  if (Slots2BasicBlocks.empty()) +    initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); +  return getIRBlockFromSlot(Slot, Slots2BasicBlocks); +} + +const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { +  if (&F == &MF.getFunction()) +    return getIRBlock(Slot); +  DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; +  initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); +  return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); +} + +static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, +                           DenseMap<unsigned, const Value *> &Slots2Values) { +  int Slot = MST.getLocalSlot(V); +  if (Slot == -1) +    return; +  Slots2Values.insert(std::make_pair(unsigned(Slot), V)); +} + +/// Creates the mapping from slot numbers to function's unnamed IR values. +static void initSlots2Values(const Function &F, +                             DenseMap<unsigned, const Value *> &Slots2Values) { +  ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); +  MST.incorporateFunction(F); +  for (const auto &Arg : F.args()) +    mapValueToSlot(&Arg, MST, Slots2Values); +  for (const auto &BB : F) { +    mapValueToSlot(&BB, MST, Slots2Values); +    for (const auto &I : BB) +      mapValueToSlot(&I, MST, Slots2Values); +  } +} + +const Value *MIParser::getIRValue(unsigned Slot) { +  if (Slots2Values.empty()) +    initSlots2Values(MF.getFunction(), Slots2Values); +  auto ValueInfo = Slots2Values.find(Slot); +  if (ValueInfo == Slots2Values.end()) +    return nullptr; +  return ValueInfo->second; +} + +MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { +  // FIXME: Currently we can't recognize temporary or local symbols and call all +  // of the appropriate forms to create them. However, this handles basic cases +  // well as most of the special aspects are recognized by a prefix on their +  // name, and the input names should already be unique. For test cases, keeping +  // the symbol name out of the symbol table isn't terribly important. +  return MF.getContext().getOrCreateSymbol(Name); +} + +bool MIParser::parseStringConstant(std::string &Result) { +  if (Token.isNot(MIToken::StringConstant)) +    return error("expected string constant"); +  Result = Token.stringValue(); +  lex(); +  return false; +} + +bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, +                                             StringRef Src, +                                             SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); +} + +bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, +                                    StringRef Src, SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseBasicBlocks(); +} + +bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, +                             MachineBasicBlock *&MBB, StringRef Src, +                             SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); +} + +bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, +                                  unsigned &Reg, StringRef Src, +                                  SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); +} + +bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, +                                       unsigned &Reg, StringRef Src, +                                       SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); +} + +bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, +                                         VRegInfo *&Info, StringRef Src, +                                         SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); +} + +bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, +                                     int &FI, StringRef Src, +                                     SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); +} + +bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, +                       MDNode *&Node, StringRef Src, SMDiagnostic &Error) { +  return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); +} | 
