diff options
Diffstat (limited to 'llvm/lib/CodeGen/SelectionDAG/FastISel.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/FastISel.cpp | 2474 | 
1 files changed, 2474 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp b/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp new file mode 100644 index 000000000000..6d7260d7aee5 --- /dev/null +++ b/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp @@ -0,0 +1,2474 @@ +//===- FastISel.cpp - Implementation of the FastISel class ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the implementation of the FastISel class. +// +// "Fast" instruction selection is designed to emit very poor code quickly. +// Also, it is not designed to be able to do much lowering, so most illegal +// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is +// also not intended to be able to do much optimization, except in a few cases +// where doing optimizations reduces overall compile time.  For example, folding +// constants into immediate fields is often done, because it's cheap and it +// reduces the number of instructions later phases have to examine. +// +// "Fast" instruction selection is able to fail gracefully and transfer +// control to the SelectionDAG selector for operations that it doesn't +// support.  In many cases, this allows us to avoid duplicating a lot of +// the complicated lowering logic that SelectionDAG currently has. +// +// The intended use for "fast" instruction selection is "-O0" mode +// compilation, where the quality of the generated code is irrelevant when +// weighed against the speed at which the code can be generated.  Also, +// at -O0, the LLVM optimizers are not running, and this makes the +// compile time of codegen a much higher portion of the overall compile +// time.  Despite its limitations, "fast" instruction selection is able to +// handle enough code on its own to provide noticeable overall speedups +// in -O0 compiles. +// +// Basic operations are supported in a target-independent way, by reading +// the same instruction descriptions that the SelectionDAG selector reads, +// and identifying simple arithmetic operations that can be directly selected +// from simple operators.  More complicated operations currently require +// target-specific code. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/FastISel.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Mangler.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <utility> + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "isel" + +// FIXME: Remove this after the feature has proven reliable. +static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values", +                                     cl::init(true), cl::Hidden, +                                     cl::desc("Sink local values in FastISel")); + +STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " +                                         "target-independent selector"); +STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " +                                    "target-specific selector"); +STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); + +/// Set the current block to which generated machine instructions will be +/// appended. +void FastISel::startNewBlock() { +  assert(LocalValueMap.empty() && +         "local values should be cleared after finishing a BB"); + +  // Instructions are appended to FuncInfo.MBB. If the basic block already +  // contains labels or copies, use the last instruction as the last local +  // value. +  EmitStartPt = nullptr; +  if (!FuncInfo.MBB->empty()) +    EmitStartPt = &FuncInfo.MBB->back(); +  LastLocalValue = EmitStartPt; +} + +/// Flush the local CSE map and sink anything we can. +void FastISel::finishBasicBlock() { flushLocalValueMap(); } + +bool FastISel::lowerArguments() { +  if (!FuncInfo.CanLowerReturn) +    // Fallback to SDISel argument lowering code to deal with sret pointer +    // parameter. +    return false; + +  if (!fastLowerArguments()) +    return false; + +  // Enter arguments into ValueMap for uses in non-entry BBs. +  for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), +                                    E = FuncInfo.Fn->arg_end(); +       I != E; ++I) { +    DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I); +    assert(VI != LocalValueMap.end() && "Missed an argument?"); +    FuncInfo.ValueMap[&*I] = VI->second; +  } +  return true; +} + +/// Return the defined register if this instruction defines exactly one +/// virtual register and uses no other virtual registers. Otherwise return 0. +static unsigned findSinkableLocalRegDef(MachineInstr &MI) { +  unsigned RegDef = 0; +  for (const MachineOperand &MO : MI.operands()) { +    if (!MO.isReg()) +      continue; +    if (MO.isDef()) { +      if (RegDef) +        return 0; +      RegDef = MO.getReg(); +    } else if (Register::isVirtualRegister(MO.getReg())) { +      // This is another use of a vreg. Don't try to sink it. +      return 0; +    } +  } +  return RegDef; +} + +void FastISel::flushLocalValueMap() { +  // Try to sink local values down to their first use so that we can give them a +  // better debug location. This has the side effect of shrinking local value +  // live ranges, which helps out fast regalloc. +  if (SinkLocalValues && LastLocalValue != EmitStartPt) { +    // Sink local value materialization instructions between EmitStartPt and +    // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to +    // avoid inserting into the range that we're iterating over. +    MachineBasicBlock::reverse_iterator RE = +        EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt) +                    : FuncInfo.MBB->rend(); +    MachineBasicBlock::reverse_iterator RI(LastLocalValue); + +    InstOrderMap OrderMap; +    for (; RI != RE;) { +      MachineInstr &LocalMI = *RI; +      ++RI; +      bool Store = true; +      if (!LocalMI.isSafeToMove(nullptr, Store)) +        continue; +      unsigned DefReg = findSinkableLocalRegDef(LocalMI); +      if (DefReg == 0) +        continue; + +      sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap); +    } +  } + +  LocalValueMap.clear(); +  LastLocalValue = EmitStartPt; +  recomputeInsertPt(); +  SavedInsertPt = FuncInfo.InsertPt; +  LastFlushPoint = FuncInfo.InsertPt; +} + +static bool isRegUsedByPhiNodes(unsigned DefReg, +                                FunctionLoweringInfo &FuncInfo) { +  for (auto &P : FuncInfo.PHINodesToUpdate) +    if (P.second == DefReg) +      return true; +  return false; +} + +/// Build a map of instruction orders. Return the first terminator and its +/// order. Consider EH_LABEL instructions to be terminators as well, since local +/// values for phis after invokes must be materialized before the call. +void FastISel::InstOrderMap::initialize( +    MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) { +  unsigned Order = 0; +  for (MachineInstr &I : *MBB) { +    if (!FirstTerminator && +        (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) { +      FirstTerminator = &I; +      FirstTerminatorOrder = Order; +    } +    Orders[&I] = Order++; + +    // We don't need to order instructions past the last flush point. +    if (I.getIterator() == LastFlushPoint) +      break; +  } +} + +void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI, +                                             unsigned DefReg, +                                             InstOrderMap &OrderMap) { +  // If this register is used by a register fixup, MRI will not contain all +  // the uses until after register fixups, so don't attempt to sink or DCE +  // this instruction. Register fixups typically come from no-op cast +  // instructions, which replace the cast instruction vreg with the local +  // value vreg. +  if (FuncInfo.RegsWithFixups.count(DefReg)) +    return; + +  // We can DCE this instruction if there are no uses and it wasn't a +  // materialized for a successor PHI node. +  bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo); +  