diff options
Diffstat (limited to 'llvm/lib/CodeGen/MachineBasicBlock.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/MachineBasicBlock.cpp | 1502 | 
1 files changed, 1502 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/MachineBasicBlock.cpp b/llvm/lib/CodeGen/MachineBasicBlock.cpp new file mode 100644 index 000000000000..854bef3aab05 --- /dev/null +++ b/llvm/lib/CodeGen/MachineBasicBlock.cpp @@ -0,0 +1,1502 @@ +//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Collect the sequence of machine instructions for a basic block. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/Support/DataTypes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +using namespace llvm; + +#define DEBUG_TYPE "codegen" + +static cl::opt<bool> PrintSlotIndexes( +    "print-slotindexes", +    cl::desc("When printing machine IR, annotate instructions and blocks with " +             "SlotIndexes when available"), +    cl::init(true), cl::Hidden); + +MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) +    : BB(B), Number(-1), xParent(&MF) { +  Insts.Parent = this; +  if (B) +    IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); +} + +MachineBasicBlock::~MachineBasicBlock() { +} + +/// Return the MCSymbol for this basic block. +MCSymbol *MachineBasicBlock::getSymbol() const { +  if (!CachedMCSymbol) { +    const MachineFunction *MF = getParent(); +    MCContext &Ctx = MF->getContext(); +    auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); +    assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); +    CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + +                                           Twine(MF->getFunctionNumber()) + +                                           "_" + Twine(getNumber())); +  } + +  return CachedMCSymbol; +} + + +raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { +  MBB.print(OS); +  return OS; +} + +Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { +  return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); +} + +/// When an MBB is added to an MF, we need to update the parent pointer of the +/// MBB, the MBB numbering, and any instructions in the MBB to be on the right +/// operand list for registers. +/// +/// MBBs start out as #-1. When a MBB is added to a MachineFunction, it +/// gets the next available unique MBB number. If it is removed from a +/// MachineFunction, it goes back to being #-1. +void ilist_callback_traits<MachineBasicBlock>::addNodeToList( +    MachineBasicBlock *N) { +  MachineFunction &MF = *N->getParent(); +  N->Number = MF.addToMBBNumbering(N); + +  // Make sure the instructions have their operands in the reginfo lists. +  MachineRegisterInfo &RegInfo = MF.getRegInfo(); +  for (MachineBasicBlock::instr_iterator +         I = N->instr_begin(), E = N->instr_end(); I != E; ++I) +    I->AddRegOperandsToUseLists(RegInfo); +} + +void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( +    MachineBasicBlock *N) { +  N->getParent()->removeFromMBBNumbering(N->Number); +  N->Number = -1; +} + +/// When we add an instruction to a basic block list, we update its parent +/// pointer and add its operands from reg use/def lists if appropriate. +void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { +  assert(!N->getParent() && "machine instruction already in a basic block"); +  N->setParent(Parent); + +  // Add the instruction's register operands to their corresponding +  // use/def lists. +  MachineFunction *MF = Parent->getParent(); +  N->AddRegOperandsToUseLists(MF->getRegInfo()); +  MF->handleInsertion(*N); +} + +/// When we remove an instruction from a basic block list, we update its parent +/// pointer and remove its operands from reg use/def lists if appropriate. +void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { +  assert(N->getParent() && "machine instruction not in a basic block"); + +  // Remove from the use/def lists. +  if (MachineFunction *MF = N->getMF()) { +    MF->handleRemoval(*N); +    N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); +  } + +  N->setParent(nullptr); +} + +/// When moving a range of instructions from one MBB list to another, we need to +/// update the parent pointers and the use/def lists. +void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, +                                                       instr_iterator First, +                                                       instr_iterator Last) { +  assert(Parent->getParent() == FromList.Parent->getParent() && +         "cannot transfer MachineInstrs between MachineFunctions"); + +  // If it's within the same BB, there's nothing to do. +  if (this == &FromList) +    return; + +  assert(Parent != FromList.Parent && "Two lists have the same parent?"); + +  // If splicing between two blocks within the same function, just update the +  // parent pointers. +  for (; First != Last; ++First) +    First->setParent(Parent); +} + +void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { +  assert(!MI->getParent() && "MI is still in a block!"); +  Parent->getParent()->DeleteMachineInstr(MI); +} + +MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { +  instr_iterator I = instr_begin(), E = instr_end(); +  while (I != E && I->isPHI()) +    ++I; +  assert((I == E || !I->isInsideBundle()) && +         "First non-phi MI cannot be inside a bundle!"); +  return I; +} + +MachineBasicBlock::iterator +MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { +  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); + +  iterator E = end(); +  while (I != E && (I->isPHI() || I->isPosition() || +                    TII->isBasicBlockPrologue(*I))) +    ++I; +  // FIXME: This needs to change if we wish to bundle labels +  // inside the bundle. +  assert((I == E || !I->isInsideBundle()) && +         "First non-phi / non-label instruction is inside a bundle!"); +  return I; +} + +MachineBasicBlock::iterator +MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { +  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); + +  iterator E = end(); +  while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || +                    TII->isBasicBlockPrologue(*I))) +    ++I; +  // FIXME: This needs to change if we wish to bundle labels / dbg_values +  // inside the bundle. +  assert((I == E || !I->isInsideBundle()) && +         "First non-phi / non-label / non-debug " +         "instruction is inside a bundle!"); +  return I; +} + +MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { +  iterator B = begin(), E = end(), I = E; +  while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) +    ; /*noop */ +  while (I != E && !I->isTerminator()) +    ++I; +  return I; +} + +MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { +  instr_iterator B = instr_begin(), E = instr_end(), I = E; +  while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) +    ; /*noop */ +  while (I != E && !I->isTerminator()) +    ++I; +  return I; +} + +MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { +  // Skip over begin-of-block dbg_value instructions. +  return skipDebugInstructionsForward(begin(), end()); +} + +MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { +  // Skip over end-of-block dbg_value instructions. +  instr_iterator B = instr_begin(), I = instr_end(); +  while (I != B) { +    --I; +    // Return instruction that starts a bundle. +    if (I->isDebugInstr() || I->isInsideBundle()) +      continue; +    return I; +  } +  // The block is all debug values. +  return end(); +} + +bool MachineBasicBlock::hasEHPadSuccessor() const { +  for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) +    if ((*I)->isEHPad()) +      return true; +  return false; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { +  print(dbgs()); +} +#endif + +bool MachineBasicBlock::isLegalToHoistInto() const { +  if (isReturnBlock() || hasEHPadSuccessor()) +    return false; +  return true; +} + +StringRef MachineBasicBlock::getName() const { +  if (const BasicBlock *LBB = getBasicBlock()) +    return LBB->getName(); +  else +    return StringRef("", 0); +} + +/// Return a hopefully unique identifier for this block. +std::string MachineBasicBlock::getFullName() const { +  std::string Name; +  if (getParent()) +    Name = (getParent()->getName() + ":").str(); +  if (getBasicBlock()) +    Name += getBasicBlock()->getName(); +  else +    Name += ("BB" + Twine(getNumber())).str(); +  return Name; +} + +void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, +                              bool IsStandalone) const { +  const MachineFunction *MF = getParent(); +  if (!MF) { +    OS << "Can't print out MachineBasicBlock because parent MachineFunction" +       << " is null\n"; +    return; +  } +  const Function &F = MF->getFunction(); +  const Module *M = F.getParent(); +  ModuleSlotTracker MST(M); +  MST.incorporateFunction(F); +  print(OS, MST, Indexes, IsStandalone); +} + +void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, +                              const SlotIndexes *Indexes, +                              bool IsStandalone) const { +  const MachineFunction *MF = getParent(); +  if (!MF) { +    OS << "Can't print out MachineBasicBlock because parent MachineFunction" +       << " is null\n"; +    return; +  } + +  if (Indexes && PrintSlotIndexes) +    OS << Indexes->getMBBStartIdx(this) << '\t'; + +  OS << "bb." << getNumber(); +  bool HasAttributes = false; +  if (const auto *BB = getBasicBlock()) { +    if (BB->hasName()) { +      OS << "." << BB->getName(); +    } else { +      HasAttributes = true; +      OS << " ("; +      int Slot = MST.getLocalSlot(BB); +      if (Slot == -1) +        OS << "<ir-block badref>"; +      else +        OS << (Twine("%ir-block.") + Twine(Slot)).str(); +    } +  } + +  if (hasAddressTaken()) { +    OS << (HasAttributes ? ", " : " ("); +    OS << "address-taken"; +    HasAttributes = true; +  } +  if (isEHPad()) { +    OS << (HasAttributes ? ", " : " ("); +    OS << "landing-pad"; +    HasAttributes = true; +  } +  if (getAlignment() != Align::None()) { +    OS << (HasAttributes ? ", " : " ("); +    OS << "align " << Log2(getAlignment()); +    HasAttributes = true; +  } +  if (HasAttributes) +    OS << ")"; +  OS << ":\n"; + +  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); +  const MachineRegisterInfo &MRI = MF->getRegInfo(); +  const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); +  bool HasLineAttributes = false; + +  // Print the preds of this block according to the CFG. +  if (!pred_empty() && IsStandalone) { +    if (Indexes) OS << '\t'; +    // Don't indent(2), align with previous line attributes. +    OS << "; predecessors: "; +    for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { +      if (I != pred_begin()) +        OS << ", "; +      OS << printMBBReference(**I); +    } +    OS << '\n'; +    HasLineAttributes = true; +  } + +  if (!succ_empty()) { +    if (Indexes) OS << '\t'; +    // Print the successors +    OS.indent(2) << "successors: "; +    for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { +      if (I != succ_begin()) +        OS << ", "; +      OS << printMBBReference(**I); +      if (!Probs.empty()) +        OS << '(' +           << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) +           << ')'; +    } +    if (!Probs.empty() && IsStandalone) { +      // Print human readable probabilities as comments. +      OS << "; "; +      for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { +        const BranchProbability &BP = getSuccProbability(I); +        if (I != succ_begin()) +          OS << ", "; +        OS << printMBBReference(**I) << '(' +           << format("%.2f%%", +                     rint(((double)BP.getNumerator() / BP.getDenominator()) * +                          100.0 * 100.0) / +                         100.0) +           << ')'; +      } +    } + +    OS << '\n'; +    HasLineAttributes = true; +  } + +  if (!livein_empty() && MRI.tracksLiveness()) { +    if (Indexes) OS << '\t'; +    OS.indent(2) << "liveins: "; + +    bool First = true; +    for (const auto &LI : liveins()) { +      if (!First) +        OS << ", "; +      First = false; +      OS << printReg(LI.PhysReg, TRI); +      if (!LI.LaneMask.all()) +        OS << ":0x" << PrintLaneMask(LI.LaneMask); +    } +    HasLineAttributes = true; +  } + +  if (HasLineAttributes) +    OS << '\n'; + +  bool IsInBundle = false; +  for (const MachineInstr &MI : instrs()) { +    if (Indexes && PrintSlotIndexes) { +      if (Indexes->hasIndex(MI)) +        OS << Indexes->getInstructionIndex(MI); +      OS << '\t'; +    } + +    if (IsInBundle && !MI.isInsideBundle()) { +      OS.indent(2) << "}\n"; +      IsInBundle = false; +    } + +    OS.indent(IsInBundle ? 