aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/MachineVerifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/MachineVerifier.cpp')
-rw-r--r--llvm/lib/CodeGen/MachineVerifier.cpp629
1 files changed, 373 insertions, 256 deletions
diff --git a/llvm/lib/CodeGen/MachineVerifier.cpp b/llvm/lib/CodeGen/MachineVerifier.cpp
index 6c0402df8489..c1a2c4e0bc6e 100644
--- a/llvm/lib/CodeGen/MachineVerifier.cpp
+++ b/llvm/lib/CodeGen/MachineVerifier.cpp
@@ -16,16 +16,15 @@
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
-// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
-// command-line option -verify-machineinstrs, or by defining the environment
-// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
-// the verifier errors.
+// The machine code verifier is enabled with the command-line option
+// -verify-machineinstrs.
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
@@ -35,8 +34,8 @@
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervalCalc.h"
#include "llvm/CodeGen/LiveIntervals.h"
-#include "llvm/CodeGen/LiveRangeCalc.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
@@ -157,25 +156,6 @@ namespace {
BBInfo() = default;
- // Add register to vregsPassed if it belongs there. Return true if
- // anything changed.
- bool addPassed(unsigned Reg) {
- if (!Register::isVirtualRegister(Reg))
- return false;
- if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
- return false;
- return vregsPassed.insert(Reg).second;
- }
-
- // Same for a full set.
- bool addPassed(const RegSet &RS) {
- bool changed = false;
- for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
- if (addPassed(*I))
- changed = true;
- return changed;
- }
-
// Add register to vregsRequired if it belongs there. Return true if
// anything changed.
bool addRequired(unsigned Reg) {
@@ -188,20 +168,18 @@ namespace {
// Same for a full set.
bool addRequired(const RegSet &RS) {
- bool changed = false;
- for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
- if (addRequired(*I))
- changed = true;
- return changed;
+ bool Changed = false;
+ for (unsigned Reg : RS)
+ Changed |= addRequired(Reg);
+ return Changed;
}
// Same for a full map.
bool addRequired(const RegMap &RM) {
- bool changed = false;
- for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
- if (addRequired(I->first))
- changed = true;
- return changed;
+ bool Changed = false;
+ for (const auto &I : RM)
+ Changed |= addRequired(I.first);
+ return Changed;
}
// Live-out registers are either in regsLiveOut or vregsPassed.
@@ -236,7 +214,6 @@ namespace {
void verifyPreISelGenericInstruction(const MachineInstr *MI);
void visitMachineInstrBefore(const MachineInstr *MI);
void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
- void visitMachineInstrAfter(const MachineInstr *MI);
void visitMachineBundleAfter(const MachineInstr *MI);
void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
void visitMachineFunctionAfter();
@@ -376,13 +353,11 @@ unsigned MachineVerifier::verify(MachineFunction &MF) {
if (isFunctionFailedISel)
return foundErrors;
- isFunctionRegBankSelected =
- !isFunctionFailedISel &&
- MF.getProperties().hasProperty(
- MachineFunctionProperties::Property::RegBankSelected);
- isFunctionSelected = !isFunctionFailedISel &&
- MF.getProperties().hasProperty(
- MachineFunctionProperties::Property::Selected);
+ isFunctionRegBankSelected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::RegBankSelected);
+ isFunctionSelected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Selected);
+
LiveVars = nullptr;
LiveInts = nullptr;
LiveStks = nullptr;
@@ -401,43 +376,40 @@ unsigned MachineVerifier::verify(MachineFunction &MF) {
verifyProperties(MF);
visitMachineFunctionBefore();
- for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
- MFI!=MFE; ++MFI) {
- visitMachineBasicBlockBefore(&*MFI);
+ for (const MachineBasicBlock &MBB : MF) {
+ visitMachineBasicBlockBefore(&MBB);
// Keep track of the current bundle header.
const MachineInstr *CurBundle = nullptr;
// Do we expect the next instruction to be part of the same bundle?
bool InBundle = false;
- for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
- MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
- if (MBBI->getParent() != &*MFI) {
- report("Bad instruction parent pointer", &*MFI);
- errs() << "Instruction: " << *MBBI;
+ for (const MachineInstr &MI : MBB.instrs()) {
+ if (MI.getParent() != &MBB) {
+ report("Bad instruction parent pointer", &MBB);
+ errs() << "Instruction: " << MI;
continue;
}
// Check for consistent bundle flags.