if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) { +    if (EmitStartPt == &LocalMI) +      EmitStartPt = EmitStartPt->getPrevNode(); +    LLVM_DEBUG(dbgs() << "removing dead local value materialization " +                      << LocalMI); +    OrderMap.Orders.erase(&LocalMI); +    LocalMI.eraseFromParent(); +    return; +  } + +  // Number the instructions if we haven't yet so we can efficiently find the +  // earliest use. +  if (OrderMap.Orders.empty()) +    OrderMap.initialize(FuncInfo.MBB, LastFlushPoint); + +  // Find the first user in the BB. +  MachineInstr *FirstUser = nullptr; +  unsigned FirstOrder = std::numeric_limits<unsigned>::max(); +  for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) { +    auto I = OrderMap.Orders.find(&UseInst); +    assert(I != OrderMap.Orders.end() && +           "local value used by instruction outside local region"); +    unsigned UseOrder = I->second; +    if (UseOrder < FirstOrder) { +      FirstOrder = UseOrder; +      FirstUser = &UseInst; +    } +  } + +  // The insertion point will be the first terminator or the first user, +  // whichever came first. If there was no terminator, this must be a +  // fallthrough block and the insertion point is the end of the block. +  MachineBasicBlock::instr_iterator SinkPos; +  if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) { +    FirstOrder = OrderMap.FirstTerminatorOrder; +    SinkPos = OrderMap.FirstTerminator->getIterator(); +  } else if (FirstUser) { +    SinkPos = FirstUser->getIterator(); +  } else { +    assert(UsedByPHI && "must be users if not used by a phi"); +    SinkPos = FuncInfo.MBB->instr_end(); +  } + +  // Collect all DBG_VALUEs before the new insertion position so that we can +  // sink them. +  SmallVector<MachineInstr *, 1> DbgValues; +  for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) { +    if (!DbgVal.isDebugValue()) +      continue; +    unsigned UseOrder = OrderMap.Orders[&DbgVal]; +    if (UseOrder < FirstOrder) +      DbgValues.push_back(&DbgVal); +  } + +  // Sink LocalMI before SinkPos and assign it the same DebugLoc. +  LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI); +  FuncInfo.MBB->remove(&LocalMI); +  FuncInfo.MBB->insert(SinkPos, &LocalMI); +  if (SinkPos != FuncInfo.MBB->end()) +    LocalMI.setDebugLoc(SinkPos->getDebugLoc()); + +  // Sink any debug values that we've collected. +  for (MachineInstr *DI : DbgValues) { +    FuncInfo.MBB->remove(DI); +    FuncInfo.MBB->insert(SinkPos, DI); +  } +} + +bool FastISel::hasTrivialKill(const Value *V) { +  // Don't consider constants or arguments to have trivial kills. +  const Instruction *I = dyn_cast<Instruction>(V); +  if (!I) +    return false; + +  // No-op casts are trivially coalesced by fast-isel. +  if (const auto *Cast = dyn_cast<CastInst>(I)) +    if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0))) +      return false; + +  // Even the value might have only one use in the LLVM IR, it is possible that +  // FastISel might fold the use into another instruction and now there is more +  // than one use at the Machine Instruction level. +  unsigned Reg = lookUpRegForValue(V); +  if (Reg && !MRI.use_empty(Reg)) +    return false; + +  // GEPs with all zero indices are trivially coalesced by fast-isel. +  if (const auto *GEP = dyn_cast<GetElementPtrInst>(I)) +    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) +      return false; + +  // Only instructions with a single use in the same basic block are considered +  // to have trivial kills. +  return I->hasOneUse() && +         !(I->getOpcode() == Instruction::BitCast || +           I->getOpcode() == Instruction::PtrToInt || +           I->getOpcode() == Instruction::IntToPtr) && +         cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); +} + +unsigned FastISel::getRegForValue(const Value *V) { +  EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true); +  // Don't handle non-simple values in FastISel. +  if (!RealVT.isSimple()) +    return 0; + +  // Ignore illegal types. We must do this before looking up the value +  // in ValueMap because Arguments are given virtual registers regardless +  // of whether FastISel can handle them. +  MVT VT = RealVT.getSimpleVT(); +  if (!TLI.isTypeLegal(VT)) { +    // Handle integer promotions, though, because they're common and easy. +    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) +      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); +    else +      return 0; +  } + +  // Look up the value to see if we already have a register for it. +  unsigned Reg = lookUpRegForValue(V); +  if (Reg) +    return Reg; + +  // In bottom-up mode, just create the virtual register which will be used +  // to hold the value. It will be materialized later. +  if (isa<Instruction>(V) && +      (!isa<AllocaInst>(V) || +       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) +    return FuncInfo.InitializeRegForValue(V); + +  SavePoint SaveInsertPt = enterLocalValueArea(); + +  // Materialize the value in a register. Emit any instructions in the +  // local value area. +  Reg = materializeRegForValue(V, VT); + +  leaveLocalValueArea(SaveInsertPt); + +  return Reg; +} + +unsigned FastISel::materializeConstant(const Value *V, MVT VT) { +  unsigned Reg = 0; +  if (const auto *CI = dyn_cast<ConstantInt>(V)) { +    if (CI->getValue().getActiveBits() <= 64) +      Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); +  } else if (isa<AllocaInst>(V)) +    Reg = fastMaterializeAlloca(cast<AllocaInst>(V)); +  else if (isa<ConstantPointerNull>(V)) +    // Translate this as an integer zero so that it can be +    // local-CSE'd with actual integer zeros. +    Reg = getRegForValue( +        Constant::getNullValue(DL.getIntPtrType(V->getContext()))); +  else if (const auto *CF = dyn_cast<ConstantFP>(V)) { +    if (CF->isNullValue()) +      Reg = fastMaterializeFloatZero(CF); +    else +      // Try to emit the constant directly. +      Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF); + +    if (!Reg) { +      // Try to emit the constant by using an integer constant with a cast. +      const APFloat &Flt = CF->getValueAPF(); +      EVT IntVT = TLI.getPointerTy(DL); +      uint32_t IntBitWidth = IntVT.getSizeInBits(); +      APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false); +      bool isExact; +      (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact); +      if (isExact) { +        unsigned IntegerReg = +            getRegForValue(ConstantInt::get(V->getContext(), SIntVal)); +        if (IntegerReg != 0) +          Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg, +                           /*Kill=*/false); +      } +    } +  } else if (const auto *Op = dyn_cast<Operator>(V)) { +    if (!selectOperator(Op, Op->getOpcode())) +      if (!isa<Instruction>(Op) || +          !fastSelectInstruction(cast<Instruction>(Op))) +        return 0; +    Reg = lookUpRegForValue(Op); +  } else if (isa<UndefValue>(V)) { +    Reg = createResultReg(TLI.getRegClassFor(VT)); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::IMPLICIT_DEF), Reg); +  } +  return Reg; +} + +/// Helper for getRegForValue. This function is called when the value isn't +/// already available in a register and must be materialized with new +/// instructions. +unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { +  unsigned Reg = 0; +  // Give the target-specific code a try first. +  if (isa<Constant>(V)) +    Reg = fastMaterializeConstant(cast<Constant>(V)); + +  // If target-specific code couldn't or didn't want to handle the value, then +  // give target-independent code a try. +  if (!Reg) +    Reg = materializeConstant(V, VT); + +  // Don't cache constant materializations in the general ValueMap. +  // To do so would require tracking what uses they dominate. +  if (Reg) { +    LocalValueMap[V] = Reg; +    LastLocalValue = MRI.getVRegDef(Reg); +  } +  return Reg; +} + +unsigned FastISel::lookUpRegForValue(const Value *V) { +  // Look