4 : 2); +    MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, +             /*AddNewLine=*/false, &TII); + +    if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { +      OS << " {"; +      IsInBundle = true; +    } +    OS << '\n'; +  } + +  if (IsInBundle) +    OS.indent(2) << "}\n"; + +  if (IrrLoopHeaderWeight && IsStandalone) { +    if (Indexes) OS << '\t'; +    OS.indent(2) << "; Irreducible loop header weight: " +                 << IrrLoopHeaderWeight.getValue() << '\n'; +  } +} + +void MachineBasicBlock::printAsOperand(raw_ostream &OS, +                                       bool /*PrintType*/) const { +  OS << "%bb." << getNumber(); +} + +void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { +  LiveInVector::iterator I = find_if( +      LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); +  if (I == LiveIns.end()) +    return; + +  I->LaneMask &= ~LaneMask; +  if (I->LaneMask.none()) +    LiveIns.erase(I); +} + +MachineBasicBlock::livein_iterator +MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { +  // Get non-const version of iterator. +  LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); +  return LiveIns.erase(LI); +} + +bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { +  livein_iterator I = find_if( +      LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); +  return I != livein_end() && (I->LaneMask & LaneMask).any(); +} + +void MachineBasicBlock::sortUniqueLiveIns() { +  llvm::sort(LiveIns, +             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { +               return LI0.PhysReg < LI1.PhysReg; +             }); +  // Liveins are sorted by physreg now we can merge their lanemasks. +  LiveInVector::const_iterator I = LiveIns.begin(); +  LiveInVector::const_iterator J; +  LiveInVector::iterator Out = LiveIns.begin(); +  for (; I != LiveIns.end(); ++Out, I = J) { +    unsigned PhysReg = I->PhysReg; +    LaneBitmask LaneMask = I->LaneMask; +    for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) +      LaneMask |= J->LaneMask; +    Out->PhysReg = PhysReg; +    Out->LaneMask = LaneMask; +  } +  LiveIns.erase(Out, LiveIns.end()); +} + +unsigned +MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { +  assert(getParent() && "MBB must be inserted in function"); +  assert(PhysReg.isPhysical() && "Expected physreg"); +  assert(RC && "Register class is required"); +  assert((isEHPad() || this == &getParent()->front()) && +         "Only the entry block and landing pads can have physreg live ins"); + +  bool LiveIn = isLiveIn(PhysReg); +  iterator I = SkipPHIsAndLabels(begin()), E = end(); +  MachineRegisterInfo &MRI = getParent()->getRegInfo(); +  const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); + +  // Look for an existing copy. +  if (LiveIn) +    for (;I != E && I->isCopy(); ++I) +      if (I->getOperand(1).getReg() == PhysReg) { +        Register VirtReg = I->getOperand(0).getReg(); +        if (!MRI.constrainRegClass(VirtReg, RC)) +          llvm_unreachable("Incompatible live-in register class."); +        return VirtReg; +      } + +  // No luck, create a virtual register. +  Register VirtReg = MRI.createVirtualRegister(RC); +  BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) +    .addReg(PhysReg, RegState::Kill); +  if (!LiveIn) +    addLiveIn(PhysReg); +  return VirtReg; +} + +void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { +  getParent()->splice(NewAfter->getIterator(), getIterator()); +} + +void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { +  getParent()->splice(++NewBefore->getIterator(), getIterator()); +} + +void MachineBasicBlock::updateTerminator() { +  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); +  // A block with no successors has no concerns with fall-through edges. +  if (this->succ_empty()) +    return; + +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +  SmallVector<MachineOperand, 4> Cond; +  DebugLoc DL = findBranchDebugLoc(); +  bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); +  (void) B; +  assert(!B && "UpdateTerminators requires analyzable predecessors!"); +  if (Cond.empty()) { +    if (TBB) { +      // The block has an unconditional branch. If its successor is now its +      // layout successor, delete the branch. +      if (isLayoutSuccessor(TBB)) +        TII->removeBranch(*this); +    } else { +      // The block has an unconditional fallthrough. If its successor is not its +      // layout successor, insert a branch. First we have to locate the only +      // non-landing-pad successor, as that is the fallthrough block. +      for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { +        if ((*SI)->isEHPad()) +          continue; +        assert(!TBB && "Found more than one non-landing-pad successor!"); +        TBB = *SI; +      } + +      // If there is no non-landing-pad successor, the block has no fall-through +      // edges to be concerned with. +      if (!TBB) +        return; + +      // Finally update the unconditional successor to be reached via a branch +      // if it would not be reached by fallthrough. +      if (!isLayoutSuccessor(TBB)) +        TII->insertBranch(*this, TBB, nullptr, Cond, DL); +    } +    return; +  } + +  if (FBB) { +    // The block has a non-fallthrough conditional branch. If one of its +    // successors is its layout successor, rewrite it to a fallthrough +    // conditional branch. +    if (isLayoutSuccessor(TBB)) { +      if (TII->reverseBranchCondition(Cond)) +        return; +      TII->removeBranch(*this); +      TII->insertBranch(*this, FBB, nullptr, Cond, DL); +    } else if (isLayoutSuccessor(FBB)) { +      TII->removeBranch(*this); +      TII->insertBranch(*this, TBB, nullptr, Cond, DL); +    } +    return; +  } + +  // Walk through the successors and find the successor which is not a landing +  // pad and is not the conditional branch destination (in TBB) as the +  // fallthrough successor. +  MachineBasicBlock *FallthroughBB = nullptr; +  for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { +    if ((*SI)->isEHPad() || *SI == TBB) +      continue; +    assert(!FallthroughBB && "Found more than one fallthrough successor."); +    FallthroughBB = *SI; +  } + +  if (!FallthroughBB) { +    if (canFallThrough()) { +      // We fallthrough to the same basic block as the conditional jump targets. +      // Remove the conditional jump, leaving unconditional fallthrough. +      // FIXME: This does not seem like a reasonable pattern to support, but it +      // has been seen in the wild coming out of degenerate ARM test cases. +      TII->removeBranch(*this); + +      // Finally update the unconditional successor to be reached via a branch if +      // it would not be reached by fallthrough. +      if (!isLayoutSuccessor(TBB)) +        TII->insertBranch(*this, TBB, nullptr, Cond, DL); +      return; +    } + +    // We enter here iff exactly one successor is TBB which cannot fallthrough +    // and the rest successors if any are EHPads.  