diff options
Diffstat (limited to 'llvm/lib/CodeGen/MachineBlockPlacement.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/MachineBlockPlacement.cpp | 3161 | 
1 files changed, 3161 insertions, 0 deletions
| diff --git a/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/llvm/lib/CodeGen/MachineBlockPlacement.cpp new file mode 100644 index 000000000000..ac19bc0bd8ea --- /dev/null +++ b/llvm/lib/CodeGen/MachineBlockPlacement.cpp @@ -0,0 +1,3161 @@ +//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements basic block placement transformations using the CFG +// structure and branch probability estimates. +// +// The pass strives to preserve the structure of the CFG (that is, retain +// a topological ordering of basic blocks) in the absence of a *strong* signal +// to the contrary from probabilities. However, within the CFG structure, it +// attempts to choose an ordering which favors placing more likely sequences of +// blocks adjacent to each other. +// +// The algorithm works from the inner-most loop within a function outward, and +// at each stage walks through the basic blocks, trying to coalesce them into +// sequential chains where allowed by the CFG (or demanded by heavy +// probabilities). Finally, it walks the blocks in topological order, and the +// first time it reaches a chain of basic blocks, it schedules them in the +// function in-order. +// +//===----------------------------------------------------------------------===// + +#include "BranchFolding.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/BlockFrequencyInfoImpl.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachinePostDominators.h" +#include "llvm/CodeGen/TailDuplicator.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/Pass.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <memory> +#include <string> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "block-placement" + +STATISTIC(NumCondBranches, "Number of conditional branches"); +STATISTIC(NumUncondBranches, "Number of unconditional branches"); +STATISTIC(CondBranchTakenFreq, +          "Potential frequency of taking conditional branches"); +STATISTIC(UncondBranchTakenFreq, +          "Potential frequency of taking unconditional branches"); + +static cl::opt<unsigned> AlignAllBlock( +    "align-all-blocks", +    cl::desc("Force the alignment of all blocks in the function in log2 format " +             "(e.g 4 means align on 16B boundaries)."), +    cl::init(0), cl::Hidden); + +static cl::opt<unsigned> AlignAllNonFallThruBlocks( +    "align-all-nofallthru-blocks", +    cl::desc("Force the alignment of all blocks that have no fall-through " +             "predecessors (i.e. don't add nops that are executed). In log2 " +             "format (e.g 4 means align on 16B boundaries)."), +    cl::init(0), cl::Hidden); + +// FIXME: Find a good default for this flag and remove the flag. +static cl::opt<unsigned> ExitBlockBias( +    "block-placement-exit-block-bias", +    cl::desc("Block frequency percentage a loop exit block needs " +             "over the original exit to be considered the new exit."), +    cl::init(0), cl::Hidden); + +// Definition: +// - Outlining: placement of a basic block outside the chain or hot path. + +static cl::opt<unsigned> LoopToColdBlockRatio( +    "loop-to-cold-block-ratio", +    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " +             "(frequency of block) is greater than this ratio"), +    cl::init(5), cl::Hidden); + +static cl::opt<bool> ForceLoopColdBlock( +    "force-loop-cold-block", +    cl::desc("Force outlining cold blocks from loops."), +    cl::init(false), cl::Hidden); + +static cl::opt<bool> +    PreciseRotationCost("precise-rotation-cost", +                        cl::desc("Model the cost of loop rotation more " +                                 "precisely by using profile data."), +                        cl::init(false), cl::Hidden); + +static cl::opt<bool> +    ForcePreciseRotationCost("force-precise-rotation-cost", +                             cl::desc("Force the use of precise cost " +                                      "loop rotation strategy."), +                             cl::init(false), cl::Hidden); + +static cl::opt<unsigned> MisfetchCost( +    "misfetch-cost", +    cl::desc("Cost that models the probabilistic risk of an instruction " +             "misfetch due to a jump comparing to falling through, whose cost " +             "is zero."), +    cl::init(1), cl::Hidden); + +static cl::opt<unsigned> JumpInstCost("jump-inst-cost", +                                      cl::desc("Cost of jump instructions."), +                                      cl::init(1), cl::Hidden); +static cl::opt<bool> +TailDupPlacement("tail-dup-placement", +              cl::desc("Perform tail duplication during placement. " +                       "Creates more fallthrough opportunites in " +                       "outline branches."), +              cl::init(true), cl::Hidden); + +static cl::opt<bool> +BranchFoldPlacement("branch-fold-placement", +              cl::desc("Perform branch folding during placement. " +                       "Reduces code size."), +              cl::init(true), cl::Hidden); + +// Heuristic for tail duplication. +static cl::opt<unsigned> TailDupPlacementThreshold( +    "tail-dup-placement-threshold", +    cl::desc("Instruction cutoff for tail duplication during layout. " +             "Tail merging during layout is forced to have a threshold " +             "that won't conflict."), cl::init(2), +    cl::Hidden); + +// Heuristic for aggressive tail duplication. +static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( +    "tail-dup-placement-aggressive-threshold", +    cl::desc("Instruction cutoff for aggressive tail duplication during " +             "layout. Used at -O3. Tail merging during layout is forced to " +             "have a threshold that won't conflict."), cl::init(4), +    cl::Hidden); + +// Heuristic for tail duplication. +static cl::opt<unsigned> TailDupPlacementPenalty( +    "tail-dup-placement-penalty", +    cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " +             "Copying can increase fallthrough, but it also increases icache " +             "pressure. This parameter controls the penalty to account for that. " +             "Percent as integer."), +    cl::init(2), +    cl::Hidden); + +// Heuristic for triangle chains. +static cl::opt<unsigned> TriangleChainCount( +    "triangle-chain-count", +    cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " +             "triangle tail duplication heuristic to kick in. 0 to disable."), +    cl::init(2), +    cl::Hidden); + +extern cl::opt<unsigned> StaticLikelyProb; +extern cl::opt<unsigned> ProfileLikelyProb; + +// Internal option used to control BFI display only after MBP pass. +// Defined in CodeGen/MachineBlockFrequencyInfo.cpp: +// -view-block-layout-with-bfi= +extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; + +// Command line option to specify the name of the function for CFG dump +// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name= +extern cl::opt<std::string> ViewBlockFreqFuncName; + +namespace { + +class BlockChain; + +/// Type for our function-wide basic block -> block chain mapping. +using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; + +/// A chain of blocks which will be laid out contiguously. +/// +/// This is the datastructure representing a chain of consecutive blocks that +/// are profitable to layout together in order to maximize fallthrough +/// probabilities and code locality. We also can use a block chain to represent +/// a sequence of basic blocks which have some external (correctness) +/// requirement for sequential layout. +/// +/// Chains can be built around a single basic block and can be merged to grow +/// them. They participate in a block-to-chain mapping, which is updated +/// automatically as chains are merged together. +class BlockChain { +  /// The sequence of blocks belonging to this chain. +  /// +  /// This is the sequence of blocks for a particular chain. These will be laid +  /// out in-order within the function. +  SmallVector<MachineBasicBlock *, 4> Blocks; + +  /// A handle to the function-wide basic block to block chain mapping. +  /// +  /// This is retained in each block chain to simplify the computation of child +  /// block chains for SCC-formation and iteration. We store the edges to child +  /// basic blocks, and map them back to their associated chains using this +  /// structure. +  BlockToChainMapType &BlockToChain; + +public: +  /// Construct a new BlockChain. +  /// +  /// This builds a new block chain representing a single basic block in the +  /// function. It also registers itself as the chain that block participates +  /// in with the BlockToChain mapping. +  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) +      : Blocks(1, BB), BlockToChain(BlockToChain) { +    assert(BB && "Cannot create a chain with a null basic block"); +    BlockToChain[BB] = this; +  } + +  /// Iterator over blocks within the chain. +  using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; +  using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; + +  /// Beginning of blocks within the chain. +  iterator begin() { return Blocks.begin(); } +  const_iterator begin() const { return Blocks.begin(); } + +  /// End of blocks within the chain. +  iterator end() { return Blocks.end(); } +  const_iterator end() const { return Blocks.end(); } + +  bool remove(MachineBasicBlock* BB) { +    for(iterator i = begin(); i != end(); ++i) { +      if (*i == BB) { +        Blocks.erase(i); +        return true; +      } +    } +    return false; +  } + +  /// Merge a block chain into this one. +  /// +  /// This routine merges a block chain into this one. It takes care of forming +  /// a contiguous sequence of basic blocks, updating the edge list, and +  /// updating the block -> chain mapping. It does not free or tear down the +  /// old chain, but the old chain's block list is no longer valid. +  void merge(MachineBasicBlock *BB, BlockChain *Chain) { +    assert(BB && "Can't merge a null block."); +    assert(!Blocks.empty() && "Can't merge into an empty chain."); + +    // Fast path in case we don't have a chain already. +    if (!Chain) { +      assert(!BlockToChain[BB] && +             "Passed chain is null, but BB has entry in BlockToChain."); +      Blocks.push_back(BB); +      BlockToChain[BB] = this; +      return; +    } + +    assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); +    assert(Chain->begin() != Chain->end()); + +    // Update the incoming blocks to point to this chain, and add them to the +    // chain structure. +    for (MachineBasicBlock *ChainBB : *Chain) { +      Blocks.push_back(ChainBB); +      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); +      BlockToChain[ChainBB] = this; +    } +  } + +#ifndef NDEBUG +  /// Dump the blocks in this chain. +  LLVM_DUMP_METHOD void dump() { +    for (MachineBasicBlock *MBB : *this) +      MBB->dump(); +  } +#endif // NDEBUG + +  /// Count of predecessors of any block within the chain which have not +  /// yet been scheduled.  In general, we will delay scheduling this chain +  /// until those predecessors are scheduled (or we find a sufficiently good +  /// reason to override this heuristic.)  Note that when forming loop chains, +  /// blocks outside the loop are ignored and treated as if they were already +  /// scheduled. +  /// +  /// Note: This field is reinitialized multiple times - once for each loop, +  /// and then once for the function as a whole. +  unsigned UnscheduledPredecessors = 0; +}; + +class MachineBlockPlacement : public MachineFunctionPass { +  /// A type for a block filter set. +  using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; + +  /// Pair struct containing basic block and taildup profitability +  struct BlockAndTailDupResult { +    MachineBasicBlock *BB; +    bool ShouldTailDup; +  }; + +  /// Triple struct containing edge weight and the edge. +  struct WeightedEdge { +    BlockFrequency Weight; +    MachineBasicBlock *Src; +    MachineBasicBlock *Dest; +  }; + +  /// work lists of blocks that are ready to be laid out +  SmallVector<MachineBasicBlock *, 16> BlockWorkList; +  SmallVector<MachineBasicBlock *, 16> EHPadWorkList; + +  /// Edges that have already been computed as optimal. +  DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; + +  /// Machine Function +  MachineFunction *F; + +  /// A handle to the branch probability pass. +  const MachineBranchProbabilityInfo *MBPI; + +  /// A handle to the function-wide block frequency pass. +  std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; + +  /// A handle to the loop info. +  MachineLoopInfo *MLI; + +  /// Preferred loop exit. +  /// Member variable for convenience. It may be removed by duplication deep +  /// in the call stack. +  MachineBasicBlock *PreferredLoopExit; + +  /// A handle to the target's instruction info. +  const TargetInstrInfo *TII; + +  /// A handle to the target's lowering info. +  const TargetLoweringBase *TLI; + +  /// A handle to the post dominator tree. +  MachinePostDominatorTree *MPDT; + +  /// Duplicator used to duplicate tails during placement. +  /// +  /// Placement decisions can open up new tail duplication opportunities, but +  /// since tail duplication affects placement decisions of later blocks, it +  /// must be done inline. +  TailDuplicator TailDup; + +  /// Allocator and owner of BlockChain structures. +  /// +  /// We build BlockChains lazily while processing the loop structure of +  /// a function. To reduce malloc traffic, we allocate them using this +  /// slab-like allocator, and destroy them after the pass completes. An +  /// important guarantee is that this allocator produces stable pointers to +  /// the chains. +  SpecificBumpPtrAllocator<BlockChain> ChainAllocator; + +  /// Function wide BasicBlock to BlockChain mapping. +  /// +  /// This mapping allows efficiently moving from any given basic block to the +  /// BlockChain it participates in, if any. We use it to, among other things, +  /// allow implicitly defining edges between chains as the existing edges +  /// between basic blocks. +  DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; + +#ifndef NDEBUG +  /// The set of basic blocks that have terminators that cannot be fully +  /// analyzed.  