up the value to see if we already have a register for it. We +  // cache values defined by Instructions across blocks, and other values +  // only locally. This is because Instructions already have the SSA +  // def-dominates-use requirement enforced. +  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); +  if (I != FuncInfo.ValueMap.end()) +    return I->second; +  return LocalValueMap[V]; +} + +void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { +  if (!isa<Instruction>(I)) { +    LocalValueMap[I] = Reg; +    return; +  } + +  unsigned &AssignedReg = FuncInfo.ValueMap[I]; +  if (AssignedReg == 0) +    // Use the new register. +    AssignedReg = Reg; +  else if (Reg != AssignedReg) { +    // Arrange for uses of AssignedReg to be replaced by uses of Reg. +    for (unsigned i = 0; i < NumRegs; i++) { +      FuncInfo.RegFixups[AssignedReg + i] = Reg + i; +      FuncInfo.RegsWithFixups.insert(Reg + i); +    } + +    AssignedReg = Reg; +  } +} + +std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { +  unsigned IdxN = getRegForValue(Idx); +  if (IdxN == 0) +    // Unhandled operand. Halt "fast" selection and bail. +    return std::pair<unsigned, bool>(0, false); + +  bool IdxNIsKill = hasTrivialKill(Idx); + +  // If the index is smaller or larger than intptr_t, truncate or extend it. +  MVT PtrVT = TLI.getPointerTy(DL); +  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); +  if (IdxVT.bitsLT(PtrVT)) { +    IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN, +                      IdxNIsKill); +    IdxNIsKill = true; +  } else if (IdxVT.bitsGT(PtrVT)) { +    IdxN = +        fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill); +    IdxNIsKill = true; +  } +  return std::pair<unsigned, bool>(IdxN, IdxNIsKill); +} + +void FastISel::recomputeInsertPt() { +  if (getLastLocalValue()) { +    FuncInfo.InsertPt = getLastLocalValue(); +    FuncInfo.MBB = FuncInfo.InsertPt->getParent(); +    ++FuncInfo.InsertPt; +  } else +    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); + +  // Now skip past any EH_LABELs, which must remain at the beginning. +  while (FuncInfo.InsertPt != FuncInfo.MBB->end() && +         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) +    ++FuncInfo.InsertPt; +} + +void FastISel::removeDeadCode(MachineBasicBlock::iterator I, +                              MachineBasicBlock::iterator E) { +  assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 && +         "Invalid iterator!"); +  while (I != E) { +    if (LastFlushPoint == I) +      LastFlushPoint = E; +    if (SavedInsertPt == I) +      SavedInsertPt = E; +    if (EmitStartPt == I) +      EmitStartPt = E.isValid() ? &*E : nullptr; +    if (LastLocalValue == I) +      LastLocalValue = E.isValid() ? &*E : nullptr; + +    MachineInstr *Dead = &*I; +    ++I; +    Dead->eraseFromParent(); +    ++NumFastIselDead; +  } +  recomputeInsertPt(); +} + +FastISel::SavePoint FastISel::enterLocalValueArea() { +  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; +  DebugLoc OldDL = DbgLoc; +  recomputeInsertPt(); +  DbgLoc = DebugLoc(); +  SavePoint SP = {OldInsertPt, OldDL}; +  return SP; +} + +void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { +  if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) +    LastLocalValue = &*std::prev(FuncInfo.InsertPt); + +  // Restore the previous insert position. +  FuncInfo.InsertPt = OldInsertPt.InsertPt; +  DbgLoc = OldInsertPt.DL; +} + +bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) { +  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); +  if (VT == MVT::Other || !VT.isSimple()) +    // Unhandled type. Halt "fast" selection and bail. +    return false; + +  // We only handle legal types. For example, on x86-32 the instruction +  // selector contains all of the 64-bit instructions from x86-64, +  // under the assumption that i64 won't be used if the target doesn't +  // support it. +  if (!TLI.isTypeLegal(VT)) { +    // MVT::i1 is special. Allow AND, OR, or XOR because they +    // don't require additional zeroing, which makes them easy. +    if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || +                          ISDOpcode == ISD::XOR)) +      VT = TLI.getTypeToTransformTo(I->getContext(), VT); +    else +      return false; +  } + +  // Check if the first operand is a constant, and handle it as "ri".  At -O0, +  // we don't have anything that canonicalizes operand order. +  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0))) +    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { +      unsigned Op1 = getRegForValue(I->getOperand(1)); +      if (!Op1) +        return false; +      bool Op1IsKill = hasTrivialKill(I->getOperand(1)); + +      unsigned ResultReg = +          fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill, +                       CI->getZExtValue(), VT.getSimpleVT()); +      if (!ResultReg) +        return false; + +      // We successfully emitted code for the given LLVM Instruction. +      updateValueMap(I, ResultReg); +      return true; +    } + +  unsigned Op0 = getRegForValue(I->getOperand(0)); +  if (!Op0) // Unhandled operand. Halt "fast" selection and bail. +    return false; +  bool Op0IsKill = hasTrivialKill(I->getOperand(0)); + +  // Check if the second operand is a constant and handle it appropriately. +  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { +    uint64_t Imm = CI->getSExtValue(); + +    // Transform "sdiv exact X, 8" -> "sra X, 3". +    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && +        cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) { +      Imm = Log2_64(Imm); +      ISDOpcode = ISD::SRA; +    } + +    // Transform "urem x, pow2" -> "and x, pow2-1". +    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && +        isPowerOf2_64(Imm)) { +      --Imm; +      ISDOpcode = ISD::AND; +    } + +    unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, +                                      Op0IsKill, Imm, VT.getSimpleVT()); +    if (!ResultReg) +      return false; + +    // We successfully emitted code for the given LLVM Instruction. +    updateValueMap(I, ResultReg); +    return true; +  } + +  unsigned Op1 = getRegForValue(I->getOperand(1)); +  if (!Op1) // Unhandled operand. Halt "fast" selection and bail. +    return false; +  bool Op1IsKill = hasTrivialKill(I->getOperand(1)); + +  // Now we have both operands in registers. Emit the instruction. +  unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), +                                   ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill); +  if (!ResultReg) +    // Target-specific code wasn't able to find a machine opcode for +    // the given ISD opcode and type. Halt "fast" selection and bail. +    return false; + +  // We successfully emitted code for the given LLVM Instruction. +  updateValueMap(I, ResultReg); +  return true; +} + +bool FastISel::selectGetElementPtr(const User *I) { +  unsigned N = getRegForValue(I->getOperand(0)); +  if (!N) // Unhandled operand. Halt "fast" selection and bail. +    return false; +  bool NIsKill = hasTrivialKill(I->getOperand(0)); + +  // Keep a running tab of the total offset to coalesce multiple N = N + Offset +  // into a single N = N + TotalOffset. +  uint64_t TotalOffs = 0; +  // FIXME: What's a good SWAG number for MaxOffs? +  uint64_t MaxOffs = 2048; +  MVT VT = TLI.getPointerTy(DL); +  for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I); +       GTI != E; ++GTI) { +    const Value *Idx = GTI.getOperand(); +    if (StructType *StTy = GTI.getStructTypeOrNull()) { +      uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue(); +      if (Field) { +        // N = N + Offset +        TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); +        if (TotalOffs >= MaxOffs) { +          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); +          if (!N) // Unhandled operand. Halt "fast" selection and bail. +            return false; +          NIsKill = true; +          TotalOffs = 0; +        } +      } +    } else { +      Type *Ty = GTI.getIndexedType(); + +      // If this is a constant subscript, handle it quickly. +      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { +        if (CI->isZero()) +          continue; +        // N = N + Offset +        uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue(); +        TotalOffs += DL.getTypeAllocSize(Ty) * IdxN; +        if (TotalOffs >= MaxOffs) { +          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); +          if (!N) // Unhandled operand. Halt "fast" selection and bail. +            return false; +          NIsKill = true; +          TotalOffs = 0; +        } +        continue; +      } +      if (TotalOffs) { +        N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); +        if (!N) // Unhandled operand. Halt "fast" selection and bail. +          return false; +        NIsKill = true; +        TotalOffs = 0; +      } + +      // N = N + Idx * ElementSize; +      uint64_t ElementSize = DL.getTypeAllocSize(Ty); +      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); +      unsigned IdxN = Pair.first; +      bool IdxNIsKill = Pair.second; +      if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. +        return false; + +      if (ElementSize != 1) { +        IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); +        if (!IdxN) // Unhandled operand. Halt "fast" selection and bail. +          return false; +        IdxNIsKill = true; +      } +      N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); +      if (!N) // Unhandled operand. Halt "fast" selection and bail. +        return false; +    } +  } +  if (TotalOffs) { +    N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); +    if (!N) // Unhandled operand. Halt "fast" selection and bail. +      return false; +  } + +  // We successfully emitted code for the given LLVM Instruction. +  updateValueMap(I, N); +  return true; +} + +bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, +                                   const CallInst *CI, unsigned StartIdx) { +  for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { +    Value *Val = CI->getArgOperand(i); +    // Check for constants and encode them with a StackMaps::ConstantOp prefix. +    if (const auto *C = dyn_cast<ConstantInt>(Val)) { +      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); +      Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); +    } else if (isa<ConstantPointerNull>(Val)) { +      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); +      Ops.push_back(MachineOperand::CreateImm(0)); +    } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { +      // Values coming from a stack location also require a special encoding, +      // but that is added later on by the target specific frame index +      // elimination implementation. +      auto SI = FuncInfo.StaticAllocaMap.find(AI); +      if (SI != FuncInfo.StaticAllocaMap.end()) +        Ops.push_back(MachineOperand::CreateFI(SI->second)); +      else +        return false; +    } else { +      unsigned Reg = getRegForValue(Val); +      if (!Reg) +        return false; +      Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); +    } +  } +  return true; +} + +bool FastISel::selectStackmap(const CallInst *I) { +  // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, +  //                                  [live variables...]) +  assert(I->getCalledFunction()->getReturnType()->isVoidTy() && +         "Stackmap cannot return a value."); + +  // The stackmap intrinsic only records the live variables (the arguments +  // passed to it) and emits NOPS (if requested). Unlike the patchpoint +  // intrinsic, this won't be lowered to a function call. This means we don't +  // have to worry about calling conventions and target-specific lowering code. +  // Instead we perform the call lowering right here. +  // +  // CALLSEQ_START(0, 0...) +  // STACKMAP(id, nbytes, ...) +  // CALLSEQ_END(0, 0) +  // +  SmallVector<MachineOperand, 32> Ops; + +  // Add the <id> and <numBytes> constants. +  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && +         "Expected a constant integer."); +  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); +  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); + +  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && +         "Expected a constant integer."); +  const auto *NumBytes = +      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); +  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); + +  // Push live variables for the stack map (skipping the first two arguments +  // <id> and <numBytes>). +  if (!addStackMapLiveVars(Ops, I, 2)) +    return false; + +  // We are not adding any register mask info here, because the stackmap doesn't +  // clobber anything. + +  // Add scratch registers as implicit def and early clobber. +  CallingConv::ID CC = I->getCallingConv(); +  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); +  for (unsigned i = 0; ScratchRegs[i]; ++i) +    Ops.push_back(MachineOperand::CreateReg( +        ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, +        /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); + +  // Issue CALLSEQ_START +  unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); +  auto Builder = +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)); +  const MCInstrDesc &MCID = Builder.getInstr()->getDesc(); +  for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I) +    Builder.addImm(0); + +  // Issue STACKMAP. +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +                                    TII.get(TargetOpcode::STACKMAP)); +  for (auto const &MO : Ops) +    MIB.add(MO); + +  // Issue CALLSEQ_END +  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) +      .addImm(0) +      .addImm(0); + +  // Inform the Frame Information that we have a stackmap in this function. +  FuncInfo.MF->getFrameInfo().setHasStackMap(); + +  return true; +} + +/// Lower an argument list according to the target calling convention. +/// +/// This is a helper for lowering intrinsics that follow a target calling +/// convention or require stack pointer adjustment. Only a subset of the +/// intrinsic's operands need to participate in the calling convention. +bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx, +                                 unsigned NumArgs, const Value *Callee, +                                 bool ForceRetVoidTy, CallLoweringInfo &CLI) { +  ArgListTy Args; +  Args.reserve(NumArgs); + +  // Populate the argument list. +  ImmutableCallSite CS(CI); +  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) { +    Value *V = CI->getOperand(ArgI); + +    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); + +    ArgListEntry Entry; +    Entry.Val = V; +    Entry.Ty = V->getType(); +    Entry.setAttributes(&CS, ArgI); +    Args.push_back(Entry); +  } + +  Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext()) +                               : CI->getType(); +  CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs); + +  return lowerCallTo(CLI); +} + +FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee( +    const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy, +    StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) { +  SmallString<32> MangledName; +  Mangler::getNameWithPrefix(MangledName, Target, DL); +  MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); +  return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs); +} + +bool FastISel::selectPatchpoint(const CallInst *I) { +  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, +  //                                                 i32 <numBytes>, +  //                                                 i8* <target>, +  //                                                 i32 <numArgs>, +  //                                                 [Args...], +  //                                                 [live variables...]) +  CallingConv::ID CC = I->getCallingConv(); +  bool IsAnyRegCC = CC == CallingConv::AnyReg; +  bool HasDef = !I->getType()->isVoidTy(); +  Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts(); + +  // Get the real number of arguments participating in the call <numArgs> +  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) && +         "Expected a constant integer."); +  const auto *NumArgsVal = +      cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)); +  unsigned NumArgs = NumArgsVal->getZExtValue(); + +  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> +  // This includes all meta-operands up to but not including CC. +  unsigned NumMetaOpers = PatchPointOpers::CCPos; +  assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs && +         "Not enough arguments provided to the patchpoint intrinsic"); + +  // For AnyRegCC the arguments are lowered later on manually. +  unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; +  CallLoweringInfo CLI; +  CLI.setIsPatchPoint(); +  if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI)) +    return false; + +  assert(CLI.Call && "No call instruction specified."); + +  SmallVector<MachineOperand, 32> Ops; + +  // Add an explicit result reg if we use the anyreg calling convention. +  if (IsAnyRegCC && HasDef) { +    assert(CLI.NumResultRegs == 0 && "Unexpected result register."); +    CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64)); +    CLI.NumResultRegs = 1; +    Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true)); +  } + +  // Add the <id> and <numBytes> constants. +  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && +         "Expected a constant integer."); +  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); +  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); + +  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && +         "Expected a constant integer."); +  const auto *NumBytes = +      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); +  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); + +  // Add the call target. +  if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) { +    uint64_t CalleeConstAddr = +      cast<ConstantInt>(C->getOperand(0))->getZExtValue(); +    Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); +  } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) { +    if (C->getOpcode() == Instruction::IntToPtr) { +      uint64_t CalleeConstAddr = +        cast<ConstantInt>(C->getOperand(0))->getZExtValue(); +      Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr)); +    } else +      llvm_unreachable("Unsupported ConstantExpr."); +  } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) { +    Ops.push_back(MachineOperand::CreateGA(GV, 0)); +  } else if (isa<ConstantPointerNull>(Callee)) +    Ops.push_back(MachineOperand::CreateImm(0)); +  else +    llvm_unreachable("Unsupported callee address."); + +  // Adjust <numArgs> to account for any arguments that have been passed on +  // the stack instead. +  unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size(); +  Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs)); + +  // Add the calling convention +  Ops.push_back(MachineOperand::CreateImm((unsigned)CC)); + +  // Add the arguments we omitted previously. The register allocator should +  // place these in any free register. +  if (IsAnyRegCC) { +    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) { +      unsigned Reg = getRegForValue(I->getArgOperand(i)); +      if (!Reg) +        return false; +      Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); +    } +  } + +  // Push the arguments from the call instruction. +  for (auto Reg : CLI.OutRegs) +    Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false)); + +  // Push live variables for the stack map. +  if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs)) +    return false; + +  // Push the register mask info. +  Ops.push_back(MachineOperand::CreateRegMask( +      TRI.getCallPreservedMask(*FuncInfo.MF, CC))); + +  // Add scratch registers as implicit def and early clobber. +  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); +  for (unsigned i = 0; ScratchRegs[i]; ++i) +    Ops.push_back(MachineOperand::CreateReg( +        ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, +        /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true)); + +  // Add implicit defs (return values). +  for (auto Reg : CLI.InRegs) +    Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true, +                                            /*isImp=*/true)); + +  // Insert the patchpoint instruction before the call generated by the target. +  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc, +                                    TII.get(TargetOpcode::PATCHPOINT)); + +  for (auto &MO : Ops) +    MIB.add(MO); + +  MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI); + +  // Delete the original call instruction. +  CLI.Call->eraseFromParent(); + +  // Inform the Frame Information that we have a patchpoint in this function. +  FuncInfo.MF->getFrameInfo().setHasPatchPoint(); + +  if (CLI.NumResultRegs) +    updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs); +  return true; +} + +bool FastISel::selectXRayCustomEvent(const CallInst *I) { +  const auto &Triple = TM.getTargetTriple(); +  if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) +    return true; // don't do anything to this instruction. +  SmallVector<MachineOperand, 8> Ops; +  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), +                                          /*isDef=*/false)); +  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), +                                          /*isDef=*/false)); +  MachineInstrBuilder MIB = +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +              TII.get(TargetOpcode::PATCHABLE_EVENT_CALL)); +  for (auto &MO : Ops) +    MIB.add(MO); + +  // Insert the Patchable Event Call instruction, that gets lowered properly. +  return true; +} + +bool FastISel::selectXRayTypedEvent(const CallInst *I) { +  const auto &Triple = TM.getTargetTriple(); +  if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) +    return true; // don't do anything to this instruction. +  SmallVector<MachineOperand, 8> Ops; +  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)), +                                          /*isDef=*/false)); +  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)), +                                          /*isDef=*/false)); +  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)), +                                          /*isDef=*/false)); +  MachineInstrBuilder MIB = +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +              TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL)); +  for (auto &MO : Ops) +    MIB.add(MO); + +  // Insert the Patchable Typed Event Call instruction, that gets lowered properly. +  return true; +} + +/// Returns an AttributeList representing the attributes applied to the return +/// value of the given call. +static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) { +  SmallVector<Attribute::AttrKind, 2> Attrs; +  if (CLI.RetSExt) +    Attrs.push_back(Attribute::SExt); +  if (CLI.RetZExt) +    Attrs.push_back(Attribute::ZExt); +  if (CLI.IsInReg) +    Attrs.push_back(Attribute::InReg); + +  return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, +                            Attrs); +} + +bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName, +                           unsigned NumArgs) { +  MCContext &Ctx = MF->getContext(); +  SmallString<32> MangledName; +  Mangler::getNameWithPrefix(MangledName, SymName, DL); +  MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName); +  return lowerCallTo(CI, Sym, NumArgs); +} + +bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol, +                           unsigned NumArgs) { +  ImmutableCallSite CS(CI); + +  FunctionType *FTy = CS.getFunctionType(); +  Type *RetTy = CS.getType(); + +  ArgListTy Args; +  Args.reserve(NumArgs); + +  // Populate the argument list. +  // Attributes for args start at offset 1, after the return attribute. +  for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) { +    Value *V = CI->getOperand(ArgI); + +    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); + +    ArgListEntry Entry; +    Entry.Val = V; +    Entry.Ty = V->getType(); +    Entry.setAttributes(&CS, ArgI); +    Args.push_back(Entry); +  } +  TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args); + +  CallLoweringInfo CLI; +  CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs); + +  return lowerCallTo(CLI); +} + +bool FastISel::lowerCallTo(CallLoweringInfo &CLI) { +  // Handle the incoming return values from the call. +  CLI.clearIns(); +  SmallVector<EVT, 4> RetTys; +  ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys); + +  SmallVector<ISD::OutputArg, 4> Outs; +  GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL); + +  bool CanLowerReturn = TLI.CanLowerReturn( +      CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext()); + +  // FIXME: sret demotion isn't supported yet - bail out. +  if (!CanLowerReturn) +    return false; + +  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { +    EVT VT = RetTys[I]; +    MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT); +    unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT); +    for (unsigned i = 0; i != NumRegs; ++i) { +      ISD::InputArg MyFlags; +      MyFlags.VT = RegisterVT; +      MyFlags.ArgVT = VT; +      MyFlags.Used = CLI.IsReturnValueUsed; +      if (CLI.RetSExt) +        MyFlags.Flags.setSExt(); +      if (CLI.RetZExt) +        MyFlags.Flags.setZExt(); +      if (CLI.IsInReg) +        MyFlags.Flags.setInReg(); +      CLI.Ins.push_back(MyFlags); +    } +  } + +  // Handle all of the outgoing arguments. +  CLI.clearOuts(); +  for (auto &Arg : CLI.getArgs()) { +    Type *FinalType = Arg.Ty; +    if (Arg.IsByVal) +      FinalType = cast<PointerType>(Arg.Ty)->getElementType(); +    bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( +        FinalType, CLI.CallConv, CLI.IsVarArg); + +    ISD::ArgFlagsTy Flags; +    if (Arg.IsZExt) +      Flags.setZExt(); +    if (Arg.IsSExt) +      Flags.setSExt(); +    if (Arg.IsInReg) +      Flags.setInReg(); +    if (Arg.IsSRet) +      Flags.setSRet(); +    if (Arg.IsSwiftSelf) +      Flags.setSwiftSelf(); +    if (Arg.IsSwiftError) +      Flags.setSwiftError(); +    if (Arg.IsByVal) +      Flags.setByVal(); +    if (Arg.IsInAlloca) { +      Flags.setInAlloca(); +      // Set the byval flag for CCAssignFn callbacks that don't know about +      // inalloca. This way we can know how many bytes we should've allocated +      // and how many bytes a callee cleanup function will pop.  If we port +      // inalloca to more targets, we'll have to add custom inalloca handling in +      // the various CC lowering callbacks. +      Flags.setByVal(); +    } +    if (Arg.IsByVal || Arg.IsInAlloca) { +      PointerType *Ty = cast<PointerType>(Arg.Ty); +      Type *ElementTy = Ty->getElementType(); +      unsigned FrameSize = +          DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy); + +      // For ByVal, alignment should come from FE. BE will guess if this info +      // is not there, but there are cases it cannot get right. +      unsigned FrameAlign = Arg.Alignment; +      if (!FrameAlign) +        FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL); +      Flags.setByValSize(FrameSize); +      Flags.setByValAlign(Align(FrameAlign)); +    } +    if (Arg.IsNest) +      Flags.setNest(); +    if (NeedsRegBlock) +      Flags.setInConsecutiveRegs(); +    Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty))); + +    CLI.OutVals.push_back(Arg.Val); +    CLI.OutFlags.push_back(Flags); +  } + +  if (!fastLowerCall(CLI)) +    return false; + +  // Set all unused physreg defs as dead. +  assert(CLI.Call && "No call instruction specified."); +  CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI); + +  if (CLI.NumResultRegs && CLI.CS) +    updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs); + +  // Set labels for heapallocsite call. +  if (CLI.CS && CLI.CS->getInstruction()->hasMetadata("heapallocsite")) { +    const MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite"); +    MF->addCodeViewHeapAllocSite(CLI.Call, MD); +  } + +  return true; +} + +bool FastISel::lowerCall(const CallInst *CI) { +  ImmutableCallSite CS(CI); + +  FunctionType *FuncTy = CS.getFunctionType(); +  Type *RetTy = CS.getType(); + +  ArgListTy Args; +  ArgListEntry Entry; +  Args.reserve(CS.arg_size()); + +  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); +       i != e; ++i) { +    Value *V = *i; + +    // Skip empty types +    if (V->getType()->isEmptyTy()) +      continue; + +    Entry.Val = V; +    Entry.Ty = V->getType(); + +    // Skip the first return-type Attribute to get to params. +    Entry.setAttributes(&CS, i - CS.arg_begin()); +    Args.push_back(Entry); +  } + +  // Check if target-independent constraints permit a tail call here. +  // Target-dependent constraints are checked within fastLowerCall. +  bool IsTailCall = CI->isTailCall(); +  if (IsTailCall && !isInTailCallPosition(CS, TM)) +    IsTailCall = false; + +  CallLoweringInfo CLI; +  CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS) +      .setTailCall(IsTailCall); + +  return lowerCallTo(CLI); +} + +bool FastISel::selectCall(const User *I) { +  const CallInst *Call = cast<CallInst>(I); + +  // Handle simple inline asms. +  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { +    // If the inline asm has side effects, then make sure that no local value +    // lives across by flushing the local value map. +    if (IA->hasSideEffects()) +      flushLocalValueMap(); + +    // Don't attempt to handle constraints. +    if (!IA->getConstraintString().empty()) +      return false; + +    unsigned ExtraInfo = 0; +    if (IA->hasSideEffects()) +      ExtraInfo |= InlineAsm::Extra_HasSideEffects; +    if (IA->isAlignStack()) +      ExtraInfo |= InlineAsm::Extra_IsAlignStack; +    ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; + +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::INLINEASM)) +        .addExternalSymbol(IA->getAsmString().c_str()) +        .addImm(ExtraInfo); +    return true; +  } + +  // Handle intrinsic function calls. +  if (const auto *II = dyn_cast<IntrinsicInst>(Call)) +    return selectIntrinsicCall(II); + +  // Usually, it does not make sense to initialize a value, +  // make an unrelated function call and use the value, because +  // it tends to be spilled on the stack. So, we move the pointer +  // to the last local value to the beginning of the block, so that +  // all the values which have already been materialized, +  // appear after the call. It also makes sense to skip intrinsics +  // since they tend to be inlined. +  flushLocalValueMap(); + +  return lowerCall(Call); +} + +bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) { +  switch (II->getIntrinsicID()) { +  default: +    break; +  // At -O0 we don't care about the lifetime intrinsics. +  case Intrinsic::lifetime_start: +  case Intrinsic::lifetime_end: +  // The donothing intrinsic does, well, nothing. +  case Intrinsic::donothing: +  // Neither does the sideeffect intrinsic. +  case Intrinsic::sideeffect: +  // Neither does the assume intrinsic; it's also OK not to codegen its operand. +  case Intrinsic::assume: +    return true; +  case Intrinsic::dbg_declare: { +    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II); +    assert(DI->getVariable() && "Missing variable"); +    if (!FuncInfo.MF->getMMI().hasDebugInfo()) { +      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); +      return true; +    } + +    const Value *Address = DI->getAddress(); +    if (!Address || isa<UndefValue>(Address)) { +      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); +      