In this case, we need to +    // change the conditional branch into unconditional branch. +    TII->removeBranch(*this); +    Cond.clear(); +    TII->insertBranch(*this, TBB, nullptr, Cond, DL); +    return; +  } + +  // The block has a fallthrough conditional branch. +  if (isLayoutSuccessor(TBB)) { +    if (TII->reverseBranchCondition(Cond)) { +      // We can't reverse the condition, add an unconditional branch. +      Cond.clear(); +      TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); +      return; +    } +    TII->removeBranch(*this); +    TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); +  } else if (!isLayoutSuccessor(FallthroughBB)) { +    TII->removeBranch(*this); +    TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); +  } +} + +void MachineBasicBlock::validateSuccProbs() const { +#ifndef NDEBUG +  int64_t Sum = 0; +  for (auto Prob : Probs) +    Sum += Prob.getNumerator(); +  // Due to precision issue, we assume that the sum of probabilities is one if +  // the difference between the sum of their numerators and the denominator is +  // no greater than the number of successors. +  assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= +             Probs.size() && +         "The sum of successors's probabilities exceeds one."); +#endif // NDEBUG +} + +void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, +                                     BranchProbability Prob) { +  // Probability list is either empty (if successor list isn't empty, this means +  // disabled optimization) or has the same size as successor list. +  if (!(Probs.empty() && !Successors.empty())) +    Probs.push_back(Prob); +  Successors.push_back(Succ); +  Succ->addPredecessor(this); +} + +void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { +  // We need to make sure probability list is either empty or has the same size +  // of successor list. When this function is called, we can safely delete all +  // probability in the list. +  Probs.clear(); +  Successors.push_back(Succ); +  Succ->addPredecessor(this); +} + +void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, +                                       MachineBasicBlock *New, +                                       bool NormalizeSuccProbs) { +  succ_iterator OldI = llvm::find(successors(), Old); +  assert(OldI != succ_end() && "Old is not a successor of this block!"); +  assert(llvm::find(successors(), New) == succ_end() && +         "New is already a successor of this block!"); + +  // Add a new successor with equal probability as the original one. Note +  // that we directly copy the probability using the iterator rather than +  // getting a potentially synthetic probability computed when unknown. This +  // preserves the probabilities as-is and then we can renormalize them and +  // query them effectively afterward. +  addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() +                                  : *getProbabilityIterator(OldI)); +  if (NormalizeSuccProbs) +    normalizeSuccProbs(); +} + +void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, +                                        bool NormalizeSuccProbs) { +  succ_iterator I = find(Successors, Succ); +  removeSuccessor(I, NormalizeSuccProbs); +} + +MachineBasicBlock::succ_iterator +MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { +  assert(I != Successors.end() && "Not a current successor!"); + +  // If probability list is empty it means we don't use it (disabled +  // optimization). +  if (!Probs.empty()) { +    probability_iterator WI = getProbabilityIterator(I); +    Probs.erase(WI); +    if (NormalizeSuccProbs) +      normalizeSuccProbs(); +  } + +  (*I)->removePredecessor(this); +  return Successors.erase(I); +} + +void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, +                                         MachineBasicBlock *New) { +  if (Old == New) +    return; + +  succ_iterator E = succ_end(); +  succ_iterator NewI = E; +  succ_iterator OldI = E; +  for (succ_iterator I = succ_begin(); I != E; ++I) { +    if (*I == Old) { +      OldI = I; +      if (NewI != E) +        break; +    } +    if (*I == New) { +      NewI = I; +      if (OldI != E) +        break; +    } +  } +  assert(OldI != E && "Old is not a successor of this block"); + +  // If New isn't already a successor, let it take Old's place. +  if (NewI == E) { +    Old->removePredecessor(this); +    New->addPredecessor(this); +    *OldI = New; +    return; +  } + +  // New is already a successor. +  // Update its probability instead of adding a duplicate edge. +  if (!Probs.empty()) { +    auto ProbIter = getProbabilityIterator(NewI); +    if (!ProbIter->isUnknown()) +      *ProbIter += *getProbabilityIterator(OldI); +  } +  removeSuccessor(OldI); +} + +void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, +                                      succ_iterator I) { +  if (Orig->Probs.empty()) +    addSuccessor(*I, Orig->getSuccProbability(I)); +  else +    addSuccessorWithoutProb(*I); +} + +void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { +  Predecessors.push_back(Pred); +} + +void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { +  pred_iterator I = find(Predecessors, Pred); +  assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); +  Predecessors.erase(I); +} + +void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { +  if (this == FromMBB) +    return; + +  while (!FromMBB->succ_empty()) { +    MachineBasicBlock *Succ = *FromMBB->succ_begin(); + +    // If probability list is empty it means we don't use it (disabled +    // optimization). +    if (!FromMBB->Probs.empty()) { +      auto Prob = *FromMBB->Probs.begin(); +      addSuccessor(Succ, Prob); +    } else +      addSuccessorWithoutProb(Succ); + +    FromMBB->removeSuccessor(Succ); +  } +} + +void +MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { +  if (this == FromMBB) +    return; + +  while (!FromMBB->succ_empty()) { +    MachineBasicBlock *Succ = *FromMBB->succ_begin(); +    if (!FromMBB->Probs.empty()) { +      auto Prob = *FromMBB->Probs.begin(); +      addSuccessor(Succ, Prob); +    } else +      addSuccessorWithoutProb(Succ); +    FromMBB->removeSuccessor(Succ); + +    // Fix up any PHI nodes in the successor. +    Succ->replacePhiUsesWith(FromMBB, this); +  } +  normalizeSuccProbs(); +} + +bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { +  return is_contained(predecessors(), MBB); +} + +bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { +  return is_contained(successors(), MBB); +} + +bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { +  MachineFunction::const_iterator I(this); +  return std::next(I) == MachineFunction::const_iterator(MBB); +} + +MachineBasicBlock *MachineBasicBlock::getFallThrough() { +  MachineFunction::iterator Fallthrough = getIterator(); +  ++Fallthrough; +  // If FallthroughBlock is off the end of the function, it can't fall through. +  if (Fallthrough == getParent()->end()) +    return nullptr; + +  // If FallthroughBlock isn't a successor, no fallthrough is possible. +  if (!isSuccessor(&*Fallthrough)) +    return nullptr; + +  // Analyze the branches, if any, at the end of the block. +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +  SmallVector<MachineOperand, 4> Cond; +  const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); +  if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { +    // If we couldn't analyze the branch, examine the last instruction. +    // If the block doesn't end in a known control barrier, assume fallthrough +    // is possible. The isPredicated check is needed because this code can be +    // called during IfConversion, where an instruction which is normally a +    // Barrier is predicated and thus no longer an actual control barrier. +    return (empty() || !back().isBarrier() || TII->isPredicated(back())) +               ? &*Fallthrough +               : nullptr; +  } + +  // If there is no branch, control always falls through. +  if (!TBB) return &*Fallthrough; + +  // If there is some explicit branch to the fallthrough block, it can obviously +  // reach, even though the branch should get folded to fall through implicitly. +  if (MachineFunction::iterator(TBB) == Fallthrough || +      MachineFunction::iterator(FBB) == Fallthrough) +    return &*Fallthrough; + +  // If it's an unconditional branch to some block not the fall through, it +  // doesn't fall through. +  if (Cond.empty()) return nullptr; + +  // Otherwise, if it is conditional and has no explicit false block, it falls +  // through. +  return (FBB == nullptr) ? &*Fallthrough : nullptr; +} + +bool MachineBasicBlock::canFallThrough() { +  return getFallThrough() != nullptr; +} + +MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, +                                                        Pass &P) { +  if (!canSplitCriticalEdge(Succ)) +    return nullptr; + +  MachineFunction *MF = getParent(); +  DebugLoc DL;  // FIXME: this is nowhere + +  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); +  MF->insert(std::next(MachineFunction::iterator(this)), NMBB); +  LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) +                    << " -- " << printMBBReference(*NMBB) << " -- " +                    << printMBBReference(*Succ) << '\n'); + +  LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); +  SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); +  if (LIS) +    LIS->insertMBBInMaps(NMBB); +  else if (Indexes) +    Indexes->insertMBBInMaps(NMBB); + +  // On some targets like Mips, branches may kill virtual registers. Make sure +  // that LiveVariables is properly updated after updateTerminator replaces the +  // terminators. +  LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); + +  // Collect a list of virtual registers killed by the terminators. +  SmallVector<unsigned, 4> KilledRegs; +  if (LV) +    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); +         I != E; ++I) { +      MachineInstr *MI = &*I; +      for (MachineInstr::mop_iterator OI = MI->operands_begin(), +           OE = MI->operands_end(); OI != OE; ++OI) { +        if (!OI->isReg() || OI->getReg() == 0 || +            !OI->isUse() || !OI->isKill() || OI->isUndef()) +          continue; +        Register Reg = OI->getReg(); +        if (Register::isPhysicalRegister(Reg) || +            LV->getVarInfo(Reg).removeKill(*MI)) { +          KilledRegs.push_back(Reg); +          LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); +          OI->setIsKill(false); +        } +      } +    } + +  SmallVector<unsigned, 4> UsedRegs; +  if (LIS) { +    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); +         I != E; ++I) { +      MachineInstr *MI = &*I; + +      for (MachineInstr::mop_iterator OI = MI->operands_begin(), +           OE = MI->operands_end(); OI != OE; ++OI) { +        if (!OI->isReg() || OI->getReg() == 0) +          continue; + +        Register Reg = OI->getReg(); +        if (!is_contained(UsedRegs, Reg)) +          UsedRegs.push_back(Reg); +      } +    } +  } + +  ReplaceUsesOfBlockWith(Succ, NMBB); + +  // If updateTerminator() removes instructions, we need to remove them from +  // SlotIndexes. +  SmallVector<MachineInstr*, 4> Terminators; +  if (Indexes) { +    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); +         I != E; ++I) +      Terminators.push_back(&*I); +  } + +  updateTerminator(); + +  if (Indexes) { +    SmallVector<MachineInstr*, 4> NewTerminators; +    for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); +         I != E; ++I) +      NewTerminators.push_back(&*I); + +    for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), +        E = Terminators.end(); I != E; ++I) { +      if (!is_contained(NewTerminators, *I)) +        Indexes->removeMachineInstrFromMaps(**I); +    } +  } + +  // Insert unconditional "jump Succ" instruction in NMBB if necessary. +  NMBB->addSuccessor(Succ); +  if (!NMBB->isLayoutSuccessor(Succ)) { +    SmallVector<MachineOperand, 4> Cond; +    const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); +    TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); + +    if (Indexes) { +      for (MachineInstr &MI : NMBB->instrs()) { +        // Some instructions may have been moved to NMBB by updateTerminator(), +        // so we first remove any instruction that already has an index. +        if (Indexes->hasIndex(MI)) +          Indexes->removeMachineInstrFromMaps(MI); +        Indexes->insertMachineInstrInMaps(MI); +      } +    } +  } + +  // Fix PHI nodes in Succ so they refer to NMBB instead of this. +  Succ->replacePhiUsesWith(this, NMBB); + +  // Inherit live-ins from the successor +  for (const auto &LI : Succ->liveins()) +    NMBB->addLiveIn(LI); + +  // Update LiveVariables. +  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); +  if (LV) { +    // Restore kills of virtual registers that were killed by the terminators. +    while (!KilledRegs.empty()) { +      unsigned Reg = KilledRegs.pop_back_val(); +      for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { +        if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) +          continue; +        if (Register::isVirtualRegister(Reg)) +          LV->getVarInfo(Reg).Kills.push_back(&*I); +        LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); +        break; +      } +    } +    // Update relevant live-through information. +    LV->addNewBlock(NMBB, this, Succ); +  } + +  if (LIS) { +    // After splitting the edge and updating SlotIndexes, live intervals may be +    // in one of two situations, depending on whether this block was the last in +    // the function. If the original block was the last in the function, all +    // live intervals will end prior to the beginning of the new split block. If +    // the original block was not at the end of the function, all live intervals +    // will extend to the end of the new split block. + +    bool isLastMBB = +      std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); + +    SlotIndex StartIndex = Indexes->getMBBEndIdx(this); +    SlotIndex PrevIndex = StartIndex.getPrevSlot(); +    SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); + +    // Find the registers used from NMBB in PHIs in Succ. +    SmallSet<unsigned, 8> PHISrcRegs; +    for (MachineBasicBlock::instr_iterator +         I = Succ->instr_begin(), E = Succ->instr_end(); +         I != E && I->isPHI(); ++I) { +      for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { +        if (I->getOperand(ni+1).getMBB() == NMBB) { +          MachineOperand &MO = I->getOperand(ni); +          Register Reg = MO.getReg(); +          PHISrcRegs.insert(Reg); +          if (MO.isUndef()) +            continue; + +          LiveInterval &LI = LIS->getInterval(Reg); +          VNInfo *VNI = LI.getVNInfoAt(PrevIndex); +          assert(VNI && +                 "PHI sources should be live out of their predecessors."); +          LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); +        } +      } +    } + +    MachineRegisterInfo *MRI = &getParent()->getRegInfo(); +    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { +      unsigned Reg = Register::index2VirtReg(i); +      if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) +        continue; + +      LiveInterval &LI = LIS->getInterval(Reg); +      if (!LI.liveAt(PrevIndex)) +        continue; + +      bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); +      if (isLiveOut && isLastMBB) { +        VNInfo *VNI = LI.getVNInfoAt(PrevIndex); +        assert(VNI && "LiveInterval should have VNInfo where it is live."); +        LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); +      } else if (!isLiveOut && !isLastMBB) { +        LI.removeSegment(StartIndex, EndIndex); +      } +    } + +    // Update all intervals for registers whose uses may have been modified by +    // updateTerminator(). +    LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); +  } + +  if (MachineDominatorTree *MDT = +          P.getAnalysisIfAvailable<MachineDominatorTree>()) +    MDT->recordSplitCriticalEdge(this, Succ, NMBB); + +  if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) +    if (MachineLoop *TIL = MLI->getLoopFor(this)) { +      // If one or the other blocks were not in a loop, the new block is not +      // either, and thus LI doesn't need to be updated. +      if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { +        if (TIL == DestLoop) { +          // Both in the same loop, the NMBB joins loop. +          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); +        } else if (TIL->contains(DestLoop)) { +          // Edge from an outer loop to an inner loop.  Add to the outer loop. +          TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); +        } else if (DestLoop->contains(TIL)) { +          // Edge from an inner loop to an outer loop.  Add to the outer loop. +          DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); +        } else { +          // Edge from two loops with no containment relation.  Because these +          // are natural loops, we know that the destination block must be the +          // header of its loop (adding a branch into a loop elsewhere would +          // create an irreducible loop). +          assert(DestLoop->getHeader() == Succ && +                 "Should not create irreducible loops!"); +          if (MachineLoop *P = DestLoop->getParentLoop()) +            P->addBasicBlockToLoop(NMBB, MLI->getBase()); +        } +      } +    } + +  return NMBB; +} + +bool MachineBasicBlock::canSplitCriticalEdge( +    const MachineBasicBlock *Succ) const { +  // Splitting the critical edge to a landing pad block is non-trivial. Don't do +  // it in this generic function. +  if (Succ->isEHPad()) +    return false; + +  const MachineFunction *MF = getParent(); + +  // Performance might be harmed on HW that implements branching using exec mask +  // where both sides of the branches are always executed. +  if (MF->getTarget().requiresStructuredCFG()) +    return false; + +  // We may need to update this's terminator, but we can't do that if +  // AnalyzeBranch fails. If this uses a jump table, we won't touch it. +  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; +  SmallVector<MachineOperand, 4> Cond; +  // AnalyzeBanch should modify this, since we did not allow modification. +  if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, +                         /*AllowModify*/ false)) +    return false; + +  // Avoid bugpoint weirdness: A block may end with a conditional branch but +  // jumps to the same MBB is either case. We have duplicate CFG edges in that +  // case that we can't handle. Since this never happens in properly optimized +  // code, just skip those edges. +  if (TBB && TBB == FBB) { +    LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " +                      << printMBBReference(*this) << '\n'); +    