- if (InBundle && !MBBI->isBundledWithPred())
+ if (InBundle && !MI.isBundledWithPred())
report("Missing BundledPred flag, "
"BundledSucc was set on predecessor",
- &*MBBI);
- if (!InBundle && MBBI->isBundledWithPred())
+ &MI);
+ if (!InBundle && MI.isBundledWithPred())
report("BundledPred flag is set, "
"but BundledSucc not set on predecessor",
- &*MBBI);
+ &MI);
// Is this a bundle header?
- if (!MBBI->isInsideBundle()) {
+ if (!MI.isInsideBundle()) {
if (CurBundle)
visitMachineBundleAfter(CurBundle);
- CurBundle = &*MBBI;
+ CurBundle = &MI;
visitMachineBundleBefore(CurBundle);
} else if (!CurBundle)
- report("No bundle header", &*MBBI);
- visitMachineInstrBefore(&*MBBI);
- for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
- const MachineInstr &MI = *MBBI;
+ report("No bundle header", &MI);
+ visitMachineInstrBefore(&MI);
+ for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
const MachineOperand &Op = MI.getOperand(I);
if (Op.getParent() != &MI) {
// Make sure to use correct addOperand / RemoveOperand / ChangeTo
@@ -448,16 +420,14 @@ unsigned MachineVerifier::verify(MachineFunction &MF) {
visitMachineOperand(&Op, I);
}
- visitMachineInstrAfter(&*MBBI);
-
// Was this the last bundled instruction?
- InBundle = MBBI->isBundledWithSucc();
+ InBundle = MI.isBundledWithSucc();
}
if (CurBundle)
visitMachineBundleAfter(CurBundle);
if (InBundle)
- report("BundledSucc flag set on last instruction in block", &MFI->back());
- visitMachineBasicBlockAfter(&*MFI);
+ report("BundledSucc flag set on last instruction in block", &MBB.back());
+ visitMachineBasicBlockAfter(&MBB);
}
visitMachineFunctionAfter();
@@ -568,9 +538,8 @@ void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
BBInfo &MInfo = MBBInfoMap[MBB];
if (!MInfo.reachable) {
MInfo.reachable = true;
- for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
- SuE = MBB->succ_end(); SuI != SuE; ++SuI)
- markReachable(*SuI);
+ for (const MachineBasicBlock *Succ : MBB->successors())
+ markReachable(Succ);
}
}
@@ -604,16 +573,6 @@ void MachineVerifier::visitMachineFunctionBefore() {
verifyStackFrame();
}
-// Does iterator point to a and b as the first two elements?
-static bool matchPair(MachineBasicBlock::const_succ_iterator i,
- const MachineBasicBlock *a, const MachineBasicBlock *b) {
- if (*i == a)
- return *++i == b;
- if (*i == b)
- return *++i == a;
- return false;
-}
-
void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
FirstTerminator = nullptr;
@@ -633,29 +592,27 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
}
// Count the number of landing pad successors.
- SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
- for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
- E = MBB->succ_end(); I != E; ++I) {
- if ((*I)->isEHPad())
- LandingPadSuccs.insert(*I);
- if (!FunctionBlocks.count(*I))
+ SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
+ for (const auto *succ : MBB->successors()) {
+ if (succ->isEHPad())
+ LandingPadSuccs.insert(succ);
+ if (!FunctionBlocks.count(succ))
report("MBB has successor that isn't part of the function.", MBB);
- if (!MBBInfoMap[*I].Preds.count(MBB)) {
+ if (!MBBInfoMap[succ].Preds.count(MBB)) {
report("Inconsistent CFG", MBB);
errs() << "MBB is not in the predecessor list of the successor "
- << printMBBReference(*(*I)) << ".\n";
+ << printMBBReference(*succ) << ".\n";
}
}
// Check the predecessor list.
- for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
- E = MBB->pred_end(); I != E; ++I) {
- if (!FunctionBlocks.count(*I))
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (!FunctionBlocks.count(Pred))
report("MBB has predecessor that isn't part of the function.", MBB);
- if (!MBBInfoMap[*I].Succs.count(MBB)) {
+ if (!MBBInfoMap[Pred].Succs.count(MBB)) {
report("Inconsistent CFG", MBB);
errs() << "MBB is not in the successor list of the predecessor "
- << printMBBReference(*(*I)) << ".\n";
+ << printMBBReference(*Pred) << ".\n";
}
}
@@ -669,32 +626,15 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
!isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
report("MBB has more than one landing pad successor", MBB);
- // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
+ // Call analyzeBranch. If it succeeds, there several more conditions to check.