These basic blocks cannot be re-ordered safely by +  /// MachineBlockPlacement, and we must preserve physical layout of these +  /// blocks and their successors through the pass. +  SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; +#endif + +  /// Decrease the UnscheduledPredecessors count for all blocks in chain, and +  /// if the count goes to 0, add them to the appropriate work list. +  void markChainSuccessors( +      const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, +      const BlockFilterSet *BlockFilter = nullptr); + +  /// Decrease the UnscheduledPredecessors count for a single block, and +  /// if the count goes to 0, add them to the appropriate work list. +  void markBlockSuccessors( +      const BlockChain &Chain, const MachineBasicBlock *BB, +      const MachineBasicBlock *LoopHeaderBB, +      const BlockFilterSet *BlockFilter = nullptr); + +  BranchProbability +  collectViableSuccessors( +      const MachineBasicBlock *BB, const BlockChain &Chain, +      const BlockFilterSet *BlockFilter, +      SmallVector<MachineBasicBlock *, 4> &Successors); +  bool shouldPredBlockBeOutlined( +      const MachineBasicBlock *BB, const MachineBasicBlock *Succ, +      const BlockChain &Chain, const BlockFilterSet *BlockFilter, +      BranchProbability SuccProb, BranchProbability HotProb); +  bool repeatedlyTailDuplicateBlock( +      MachineBasicBlock *BB, MachineBasicBlock *&LPred, +      const MachineBasicBlock *LoopHeaderBB, +      BlockChain &Chain, BlockFilterSet *BlockFilter, +      MachineFunction::iterator &PrevUnplacedBlockIt); +  bool maybeTailDuplicateBlock( +      MachineBasicBlock *BB, MachineBasicBlock *LPred, +      BlockChain &Chain, BlockFilterSet *BlockFilter, +      MachineFunction::iterator &PrevUnplacedBlockIt, +      bool &DuplicatedToLPred); +  bool hasBetterLayoutPredecessor( +      const MachineBasicBlock *BB, const MachineBasicBlock *Succ, +      const BlockChain &SuccChain, BranchProbability SuccProb, +      BranchProbability RealSuccProb, const BlockChain &Chain, +      const BlockFilterSet *BlockFilter); +  BlockAndTailDupResult selectBestSuccessor( +      const MachineBasicBlock *BB, const BlockChain &Chain, +      const BlockFilterSet *BlockFilter); +  MachineBasicBlock *selectBestCandidateBlock( +      const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); +  MachineBasicBlock *getFirstUnplacedBlock( +      const BlockChain &PlacedChain, +      MachineFunction::iterator &PrevUnplacedBlockIt, +      const BlockFilterSet *BlockFilter); + +  /// Add a basic block to the work list if it is appropriate. +  /// +  /// If the optional parameter BlockFilter is provided, only MBB +  /// present in the set will be added to the worklist. If nullptr +  /// is provided, no filtering occurs. +  void fillWorkLists(const MachineBasicBlock *MBB, +                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds, +                     const BlockFilterSet *BlockFilter); + +  void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, +                  BlockFilterSet *BlockFilter = nullptr); +  bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, +                               const MachineBasicBlock *OldTop); +  bool hasViableTopFallthrough(const MachineBasicBlock *Top, +                               const BlockFilterSet &LoopBlockSet); +  BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, +                                    const BlockFilterSet &LoopBlockSet); +  BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, +                                  const MachineBasicBlock *OldTop, +                                  const MachineBasicBlock *ExitBB, +                                  const BlockFilterSet &LoopBlockSet); +  MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, +      const MachineLoop &L, const BlockFilterSet &LoopBlockSet); +  MachineBasicBlock *findBestLoopTop( +      const MachineLoop &L, const BlockFilterSet &LoopBlockSet); +  MachineBasicBlock *findBestLoopExit( +      const MachineLoop &L, const BlockFilterSet &LoopBlockSet, +      BlockFrequency &ExitFreq); +  BlockFilterSet collectLoopBlockSet(const MachineLoop &L); +  void buildLoopChains(const MachineLoop &L); +  void rotateLoop( +      BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, +      BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); +  void rotateLoopWithProfile( +      BlockChain &LoopChain, const MachineLoop &L, +      const BlockFilterSet &LoopBlockSet); +  void buildCFGChains(); +  void optimizeBranches(); +  void alignBlocks(); +  /// Returns true if a block should be tail-duplicated to increase fallthrough +  /// opportunities. +  bool shouldTailDuplicate(MachineBasicBlock *BB); +  /// Check the edge frequencies to see if tail duplication will increase +  /// fallthroughs. +  bool isProfitableToTailDup( +    const MachineBasicBlock *BB, const MachineBasicBlock *Succ, +    BranchProbability QProb, +    const BlockChain &Chain, const BlockFilterSet *BlockFilter); + +  /// Check for a trellis layout. +  bool isTrellis(const MachineBasicBlock *BB, +                 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, +                 const BlockChain &Chain, const BlockFilterSet *BlockFilter); + +  /// Get the best successor given a trellis layout. +  BlockAndTailDupResult getBestTrellisSuccessor( +      const MachineBasicBlock *BB, +      const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, +      BranchProbability AdjustedSumProb, const BlockChain &Chain, +      const BlockFilterSet *BlockFilter); + +  /// Get the best pair of non-conflicting edges. +  static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( +      const MachineBasicBlock *BB, +      MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); + +  /// Returns true if a block can tail duplicate into all unplaced +  /// predecessors. Filters based on loop. +  bool canTailDuplicateUnplacedPreds( +      const MachineBasicBlock *BB, MachineBasicBlock *Succ, +      const BlockChain &Chain, const BlockFilterSet *BlockFilter); + +  /// Find chains of triangles to tail-duplicate where a global analysis works, +  /// but a local analysis would not find them. +  void precomputeTriangleChains(); + +public: +  static char ID; // Pass identification, replacement for typeid + +  MachineBlockPlacement() : MachineFunctionPass(ID) { +    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnMachineFunction(MachineFunction &F) override; + +  bool allowTailDupPlacement() const { +    assert(F); +    return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<MachineBranchProbabilityInfo>(); +    AU.addRequired<MachineBlockFrequencyInfo>(); +    if (TailDupPlacement) +      AU.addRequired<MachinePostDominatorTree>(); +    AU.addRequired<MachineLoopInfo>(); +    AU.addRequired<TargetPassConfig>(); +    MachineFunctionPass::getAnalysisUsage(AU); +  } +}; + +} // end anonymous namespace + +char MachineBlockPlacement::ID = 0; + +char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; + +INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, +                      "Branch Probability Basic Block Placement", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) +INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) +INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, +                    "Branch Probability Basic Block Placement", false, false) + +#ifndef NDEBUG +/// Helper to print the name of a MBB. +/// +/// Only used by debug logging. +static std::string getBlockName(const MachineBasicBlock *BB) { +  std::string Result; +  raw_string_ostream OS(Result); +  OS << printMBBReference(*BB); +  OS << " ('" << BB->getName() << "')"; +  OS.flush(); +  return Result; +} +#endif + +/// Mark a chain's successors as having one fewer preds. +/// +/// When a chain is being merged into the "placed" chain, this routine will +/// quickly walk the successors of each block in the chain and mark them as +/// having one fewer active predecessor. It also adds any successors of this +/// chain which reach the zero-predecessor state to the appropriate worklist. +void MachineBlockPlacement::markChainSuccessors( +    const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, +    const BlockFilterSet *BlockFilter) { +  // Walk all the blocks in this chain, marking their successors as having +  // a predecessor placed. +  for (MachineBasicBlock *MBB : Chain) { +    markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); +  } +} + +/// Mark a single block's successors as having one fewer preds. +/// +/// Under normal circumstances, this is only called by markChainSuccessors, +/// but if a block that was to be placed is completely tail-duplicated away, +/// and was duplicated into the chain end, we need to redo markBlockSuccessors +/// for just that block. +void MachineBlockPlacement::markBlockSuccessors( +    const BlockChain &Chain, const MachineBasicBlock *MBB, +    const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { +  // Add any successors for which this is the only un-placed in-loop +  // predecessor to the worklist as a viable candidate for CFG-neutral +  // placement. No subsequent placement of this block will violate the CFG +  // shape, so we get to use heuristics to choose a favorable placement. +  for (MachineBasicBlock *Succ : MBB->successors()) { +    if (BlockFilter && !BlockFilter->count(Succ)) +      continue; +    BlockChain &SuccChain = *BlockToChain[Succ]; +    // Disregard edges within a fixed chain, or edges to the loop header. +    if (&Chain == &SuccChain || Succ == LoopHeaderBB) +      continue; + +    // This is a cross-chain edge that is within the loop, so decrement the +    // loop predecessor count of the destination chain. +    if (SuccChain.UnscheduledPredecessors == 0 || +        --SuccChain.UnscheduledPredecessors > 0) +      continue; + +    auto *NewBB = *SuccChain.begin(); +    if (NewBB->isEHPad()) +      EHPadWorkList.push_back(NewBB); +    else +      BlockWorkList.push_back(NewBB); +  } +} + +/// This helper function collects the set of successors of block +/// \p BB that are allowed to be its layout successors, and return +/// the total branch probability of edges from \p BB to those +/// blocks. +BranchProbability MachineBlockPlacement::collectViableSuccessors( +    const MachineBasicBlock *BB, const BlockChain &Chain, +    const BlockFilterSet *BlockFilter, +    SmallVector<MachineBasicBlock *, 4> &Successors) { +  // Adjust edge probabilities by excluding edges pointing to blocks that is +  // either not in BlockFilter or is already in the current chain. Consider the +  // following CFG: +  // +  //     --->A +  //     |  / \ +  //     | B   C +  //     |  \ / \ +  //     ----D   E +  // +  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after +  // A->C is chosen as a fall-through, D won't be selected as a successor of C +  // due to CFG constraint (the probability of C->D is not greater than +  // HotProb to break topo-order). If we exclude E that is not in BlockFilter +  // when calculating the probability of C->D, D will be selected and we +  // will get A C D B as the layout of this loop. +  auto AdjustedSumProb = BranchProbability::getOne(); +  for (MachineBasicBlock *Succ : BB->successors()) { +    bool SkipSucc = false; +    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { +      SkipSucc = true; +    } else { +      BlockChain *SuccChain = BlockToChain[Succ]; +      if (SuccChain == &Chain) { +        SkipSucc = true; +      } else if (Succ != *SuccChain->begin()) { +        LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ) +                          << " -> Mid chain!\n"); +        continue; +      } +    } +    if (SkipSucc) +      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); +    else +      Successors.push_back(Succ); +  } + +  return AdjustedSumProb; +} + +/// The helper function returns the branch probability that is adjusted +/// or normalized over the new total \p AdjustedSumProb. +static BranchProbability +getAdjustedProbability(BranchProbability OrigProb, +                       BranchProbability AdjustedSumProb) { +  BranchProbability SuccProb; +  uint32_t SuccProbN = OrigProb.getNumerator(); +  uint32_t SuccProbD = AdjustedSumProb.getNumerator(); +  if (SuccProbN >= SuccProbD) +    SuccProb = BranchProbability::getOne(); +  else +    SuccProb = BranchProbability(SuccProbN, SuccProbD); + +  return SuccProb; +} + +/// Check if \p BB has exactly the successors in \p Successors. +static bool +hasSameSuccessors(MachineBasicBlock &BB, +                  SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { +  if (BB.succ_size() != Successors.size()) +    return false; +  // We don't want to count self-loops +  if (Successors.count(&BB)) +    return false; +  for (MachineBasicBlock *Succ : BB.successors()) +    if (!Successors.count(Succ)) +      return false; +  return true; +} + +/// Check if a block should be tail duplicated to increase fallthrough +/// opportunities. +/// \p BB Block to check. +bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { +  // Blocks with single successors don't create additional fallthrough +  // opportunities. Don't duplicate them. TODO: When conditional exits are +  // analyzable, allow them to be duplicated. +  bool IsSimple = TailDup.isSimpleBB(BB); + +  if (BB->succ_size() == 1) +    return false; +  return TailDup.shouldTailDuplicate(IsSimple, *BB); +} + +/// Compare 2 BlockFrequency's with a small penalty for \p A. +/// In order to be conservative, we apply a X% penalty to account for +/// increased icache pressure and static heuristics. For small frequencies +/// we use only the numerators to improve accuracy. For simplicity, we assume the +/// penalty is less than 100% +/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. +static bool greaterWithBias(BlockFrequency A, BlockFrequency B, +                            uint64_t EntryFreq) { +  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); +  BlockFrequency Gain = A - B; +  return (Gain / ThresholdProb).getFrequency() >= EntryFreq; +} + +/// Check the edge frequencies to see if tail duplication will increase +/// fallthroughs. It only makes sense to call this function when +/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is +/// always locally profitable if we would have picked \p Succ without +/// considering duplication. +bool MachineBlockPlacement::isProfitableToTailDup( +    const MachineBasicBlock *BB, const MachineBasicBlock *Succ, +    BranchProbability QProb, +    const BlockChain &Chain, const BlockFilterSet *BlockFilter) { +  // We need to do a probability calculation to make sure this is profitable. +  // First: does succ have a successor that post-dominates? This affects the +  // calculation. The 2 relevant cases are: +  //    BB         BB +  //    | \Qout    | \Qout +  //   P|  C       |P C +  //    =   C'     =   C' +  //    |  /Qin    |  /Qin +  //    | /        | / +  //    Succ       Succ +  //    / \        | \  V +  //  U/   =V      |U \ +  //  /     \      =   D +  //  D      E     |  / +  //               | / +  //               |/ +  //               PDom +  //  '=' : Branch taken for that CFG edge +  // In the second case, Placing Succ while duplicating it into C prevents the +  // fallthrough of Succ into either D or PDom, because they now have C as an +  // unplaced predecessor + +  // Start by figuring out which case we fall into +  MachineBasicBlock *PDom = nullptr; +  SmallVector<MachineBasicBlock *, 4> SuccSuccs; +  // Only scan the relevant successors +  auto AdjustedSuccSumProb = +      collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); +  BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); +  auto BBFreq = MBFI->getBlockFreq(BB); +  auto SuccFreq = MBFI->getBlockFreq(Succ); +  BlockFrequency P = BBFreq * PProb; +  BlockFrequency Qout = BBFreq * QProb; +  uint64_t EntryFreq = MBFI->getEntryFreq(); +  // If there are no more successors, it is profitable to copy, as it strictly +  // increases fallthrough. +  if (SuccSuccs.size() == 0) +    return greaterWithBias(P, Qout, EntryFreq); + +  auto BestSuccSucc = BranchProbability::getZero(); +  // Find the PDom or the best Succ if no PDom exists. +  for (MachineBasicBlock *SuccSucc : SuccSuccs) { +    auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); +    if (Prob > BestSuccSucc) +      BestSuccSucc = Prob; +    if (PDom == nullptr) +      if (MPDT->dominates(SuccSucc, Succ)) { +        PDom = SuccSucc; +        break; +      } +  } +  // For the comparisons, we need to know Succ's best incoming edge that isn't +  // from BB. +  auto SuccBestPred = BlockFrequency(0); +  for (MachineBasicBlock *SuccPred : Succ->predecessors()) { +    if (SuccPred == Succ || SuccPred == BB +        || BlockToChain[SuccPred] == &Chain +        || (BlockFilter && !BlockFilter->count(SuccPred))) +      continue; +    auto Freq = MBFI->getBlockFreq(SuccPred) +        * MBPI->getEdgeProbability(SuccPred, Succ); +    if (Freq > SuccBestPred) +      SuccBestPred = Freq; +  } +  // Qin is Succ's best unplaced incoming edge that isn't BB +  BlockFrequency Qin = SuccBestPred; +  // If it doesn't have a post-dominating successor, here is the calculation: +  //    BB        BB +  //    | \Qout   |  \ +  //   P|  C      |   = +  //    =   C'    |    C +  //    |  /Qin   |     | +  //    | /       |     C' (+Succ) +  //    Succ      Succ /| +  //    / \       |  \/ | +  //  U/   =V     |  == | +  //  /     \     | /  \| +  //  D      E    D     E +  //  '=' : Branch taken for that CFG edge +  //  Cost in the first case is: P + V +  //  For this calculation, we always assume P > Qout. If Qout > P +  //  The result of this function will be ignored at the caller. +  //  Let F = SuccFreq - Qin +  //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V + +  if (PDom == nullptr || !Succ->isSuccessor(PDom)) { +    BranchProbability UProb = BestSuccSucc; +    BranchProbability VProb = AdjustedSuccSumProb - UProb; +    BlockFrequency F = SuccFreq - Qin; +    BlockFrequency V = SuccFreq * VProb; +    BlockFrequency QinU = std::min(Qin, F) * UProb; +    BlockFrequency BaseCost = P + V; +    BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; +    return greaterWithBias(BaseCost, DupCost, EntryFreq); +  } +  BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); +  BranchProbability VProb = AdjustedSuccSumProb - UProb; +  BlockFrequency U = SuccFreq * UProb; +  BlockFrequency V = SuccFreq * VProb; +  BlockFrequency F = SuccFreq - Qin; +  // If there is a post-dominating successor, here is the calculation: +  // BB         BB                 BB          BB +  // | \Qout    |   \               | \Qout     |  \ +  // |P C       |    =              |P C        |   = +  // =   C'     |P    C             =   C'      |P   C +  // |  /Qin    |      |            |  /Qin     |     | +  // | /        |      C' (+Succ)   | /         |     C' (+Succ) +  // Succ       Succ  /|            Succ        Succ /| +  // | \  V     |   \/ |            | \  V      |  \/ | +  // |U \       |U  /\ =?           |U =        |U /\ | +  // =   D      = =  =?|            |   D       | =  =| +  // |  /       |/     D            |  /        |/    D +  // | /        |     /             | =         |    / +  // |/         |    /              |/          |   = +  // Dom         Dom                Dom         Dom +  //  '=' : Branch taken for that CFG edge +  // The cost for taken branches in the first case is P + U +  // Let F = SuccFreq - Qin +  // The cost in the second case (assuming independence), given the layout: +  // BB, Succ, (C+Succ), D, Dom or the layout: +  // BB, Succ, D, Dom, (C+Succ) +  // is Qout + max(F, Qin) * U + min(F, Qin) +  // compare P + U vs Qout + P * U + Qin. +  // +  // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. +  // +  // For the 3rd case, the cost is P + 2 * V +  // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V +  // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V +  if (UProb > AdjustedSuccSumProb / 2 && +      !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, +                                  Chain, BlockFilter)) +    // Cases 3 & 4 +    return greaterWithBias( +        (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), +        EntryFreq); +  // Cases 1 & 2 +  return greaterWithBias((P + U), +                         (Qout + std::min(Qin, F) * AdjustedSuccSumProb + +                          std::max(Qin, F) * UProb), +                         EntryFreq); +} + +/// Check for a trellis layout. \p BB is the upper part of a trellis if its +/// successors form the lower part of a trellis. A successor set S forms the +/// lower part of a trellis if all of the predecessors of S are either in S or +/// have all of S as successors. We ignore trellises where BB doesn't have 2 +/// successors because for fewer than 2, it's trivial, and for 3 or greater they +/// are very uncommon and complex to compute optimally. Allowing edges within S +/// is not strictly a trellis, but the same algorithm works, so we allow it. +bool MachineBlockPlacement::isTrellis( +    const MachineBasicBlock *BB, +    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, +    const BlockChain &Chain, const BlockFilterSet *BlockFilter) { +  // Technically BB could form a trellis with branching factor higher than 2. +  // But that's extremely uncommon. +  if (BB->succ_size() != 2 || ViableSuccs.size() != 2) +    return false; + +  SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), +                                                       BB->succ_end()); +  // To avoid reviewing the same predecessors twice. +  SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; + +  for (MachineBasicBlock *Succ : ViableSuccs) { +    int PredCount = 0; +    for (auto SuccPred : Succ->predecessors()) { +      // Allow triangle successors, but don't count them. +      if (Successors.count(SuccPred)) { +        // Make sure that it is actually a triangle. +        for (MachineBasicBlock *CheckSucc : SuccPred->successors()) +          if (!Successors.count(CheckSucc)) +            return false; +        continue; +      } +      const BlockChain *PredChain = BlockToChain[SuccPred]; +      if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || +          PredChain == &Chain || PredChain == BlockToChain[Succ]) +        continue; +      ++PredCount; +      // Perform the successor check only once. +      if (!SeenPreds.insert(SuccPred).second) +        continue; +      if (!hasSameSuccessors(*SuccPred, Successors)) +        return false; +    } +    // If one of the successors has only BB as a predecessor, it is not a +    // trellis. +    if (PredCount < 1) +      return false; +  } +  return true; +} + +/// Pick the highest total weight pair of edges that can both be laid out. +/// The edges in \p Edges[0] are assumed to have a different destination than +/// the edges in \p Edges[1]. Simple counting shows that the best pair is either +/// the individual highest weight edges to the 2 different destinations, or in +/// case of a conflict, one of them should be replaced with a 2nd best edge. +std::pair<MachineBlockPlacement::WeightedEdge, +          MachineBlockPlacement::WeightedEdge> +MachineBlockPlacement::getBestNonConflictingEdges( +    const MachineBasicBlock *BB, +    MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> +        Edges) { +  // Sort the edges, and then for each successor, find the best incoming +  // predecessor. If the best incoming predecessors aren't the same, +  // then that is clearly the best layout. If there is a conflict, one of the +  // successors will have to fallthrough from the second best predecessor. We +  // compare which combination is better overall. + +  // Sort for highest frequency. +  auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; + +  llvm::stable_sort(Edges[0], Cmp); +  llvm::stable_sort(Edges[1], Cmp); +  auto BestA = Edges[0].begin(); +  auto BestB = Edges[1].begin(); +  // Arrange for the correct answer to be in BestA and BestB +  // If the 2 best edges don't conflict, the answer is already there. +  if (BestA->Src == BestB->Src) { +    // Compare the total fallthrough of (Best + Second Best) for both pairs +    auto SecondBestA = std::next(BestA); +    auto SecondBestB = std::next(BestB); +    BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; +    BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; +    if (BestAScore < BestBScore) +      BestA = SecondBestA; +    else +      BestB = SecondBestB; +  } +  // Arrange for the BB edge to be in BestA if it exists. +  if (BestB->Src == BB) +    std::swap(BestA, BestB); +  return std::make_pair(*BestA, *BestB); +} + +/// Get the best successor from \p BB based on \p BB being part of a trellis. +/// We only handle trellises with 2 successors, so the algorithm is +/// straightforward: Find the best pair of edges that don't conflict. We find +/// the best incoming edge for each successor in the trellis. If those conflict, +/// we consider which of them should be replaced with the second best. +/// Upon return the two best edges will be in \p BestEdges. If one of the edges +/// comes from \p BB, it will be in \p BestEdges[0] +MachineBlockPlacement::BlockAndTailDupResult +MachineBlockPlacement::getBestTrellisSuccessor( +    const MachineBasicBlock *BB, +    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, +    BranchProbability AdjustedSumProb, const BlockChain &Chain, +    const BlockFilterSet *BlockFilter) { + +  BlockAndTailDupResult Result = {nullptr, false}; +  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), +                                                       BB->succ_end()); + +  // We assume size 2 because it's common. For general n, we would have to do +  // the Hungarian algorithm, but it's not worth the complexity because more +  // than 2 successors is fairly uncommon, and a trellis even more so. +  if (Successors.size() != 2 || ViableSuccs.size() != 2) +    return Result; + +  // Collect the edge frequencies of all edges that form the trellis. +  SmallVector<WeightedEdge, 8> Edges[2]; +  int SuccIndex = 0; +  for (auto Succ : ViableSuccs) { +    for (MachineBasicBlock *SuccPred : Succ->predecessors()) { +      // Skip any placed predecessors that are not BB +      if (SuccPred != BB) +        if ((BlockFilter && !BlockFilter->count(SuccPred)) || +            BlockToChain[SuccPred] == &Chain || +            BlockToChain[SuccPred] == BlockToChain[Succ]) +          continue; +      BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * +                                MBPI->getEdgeProbability(SuccPred, Succ); +      Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); +    } +    ++SuccIndex; +  } + +  // Pick the best combination of 2 edges from all the edges in the trellis. +  WeightedEdge BestA, BestB; +  std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); + +  if (BestA.Src != BB) { +    // If we have a trellis, and BB doesn't have the best fallthrough edges, +    // we shouldn't choose any successor. We've already looked and there's a +    // better fallthrough edge for all the successors. +    LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); +    return Result; +  } + +  // Did we pick the triangle edge? If tail-duplication is profitable, do +  // that instead. Otherwise merge the triangle edge now while we know it is +  // optimal. +  if (BestA.Dest == BestB.Src) { +    // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 +    // would be better. +    MachineBasicBlock *Succ1 = BestA.Dest; +    MachineBasicBlock *Succ2 = BestB.Dest; +    // Check to see if tail-duplication would be profitable. +    if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && +        canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && +        isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), +                              Chain, BlockFilter)) { +      LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( +                     MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); +                 dbgs() << "    Selected: " << getBlockName(Succ2) +                        << ", probability: " << Succ2Prob +                        << " (Tail Duplicate)\n"); +      Result.BB = Succ2; +      Result.ShouldTailDup = true; +      return Result; +    } +  } +  // We have already computed the optimal edge for the other side of the +  // trellis. +  ComputedEdges[BestB.Src] = { BestB.Dest, false }; + +  auto TrellisSucc = BestA.Dest; +  LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( +                 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); +             dbgs() << "    Selected: " << getBlockName(TrellisSucc) +                    << ", probability: " << SuccProb << " (Trellis)\n"); +  Result.BB = TrellisSucc; +  return Result; +} + +/// When the option allowTailDupPlacement() is on, this method checks if the +/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated +/// into all of its unplaced, unfiltered predecessors, that are not BB. +bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( +    const MachineBasicBlock *BB, MachineBasicBlock *Succ, +    const BlockChain &Chain, const BlockFilterSet *BlockFilter) { +  if (!shouldTailDuplicate(Succ)) +    return false; + +  // For CFG checking. +  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), +                                                       BB->succ_end()); +  for (MachineBasicBlock *Pred : Succ->predecessors()) { +    // Make sure all unplaced and unfiltered predecessors can be +    // tail-duplicated into. +    // Skip any blocks that are already placed or not in this loop. +    if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) +        || BlockToChain[Pred] == &Chain) +      continue; +    if (!TailDup.canTailDuplicate(Succ, Pred)) { +      if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) +        // This will result in a trellis after tail duplication, so we don't +        // need to copy Succ into this predecessor. In the presence +        // of a trellis tail duplication can continue to be profitable. +        // For example: +        // A            A +        // |\           |\ +        // | \          | \ +        // |  C         |  C+BB +        // | /          |  | +        // |/           |  | +        // BB    =>     BB | +        // |\           |\/| +        // | \          |/\| +        // |  D         |  D +        // | /          | / +        // |/           |/ +        // Succ         Succ +        // +        // After BB was duplicated into C, the layout looks like the one on the +        // right. BB and C now have the same successors. When considering +        // whether Succ can be duplicated into all its unplaced predecessors, we +        // ignore C. +        // We can do this because C already has a profitable fallthrough, namely +        // D. TODO(iteratee): ignore sufficiently cold predecessors for +        // duplication and for this test. +        // +        // This allows trellises to be laid out in 2 separate chains +        // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic +        // because it allows the creation of 2 fallthrough paths with links +        // between them, and we correctly identify the best layout for these +        // CFGs. We want to extend trellises that the user created in addition +        // to trellises created by tail-duplication, so we just look for the +        // CFG. +        continue; +      return false; +    } +  } +  return true; +} + +/// Find chains of triangles where we believe it would be profitable to +/// tail-duplicate them all, but a local analysis would not find them. +/// There are 3 ways this can be profitable: +/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with +///    longer chains) +/// 2) The chains are statically correlated. Branch probabilities have a very +///    U-shaped distribution. +///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] +///    If the branches in a chain are likely to be from the same side of the +///    distribution as their predecessor, but are independent at runtime, this +///    transformation is profitable. (Because the cost of being wrong is a small +///    fixed cost, unlike the standard triangle layout where the cost of being +///    wrong scales with the # of triangles.) +/// 3) The chains are dynamically correlated. If the probability that a previous +///    branch was taken positively influences whether the next branch will be +///    taken +/// We believe that 2 and 3 are common enough to justify the small margin in 1. +void MachineBlockPlacement::precomputeTriangleChains() { +  struct TriangleChain { +    std::vector<MachineBasicBlock *> Edges; + +    TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) +        : Edges({src, dst}) {} + +    void append(MachineBasicBlock *dst) { +      assert(getKey()->isSuccessor(dst) && +             "Attempting to append a block that is not a successor."); +      Edges.push_back(dst); +    } + +    unsigned count() const { return Edges.size() - 1; } + +    MachineBasicBlock *getKey() const { +      return Edges.back(); +    } +  }; + +  if (TriangleChainCount == 0) +    return; + +  LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); +  // Map from last block to the chain that contains it. This allows us to extend +  // chains as we find new triangles. +  DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; +  for (MachineBasicBlock &BB : *F) { +    // If BB doesn't have 2 successors, it doesn't start a triangle. +    if (BB.succ_size() != 2) +      continue; +    MachineBasicBlock *PDom = nullptr; +    for (MachineBasicBlock *Succ : BB.successors()) { +      if (!MPDT->dominates(Succ, &BB)) +        continue; +      PDom = Succ; +      break; +    } +    // If BB doesn't have a post-dominating successor, it doesn't form a +    // triangle. +    if (PDom == nullptr) +      continue; +    // If PDom has a hint that it is low probability, skip this triangle. +    if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) +      continue; +    // If PDom isn't eligible for duplication, this isn't the kind of triangle +    // we're looking for. +    if (!shouldTailDuplicate(PDom)) +      continue; +    bool CanTailDuplicate = true; +    // If PDom can't tail-duplicate into it's non-BB predecessors, then this +    // isn't the kind of triangle we're looking for. +    for (MachineBasicBlock* Pred : PDom->predecessors()) { +      if (Pred == &BB) +        continue; +      if (!TailDup.canTailDuplicate(PDom, Pred)) { +        CanTailDuplicate = false; +        break; +      } +    } +    // If we can't tail-duplicate PDom to its predecessors, then skip this +    // triangle. +    if (!CanTailDuplicate) +      continue; + +    // Now we have an interesting triangle. Insert it if it's not part of an +    // existing chain. +    // Note: This cannot be replaced with a call insert() or emplace() because +    // the find key is BB, but the insert/emplace key is PDom. +    auto Found = TriangleChainMap.find(&BB); +    // If it is, remove the chain from the map, grow it, and put it back in the +    // map with the end as the new key. +    if (Found != TriangleChainMap.end()) { +      TriangleChain Chain = std::move(Found->second); +      TriangleChainMap.erase(Found); +      Chain.append(PDom); +      TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); +    } else { +      auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); +      assert(InsertResult.second && "Block seen twice."); +      (void)InsertResult; +    } +  } + +  // Iterating over a DenseMap is safe here, because the only thing in the body +  // of the loop is inserting into another DenseMap (ComputedEdges). +  // ComputedEdges is never iterated, so this doesn't lead to non-determinism. +  for (auto &ChainPair : TriangleChainMap) { +    TriangleChain &Chain = ChainPair.second; +    // Benchmarking has shown that due to branch correlation duplicating 2 or +    // more triangles is profitable, despite the calculations assuming +    // independence. +    if (Chain.count() < TriangleChainCount) +      continue; +    MachineBasicBlock *dst = Chain.Edges.back(); +    Chain.Edges.pop_back(); +    for (MachineBasicBlock *src : reverse(Chain.Edges)) { +      LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" +                        << getBlockName(dst) +                        << " as pre-computed based on triangles.