return false; +  } +  return true; +} + +/// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's +/// neighboring instructions so the bundle won't be broken by removing MI. +static void unbundleSingleMI(MachineInstr *MI) { +  // Removing the first instruction in a bundle. +  if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) +    MI->unbundleFromSucc(); +  // Removing the last instruction in a bundle. +  if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) +    MI->unbundleFromPred(); +  // If MI is not bundled, or if it is internal to a bundle, the neighbor flags +  // are already fine. +} + +MachineBasicBlock::instr_iterator +MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { +  unbundleSingleMI(&*I); +  return Insts.erase(I); +} + +MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { +  unbundleSingleMI(MI); +  MI->clearFlag(MachineInstr::BundledPred); +  MI->clearFlag(MachineInstr::BundledSucc); +  return Insts.remove(MI); +} + +MachineBasicBlock::instr_iterator +MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { +  assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && +         "Cannot insert instruction with bundle flags"); +  // Set the bundle flags when inserting inside a bundle. +  if (I != instr_end() && I->isBundledWithPred()) { +    MI->setFlag(MachineInstr::BundledPred); +    MI->setFlag(MachineInstr::BundledSucc); +  } +  return Insts.insert(I, MI); +} + +/// This method unlinks 'this' from the containing function, and returns it, but +/// does not delete it. +MachineBasicBlock *MachineBasicBlock::removeFromParent() { +  assert(getParent() && "Not embedded in a function!"); +  getParent()->remove(this); +  return this; +} + +/// This method unlinks 'this' from the containing function, and deletes it. +void MachineBasicBlock::eraseFromParent() { +  assert(getParent() && "Not embedded in a function!"); +  getParent()->erase(this); +} + +/// Given a machine basic block that branched to 'Old', change the code and CFG +/// so that it branches to 'New' instead. +void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, +                                               MachineBasicBlock *New) { +  assert(Old != New && "Cannot replace self with self!"); + +  MachineBasicBlock::instr_iterator I = instr_end(); +  while (I != instr_begin()) { +    --I; +    if (!I->isTerminator()) break; + +    // Scan the operands of this machine instruction, replacing any uses of Old +    // with New. +    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) +      if (I->getOperand(i).isMBB() && +          I->getOperand(i).getMBB() == Old) +        I->getOperand(i).setMBB(New); +  } + +  // Update the successor information. +  replaceSuccessor(Old, New); +} + +void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, +                                           MachineBasicBlock *New) { +  for (MachineInstr &MI : phis()) +    for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { +      MachineOperand &MO = MI.getOperand(i); +      if (MO.getMBB() == Old) +        MO.setMBB(New); +    } +} + +/// Various pieces of code can cause excess edges in the CFG to be inserted.  If +/// we have proven that MBB can only branch to DestA and DestB, remove any other +/// MBB successors from the CFG.  DestA and DestB can be null. +/// +/// Besides DestA and DestB, retain other edges leading to LandingPads +/// (currently there can be only one; we don't check or require that here). +/// Note it is possible that DestA and/or DestB are LandingPads. +bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, +                                             MachineBasicBlock *DestB, +                                             bool IsCond) { +  // The values of DestA and DestB frequently come from a call to the +  // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial +  // values from there. +  // +  // 1. If both DestA and DestB are null, then the block ends with no branches +  //    (it falls through to its successor). +  // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends +  //    with only an unconditional branch. +  // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends +  //    with a conditional branch that falls through to a successor (DestB). +  // 4. If DestA and DestB is set and IsCond is true, then the block ends with a +  //    conditional branch followed by an unconditional branch. DestA is the +  //    'true' destination and DestB is the 'false' destination. + +  bool Changed = false; + +  MachineBasicBlock *FallThru = getNextNode(); + +  if (!DestA && !DestB) { +    // Block falls through to successor. +    DestA = FallThru; +    DestB = FallThru; +  } else if (DestA && !DestB) { +    if (IsCond) +      // Block ends in conditional jump that falls through to successor. +      DestB = FallThru; +  } else { +    assert(DestA && DestB && IsCond && +           "CFG in a bad state. Cannot correct CFG edges"); +  } + +  // Remove superfluous edges. I.e., those which aren't destinations of this +  // basic block, duplicate edges, or landing pads. +  SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; +  MachineBasicBlock::succ_iterator SI = succ_begin(); +  while (SI != succ_end()) { +    const MachineBasicBlock *MBB = *SI; +    if (!SeenMBBs.insert(MBB).second || +        (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { +      // This is a superfluous edge, remove it. +      SI = removeSuccessor(SI); +      Changed = true; +    } else { +      ++SI; +    } +  } + +  if (Changed) +    normalizeSuccProbs(); +  return Changed; +} + +/// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE +/// instructions.  Return UnknownLoc if there is none. +DebugLoc +MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { +  // Skip debug declarations, we don't want a DebugLoc from them. +  MBBI = skipDebugInstructionsForward(MBBI, instr_end()); +  if (MBBI != instr_end()) +    return MBBI->getDebugLoc(); +  return {}; +} + +/// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE +/// instructions.  