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
Cond)) {
- // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
+ // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
// check whether its answers match up with reality.
if (!TBB && !FBB) {
// Block falls through to its successor.
- MachineFunction::const_iterator MBBI = MBB->getIterator();
- ++MBBI;
- if (MBBI == MF->end()) {
- // It's possible that the block legitimately ends with a noreturn
- // call or an unreachable, in which case it won't actually fall
- // out the bottom of the function.
- } else if (MBB->succ_size() == LandingPadSuccs.size()) {
- // It's possible that the block legitimately ends with a noreturn
- // call or an unreachable, in which case it won't actually fall
- // out of the block.
- } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
- report("MBB exits via unconditional fall-through but doesn't have "
- "exactly one CFG successor!", MBB);
- } else if (!MBB->isSuccessor(&*MBBI)) {
- report("MBB exits via unconditional fall-through but its successor "
- "differs from its CFG successor!", MBB);
- }
if (!MBB->empty() && MBB->back().isBarrier() &&
!TII->isPredicated(MBB->back())) {
report("MBB exits via unconditional fall-through but ends with a "
@@ -706,17 +646,6 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
}
} else if (TBB && !FBB && Cond.empty()) {
// Block unconditionally branches somewhere.
- // If the block has exactly one successor, that happens to be a
- // landingpad, accept it as valid control flow.
- if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
- (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
- *MBB->succ_begin() != *LandingPadSuccs.begin())) {
- report("MBB exits via unconditional branch but doesn't have "
- "exactly one CFG successor!", MBB);
- } else if (!MBB->isSuccessor(TBB)) {
- report("MBB exits via unconditional branch but the CFG "
- "successor doesn't match the actual successor!", MBB);
- }
if (MBB->empty()) {
report("MBB exits via unconditional branch but doesn't contain "
"any instructions!", MBB);
@@ -729,25 +658,6 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
}
} else if (TBB && !FBB && !Cond.empty()) {
// Block conditionally branches somewhere, otherwise falls through.
- MachineFunction::const_iterator MBBI = MBB->getIterator();
- ++MBBI;
- if (MBBI == MF->end()) {
- report("MBB conditionally falls through out of function!", MBB);
- } else if (MBB->succ_size() == 1) {
- // A conditional branch with only one successor is weird, but allowed.
- if (&*MBBI != TBB)
- report("MBB exits via conditional branch/fall-through but only has "
- "one CFG successor!", MBB);
- else if (TBB != *MBB->succ_begin())
- report("MBB exits via conditional branch/fall-through but the CFG "
- "successor don't match the actual successor!", MBB);
- } else if (MBB->succ_size() != 2) {
- report("MBB exits via conditional branch/fall-through but doesn't have "
- "exactly two CFG successors!", MBB);
- } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
- report("MBB exits via conditional branch/fall-through but the CFG "
- "successors don't match the actual successors!", MBB);
- }
if (MBB->empty()) {
report("MBB exits via conditional branch/fall-through but doesn't "
"contain any instructions!", MBB);
@@ -761,21 +671,6 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
} else if (TBB && FBB) {
// Block conditionally branches somewhere, otherwise branches
// somewhere else.
- if (MBB->succ_size() == 1) {
- // A conditional branch with only one successor is weird, but allowed.
- if (FBB != TBB)
- report("MBB exits via conditional branch/branch through but only has "
- "one CFG successor!", MBB);
- else if (TBB != *MBB->succ_begin())
- report("MBB exits via conditional branch/branch through but the CFG "
- "successor don't match the actual successor!", MBB);
- } else if (MBB->succ_size() != 2) {
- report("MBB exits via conditional branch/branch but doesn't have "
- "exactly two CFG successors!", MBB);
- } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
- report("MBB exits via conditional branch/branch but the CFG "
- "successors don't match the actual successors!", MBB);
- }
if (MBB->empty()) {
report("MBB exits via conditional branch/branch but doesn't "
"contain any instructions!", MBB);
@@ -791,7 +686,54 @@ MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
"condition!", MBB);
}
} else {
- report("AnalyzeBranch returned invalid data!", MBB);
+ report("analyzeBranch returned invalid data!", MBB);
+ }
+
+ // Now check that the successors match up with the answers reported by
+ // analyzeBranch.
+ if (TBB && !MBB->isSuccessor(TBB))
+ report("MBB exits via jump or conditional branch, but its target isn't a "
+ "CFG successor!",
+ MBB);
+ if (FBB && !MBB->isSuccessor(FBB))
+ report("MBB exits via conditional branch, but its target isn't a CFG "
+ "successor!",
+ MBB);
+
+ // There might be a fallthrough to the next block if there's either no
+ // unconditional true branch, or if there's a condition, and one of the
+ // branches is missing.
+ bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
+
+ // A conditional fallthrough must be an actual CFG successor, not
+ // unreachable. (Conversely, an unconditional fallthrough might not really
+ // be a successor, because the block might end in unreachable.)
+ if (!Cond.empty() && !FBB) {
+ MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
+ if (MBBI == MF->end()) {
+ report("MBB conditionally falls through out of function!", MBB);
+ } else if (!MBB->isSuccessor(&*MBBI))
+ report("MBB exits via conditional branch/fall-through but the CFG "
+ "successors don't match the actual successors!",
+ MBB);
+ }
+
+ // Verify that there aren't any extra un-accounted-for successors.
+ for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
+ // If this successor is one of the branch targets, it's okay.
+ if (SuccMBB == TBB || SuccMBB == FBB)
+ continue;
+ // If we might have a fallthrough, and the successor is the fallthrough
+ // block, that's also ok.
+ if (Fallthrough && SuccMBB == MBB->getNextNode())
+ continue;
+ // Also accept successors which are for exception-handling or might be
+ // inlineasm_br targets.
+ if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
+ continue;
+ report("MBB has unexpected successors which are not branch targets, "
+ "fallthrough, EHPads, or inlineasm_br targets.",
+ MBB);
}
}
@@ -839,7 +781,7 @@ void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
if (MI->isTerminator() && !TII->isPredicated(*MI)) {
if (!FirstTerminator)
FirstTerminator = MI;
- } else if (FirstTerminator && !MI->isDebugEntryValue()) {
+ } else if (FirstTerminator) {
report("Non-terminator instruction after the first terminator", MI);
errs() << "First terminator was:\t" << *FirstTerminator;
}
@@ -920,6 +862,23 @@ void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
const MCInstrDesc &MCID = MI->getDesc();
unsigned NumOps = MI->getNumOperands();
+ // Branches must reference a basic block if they are not indirect
+ if (MI->isBranch() && !MI->isIndirectBranch()) {
+ bool HasMBB = false;
+ for (const MachineOperand &Op : MI->operands()) {
+ if (Op.isMBB()) {
+ HasMBB = true;
+ break;
+ }
+ }
+
+ if (!HasMBB) {
+ report("Branch instruction is missing a basic block operand or "
+ "isIndirectBranch property",
+ MI);
+ }
+ }
+
// Check types.
SmallVector<LLT, 4> Types;
for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
@@ -972,9 +931,6 @@ void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
switch (MI->getOpcode()) {
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT: {
- if (MI->getNumOperands() < MCID.getNumOperands())
- break;
-
LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
if (DstTy.isVector())
report("Instruction cannot use a vector result type", MI);
@@ -1062,6 +1018,10 @@ void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
report("bitcast sizes must match", MI);
+
+ if (SrcTy == DstTy)
+ report("bitcast must change the type", MI);
+
break;
}
case TargetOpcode::G_INTTOPTR:
@@ -1115,6 +1075,22 @@ void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
// TODO: Is the offset allowed to be a scalar with a vector?
break;
}
+ case TargetOpcode::G_PTRMASK: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
+ if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
+ break;
+
+ if (!DstTy.getScalarType().isPointer())
+ report("ptrmask result type must be a pointer", MI);
+
+ if (!MaskTy.getScalarType().isScalar())
+ report("ptrmask mask type must be an integer", MI);
+
+ verifyVectorElementMatch(DstTy, MaskTy, MI);
+ break;
+ }
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
@@ -1485,13 +1461,18 @@ void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
if (MI->isInlineAsm())
verifyInlineAsm(MI);
+ // A fully-formed DBG_VALUE must have a location. Ignore partially formed
+ // DBG_VALUEs: these are convenient to use in tests, but should never get
+ // generated.
+ if (MI->isDebugValue() && MI->getNumOperands() == 4)
+ if (!MI->getDebugLoc())
+ report("Missing DebugLoc for debug instruction", MI);
+
// Check the MachineMemOperands for basic consistency.