return true; +    } + +    // Byval arguments with frame indices were already handled after argument +    // lowering and before isel. +    const auto *Arg = +        dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); +    if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) +      return true; + +    Optional<MachineOperand> Op; +    if (unsigned Reg = lookUpRegForValue(Address)) +      Op = MachineOperand::CreateReg(Reg, false); + +    // If we have a VLA that has a "use" in a metadata node that's then used +    // here but it has no other uses, then we have a problem. E.g., +    // +    //   int foo (const int *x) { +    //     char a[*x]; +    //     return 0; +    //   } +    // +    // If we assign 'a' a vreg and fast isel later on has to use the selection +    // DAG isel, it will want to copy the value to the vreg. However, there are +    // no uses, which goes counter to what selection DAG isel expects. +    if (!Op && !Address->use_empty() && isa<Instruction>(Address) && +        (!isa<AllocaInst>(Address) || +         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) +      Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), +                                     false); + +    if (Op) { +      assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && +             "Expected inlined-at fields to agree"); +      // A dbg.declare describes the address of a source variable, so lower it +      // into an indirect DBG_VALUE. +      auto *Expr = DI->getExpression(); +      Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +              TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ false, +              *Op, DI->getVariable(), Expr); +    } else { +      // We can't yet handle anything else here because it would require +      // generating code, thus altering codegen because of debug info. +      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); +    } +    return true; +  } +  case Intrinsic::dbg_value: { +    // This form of DBG_VALUE is target-independent. +    const DbgValueInst *DI = cast<DbgValueInst>(II); +    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); +    const Value *V = DI->getValue(); +    assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) && +           "Expected inlined-at fields to agree"); +    if (!V) { +      // Currently the optimizer can produce this; insert an undef to +      // help debugging.  Probably the optimizer should not do this. +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U, +              DI->getVariable(), DI->getExpression()); +    } else if (const auto *CI = dyn_cast<ConstantInt>(V)) { +      if (CI->getBitWidth() > 64) +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +            .addCImm(CI) +            .addReg(0U) +            .addMetadata(DI->getVariable()) +            .addMetadata(DI->getExpression()); +      else +        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +            .addImm(CI->getZExtValue()) +            .addReg(0U) +            .addMetadata(DI->getVariable()) +            .addMetadata(DI->getExpression()); +    } else if (const auto *CF = dyn_cast<ConstantFP>(V)) { +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +          .addFPImm(CF) +          .addReg(0U) +          .addMetadata(DI->getVariable()) +          .addMetadata(DI->getExpression()); +    } else if (unsigned Reg = lookUpRegForValue(V)) { +      // FIXME: This does not handle register-indirect values at offset 0. +      bool IsIndirect = false; +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg, +              DI->getVariable(), DI->getExpression()); +    } else { +      // We can't yet handle anything else here because it would require +      // generating code, thus altering codegen because of debug info. +      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); +    } +    return true; +  } +  case Intrinsic::dbg_label: { +    const DbgLabelInst *DI = cast<DbgLabelInst>(II); +    assert(DI->getLabel() && "Missing label"); +    if (!FuncInfo.MF->getMMI().hasDebugInfo()) { +      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); +      return true; +    } + +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel()); +    return true; +  } +  case Intrinsic::objectsize: +    llvm_unreachable("llvm.objectsize.* should have been lowered already"); + +  case Intrinsic::is_constant: +    llvm_unreachable("llvm.is.constant.* should have been lowered already"); + +  case Intrinsic::launder_invariant_group: +  case Intrinsic::strip_invariant_group: +  case Intrinsic::expect: { +    unsigned ResultReg = getRegForValue(II->getArgOperand(0)); +    if (!ResultReg) +      return false; +    updateValueMap(II, ResultReg); +    return true; +  } +  case Intrinsic::experimental_stackmap: +    return selectStackmap(II); +  case Intrinsic::experimental_patchpoint_void: +  case Intrinsic::experimental_patchpoint_i64: +    return selectPatchpoint(II); + +  case Intrinsic::xray_customevent: +    return selectXRayCustomEvent(II); +  case Intrinsic::xray_typedevent: +    return selectXRayTypedEvent(II); +  } + +  return fastLowerIntrinsicCall(II); +} + +bool FastISel::selectCast(const User *I, unsigned Opcode) { +  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); +  EVT DstVT = TLI.getValueType(DL, I->getType()); + +  if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other || +      !DstVT.isSimple()) +    // Unhandled type. Halt "fast" selection and bail. +    return false; + +  // Check if the destination type is legal. +  if (!TLI.isTypeLegal(DstVT)) +    return false; + +  // Check if the source operand is legal. +  if (!TLI.isTypeLegal(SrcVT)) +    return false; + +  unsigned InputReg = getRegForValue(I->getOperand(0)); +  if (!InputReg) +    // Unhandled operand.  Halt "fast" selection and bail. +    return false; + +  bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); + +  unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), +                                  Opcode, InputReg, InputRegIsKill); +  if (!ResultReg) +    return false; + +  updateValueMap(I, ResultReg); +  return true; +} + +bool FastISel::selectBitCast(const User *I) { +  // If the bitcast doesn't change the type, just use the operand value. +  if (I->getType() == I->getOperand(0)->getType()) { +    unsigned Reg = getRegForValue(I->getOperand(0)); +    if (!Reg) +      return false; +    updateValueMap(I, Reg); +    return true; +  } + +  // Bitcasts of other values become reg-reg copies or BITCAST operators. +  EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType()); +  EVT DstEVT = TLI.getValueType(DL, I->getType()); +  if (SrcEVT == MVT::Other || DstEVT == MVT::Other || +      !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) +    // Unhandled type. Halt "fast" selection and bail. +    return false; + +  MVT SrcVT = SrcEVT.getSimpleVT(); +  MVT DstVT = DstEVT.getSimpleVT(); +  unsigned Op0 = getRegForValue(I->getOperand(0)); +  if (!Op0) // Unhandled operand. Halt "fast" selection and bail. +    return false; +  bool Op0IsKill = hasTrivialKill(I->getOperand(0)); + +  // First, try to perform the bitcast by inserting a reg-reg copy. +  unsigned ResultReg = 0; +  if (SrcVT == DstVT) { +    const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT); +    const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT); +    // Don't attempt a cross-class copy. It will likely fail. +    if (SrcClass == DstClass) { +      ResultReg = createResultReg(DstClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +              TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); +    } +  } + +  // If the reg-reg copy failed, select a BITCAST opcode. +  if (!ResultReg) +    ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); + +  if (!ResultReg) +    return false; + +  updateValueMap(I, ResultReg); +  return true; +} + +// Remove local value instructions starting from the instruction after +// SavedLastLocalValue to