Return UnknownLoc if there is none. +DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { +  if (MBBI == instr_begin()) return {}; +  // Skip debug declarations, we don't want a DebugLoc from them. +  MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); +  if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); +  return {}; +} + +/// Find and return the merged DebugLoc of the branch instructions of the block. +/// Return UnknownLoc if there is none. +DebugLoc +MachineBasicBlock::findBranchDebugLoc() { +  DebugLoc DL; +  auto TI = getFirstTerminator(); +  while (TI != end() && !TI->isBranch()) +    ++TI; + +  if (TI != end()) { +    DL = TI->getDebugLoc(); +    for (++TI ; TI != end() ; ++TI) +      if (TI->isBranch()) +        DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); +  } +  return DL; +} + +/// Return probability of the edge from this block to MBB. +BranchProbability +MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { +  if (Probs.empty()) +    return BranchProbability(1, succ_size()); + +  const auto &Prob = *getProbabilityIterator(Succ); +  if (Prob.isUnknown()) { +    // For unknown probabilities, collect the sum of all known ones, and evenly +    // ditribute the complemental of the sum to each unknown probability. +    unsigned KnownProbNum = 0; +    auto Sum = BranchProbability::getZero(); +    for (auto &P : Probs) { +      if (!P.isUnknown()) { +        Sum += P; +        KnownProbNum++; +      } +    } +    return Sum.getCompl() / (Probs.size() - KnownProbNum); +  } else +    return Prob; +} + +/// Set successor probability of a given iterator. +void MachineBasicBlock::setSuccProbability(succ_iterator I, +                                           BranchProbability Prob) { +  assert(!Prob.isUnknown()); +  if (Probs.empty()) +    return; +  *getProbabilityIterator(I) = Prob; +} + +/// Return probability iterator corresonding to the I successor iterator +MachineBasicBlock::const_probability_iterator +MachineBasicBlock::getProbabilityIterator( +    MachineBasicBlock::const_succ_iterator I) const { +  assert(Probs.size() == Successors.size() && "Async probability list!"); +  const size_t index = std::distance(Successors.begin(), I); +  assert(index < Probs.size() && "Not a current successor!"); +  return Probs.begin() + index; +} + +/// Return probability iterator corresonding to the I successor iterator. +MachineBasicBlock::probability_iterator +MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { +  assert(Probs.size() == Successors.size() && "Async probability list!"); +  const size_t index = std::distance(Successors.begin(), I); +  assert(index < Probs.size() && "Not a current successor!"); +  return Probs.begin() + index; +} + +/// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed +/// as of just before "MI". +/// +/// Search is localised to a neighborhood of +/// Neighborhood instructions before (searching for defs or kills) and N +/// instructions after (searching just for defs) MI. +MachineBasicBlock::LivenessQueryResult +MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, +                                           unsigned Reg, const_iterator Before, +                                           unsigned Neighborhood) const { +  unsigned N = Neighborhood; + +  // Try searching forwards from Before, looking for reads or defs. +  const_iterator I(Before); +  for (; I != end() && N > 0; ++I) { +    if (I->isDebugInstr()) +      continue; + +    --N; + +    MachineOperandIteratorBase::PhysRegInfo Info = +        ConstMIOperands(*I).analyzePhysReg(Reg, TRI); + +    // Register is live when we read it here. +    if (Info.Read) +      return LQR_Live; +    // Register is dead if we can fully overwrite or clobber it here. +    if (Info.FullyDefined || Info.Clobbered) +      return LQR_Dead; +  } + +  // If we reached the end, it is safe to clobber Reg at the end of a block of +  // no successor has it live in. +  if (I == end()) { +    for (MachineBasicBlock *S : successors()) { +      for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { +        if (TRI->regsOverlap(LI.PhysReg, Reg)) +          return LQR_Live; +      } +    } + +    return LQR_Dead; +  } + + +  N = Neighborhood; + +  // Start by searching backwards from Before, looking for kills, reads or defs. +  I = const_iterator(Before); +  // If this is the first insn in the block, don't search backwards. +  if (I != begin()) { +    do { +      --I; + +      if (I->isDebugInstr()) +        continue; + +      --N; + +      MachineOperandIteratorBase::PhysRegInfo Info = +          ConstMIOperands(*I).analyzePhysReg(Reg, TRI); + +      // Defs happen after uses so they take precedence if both are present. + +      // Register is dead after a dead def of the full register. +      if (Info.DeadDef) +        return LQR_Dead; +      // Register is (at least partially) live after a def. +      if (Info.Defined) { +        if (!Info.PartialDeadDef) +          return LQR_Live; +        // As soon as we saw a partial definition (dead or not), +        // we cannot tell if the value is partial live without +        // tracking the lanemasks. We are not going to do this, +        // so fall back on the remaining of the analysis. +        break; +      } +      // Register is dead after a full kill or clobber and no def. +      if (Info.Killed || Info.Clobbered) +        return LQR_Dead; +      // Register must be live if we read it. +      if (Info.Read) +        return LQR_Live; + +    } while (I != begin() && N > 0); +  } + +  // Did we get to the start of the block? +  if (I == begin()) { +    // If so, the register's state is definitely defined by the live-in state. +    for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) +      if (TRI->regsOverlap(LI.PhysReg, Reg)) +        return LQR_Live; + +    return LQR_Dead; +  } + +  // At this point we have no idea of the liveness of the register. +  return LQR_Unknown; +} + +const uint32_t * +MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { +  // EH funclet entry does not preserve any registers. +  return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; +} + +const uint32_t * +MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { +  // If we see a return block with successors, this must be a funclet return, +  // which does not preserve any registers. If there are no successors, we don't +  // care what kind of return it is, putting a mask after it is a no-op. +  return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; +} + +void MachineBasicBlock::clearLiveIns() { +  LiveIns.clear(); +} + +MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { +  assert(getParent()->getProperties().hasProperty( +      MachineFunctionProperties::Property::TracksLiveness) && +      "Liveness information is accurate"); +  return LiveIns.begin(); +} | 