- for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
- E = MI->memoperands_end();
- I != E; ++I) {
- if ((*I)->isLoad() && !MI->mayLoad())
+ for (MachineMemOperand *Op : MI->memoperands()) {
+ if (Op->isLoad() && !MI->mayLoad())
report("Missing mayLoad flag", MI);
- if ((*I)->isStore() && !MI->mayStore())
+ if (Op->isStore() && !MI->mayStore())
report("Missing mayStore flag", MI);
}
@@ -1552,26 +1533,27 @@ void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
}
break;
}
- case TargetOpcode::STATEPOINT:
- if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
- !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
- !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
+ case TargetOpcode::STATEPOINT: {
+ StatepointOpers SO(MI);
+ if (!MI->getOperand(SO.getIDPos()).isImm() ||
+ !MI->getOperand(SO.getNBytesPos()).isImm() ||
+ !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
report("meta operands to STATEPOINT not constant!", MI);
- break;
+ break;
+ }
auto VerifyStackMapConstant = [&](unsigned Offset) {
- if (!MI->getOperand(Offset).isImm() ||
- MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
- !MI->getOperand(Offset + 1).isImm())
+ if (!MI->getOperand(Offset - 1).isImm() ||
+ MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
+ !MI->getOperand(Offset).isImm())
report("stack map constant to STATEPOINT not well formed!", MI);
};
- const unsigned VarStart = StatepointOpers(MI).getVarIdx();
- VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
- VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
- VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
+ VerifyStackMapConstant(SO.getCCIdx());
+ VerifyStackMapConstant(SO.getFlagsIdx());
+ VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
// TODO: verify we have properly encoded deopt arguments
- break;
+ } break;
}
}
@@ -1599,7 +1581,7 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
if (!IsOptional) {
if (MO->isReg()) {
- if (MO->isDef() && !MCOI.isOptionalDef())
+ if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
report("Explicit operand marked as def", MO, MONum);
if (MO->isImplicit())
report("Explicit operand marked as implicit", MO, MONum);
@@ -1668,10 +1650,17 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
}
}
- // Verify two-address constraints after leaving SSA form.
+ // Verify two-address constraints after the twoaddressinstruction pass.
+ // Both twoaddressinstruction pass and phi-node-elimination pass call
+ // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
+ // twoaddressinstruction pass not after phi-node-elimination pass. So we
+ // shouldn't use the NoSSA as the condition, we should based on
+ // TiedOpsRewritten property to verify two-address constraints, this
+ // property will be set in twoaddressinstruction pass.
unsigned DefIdx;
- if (!MRI->isSSA() && MO->isUse() &&
- MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
+ if (MF->getProperties().hasProperty(
+ MachineFunctionProperties::Property::TiedOpsRewritten) &&
+ MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
Reg != MI->getOperand(DefIdx).getReg())
report("Two-address instruction operands must be identical", MO, MONum);
@@ -1709,6 +1698,15 @@ MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
if (!RC) {
// This is a generic virtual register.
+ // Do not allow undef uses for generic virtual registers. This ensures
+ // getVRegDef can never fail and return null on a generic register.
+ //
+ // FIXME: This restriction should probably be broadened to all SSA
+ // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
+ // run on the SSA function just before phi elimination.
+ if (MO->isUndef())
+ report("Generic virtual register use cannot be undef", MO, MONum);
+
// If we're post-Select, we can't have gvregs anymore.
if (isFunctionSelected) {
report("Generic virtual register invalid in a Selected function",
@@ -2088,8 +2086,6 @@ void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
}
}
-void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
-
// This function gets called after visiting all instructions in a bundle. The
// argument points to the bundle header.
// Normal stand-alone instructions are also considered 'bundles', and this
@@ -2101,10 +2097,10 @@ void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
// Kill any masked registers.
while (!regMasks.empty()) {
const uint32_t *Mask = regMasks.pop_back_val();
- for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
- if (Register::isPhysicalRegister(*I) &&
- MachineOperand::clobbersPhysReg(Mask, *I))
- regsDead.push_back(*I);
+ for (unsigned Reg : regsLive)
+ if (Register::isPhysicalRegister(Reg) &&
+ MachineOperand::clobbersPhysReg(Mask, Reg))
+ regsDead.push_back(Reg);
}
set_subtract(regsLive, regsDead); regsDead.clear();
set_union(regsLive, regsDefined); regsDefined.clear();
@@ -2126,40 +2122,171 @@ MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
}
}
+namespace {
+// This implements a set of registers that serves as a filter: can filter other
+// sets by passing through elements not in the filter and blocking those that
+// are. Any filter implicitly includes the full set of physical registers upon
+// creation, thus filtering them all out. The filter itself as a set only grows,
+// and needs to be as efficient as possible.
+struct VRegFilter {
+ // Add elements to the filter itself. \pre Input set \p FromRegSet must have
+ // no duplicates. Both virtual and physical registers are fine.