\n"); + +      auto InsertResult = ComputedEdges.insert({src, {dst, true}}); +      assert(InsertResult.second && "Block seen twice."); +      (void)InsertResult; + +      dst = src; +    } +  } +} + +// When profile is not present, return the StaticLikelyProb. +// When profile is available, we need to handle the triangle-shape CFG. +static BranchProbability getLayoutSuccessorProbThreshold( +      const MachineBasicBlock *BB) { +  if (!BB->getParent()->getFunction().hasProfileData()) +    return BranchProbability(StaticLikelyProb, 100); +  if (BB->succ_size() == 2) { +    const MachineBasicBlock *Succ1 = *BB->succ_begin(); +    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); +    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { +      /* See case 1 below for the cost analysis. For BB->Succ to +       * be taken with smaller cost, the following needs to hold: +       *   Prob(BB->Succ) > 2 * Prob(BB->Pred) +       *   So the threshold T in the calculation below +       *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) +       *   So T / (1 - T) = 2, Yielding T = 2/3 +       * Also adding user specified branch bias, we have +       *   T = (2/3)*(ProfileLikelyProb/50) +       *     = (2*ProfileLikelyProb)/150) +       */ +      return BranchProbability(2 * ProfileLikelyProb, 150); +    } +  } +  return BranchProbability(ProfileLikelyProb, 100); +} + +/// Checks to see if the layout candidate block \p Succ has a better layout +/// predecessor than \c BB. If yes, returns true. +/// \p SuccProb: The probability adjusted for only remaining blocks. +///   Only used for logging +/// \p RealSuccProb: The un-adjusted probability. +/// \p Chain: The chain that BB belongs to and Succ is being considered for. +/// \p BlockFilter: if non-null, the set of blocks that make up the loop being +///    considered +bool MachineBlockPlacement::hasBetterLayoutPredecessor( +    const MachineBasicBlock *BB, const MachineBasicBlock *Succ, +    const BlockChain &SuccChain, BranchProbability SuccProb, +    BranchProbability RealSuccProb, const BlockChain &Chain, +    const BlockFilterSet *BlockFilter) { + +  // There isn't a better layout when there are no unscheduled predecessors. +  if (SuccChain.UnscheduledPredecessors == 0) +    return false; + +  // There are two basic scenarios here: +  // ------------------------------------- +  // Case 1: triangular shape CFG (if-then): +  //     BB +  //     | \ +  //     |  \ +  //     |   Pred +  //     |   / +  //     Succ +  // In this case, we are evaluating whether to select edge -> Succ, e.g. +  // set Succ as the layout successor of BB. Picking Succ as BB's +  // successor breaks the CFG constraints (FIXME: define these constraints). +  // With this layout, Pred BB +  // is forced to be outlined, so the overall cost will be cost of the +  // branch taken from BB to Pred, plus the cost of back taken branch +  // from Pred to Succ, as well as the additional cost associated +  // with the needed unconditional jump instruction from Pred To Succ. + +  // The cost of the topological order layout is the taken branch cost +  // from BB to Succ, so to make BB->Succ a viable candidate, the following +  // must hold: +  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost +  //      < freq(BB->Succ) *  taken_branch_cost. +  // Ignoring unconditional jump cost, we get +  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e., +  //    prob(BB->Succ) > 2 * prob(BB->Pred) +  // +  // When real profile data is available, we can precisely compute the +  // probability threshold that is needed for edge BB->Succ to be considered. +  // Without profile data, the heuristic requires the branch bias to be +  // a lot larger to make sure the signal is very strong (e.g. 80% default). +  // ----------------------------------------------------------------- +  // Case 2: diamond like CFG (if-then-else): +  //     S +  //    / \ +  //   |   \ +  //  BB    Pred +  //   \    / +  //    Succ +  //    .. +  // +  // The current block is BB and edge BB->Succ is now being evaluated. +  // Note that edge S->BB was previously already selected because +  // prob(S->BB) > prob(S->Pred). +  // At this point, 2 blocks can be placed after BB: Pred or Succ. If we +  // choose Pred, we will have a topological ordering as shown on the left +  // in the picture below. If we choose Succ, we have the solution as shown +  // on the right: +  // +  //   topo-order: +  // +  //       S-----                             ---S +  //       |    |                             |  | +  //    ---BB   |                             |  BB +  //    |       |                             |  | +  //    |  Pred--                             |  Succ-- +  //    |  |                                  |       | +  //    ---Succ                               ---Pred-- +  // +  // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred) +  //      = freq(S->Pred) + freq(S->BB) +  // +  // If we have profile data (i.e, branch probabilities can be trusted), the +  // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * +  // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). +  // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which +  // means the cost of topological order is greater. +  // When profile data is not available, however, we need to be more +  // conservative. If the branch prediction is wrong, breaking the topo-order +  // will actually yield a layout with large cost. For this reason, we need +  // strong biased branch at block S with Prob(S->BB) in order to select +  // BB->Succ. This is equivalent to looking the CFG backward with backward +  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without +  // profile data). +  // -------------------------------------------------------------------------- +  // Case 3: forked diamond +  //       S +  //      / \ +  //     /   \ +  //   BB    Pred +  //   | \   / | +  //   |  \ /  | +  //   |   X   | +  //   |  / \  | +  //   | /   \ | +  //   S1     S2 +  // +  // The current block is BB and edge BB->S1 is now being evaluated. +  // As above S->BB was already selected because +  // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). +  // +  // topo-order: +  // +  //     S-------|                     ---S +  //     |       |                     |  | +  //  ---BB      |                     |  BB +  //  |          |                     |  | +  //  |  Pred----|                     |  S1---- +  //  |  |                             |       | +  //  --(S1 or S2)                     ---Pred-- +  //                                        | +  //                                       S2 +  // +  // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) +  //    + min(freq(Pred->S1), freq(Pred->S2)) +  // Non-topo-order cost: +  // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). +  // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) +  // is 0. Then the non topo layout is better when +  // freq(S->Pred) < freq(BB->S1). +  // This is exactly what is checked below. +  // Note there are other shapes that apply (Pred may not be a single block, +  // but they all fit this general pattern.) +  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); + +  // Make sure that a hot successor doesn't have a globally more +  // important predecessor. +  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; +  bool BadCFGConflict = false; + +  for (MachineBasicBlock *Pred : Succ->predecessors()) { +    if (Pred == Succ || BlockToChain[Pred] == &SuccChain || +        (BlockFilter && !BlockFilter->count(Pred)) || +        BlockToChain[Pred] == &Chain || +        // This check is redundant except for look ahead. This function is +        // called for lookahead by isProfitableToTailDup when BB hasn't been +        // placed yet. +        (Pred == BB)) +      continue; +    // Do backward checking. +    // For all cases above, we need a backward checking to filter out edges that +    // are not 'strongly' biased. +    // BB  Pred +    //  \ / +    //  Succ +    // We select edge BB->Succ if +    //      freq(BB->Succ) > freq(Succ) * HotProb +    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * +    //      HotProb +    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb +    // Case 1 is covered too, because the first equation reduces to: +    // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) +    BlockFrequency PredEdgeFreq = +        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); +    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { +      BadCFGConflict = true; +      break; +    } +  } + +  if (BadCFGConflict) { +    LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " +                      << SuccProb << " (prob) (non-cold CFG conflict)\n"); +    return true; +  } + +  return false; +} + +/// Select the best successor for a block. +/// +/// This looks across all successors of a particular block and attempts to +/// select the "best" one to be the layout successor. It only considers direct +/// successors which also pass the block filter. It will attempt to avoid +/// breaking CFG structure, but cave and break such structures in the case of +/// very hot successor edges. +/// +/// \returns The best successor block found, or null if none are viable, along +/// with a boolean indicating if tail duplication is necessary. +MachineBlockPlacement::BlockAndTailDupResult +MachineBlockPlacement::selectBestSuccessor( +    const MachineBasicBlock *BB, const BlockChain &Chain, +    const BlockFilterSet *BlockFilter) { +  const BranchProbability HotProb(StaticLikelyProb, 100); + +  BlockAndTailDupResult BestSucc = { nullptr, false }; +  auto BestProb = BranchProbability::getZero(); + +  SmallVector<MachineBasicBlock *, 4> Successors; +  auto AdjustedSumProb = +      collectViableSuccessors(BB, Chain, BlockFilter, Successors); + +  LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) +                    << "\n"); + +  // if we already precomputed the best successor for BB, return that if still +  // applicable. +  auto FoundEdge = ComputedEdges.find(BB); +  if (FoundEdge != ComputedEdges.end()) { +    MachineBasicBlock *Succ = FoundEdge->second.BB; +    ComputedEdges.erase(FoundEdge); +    BlockChain *SuccChain = BlockToChain[Succ]; +    if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && +        SuccChain != &Chain && Succ == *SuccChain->begin()) +      return FoundEdge->second; +  } + +  // if BB is part of a trellis, Use the trellis to determine the optimal +  // fallthrough edges +  if (isTrellis(BB, Successors, Chain, BlockFilter)) +    return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, +                                   BlockFilter); + +  // For blocks with CFG violations, we may be able to lay them out anyway with +  // tail-duplication. We keep this vector so we can perform the probability +  // calculations the minimum number of times. +  SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> +      DupCandidates; +  for (MachineBasicBlock *Succ : Successors) { +    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); +    BranchProbability SuccProb = +        getAdjustedProbability(RealSuccProb, AdjustedSumProb); + +    BlockChain &SuccChain = *BlockToChain[Succ]; +    // Skip the edge \c BB->Succ if block \c Succ has a better layout +    // predecessor that yields lower global cost. +    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, +                                   Chain, BlockFilter)) { +      // If tail duplication would make Succ profitable, place it. +      if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) +        DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); +      continue; +    } + +    LLVM_DEBUG( +        dbgs() << "    Candidate: " << getBlockName(Succ) +               << ", probability: " << SuccProb +               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") +               << "\n"); + +    if (BestSucc.BB && BestProb >= SuccProb) { +      LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n"); +      continue; +    } + +    LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n"); +    BestSucc.BB = Succ; +    BestProb = SuccProb; +  } +  // Handle the tail duplication candidates in order of decreasing probability. +  // Stop at the first one that is profitable. Also stop if they are less +  // profitable than BestSucc. Position is important because we preserve it and +  // prefer first best match. Here we aren't comparing in order, so we capture +  // the position instead. +  llvm::stable_sort(DupCandidates, +                    [](std::tuple<BranchProbability, MachineBasicBlock *> L, +                       std::tuple<BranchProbability, MachineBasicBlock *> R) { +                      return std::get<0>(L) > std::get<0>(R); +                    }); +  for (auto &Tup : DupCandidates) { +    BranchProbability DupProb; +    MachineBasicBlock *Succ; +    std::tie(DupProb, Succ) = Tup; +    if (DupProb < BestProb) +      break; +    if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) +        && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { +      LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ) +                        << ", probability: " << DupProb +                        << " (Tail Duplicate)\n"); +      BestSucc.BB = Succ; +      BestSucc.ShouldTailDup = true; +      break; +    } +  } + +  if (BestSucc.BB) +    LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n"); + +  return BestSucc; +} + +/// Select the best block from a worklist. +/// +/// This looks through the provided worklist as a list of candidate basic +/// blocks and select the most profitable one to place. The definition of +/// profitable only really makes sense in the context of a loop. This returns +/// the most frequently visited block in the worklist, which in the case of +/// a loop, is the one most desirable to be physically close to the rest of the +/// loop body in order to improve i-cache behavior. +/// +/// \returns The best block found, or null if none are viable. +MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( +    const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { +  // Once we need to walk the worklist looking for a candidate, cleanup the +  // worklist of already placed entries. +  // FIXME: If this shows up on profiles, it could be folded (at the cost of +  // some code complexity) into the loop below. +  WorkList.erase(llvm::remove_if(WorkList, +                                 [&](MachineBasicBlock *BB) { +                                   return BlockToChain.lookup(BB) == &Chain; +                                 }), +                 WorkList.end()); + +  if (WorkList.empty()) +    return nullptr; + +  bool IsEHPad = WorkList[0]->isEHPad(); + +  MachineBasicBlock *BestBlock = nullptr; +  BlockFrequency BestFreq; +  for (MachineBasicBlock *MBB : WorkList) { +    assert(MBB->isEHPad() == IsEHPad && +           "EHPad mismatch between block and work list."); + +    BlockChain &SuccChain = *BlockToChain[MBB]; +    if (&SuccChain == &Chain) +      continue; + +    assert(SuccChain.UnscheduledPredecessors == 0 && +           "Found CFG-violating block"); + +    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); +    LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> "; +               MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); + +    // For ehpad, we layout the least probable first as to avoid jumping back +    // from least probable landingpads to more probable ones. +    // +    // FIXME: Using probability is probably (!) not the best way to achieve +    // this. We should probably have a more principled approach to layout +    // cleanup code. +    // +    // The goal is to get: +    // +    //                 +--------------------------+ +    //                 |                          V +    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume +    // +    // Rather than: +    // +    //                 +-------------------------------------+ +    //                 V                                     | +    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup +    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) +      continue; + +    BestBlock = MBB; +    BestFreq = CandidateFreq; +  } + +  return BestBlock; +} + +/// Retrieve the first unplaced basic block. +/// +/// This routine is called when we are unable to use the CFG to walk through +/// all of the basic blocks and form a chain due to unnatural loops in the CFG. +/// We walk through the function's blocks in order, starting from the +/// LastUnplacedBlockIt. We update this iterator on each call to avoid +/// re-scanning the entire sequence on repeated calls to this routine. +MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( +    const BlockChain &PlacedChain, +    MachineFunction::iterator &PrevUnplacedBlockIt, +    const BlockFilterSet *BlockFilter) { +  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; +       ++I) { +    if (BlockFilter && !BlockFilter->count(&*I)) +      continue; +    if (BlockToChain[&*I] != &PlacedChain) { +      PrevUnplacedBlockIt = I; +      // Now select the head of the chain to which the unplaced block belongs +      // as the block to place. This will force the entire chain to be placed, +      // and satisfies the requirements of merging chains. +      return *BlockToChain[&*I]->begin(); +    } +  } +  return nullptr; +} + +void MachineBlockPlacement::fillWorkLists( +    const MachineBasicBlock *MBB, +    SmallPtrSetImpl<BlockChain *> &UpdatedPreds, +    const BlockFilterSet *BlockFilter = nullptr) { +  BlockChain &Chain = *BlockToChain[MBB]; +  if (!UpdatedPreds.insert(&Chain).second) +    return; + +  assert( +      Chain.UnscheduledPredecessors == 0 && +      "Attempting to place block with unscheduled predecessors in worklist."); +  for (MachineBasicBlock *ChainBB : Chain) { +    assert(BlockToChain[ChainBB] == &Chain && +           "Block in chain doesn't match BlockToChain map."); +    for (MachineBasicBlock *Pred : ChainBB->predecessors()) { +      if (BlockFilter && !BlockFilter->count(Pred)) +        continue; +      if (BlockToChain[Pred] == &Chain) +        continue; +      ++Chain.UnscheduledPredecessors; +    } +  } + +  if (Chain.UnscheduledPredecessors != 0) +    return; + +  MachineBasicBlock *BB = *Chain.begin(); +  if (BB->isEHPad()) +    EHPadWorkList.push_back(BB); +  else +    BlockWorkList.push_back(BB); +} + +void MachineBlockPlacement::buildChain( +    const MachineBasicBlock *HeadBB, BlockChain &Chain, +    BlockFilterSet *BlockFilter) { +  assert(HeadBB && "BB must not be null.\n"); +  assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); +  MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); + +  const MachineBasicBlock *LoopHeaderBB = HeadBB; +  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); +  MachineBasicBlock *BB = *std::prev(Chain.end()); +  while (true) { +    assert(BB && "null block found at end of chain in loop."); +    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); +    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); + + +    // Look for the best viable successor if there is one to place immediately +    // after this block. +    auto Result = selectBestSuccessor(BB, Chain, BlockFilter); +    MachineBasicBlock* BestSucc = Result.BB; +    bool ShouldTailDup = Result.ShouldTailDup; +    if (allowTailDupPlacement()) +      ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); + +    // If an immediate successor isn't available, look for the best viable +    // block among those we've identified as not violating the loop's CFG at +    // this point. This won't be a fallthrough, but it will increase locality. +    if (!BestSucc) +      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); +    if (!BestSucc) +      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); + +    if (!BestSucc) { +      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); +      if (!BestSucc) +        break; + +      LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " +                           "layout successor until the CFG reduces\n"); +    } + +    // Placement may have changed tail duplication opportunities. +    // Check for that now. +    if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { +      // If the chosen successor was duplicated into all its predecessors, +      // don't bother laying it out, just go round the loop again with BB as +      // the chain end. +      if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, +                                       BlockFilter, PrevUnplacedBlockIt)) +        continue; +    } + +    // Place this block, updating the datastructures to reflect its placement. +    BlockChain &SuccChain = *BlockToChain[BestSucc]; +    // Zero out UnscheduledPredecessors for the successor we're about to merge in case +    // we selected a successor that didn't fit naturally into the CFG. +    SuccChain.UnscheduledPredecessors = 0; +    LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " +                      << getBlockName(BestSucc) << "\n"); +    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); +    Chain.merge(BestSucc, &SuccChain); +    BB = *std::prev(Chain.end()); +  } + +  LLVM_DEBUG(dbgs() << "Finished forming chain for header block " +                    << getBlockName(*Chain.begin()) << "\n"); +} + +// If bottom of block BB has only one successor OldTop, in most cases it is +// profitable to move it before OldTop, except the following case: +// +//     -->OldTop<- +//     |    .    | +//     |    .    | +//     |    .    | +//     ---Pred   | +//          |    | +//         BB----- +// +// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't +// layout the other successor below it, so it can't reduce taken branch. +// In this case we keep its original layout. +bool +MachineBlockPlacement::canMoveBottomBlockToTop( +    const MachineBasicBlock *BottomBlock, +    const MachineBasicBlock *OldTop) { +  if (BottomBlock->pred_size() != 1) +    return true; +  MachineBasicBlock *Pred = *BottomBlock->pred_begin(); +  if (Pred->succ_size() != 2) +    return true; + +  MachineBasicBlock *OtherBB = *Pred->succ_begin(); +  if (OtherBB == BottomBlock) +    OtherBB = *Pred->succ_rbegin(); +  if (OtherBB == OldTop) +    return false; + +  return true; +} + +// Find out the possible fall through frequence to the top of a loop. +BlockFrequency +MachineBlockPlacement::TopFallThroughFreq( +    const MachineBasicBlock *Top, +    const BlockFilterSet &LoopBlockSet) { +  BlockFrequency MaxFreq = 0; +  for (MachineBasicBlock *Pred : Top->predecessors()) { +    BlockChain *PredChain = BlockToChain[Pred]; +    if (!LoopBlockSet.count(Pred) && +        (!PredChain || Pred == *std::prev(PredChain->end()))) { +      // Found a Pred block can be placed before Top. +      // Check if Top is the best successor of Pred. +      auto TopProb = MBPI->getEdgeProbability(Pred, Top); +      bool TopOK = true; +      for (MachineBasicBlock *Succ : Pred->successors()) { +        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); +        BlockChain *SuccChain = BlockToChain[Succ]; +        // Check if Succ can be placed after Pred. +        // Succ should not be in any chain, or it is the head of some chain. +        if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && +            (!SuccChain || Succ == *SuccChain->begin())) { +          TopOK = false; +          break; +        } +      } +      if (TopOK) { +        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * +                                  MBPI->getEdgeProbability(Pred, Top); +        if (EdgeFreq > MaxFreq) +          MaxFreq = EdgeFreq; +      } +    } +  } +  return MaxFreq; +} + +// Compute the fall through gains when move NewTop before OldTop. +// +// In following diagram, edges marked as "-" are reduced fallthrough, edges +// marked as "+" are increased fallthrough, this function computes +// +//      SUM(increased fallthrough) - SUM(decreased fallthrough) +// +//              | +//              | - +//              V +//        --->OldTop +//        |     . +//        |     . +//       +|     .    + +//        |   Pred ---> +//        |     |- +//        |     V +//        --- NewTop <--- +//              |- +//              V +// +BlockFrequency +MachineBlockPlacement::FallThroughGains( +    const MachineBasicBlock *NewTop, +    const MachineBasicBlock *OldTop, +    const MachineBasicBlock *ExitBB, +    const BlockFilterSet &LoopBlockSet) { +  BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); +  BlockFrequency FallThrough2Exit = 0; +  if (ExitBB) +    FallThrough2Exit = MBFI->getBlockFreq(NewTop) * +        MBPI->getEdgeProbability(NewTop, ExitBB); +  BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * +      MBPI->getEdgeProbability(NewTop, OldTop); + +  // Find the best Pred of NewTop. +   MachineBasicBlock *BestPred = nullptr; +   BlockFrequency FallThroughFromPred = 0; +   for (MachineBasicBlock *Pred : NewTop->predecessors()) { +     if (!LoopBlockSet.count(Pred)) +       continue; +     BlockChain *PredChain = BlockToChain[Pred]; +     if (!PredChain || Pred == *std::prev(PredChain->end())) { +       BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * +           MBPI->getEdgeProbability(Pred, NewTop); +       if (EdgeFreq > FallThroughFromPred) { +         FallThroughFromPred = EdgeFreq; +         BestPred = Pred; +       } +     } +   } + +   // If NewTop is not placed after Pred, another successor can be placed +   // after Pred. +   BlockFrequency NewFreq = 0; +   if (BestPred) { +     for (MachineBasicBlock *Succ : BestPred->successors()) { +       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) +         continue; +       if (ComputedEdges.find(Succ) != ComputedEdges.end()) +         continue; +       BlockChain *SuccChain = BlockToChain[Succ]; +       if ((SuccChain && (Succ != *SuccChain->begin())) || +           (SuccChain == BlockToChain[BestPred])) +         continue; +       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * +           MBPI->getEdgeProbability(BestPred, Succ); +       if (EdgeFreq > NewFreq) +         NewFreq = EdgeFreq; +     } +     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * +         MBPI->getEdgeProbability(BestPred, NewTop); +     if (NewFreq > OrigEdgeFreq) { +       // If NewTop is not the best successor of Pred, then Pred doesn't +       // fallthrough to NewTop. So there is no FallThroughFromPred and +       // NewFreq. +       NewFreq = 0; +       FallThroughFromPred = 0; +     } +   } + +   BlockFrequency Result = 0; +   BlockFrequency Gains = BackEdgeFreq + NewFreq; +   BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + +       FallThroughFromPred; +   if (Gains > Lost) +     Result = Gains - Lost; +   return Result; +} + +/// Helper function of findBestLoopTop. Find the best loop top block +/// from predecessors of old top. +/// +/// Look for a block which is strictly better than the old top for laying +/// out before the old top of the loop. This looks for only two patterns: +/// +///     1. a block has only one successor, the old loop top +/// +///        Because such a block will always result in an unconditional jump, +///        rotating it in front of the old top is always profitable. +/// +///     2. a block has two successors, one is old top, another is exit +///        and it has more than one predecessors +/// +///        If it is below one of its predecessors P, only P can fall through to +///        it, all other predecessors need a jump to it, and another conditional +///        jump to loop header. If it is moved before loop header, all its +///        predecessors jump to it, then fall through to loop header. So all its +///        predecessors except P can reduce one taken branch. +///        At the same time, move it before old top increases the taken branch +///        to loop exit block, so the reduced taken branch will be compared with +///        the increased taken branch to the loop exit block. +MachineBasicBlock * +MachineBlockPlacement::findBestLoopTopHelper( +    MachineBasicBlock *OldTop, +    const MachineLoop &L, +    const BlockFilterSet &LoopBlockSet) { +  // Check that the header hasn't been fused with a preheader block due to +  // crazy branches. If it has, we need to start with the header at the top to +  // prevent pulling the preheader into the loop body. +  BlockChain &HeaderChain = *BlockToChain[OldTop]; +  if (!LoopBlockSet.count(*HeaderChain.begin())) +    return OldTop; + +  LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) +                    << "\n"); + +  BlockFrequency BestGains = 0; +  MachineBasicBlock *BestPred = nullptr; +  for (MachineBasicBlock *Pred : OldTop->predecessors()) { +    if (!LoopBlockSet.count(Pred)) +      continue; +    if (Pred == L.getHeader()) +      continue; +    LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has " +                      << Pred->succ_size() << " successors, "; +               MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); +    if (Pred->succ_size() > 2) +      continue; + +    MachineBasicBlock *OtherBB = nullptr; +    if (Pred->succ_size() == 2) { +      OtherBB = *Pred->succ_begin(); +      if (OtherBB == OldTop) +        OtherBB = *Pred->succ_rbegin(); +    } + +    if (!canMoveBottomBlockToTop(Pred, OldTop)) +      continue; + +    BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, +                                            LoopBlockSet); +    if ((Gains > 0) && (Gains > BestGains || +        ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { +      BestPred = Pred; +      BestGains = Gains; +    } +  } + +  // If no direct predecessor is fine, just use the loop header. +  if (!BestPred) { +    LLVM_DEBUG(dbgs() << "    final top unchanged\n"); +    return OldTop; +  } + +  // Walk backwards through any straight line of predecessors. +  while (BestPred->pred_size() == 1 && +         (*BestPred->pred_begin())->succ_size() == 1 && +         *BestPred->pred_begin() != L.getHeader()) +    BestPred = *BestPred->pred_begin(); + +  LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n"); +  