+ template <typename RegSetT> void add(const RegSetT &FromRegSet) {
+ SmallVector<unsigned, 0> VRegsBuffer;
+ filterAndAdd(FromRegSet, VRegsBuffer);
+ }
+ // Filter \p FromRegSet through the filter and append passed elements into \p
+ // ToVRegs. All elements appended are then added to the filter itself.
+ // \returns true if anything changed.
+ template <typename RegSetT>
+ bool filterAndAdd(const RegSetT &FromRegSet,
+ SmallVectorImpl<unsigned> &ToVRegs) {
+ unsigned SparseUniverse = Sparse.size();
+ unsigned NewSparseUniverse = SparseUniverse;
+ unsigned NewDenseSize = Dense.size();
+ size_t Begin = ToVRegs.size();
+ for (unsigned Reg : FromRegSet) {
+ if (!Register::isVirtualRegister(Reg))
+ continue;
+ unsigned Index = Register::virtReg2Index(Reg);
+ if (Index < SparseUniverseMax) {
+ if (Index < SparseUniverse && Sparse.test(Index))
+ continue;
+ NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
+ } else {
+ if (Dense.count(Reg))
+ continue;
+ ++NewDenseSize;
+ }
+ ToVRegs.push_back(Reg);
+ }
+ size_t End = ToVRegs.size();
+ if (Begin == End)
+ return false;
+ // Reserving space in sets once performs better than doing so continuously
+ // and pays easily for double look-ups (even in Dense with SparseUniverseMax
+ // tuned all the way down) and double iteration (the second one is over a
+ // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
+ Sparse.resize(NewSparseUniverse);
+ Dense.reserve(NewDenseSize);
+ for (unsigned I = Begin; I < End; ++I) {
+ unsigned Reg = ToVRegs[I];
+ unsigned Index = Register::virtReg2Index(Reg);
+ if (Index < SparseUniverseMax)
+ Sparse.set(Index);
+ else
+ Dense.insert(Reg);
+ }
+ return true;
+ }
+
+private:
+ static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
+ // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
+ // are tracked by Dense. The only purpose of the threashold and the Dense set
+ // is to have a reasonably growing memory usage in pathological cases (large
+ // number of very sparse VRegFilter instances live at the same time). In
+ // practice even in the worst-by-execution time cases having all elements
+ // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
+ // space efficient than if tracked by Dense. The threashold is set to keep the
+ // worst-case memory usage within 2x of figures determined empirically for
+ // "all Dense" scenario in such worst-by-execution-time cases.
+ BitVector Sparse;
+ DenseSet<unsigned> Dense;
+};
+
+// Implements both a transfer function and a (binary, in-place) join operator
+// for a dataflow over register sets with set union join and filtering transfer
+// (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
+// Maintains out_b as its state, allowing for O(n) iteration over it at any
+// time, where n is the size of the set (as opposed to O(U) where U is the
+// universe). filter_b implicitly contains all physical registers at all times.
+class FilteringVRegSet {
+ VRegFilter Filter;
+ SmallVector<unsigned, 0> VRegs;
+
+public:
+ // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
+ // Both virtual and physical registers are fine.
+ template <typename RegSetT> void addToFilter(const RegSetT &RS) {
+ Filter.add(RS);
+ }
+ // Passes \p RS through the filter_b (transfer function) and adds what's left
+ // to itself (out_b).
+ template <typename RegSetT> bool add(const RegSetT &RS) {
+ // Double-duty the Filter: to maintain VRegs a set (and the join operation
+ // a set union) just add everything being added here to the Filter as well.
+ return Filter.filterAndAdd(RS, VRegs);
+ }
+ using const_iterator = decltype(VRegs)::const_iterator;
+ const_iterator begin() const { return VRegs.begin(); }
+ const_iterator end() const { return VRegs.end(); }
+ size_t size() const { return VRegs.size(); }
+};
+} // namespace
+
// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void MachineVerifier::calcRegsPassed() {
+ // This is a forward dataflow, doing it in RPO. A standard map serves as a
+ // priority (sorting by RPO number) queue, deduplicating worklist, and an RPO
+ // number to MBB mapping all at once.
+ std::map<unsigned, const MachineBasicBlock *> RPOWorklist;
+ DenseMap<const MachineBasicBlock *, unsigned> RPONumbers;
+ if (MF->empty()) {
+ // ReversePostOrderTraversal doesn't handle empty functions.