return BestPred; +} + +/// Find the best loop top block for layout. +/// +/// This function iteratively calls findBestLoopTopHelper, until no new better +/// BB can be found. +MachineBasicBlock * +MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, +                                       const BlockFilterSet &LoopBlockSet) { +  // Placing the latch block before the header may introduce an extra branch +  // that skips this block the first time the loop is executed, which we want +  // to avoid when optimising for size. +  // FIXME: in theory there is a case that does not introduce a new branch, +  // i.e. when the layout predecessor does not fallthrough to the loop header. +  // In practice this never happens though: there always seems to be a preheader +  // that can fallthrough and that is also placed before the header. +  if (F->getFunction().hasOptSize()) +    return L.getHeader(); + +  MachineBasicBlock *OldTop = nullptr; +  MachineBasicBlock *NewTop = L.getHeader(); +  while (NewTop != OldTop) { +    OldTop = NewTop; +    NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); +    if (NewTop != OldTop) +      ComputedEdges[NewTop] = { OldTop, false }; +  } +  return NewTop; +} + +/// Find the best loop exiting block for layout. +/// +/// This routine implements the logic to analyze the loop looking for the best +/// block to layout at the top of the loop. Typically this is done to maximize +/// fallthrough opportunities. +MachineBasicBlock * +MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, +                                        const BlockFilterSet &LoopBlockSet, +                                        BlockFrequency &ExitFreq) { +  // We don't want to layout the loop linearly in all cases. If the loop header +  // is just a normal basic block in the loop, we want to look for what block +  // within the loop is the best one to layout at the top. However, if the loop +  // header has be pre-merged into a chain due to predecessors not having +  // analyzable branches, *and* the predecessor it is merged with is *not* part +  // of the loop, rotating the header into the middle of the loop will create +  // a non-contiguous range of blocks which is Very Bad. So start with the +  // header and only rotate if safe. +  BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; +  if (!LoopBlockSet.count(*HeaderChain.begin())) +    return nullptr; + +  BlockFrequency BestExitEdgeFreq; +  unsigned BestExitLoopDepth = 0; +  MachineBasicBlock *ExitingBB = nullptr; +  // If there are exits to outer loops, loop rotation can severely limit +  // fallthrough opportunities unless it selects such an exit. Keep a set of +  // blocks where rotating to exit with that block will reach an outer loop. +  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; + +  LLVM_DEBUG(dbgs() << "Finding best loop exit for: " +                    << getBlockName(L.getHeader()) << "\n"); +  for (MachineBasicBlock *MBB : L.getBlocks()) { +    BlockChain &Chain = *BlockToChain[MBB]; +    // Ensure that this block is at the end of a chain; otherwise it could be +    // mid-way through an inner loop or a successor of an unanalyzable branch. +    if (MBB != *std::prev(Chain.end())) +      continue; + +    // Now walk the successors. We need to establish whether this has a viable +    // exiting successor and whether it has a viable non-exiting successor. +    // We store the old exiting state and restore it if a viable looping +    // successor isn't found. +    MachineBasicBlock *OldExitingBB = ExitingBB; +    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; +    bool HasLoopingSucc = false; +    for (MachineBasicBlock *Succ : MBB->successors()) { +      if (Succ->isEHPad()) +        continue; +      if (Succ == MBB) +        continue; +      BlockChain &SuccChain = *BlockToChain[Succ]; +      // Don't split chains, either this chain or the successor's chain. +      if (&Chain == &SuccChain) { +        LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> " +                          << getBlockName(Succ) << " (chain conflict)\n"); +        continue; +      } + +      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); +      if (LoopBlockSet.count(Succ)) { +        LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> " +                          << getBlockName(Succ) << " (" << SuccProb << ")\n"); +        HasLoopingSucc = true; +        continue; +      } + +      unsigned SuccLoopDepth = 0; +      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { +        SuccLoopDepth = ExitLoop->getLoopDepth(); +        if (ExitLoop->contains(&L)) +          BlocksExitingToOuterLoop.insert(MBB); +      } + +      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; +      LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> " +                        << getBlockName(Succ) << " [L:" << SuccLoopDepth +                        << "] ("; +                 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); +      // Note that we bias this toward an existing layout successor to retain +      // incoming order in the absence of better information. The exit must have +      // a frequency higher than the current exit before we consider breaking +      // the layout. +      BranchProbability Bias(100 - ExitBlockBias, 100); +      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || +          ExitEdgeFreq > BestExitEdgeFreq || +          (MBB->isLayoutSuccessor(Succ) && +           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { +        BestExitEdgeFreq = ExitEdgeFreq; +        ExitingBB = MBB; +      } +    } + +    if (!HasLoopingSucc) { +      // Restore the old exiting state, no viable looping successor was found. +      ExitingBB = OldExitingBB; +      BestExitEdgeFreq = OldBestExitEdgeFreq; +    } +  } +  // Without a candidate exiting block or with only a single block in the +  // loop, just use the loop header to layout the loop. +  if (!ExitingBB) { +    LLVM_DEBUG( +        dbgs() << "    No other candidate exit blocks, using loop header\n"); +    return nullptr; +  } +  if (L.getNumBlocks() == 1) { +    LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n"); +    return nullptr; +  } + +  // Also, if we have exit blocks which lead to outer loops but didn't select +  // one of them as the exiting block we are rotating toward, disable loop +  // rotation altogether. +  if (!BlocksExitingToOuterLoop.empty() && +      !BlocksExitingToOuterLoop.count(ExitingBB)) +    return nullptr; + +  LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) +                    << "\n"); +  ExitFreq = BestExitEdgeFreq; +  return ExitingBB; +} + +/// Check if there is a fallthrough to loop header Top. +/// +///   1. Look for a Pred that can be layout before Top. +///   2. Check if Top is the most possible successor of Pred. +bool +MachineBlockPlacement::hasViableTopFallthrough( +    const MachineBasicBlock *Top, +    const BlockFilterSet &LoopBlockSet) { +  for (MachineBasicBlock *Pred : Top->predecessors()) { +    BlockChain *PredChain = BlockToChain[Pred]; +    if (!LoopBlockSet.count(Pred) && +        (!PredChain || Pred == *std::prev(PredChain->end()))) { +      // Found a Pred block can be placed before Top. +      // Check if Top is the best successor of Pred. +      auto TopProb = MBPI->getEdgeProbability(Pred, Top); +      bool TopOK = true; +      for (MachineBasicBlock *Succ : Pred->successors()) { +        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); +        BlockChain *SuccChain = BlockToChain[Succ]; +        // Check if Succ can be placed after Pred. +        // Succ should not be in any chain, or it is the head of some chain. +        if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { +          TopOK = false; +          break; +        } +      } +      if (TopOK) +        return true; +    } +  } +  return false; +} + +/// Attempt to rotate an exiting block to the bottom of the loop. +/// +/// Once we have built a chain, try to rotate it to line up the hot exit block +/// with fallthrough out of the loop if doing so doesn't introduce unnecessary +/// branches. For example, if the loop has fallthrough into its header and out +/// of its bottom already, don't rotate it. +void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, +                                       const MachineBasicBlock *ExitingBB, +                                       BlockFrequency ExitFreq, +                                       const BlockFilterSet &LoopBlockSet) { +  if (!ExitingBB) +    return; + +  MachineBasicBlock *Top = *LoopChain.begin(); +  MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); + +  // If ExitingBB is already the last one in a chain then nothing to do. +  if (Bottom == ExitingBB) +    return; + +  bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); + +  // If the header has viable fallthrough, check whether the current loop +  // bottom is a viable exiting block. If so, bail out as rotating will +  // introduce an unnecessary branch. +  if (ViableTopFallthrough) { +    for (MachineBasicBlock *Succ : Bottom->successors()) { +      BlockChain *SuccChain = BlockToChain[Succ]; +      if (!LoopBlockSet.count(Succ) && +          (!SuccChain || Succ == *SuccChain->begin())) +        return; +    } + +    // Rotate will destroy the top fallthrough, we need to ensure the new exit +    // frequency is larger than top fallthrough. +    BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); +    if (FallThrough2Top >= ExitFreq) +      return; +  } + +  BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); +  if (ExitIt == LoopChain.end()) +    return; + +  // Rotating a loop exit to the bottom when there is a fallthrough to top +  // trades the entry fallthrough for an exit fallthrough. +  // If there is no bottom->top edge, but the chosen exit block does have +  // a fallthrough, we break that fallthrough for nothing in return. + +  // Let's consider an example. We have a built chain of basic blocks +  // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. +  // By doing a rotation we get +  // Bk+1, ..., Bn, B1, ..., Bk +  // Break of fallthrough to B1 is compensated by a fallthrough from Bk. +  // If we had a fallthrough Bk -> Bk+1 it is broken now. +  // It might be compensated by fallthrough Bn -> B1. +  // So we have a condition to avoid creation of extra branch by loop rotation. +  // All below must be true to avoid loop rotation: +  //   If there is a fallthrough to top (B1) +  //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1) +  //   There is no fallthrough from bottom (Bn) to top (B1). +  // Please note that there is no exit fallthrough from Bn because we checked it +  // above. +  if (ViableTopFallthrough) { +    assert(std::next(ExitIt) != LoopChain.end() && +           "Exit should not be last BB"); +    MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); +    if (ExitingBB->isSuccessor(NextBlockInChain)) +      if (!Bottom->isSuccessor(Top)) +        return; +  } + +  LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) +                    << " at bottom\n"); +  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); +} + +/// Attempt to rotate a loop based on profile data to reduce branch cost. +/// +/// With profile data, we can determine the cost in terms of missed fall through +/// opportunities when rotating a loop chain and select the best rotation. +/// Basically, there are three kinds of cost to consider for each rotation: +///    1. The possibly missed fall through edge (if it exists) from BB out of +///    the loop to the loop header. +///    2. The possibly missed fall through edges (if they exist) from the loop +///    exits to BB out of the loop. +///    3. The missed fall through edge (if it exists) from the last BB to the +///    first BB in the loop chain. +///  Therefore, the cost for a given rotation is the sum of costs listed above. +///  We select the best rotation with the smallest cost. +void MachineBlockPlacement::rotateLoopWithProfile( +    BlockChain &LoopChain, const MachineLoop &L, +    const BlockFilterSet &LoopBlockSet) { +  auto RotationPos = LoopChain.end(); + +  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); + +  // A utility lambda that scales up a block frequency by dividing it by a +  // branch probability which is the reciprocal of the scale. +  auto ScaleBlockFrequency = [](BlockFrequency Freq, +                                unsigned Scale) -> BlockFrequency { +    if (Scale == 0) +      return 0; +    // Use operator / between BlockFrequency and BranchProbability to implement +    // saturating multiplication. +    return Freq / BranchProbability(1, Scale); +  }; + +  // Compute the cost of the missed fall-through edge to the loop header if the +  // chain head is not the loop header. As we only consider natural loops with +  // single header, this computation can be done only once. +  BlockFrequency HeaderFallThroughCost(0); +  MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); +  for (auto *Pred : ChainHeaderBB->predecessors()) { +    BlockChain *PredChain = BlockToChain[Pred]; +    if (!LoopBlockSet.count(Pred) && +        (!PredChain || Pred == *std::prev(PredChain->end()))) { +      auto EdgeFreq = MBFI->getBlockFreq(Pred) * +          MBPI->getEdgeProbability(Pred, ChainHeaderBB); +      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); +      // If the predecessor has only an unconditional jump to the header, we +      // need to consider the cost of this jump. +      if (Pred->succ_size() == 1) +        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); +      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); +    } +  } + +  // Here we collect all exit blocks in the loop, and for each exit we find out +  // its hottest exit edge. For each loop rotation, we define the loop exit cost +  // as the sum of frequencies of exit edges we collect here, excluding the exit +  // edge from the tail of the loop chain. +  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; +  for (auto BB : LoopChain) { +    auto LargestExitEdgeProb = BranchProbability::getZero(); +    for (auto *Succ : BB->successors()) { +      BlockChain *SuccChain = BlockToChain[Succ]; +      if (!LoopBlockSet.count(Succ) && +          (!SuccChain || Succ == *SuccChain->begin())) { +        auto SuccProb = MBPI->getEdgeProbability(BB, Succ); +        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); +      } +    } +    if (LargestExitEdgeProb > BranchProbability::getZero()) { +      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; +      ExitsWithFreq.emplace_back(BB, ExitFreq); +    } +  } + +  // In this loop we iterate every block in the loop chain and calculate the +  // cost assuming the block is the head of the loop chain. When the loop ends, +  // we should have found the best candidate as the loop chain's head. +  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), +            EndIter = LoopChain.end(); +       Iter != EndIter; Iter++, TailIter++) { +    // TailIter is used to track the tail of the loop chain if the block we are +    // checking (pointed by Iter) is the head of the chain. +    if (TailIter == LoopChain.end()) +      TailIter = LoopChain.begin(); + +    auto TailBB = *TailIter; + +    // Calculate the cost by putting this BB to the top. +    BlockFrequency Cost = 0; + +    // If the current BB is the loop header, we need to take into account the +    // cost of the missed fall through edge from outside of the loop to the +    // header. +    if (Iter != LoopChain.begin()) +      Cost += HeaderFallThroughCost; + +    // Collect the loop exit cost by summing up frequencies of all exit edges +    // except the one from the chain tail. +    for (auto &ExitWithFreq : ExitsWithFreq) +      if (TailBB != ExitWithFreq.first) +        Cost += ExitWithFreq.second; + +    // The cost of breaking the once fall-through edge from the tail to the top +    // of the loop chain. Here we need to consider three cases: +    // 1. If the tail node has only one successor, then we will get an +    //    additional jmp instruction. So the cost here is (MisfetchCost + +    //    JumpInstCost) * tail node frequency. +    // 2. If the tail node has two successors, then we may still get an +    //    additional jmp instruction if the layout successor after the loop +    //    chain is not its CFG successor. Note that the more frequently executed +    //    jmp instruction will be put ahead of the other one. Assume the +    //    frequency of those two branches are x and y, where x is the frequency +    //    of the edge to the chain head, then the cost will be +    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. +    // 3. If the tail node has more than two successors (this rarely happens), +    //    we won't consider any additional cost. +    if (TailBB->isSuccessor(*Iter)) { +      auto TailBBFreq = MBFI->getBlockFreq(TailBB); +      if (TailBB->succ_size() == 1) +        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), +                                    MisfetchCost + JumpInstCost); +      else if (TailBB->succ_size() == 2) { +        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); +        auto TailToHeadFreq = TailBBFreq * TailToHeadProb; +        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) +                                  ? TailBBFreq * TailToHeadProb.getCompl() +                                  : TailToHeadFreq; +        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + +                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); +      } +    } + +    LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " +                      << getBlockName(*Iter) +                      << " to the top: " << Cost.getFrequency() << "\n"); + +    if (Cost < SmallestRotationCost) { +      SmallestRotationCost = Cost; +      RotationPos = Iter; +    } +  } + +  if (RotationPos != LoopChain.end()) { +    LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) +                      << " to the top\n"); +    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); +  } +} + +/// Collect blocks in the given loop that are to be placed. +/// +/// When profile data is available, exclude cold blocks from the returned set; +/// otherwise, collect all blocks in the loop. +MachineBlockPlacement::BlockFilterSet +MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { +  BlockFilterSet LoopBlockSet; + +  // Filter cold blocks off from LoopBlockSet when profile data is available. +  // Collect the sum of frequencies of incoming edges to the loop header from +  // outside. If we treat the loop as a super block, this is the frequency of +  // the loop. Then for each block in the loop, we calculate the ratio between +  // its frequency and the frequency of the loop block. When it is too small, +  // don't add it to the loop chain. If there are outer loops, then this block +  // will be merged into the first outer loop chain for which this block is not +  // cold anymore. This needs precise profile data and we only do this when +  // profile data is available. +  if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { +    BlockFrequency LoopFreq(0); +    for (auto LoopPred : L.getHeader()->predecessors()) +      if (!L.contains(LoopPred)) +        LoopFreq += MBFI->getBlockFreq(LoopPred) * +                    MBPI->getEdgeProbability(LoopPred, L.getHeader()); + +    for (MachineBasicBlock *LoopBB : L.getBlocks()) { +      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); +      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) +        continue; +      LoopBlockSet.insert(LoopBB); +    } +  } else +    LoopBlockSet.insert(L.block_begin(), L.block_end()); + +  return LoopBlockSet; +} + +/// Forms basic block chains from the natural loop structures. +/// +/// These chains are designed to preserve the existing *structure* of the code +/// as much as possible. We can then stitch the chains together in a way which +/// both preserves the topological structure and minimizes taken conditional +/// branches. +void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { +  // First recurse through any nested loops, building chains for those inner +  // loops. +  for (const MachineLoop *InnerLoop : L) +    buildLoopChains(*InnerLoop); + +  assert(BlockWorkList.empty() && +         "BlockWorkList not empty when starting to build loop chains."); +  assert(EHPadWorkList.empty() && +         "EHPadWorkList not empty when starting to build loop chains."); +  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); + +  // Check if we have profile data for this function. If yes, we will rotate +  // this loop by modeling costs more precisely which requires the profile data +  // for better layout. +  bool RotateLoopWithProfile = +      ForcePreciseRotationCost || +      (PreciseRotationCost && F->getFunction().hasProfileData()); + +  // First check to see if there is an obviously preferable top block for the +  // loop. This will default to the header, but may end up as one of the +  // predecessors to the header if there is one which will result in strictly +  // fewer branches in the loop body. +  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); + +  // If we selected just the header for the loop top, look for a potentially +  // profitable exit block in the event that rotating the loop can eliminate +  // branches by placing an exit edge at the bottom. +  // +  // Loops are processed innermost to uttermost, make sure we clear +  // PreferredLoopExit before processing a new loop. +  PreferredLoopExit = nullptr; +  BlockFrequency ExitFreq; +  if (!RotateLoopWithProfile && LoopTop == L.getHeader()) +    PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); + +  BlockChain &LoopChain = *BlockToChain[LoopTop]; + +  // FIXME: This is a really lame way of walking the chains in the loop: we +  // walk the blocks, and use a set to prevent visiting a particular chain +  // twice. +  SmallPtrSet<BlockChain *, 4> UpdatedPreds; +  assert(LoopChain.UnscheduledPredecessors == 0 && +         "LoopChain should not have unscheduled predecessors."); +  UpdatedPreds.insert(&LoopChain); + +  for (const MachineBasicBlock *LoopBB : LoopBlockSet) +    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); + +  buildChain(LoopTop, LoopChain, &LoopBlockSet); + +  if (RotateLoopWithProfile) +    rotateLoopWithProfile(LoopChain, L, LoopBlockSet); +  else +    rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); + +  LLVM_DEBUG({ +    // Crash at the end so we get all of the debugging output first. +    bool BadLoop = false; +    if (LoopChain.UnscheduledPredecessors) { +      BadLoop = true; +      dbgs() << "Loop chain contains a block without its preds placed!\n" +             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n" +             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; +    } +    for (MachineBasicBlock *ChainBB : LoopChain) { +      dbgs() << "          ... " << getBlockName(ChainBB) << "\n"; +      if (!LoopBlockSet.remove(ChainBB)) { +        // We don't mark the loop as bad here because there are real situations +        // where this can occur. For example, with an unanalyzable fallthrough +        // from a loop block to a non-loop block or vice versa. +        dbgs() << "Loop chain contains a block not contained by the loop!\n" +               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n" +               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n" +               << "  Bad block:    " << getBlockName(ChainBB) << "\n"; +      } +    } + +    if (!LoopBlockSet.empty()) { +      BadLoop = true; +      for (const MachineBasicBlock *LoopBB : LoopBlockSet) +        dbgs() << "Loop contains blocks never placed into a chain!\n" +               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n" +               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n" +               << "  Bad block:    " << getBlockName(LoopBB) << "\n"; +    } +    assert(!BadLoop && "Detected problems with the placement of this loop."); +  }); + +  BlockWorkList.clear(); +  EHPadWorkList.clear(); +} + +void MachineBlockPlacement::buildCFGChains() { +  // Ensure that every BB in the function has an associated chain to simplify +  // the assumptions of the remaining algorithm. +  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. +  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; +       ++FI) { +    MachineBasicBlock *BB = &*FI; +    BlockChain *Chain = +        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); +    // Also, merge any blocks which we cannot reason about and must preserve +    // the exact fallthrough behavior for. +    while (true) { +      Cond.clear(); +      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. +      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) +        break; + +      MachineFunction::iterator NextFI = std::next(FI); +      MachineBasicBlock *NextBB = &*NextFI; +      // Ensure that the layout successor is a viable block, as we know that +      // fallthrough is a possibility. +      assert(NextFI != FE && "Can't fallthrough past the last block."); +      LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " +                        << getBlockName(BB) << " -> " << getBlockName(NextBB) +                        << "\n"); +      Chain->merge(NextBB, nullptr); +#ifndef NDEBUG +      BlocksWithUnanalyzableExits.insert(&*BB); +#endif +      FI = NextFI; +      BB = NextBB; +    } +  } + +  // Build any loop-based chains. +  PreferredLoopExit = nullptr; +  for (MachineLoop *L : *MLI) +    buildLoopChains(*L); + +  assert(BlockWorkList.empty() && +         "BlockWorkList should be empty before building final chain."); +  assert(EHPadWorkList.empty() && +         "EHPadWorkList should be empty before building final chain."); + +  SmallPtrSet<BlockChain *, 4> UpdatedPreds; +  for (MachineBasicBlock &MBB : *F) +    fillWorkLists(&MBB, UpdatedPreds); + +  BlockChain &FunctionChain = *BlockToChain[&F->front()]; +  buildChain(&F->front(), FunctionChain); + +#ifndef NDEBUG +  using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; +#endif +  LLVM_DEBUG({ +    // Crash at the end so we get all of the debugging output first. +    bool BadFunc = false; +    FunctionBlockSetType FunctionBlockSet; +    for (MachineBasicBlock &MBB : *F) +      FunctionBlockSet.insert(&MBB); + +    for (MachineBasicBlock *ChainBB : FunctionChain) +      if (!FunctionBlockSet.erase(ChainBB)) { +        BadFunc = true; +        dbgs() << "Function chain contains a block not in the function!\n" +               << "  Bad block:    " << getBlockName(ChainBB) << "\n"; +      } + +    if (!FunctionBlockSet.empty()) { +      BadFunc = true; +      for (MachineBasicBlock *RemainingBB : FunctionBlockSet) +        dbgs() << "Function contains blocks never placed into a chain!\n" +               << "  Bad block:    " << getBlockName(RemainingBB) << "\n"; +    } +    assert(!BadFunc && "Detected problems with the block placement."); +  }); + +  // Splice the blocks into place. +  MachineFunction::iterator InsertPos = F->begin(); +  LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); +  for (MachineBasicBlock *ChainBB : FunctionChain) { +    LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " +                                                            : "          ... ") +                      << getBlockName(ChainBB) << "\n"); +    if (InsertPos != MachineFunction::iterator(ChainBB)) +      F->splice(InsertPos, ChainBB); +    else +      ++InsertPos; + +    // Update the terminator of the previous block. +    if (ChainBB == *FunctionChain.begin()) +      continue; +    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); + +    // FIXME: It would be awesome of updateTerminator would just return rather +    // than assert when the branch cannot be analyzed in order to remove this +    // boiler plate. +    Cond.clear(); +    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. + +#ifndef NDEBUG +    if (!BlocksWithUnanalyzableExits.count(PrevBB)) { +      // Given the exact block placement we chose, we may actually not _need_ to +      // be able to edit PrevBB's terminator sequence, but not being _able_ to +      // do that at this point is a bug. +      assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || +              !PrevBB->canFallThrough()) && +             "Unexpected block with un-analyzable fallthrough!"); +      Cond.clear(); +      TBB = FBB = nullptr; +    } +#endif + +    // The "PrevBB" is not yet updated to reflect current code layout, so, +    //   o. it may fall-through to a block without explicit "goto" instruction +    //      before layout, and no longer fall-through it after layout; or +    //   o. just opposite. +    // +    // analyzeBranch() may return erroneous value for FBB when these two +    // situations take place. For the first scenario FBB is mistakenly set NULL; +    // for the 2nd scenario, the FBB, which is expected to be NULL, is +    // mistakenly pointing to "*BI". +    // Thus, if the future change needs to use FBB before the layout is set, it +    // has to correct FBB first by using the code similar to the following: +    // +    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { +    //   PrevBB->updateTerminator(); +    //   Cond.clear(); +    //   TBB = FBB = nullptr; +    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { +    //     // FIXME: This should never take place. +    //     TBB = FBB = nullptr; +    //   } +    // } +    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) +      PrevBB->updateTerminator(); +  } + +  // Fixup the last block. +  Cond.clear(); +  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. +  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) +    F->back().updateTerminator(); + +  BlockWorkList.clear(); +  EHPadWorkList.clear(); +} + +void MachineBlockPlacement::optimizeBranches() { +  BlockChain &FunctionChain = *BlockToChain[&F->front()]; +  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. + +  // Now that all the basic blocks in the chain have the proper layout, +  // make a final call to AnalyzeBranch with AllowModify set. +  // Indeed, the target may be able to optimize the branches in a way we +  // cannot because all branches may not be analyzable. +  // E.g., the target may be able to remove an unconditional branch to +  // a fallthrough when it occurs after predicated terminators. +  for (MachineBasicBlock *ChainBB : FunctionChain) { +    Cond.clear(); +    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. +    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { +      // If PrevBB has a two-way branch, try to re-order the branches +      // such that we branch to the successor with higher probability first. +      if (TBB && !Cond.empty() && FBB && +          MBPI->getEdgeProbability(ChainBB, FBB) > +              MBPI->getEdgeProbability(ChainBB, TBB) && +          !TII->reverseBranchCondition(Cond)) { +        LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " +                          << getBlockName(ChainBB) << "\n"); +        LLVM_DEBUG(dbgs() << "    Edge probability: " +                          << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " +                          << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); +        DebugLoc dl; // FIXME: this is nowhere +        TII->removeBranch(*ChainBB); +        TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); +        ChainBB->updateTerminator(); +      } +    } +  } +} + +void MachineBlockPlacement::alignBlocks() { +  // Walk through the backedges of the function now that we have fully laid out +  // the basic blocks and align the destination of each backedge. We don't rely +  // exclusively on the loop info here so that we can align backedges in +  // unnatural CFGs and backedges that were introduced purely because of the +  // loop rotations done during this layout pass. +  if (F->getFunction().hasMinSize() || +      (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) +    return; +  BlockChain &FunctionChain = *BlockToChain[&F->front()]; +  if (FunctionChain.begin() == FunctionChain.end()) +    return; // Empty chain. + +  const BranchProbability ColdProb(1, 5); // 20% +  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); +  