+ return;
+ }
+ std::vector<FilteringVRegSet> VRegsPassedSets(MF->size());
+ for (const MachineBasicBlock *MBB :
+ ReversePostOrderTraversal<const MachineFunction *>(MF)) {
+ // Careful with the evaluation order, fetch next number before allocating.
+ unsigned Number = RPONumbers.size();
+ RPONumbers[MBB] = Number;
+ // Set-up the transfer functions for all blocks.
+ const BBInfo &MInfo = MBBInfoMap[MBB];
+ VRegsPassedSets[Number].addToFilter(MInfo.regsKilled);
+ VRegsPassedSets[Number].addToFilter(MInfo.regsLiveOut);
+ }
// First push live-out regs to successors' vregsPassed. Remember the MBBs that
// have any vregsPassed.
- SmallPtrSet<const MachineBasicBlock*, 8> todo;
- for (const auto &MBB : *MF) {
- BBInfo &MInfo = MBBInfoMap[&MBB];
+ for (const MachineBasicBlock &MBB : *MF) {
+ const BBInfo &MInfo = MBBInfoMap[&MBB];
if (!MInfo.reachable)
continue;
- for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
- SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
- BBInfo &SInfo = MBBInfoMap[*SuI];
- if (SInfo.addPassed(MInfo.regsLiveOut))
- todo.insert(*SuI);
- }
- }
-
- // Iteratively push vregsPassed to successors. This will converge to the same
- // final state regardless of DenseSet iteration order.
- while (!todo.empty()) {
- const MachineBasicBlock *MBB = *todo.begin();
- todo.erase(MBB);
- BBInfo &MInfo = MBBInfoMap[MBB];
- for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
- SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
- if (*SuI == MBB)
+ for (const MachineBasicBlock *Succ : MBB.successors()) {
+ unsigned SuccNumber = RPONumbers[Succ];
+ FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
+ if (SuccSet.add(MInfo.regsLiveOut))
+ RPOWorklist.emplace(SuccNumber, Succ);
+ }
+ }
+
+ // Iteratively push vregsPassed to successors.
+ while (!RPOWorklist.empty()) {
+ auto Next = RPOWorklist.begin();
+ const MachineBasicBlock *MBB = Next->second;
+ RPOWorklist.erase(Next);
+ FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[MBB]];
+ for (const MachineBasicBlock *Succ : MBB->successors()) {
+ if (Succ == MBB)
continue;
- BBInfo &SInfo = MBBInfoMap[*SuI];
- if (SInfo.addPassed(MInfo.vregsPassed))
- todo.insert(*SuI);
+ unsigned SuccNumber = RPONumbers[Succ];
+ FilteringVRegSet &SuccSet = VRegsPassedSets[SuccNumber];
+ if (SuccSet.add(MSet))
+ RPOWorklist.emplace(SuccNumber, Succ);
}
}
+ // Copy the results back to BBInfos.
+ for (const MachineBasicBlock &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ if (!MInfo.reachable)
+ continue;
+ const FilteringVRegSet &MSet = VRegsPassedSets[RPONumbers[&MBB]];
+ MInfo.vregsPassed.reserve(MSet.size());
+ MInfo.vregsPassed.insert(MSet.begin(), MSet.end());
+ }
}
// Calculate the set of virtual registers that must be passed through each basic
@@ -2170,11 +2297,10 @@ void MachineVerifier::calcRegsRequired() {
SmallPtrSet<const MachineBasicBlock*, 8> todo;
for (const auto &MBB : *MF) {
BBInfo &MInfo = MBBInfoMap[&MBB];
- for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
- PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
- BBInfo &PInfo = MBBInfoMap[*PrI];
+ for (const MachineBasicBlock *Pred : MBB.predecessors()) {
+ BBInfo &PInfo = MBBInfoMap[Pred];
if (PInfo.addRequired(MInfo.vregsLiveIn))
- todo.insert(*PrI);
+ todo.insert(Pred);
}
}
@@ -2184,13 +2310,12 @@ void MachineVerifier::calcRegsRequired() {
const MachineBasicBlock *MBB = *todo.begin();
todo.erase(MBB);
BBInfo &MInfo = MBBInfoMap[MBB];
- for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
- PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
- if (*PrI == MBB)
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (Pred == MBB)
continue;
- BBInfo &SInfo = MBBInfoMap[*PrI];
+ BBInfo &SInfo = MBBInfoMap[Pred];
if (SInfo.addRequired(MInfo.vregsRequired))
- todo.insert(*PrI);
+ todo.insert(Pred);
}
}
}
@@ -2274,23 +2399,19 @@ void MachineVerifier::visitMachineFunctionAfter() {
// Check for killed virtual registers that should be live out.