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; +  for (MachineBasicBlock *ChainBB : FunctionChain) { +    if (ChainBB == *FunctionChain.begin()) +      continue; + +    // Don't align non-looping basic blocks. These are unlikely to execute +    // enough times to matter in practice. Note that we'll still handle +    // unnatural CFGs inside of a natural outer loop (the common case) and +    // rotated loops. +    MachineLoop *L = MLI->getLoopFor(ChainBB); +    if (!L) +      continue; + +    const Align Align = TLI->getPrefLoopAlignment(L); +    if (Align == 1) +      continue; // Don't care about loop alignment. + +    // If the block is cold relative to the function entry don't waste space +    // aligning it. +    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); +    if (Freq < WeightedEntryFreq) +      continue; + +    // If the block is cold relative to its loop header, don't align it +    // regardless of what edges into the block exist. +    MachineBasicBlock *LoopHeader = L->getHeader(); +    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); +    if (Freq < (LoopHeaderFreq * ColdProb)) +      continue; + +    // Check for the existence of a non-layout predecessor which would benefit +    // from aligning this block. +    MachineBasicBlock *LayoutPred = +        &*std::prev(MachineFunction::iterator(ChainBB)); + +    // Force alignment if all the predecessors are jumps. We already checked +    // that the block isn't cold above. +    if (!LayoutPred->isSuccessor(ChainBB)) { +      ChainBB->setAlignment(Align); +      continue; +    } + +    // Align this block if the layout predecessor's edge into this block is +    // cold relative to the block. When this is true, other predecessors make up +    // all of the hot entries into the block and thus alignment is likely to be +    // important. +    BranchProbability LayoutProb = +        MBPI->getEdgeProbability(LayoutPred, ChainBB); +    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; +    if (LayoutEdgeFreq <= (Freq * ColdProb)) +      ChainBB->setAlignment(Align); +  } +} + +/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if +/// it was duplicated into its chain predecessor and removed. +/// \p BB    - Basic block that may be duplicated. +/// +/// \p LPred - Chosen layout predecessor of \p BB. +///            Updated to be the chain end if LPred is removed. +/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. +/// \p BlockFilter - Set of blocks that belong to the loop being laid out. +///                  Used to identify which blocks to update predecessor +///                  counts. +/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was +///                          chosen in the given order due to unnatural CFG +///                          only needed if \p BB is removed and +///                          \p PrevUnplacedBlockIt pointed to \p BB. +/// @return true if \p BB was removed. +bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( +    MachineBasicBlock *BB, MachineBasicBlock *&LPred, +    const MachineBasicBlock *LoopHeaderBB, +    BlockChain &Chain, BlockFilterSet *BlockFilter, +    MachineFunction::iterator &PrevUnplacedBlockIt) { +  bool Removed, DuplicatedToLPred; +  bool DuplicatedToOriginalLPred; +  Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, +                                    PrevUnplacedBlockIt, +                                    DuplicatedToLPred); +  if (!Removed) +    return false; +  DuplicatedToOriginalLPred = DuplicatedToLPred; +  // Iteratively try to duplicate again. It can happen that a block that is +  // duplicated into is still small enough to be duplicated again. +  // No need to call markBlockSuccessors in this case, as the blocks being +  // duplicated from here on are already scheduled. +  // Note that DuplicatedToLPred always implies Removed. +  while (DuplicatedToLPred) { +    assert(Removed && "Block must have been removed to be duplicated into its " +           "layout predecessor."); +    MachineBasicBlock *DupBB, *DupPred; +    // The removal callback causes Chain.end() to be updated when a block is +    // removed. On the first pass through the loop, the chain end should be the +    // same as it was on function entry. On subsequent passes, because we are +    // duplicating the block at the end of the chain, if it is removed the +    // chain will have shrunk by one block. +    BlockChain::iterator ChainEnd = Chain.end(); +    DupBB = *(--ChainEnd); +    // Now try to duplicate again. +    if (ChainEnd == Chain.begin()) +      break; +    DupPred = *std::prev(ChainEnd); +    Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, +                                      PrevUnplacedBlockIt, +                                      DuplicatedToLPred); +  } +  // If BB was duplicated into LPred, it is now scheduled. But because it was +  // removed, markChainSuccessors won't be called for its chain. Instead we +  // call markBlockSuccessors for LPred to achieve the same effect. This must go +  // at the end because repeating the tail duplication can increase the number +  // of unscheduled predecessors. +  LPred = *std::prev(Chain.end()); +  if (DuplicatedToOriginalLPred) +    markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); +  return true; +} + +/// Tail duplicate \p BB into (some) predecessors if profitable. +/// \p BB    - Basic block that may be duplicated +/// \p LPred - Chosen layout predecessor of \p BB +/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. +/// \p BlockFilter - Set of blocks that belong to the loop being laid out. +///                  Used to identify which blocks to update predecessor +///                  counts. +/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was +///                          chosen in the given order due to unnatural CFG +///                          only needed if \p BB is removed and +///                          \p PrevUnplacedBlockIt pointed to \p BB. +/// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will +///                        only be true if the block was removed. +/// \return  - True if the block was duplicated into all preds and removed. +bool MachineBlockPlacement::maybeTailDuplicateBlock( +    MachineBasicBlock *BB, MachineBasicBlock *LPred, +    BlockChain &Chain, BlockFilterSet *BlockFilter, +    MachineFunction::iterator &PrevUnplacedBlockIt, +    bool &DuplicatedToLPred) { +  DuplicatedToLPred = false; +  if (!shouldTailDuplicate(BB)) +    return false; + +  LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() +                    << "\n"); + +  // This has to be a callback because none of it can be done after +  // BB is deleted. +  bool Removed = false; +  auto RemovalCallback = +      [&](MachineBasicBlock *RemBB) { +        // Signal to outer function +        Removed = true; + +        // Conservative default. +        bool InWorkList = true; +        // Remove from the Chain and Chain Map +        if (BlockToChain.count(RemBB)) { +          BlockChain *Chain = BlockToChain[RemBB]; +          InWorkList = Chain->UnscheduledPredecessors == 0; +          Chain->remove(RemBB); +          BlockToChain.erase(RemBB); +        } + +        // Handle the unplaced block iterator +        if (&(*PrevUnplacedBlockIt) == RemBB) { +          PrevUnplacedBlockIt++; +        } + +        // Handle the Work Lists +        if (InWorkList) { +          SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; +          if (RemBB->isEHPad()) +            RemoveList = EHPadWorkList; +          RemoveList.erase( +              llvm::remove_if(RemoveList, +                              [RemBB](MachineBasicBlock *BB) { +                                return BB == RemBB; +                              }), +              RemoveList.end()); +        } + +        // Handle the filter set +        if (BlockFilter) { +          BlockFilter->remove(RemBB); +        } + +        // Remove the block from loop info. +        MLI->removeBlock(RemBB); +        if (RemBB == PreferredLoopExit) +          PreferredLoopExit = nullptr; + +        LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " +                          << getBlockName(RemBB) << "\n"); +      }; +  auto RemovalCallbackRef = +      function_ref<void(MachineBasicBlock*)>(RemovalCallback); + +  SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; +  bool IsSimple = TailDup.isSimpleBB(BB); +  TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, +                                 &DuplicatedPreds, &RemovalCallbackRef); + +  // Update UnscheduledPredecessors to reflect tail-duplication. +  DuplicatedToLPred = false; +  for (MachineBasicBlock *Pred : DuplicatedPreds) { +    // We're only looking for unscheduled predecessors that match the filter. +    BlockChain* PredChain = BlockToChain[Pred]; +    if (Pred == LPred) +      DuplicatedToLPred = true; +    if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) +        || PredChain == &Chain) +      continue; +    for (MachineBasicBlock *NewSucc : Pred->successors()) { +      if (BlockFilter && !BlockFilter->count(NewSucc)) +        continue; +      BlockChain *NewChain = BlockToChain[NewSucc]; +      if (NewChain != &Chain && NewChain != PredChain) +        NewChain->UnscheduledPredecessors++; +    } +  } +  return Removed; +} + +bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { +  if (skipFunction(MF.getFunction())) +    return false; + +  // Check for single-block functions and skip them. +  if (std::next(MF.begin()) == MF.end()) +    return false; + +  F = &MF; +  MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); +  MBFI = std::make_unique<BranchFolder::MBFIWrapper>( +      getAnalysis<MachineBlockFrequencyInfo>()); +  MLI = &getAnalysis<MachineLoopInfo>(); +  TII = MF.getSubtarget().getInstrInfo(); +  TLI = MF.getSubtarget().getTargetLowering(); +  MPDT = nullptr; + +  // Initialize PreferredLoopExit to nullptr here since it may never be set if +  // there are no MachineLoops. +  PreferredLoopExit = nullptr; + +  assert(BlockToChain.empty() && +         "BlockToChain map should be empty before starting placement."); +  assert(ComputedEdges.empty() && +         "Computed Edge map should be empty before starting placement."); + +  unsigned TailDupSize = TailDupPlacementThreshold; +  // If only the aggressive threshold is explicitly set, use it. +  if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && +      TailDupPlacementThreshold.getNumOccurrences() == 0) +    TailDupSize = TailDupPlacementAggressiveThreshold; + +  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); +  // For aggressive optimization, we can adjust some thresholds to be less +  // conservative. +  if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { +    // At O3 we should be more willing to copy blocks for tail duplication. This +    // increases size pressure, so we only do it at O3 +    // Do this unless only the regular threshold is explicitly set. +    if (TailDupPlacementThreshold.getNumOccurrences() == 0 || +        TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) +      TailDupSize = TailDupPlacementAggressiveThreshold; +  } + +  if (allowTailDupPlacement()) { +    MPDT = &getAnalysis<MachinePostDominatorTree>(); +    if (MF.getFunction().hasOptSize()) +      TailDupSize = 1; +    bool PreRegAlloc = false; +    TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); +    precomputeTriangleChains(); +  } + +  buildCFGChains(); + +  // Changing the layout can create new tail merging opportunities. +  // TailMerge can create jump into if branches that make CFG irreducible for +  // HW that requires structured CFG. +  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && +                         PassConfig->getEnableTailMerge() && +                         BranchFoldPlacement; +  // No tail merging opportunities if the block number is less than four. +  if (MF.size() > 3 && EnableTailMerge) { +    unsigned TailMergeSize = TailDupSize + 1; +    BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, +                    *MBPI, TailMergeSize); + +    auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); +    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), +                            MMIWP ? &MMIWP->getMMI() : nullptr, MLI, +                            /*AfterPlacement=*/true)) { +      // Redo the layout if tail merging creates/removes/moves blocks. +      BlockToChain.clear(); +      ComputedEdges.clear(); +      // Must redo the post-dominator tree if blocks were changed. +      if (MPDT) +        MPDT->runOnMachineFunction(MF); +      ChainAllocator.DestroyAll(); +      buildCFGChains(); +    } +  } + +  optimizeBranches(); +  alignBlocks(); + +  BlockToChain.clear(); +  ComputedEdges.clear(); +  ChainAllocator.DestroyAll(); + +  if (AlignAllBlock) +    // Align all of the blocks in the function to a specific alignment. +    for (MachineBasicBlock &MBB : MF) +      MBB.setAlignment(Align(1ULL << AlignAllBlock)); +  else if (AlignAllNonFallThruBlocks) { +    // Align all of the blocks that have no fall-through predecessors to a +    // specific alignment. +    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { +      auto LayoutPred = std::prev(MBI); +      if (!LayoutPred->isSuccessor(&*MBI)) +        MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks)); +    } +  } +  if (ViewBlockLayoutWithBFI != GVDT_None && +      (ViewBlockFreqFuncName.empty() || +       F->getFunction().getName().equals(ViewBlockFreqFuncName))) { +    MBFI->view("MBP." + MF.getName(), false); +  } + + +  // We always return true as we have no way to track whether the final order +  // differs from the original order. +  return true; +} + +namespace { + +/// A pass to compute block placement statistics. +/// +/// A separate pass to compute interesting statistics for evaluating block +/// placement. This is separate from the actual placement pass so that they can +/// be computed in the absence of any placement transformations or when using +/// alternative placement strategies. +class MachineBlockPlacementStats : public MachineFunctionPass { +  /// A handle to the branch probability pass. +  const MachineBranchProbabilityInfo *MBPI; + +  /// A handle to the function-wide block frequency pass. +  const MachineBlockFrequencyInfo *MBFI; + +public: +  static char ID; // Pass identification, replacement for typeid + +  MachineBlockPlacementStats() : MachineFunctionPass(ID) { +    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnMachineFunction(MachineFunction &F) override; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<MachineBranchProbabilityInfo>(); +    AU.addRequired<MachineBlockFrequencyInfo>(); +    AU.setPreservesAll(); +    MachineFunctionPass::getAnalysisUsage(AU); +  } +}; + +} // end anonymous namespace + +char MachineBlockPlacementStats::ID = 0; + +char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; + +INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", +                      "Basic Block Placement Stats", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) +INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) +INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", +                    "Basic Block Placement Stats", false, false) + +bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { +  // Check for single-block functions and skip them. +  if (std::next(F.begin()) == F.end()) +    return false; + +  MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); +  MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); + +  for (MachineBasicBlock &MBB : F) { +    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); +    Statistic &NumBranches = +        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; +    Statistic &BranchTakenFreq = +        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; +    for (MachineBasicBlock *Succ : MBB.successors()) { +      // Skip if this successor is a fallthrough. +      if (MBB.isLayoutSuccessor(Succ)) +        continue; + +      BlockFrequency EdgeFreq = +          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); +      ++NumBranches; +      BranchTakenFreq += EdgeFreq.getFrequency(); +    } +  } + +  return false; +} | 