for (const auto &MBB : *MF) {
BBInfo &MInfo = MBBInfoMap[&MBB];
- for (RegSet::iterator
- I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
- ++I)
- if (MInfo.regsKilled.count(*I)) {
+ for (unsigned VReg : MInfo.vregsRequired)
+ if (MInfo.regsKilled.count(VReg)) {
report("Virtual register killed in block, but needed live out.", &MBB);
- errs() << "Virtual register " << printReg(*I)
+ errs() << "Virtual register " << printReg(VReg)
<< " is used after the block.\n";
}
}
if (!MF->empty()) {
BBInfo &MInfo = MBBInfoMap[&MF->front()];
- for (RegSet::iterator
- I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
- ++I) {
+ for (unsigned VReg : MInfo.vregsRequired) {
report("Virtual register defs don't dominate all uses.", MF);
- report_context_vreg(*I);
+ report_context_vreg(VReg);
}
}
@@ -2652,9 +2773,8 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
VNI->def == LiveInts->getMBBStartIdx(&*MFI);
// Check that VNI is live-out of all predecessors.
- for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
- PE = MFI->pred_end(); PI != PE; ++PI) {
- SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
+ for (const MachineBasicBlock *Pred : MFI->predecessors()) {
+ SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
// All predecessors must have a live-out value. However for a phi
@@ -2662,9 +2782,9 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// only one of the subregisters (not necessarily the current one) needs to
// be defined.
if (!PVNI && (LaneMask.none() || !IsPHI)) {
- if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
+ if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
continue;
- report("Register not marked live out of predecessor", *PI);
+ report("Register not marked live out of predecessor", Pred);
report_context(LR, Reg, LaneMask);
report_context(*VNI);
errs() << " live into " << printMBBReference(*MFI) << '@'
@@ -2675,10 +2795,10 @@ void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
// Only PHI-defs can take different predecessor values.
if (!IsPHI && PVNI != VNI) {
- report("Different value live out of predecessor", *PI);
+ report("Different value live out of predecessor", Pred);
report_context(LR, Reg, LaneMask);
errs() << "Valno #" << PVNI->id << " live out of "
- << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
+ << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
<< VNI->id << " live into " << printMBBReference(*MFI) << '@'
<< LiveInts->getMBBStartIdx(&*MFI) << '\n';
}
@@ -2734,10 +2854,9 @@ void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
report_context(LI);
for (unsigned comp = 0; comp != NumComp; ++comp) {
errs() << comp << ": valnos";
- for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
- E = LI.vni_end(); I!=E; ++I)
- if (comp == ConEQ.getEqClass(*I))
- errs() << ' ' << (*I)->id;
+ for (const VNInfo *I : LI.valnos)
+ if (comp == ConEQ.getEqClass(I))
+ errs() << ' ' << I->id;
errs() << '\n';
}
}
@@ -2824,15 +2943,14 @@ void MachineVerifier::verifyStackFrame() {
// Make sure the exit state of any predecessor is consistent with the entry
// state.
- for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
- E = MBB->pred_end(); I != E; ++I) {
- if (Reachable.count(*I) &&
- (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
- SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (Reachable.count(Pred) &&
+ (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
+ SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
report("The exit stack state of a predecessor is inconsistent.", MBB);
- errs() << "Predecessor " << printMBBReference(*(*I))
- << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
- << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
+ errs() << "Predecessor " << printMBBReference(*Pred)
+ << " has exit state (" << SPState[Pred->getNumber()].ExitValue
+ << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
<< printMBBReference(*MBB) << " has entry state ("
<< BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
}
@@ -2840,15 +2958,14 @@ void MachineVerifier::verifyStackFrame() {
// Make sure the entry state of any successor is consistent with the exit
// state.
- for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
- E = MBB->succ_end(); I != E; ++I) {
- if (Reachable.count(*I) &&
- (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
- SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
+ for (const MachineBasicBlock *Succ : MBB->successors()) {
+ if (Reachable.count(Succ) &&
+ (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
+ SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
report("The entry stack state of a successor is inconsistent.", MBB);
- errs() << "Successor " << printMBBReference(*(*I))
- << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
- << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
+ errs() << "Successor " << printMBBReference(*Succ)
+ << " has entry state (" << SPState[Succ->getNumber()].EntryValue
+ << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
<< printMBBReference(*MBB) << " has exit state ("
<< BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
}