the current function insert point. +void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue) +{ +  MachineInstr *CurLastLocalValue = getLastLocalValue(); +  if (CurLastLocalValue != SavedLastLocalValue) { +    // Find the first local value instruction to be deleted. +    // This is the instruction after SavedLastLocalValue if it is non-NULL. +    // Otherwise it's the first instruction in the block. +    MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue); +    if (SavedLastLocalValue) +      ++FirstDeadInst; +    else +      FirstDeadInst = FuncInfo.MBB->getFirstNonPHI(); +    setLastLocalValue(SavedLastLocalValue); +    removeDeadCode(FirstDeadInst, FuncInfo.InsertPt); +  } +} + +bool FastISel::selectInstruction(const Instruction *I) { +  MachineInstr *SavedLastLocalValue = getLastLocalValue(); +  // Just before the terminator instruction, insert instructions to +  // feed PHI nodes in successor blocks. +  if (I->isTerminator()) { +    if (!handlePHINodesInSuccessorBlocks(I->getParent())) { +      // PHI node handling may have generated local value instructions, +      // even though it failed to handle all PHI nodes. +      // We remove these instructions because SelectionDAGISel will generate +      // them again. +      removeDeadLocalValueCode(SavedLastLocalValue); +      return false; +    } +  } + +  // FastISel does not handle any operand bundles except OB_funclet. +  if (ImmutableCallSite CS = ImmutableCallSite(I)) +    for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) +      if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet) +        return false; + +  DbgLoc = I->getDebugLoc(); + +  SavedInsertPt = FuncInfo.InsertPt; + +  if (const auto *Call = dyn_cast<CallInst>(I)) { +    const Function *F = Call->getCalledFunction(); +    LibFunc Func; + +    // As a special case, don't handle calls to builtin library functions that +    // may be translated directly to target instructions. +    if (F && !F->hasLocalLinkage() && F->hasName() && +        LibInfo->getLibFunc(F->getName(), Func) && +        LibInfo->hasOptimizedCodeGen(Func)) +      return false; + +    // Don't handle Intrinsic::trap if a trap function is specified. +    if (F && F->getIntrinsicID() == Intrinsic::trap && +        Call->hasFnAttr("trap-func-name")) +      return false; +  } + +  // First, try doing target-independent selection. +  if (!SkipTargetIndependentISel) { +    if (selectOperator(I, I->getOpcode())) { +      ++NumFastIselSuccessIndependent; +      DbgLoc = DebugLoc(); +      return true; +    } +    // Remove dead code. +    recomputeInsertPt(); +    if (SavedInsertPt != FuncInfo.InsertPt) +      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); +    SavedInsertPt = FuncInfo.InsertPt; +  } +  // Next, try calling the target to attempt to handle the instruction. +  if (fastSelectInstruction(I)) { +    ++NumFastIselSuccessTarget; +    DbgLoc = DebugLoc(); +    return true; +  } +  // Remove dead code. +  recomputeInsertPt(); +  if (SavedInsertPt != FuncInfo.InsertPt) +    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); + +  DbgLoc = DebugLoc(); +  // Undo phi node updates, because they will be added again by SelectionDAG. +  if (I->isTerminator()) { +    // PHI node handling may have generated local value instructions. +    // We remove them because SelectionDAGISel will generate them again. +    removeDeadLocalValueCode(SavedLastLocalValue); +    FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); +  } +  return false; +} + +/// Emit an unconditional branch to the given block, unless it is the immediate +/// (fall-through) successor, and update the CFG. +void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, +                              const DebugLoc &DbgLoc) { +  if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 && +      FuncInfo.MBB->isLayoutSuccessor(MSucc)) { +    // For more accurate line information if this is the only non-debug +    // instruction in the block then emit it, otherwise we have the +    // unconditional fall-through case, which needs no instructions. +  } else { +    // The unconditional branch case. +    TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr, +                     SmallVector<MachineOperand, 0>(), DbgLoc); +  } +  if (FuncInfo.BPI) { +    auto BranchProbability = FuncInfo.BPI->getEdgeProbability( +        FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock()); +    FuncInfo.MBB->addSuccessor(MSucc, BranchProbability); +  } else +    FuncInfo.MBB->addSuccessorWithoutProb(MSucc); +} + +void FastISel::finishCondBranch(const BasicBlock *BranchBB, +                                MachineBasicBlock *TrueMBB, +                                MachineBasicBlock *FalseMBB) { +  // Add TrueMBB as successor unless it is equal to the FalseMBB: This can +  // happen in degenerate IR and MachineIR forbids to have a block twice in the +  // successor/predecessor lists. +  if (TrueMBB != FalseMBB) { +    if (FuncInfo.BPI) { +      auto BranchProbability = +          FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock()); +      FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability); +    } else +      FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB); +  } + +  fastEmitBranch(FalseMBB, DbgLoc); +} + +/// Emit an FNeg operation. +bool FastISel::selectFNeg(const User *I, const Value *In) { +  unsigned OpReg = getRegForValue(In); +  if (!OpReg) +    return false; +  bool OpRegIsKill = hasTrivialKill(In); + +  // If the target has ISD::FNEG, use it. +  EVT VT = TLI.getValueType(DL, I->getType()); +  unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG, +                                  OpReg, OpRegIsKill); +  if (ResultReg) { +    updateValueMap(I, ResultReg); +    return true; +  } + +  // Bitcast the value to integer, twiddle the sign bit with xor, +  // and then bitcast it back to floating-point. +  if (VT.getSizeInBits() > 64) +    return false; +  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); +  if (!TLI.isTypeLegal(IntVT)) +    return false; + +  unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), +                               ISD::BITCAST, OpReg, OpRegIsKill); +  if (!IntReg) +    return false; + +  unsigned IntResultReg = fastEmit_ri_( +      IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true, +      UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT()); +  if (!IntResultReg) +    return false; + +  ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST, +                         IntResultReg, /*IsKill=*/true); +  if (!ResultReg) +    return false; + +  updateValueMap(I, ResultReg); +  return true; +} + +bool FastISel::selectExtractValue(const User *U) { +  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); +  if (!EVI) +    return false; + +  // Make sure we only try to handle extracts with a legal result.  But also +  // allow i1 because it's easy. +  EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true); +  if (!RealVT.isSimple()) +    return false; +  MVT VT = RealVT.getSimpleVT(); +  if (!TLI.isTypeLegal(VT) && VT != MVT::i1) +    return false; + +  const Value *Op0 = EVI->getOperand(0); +  Type *AggTy = Op0->getType(); + +  // Get the base result register. +  unsigned ResultReg; +  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); +  if (I != FuncInfo.ValueMap.end()) +    ResultReg = I->second; +  else if (isa<Instruction>(Op0)) +    ResultReg = FuncInfo.InitializeRegForValue(Op0); +  else +    return false; // fast-isel can't handle aggregate constants at the moment + +  // Get the actual result register, which is an offset from the base register. +  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); + +  SmallVector<EVT, 4> AggValueVTs; +  ComputeValueVTs(TLI, DL, AggTy, AggValueVTs); + +  for (unsigned i = 0; i < VTIndex; i++) +    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); + +  updateValueMap(EVI, ResultReg); +  return true; +} + +bool FastISel::selectOperator(const User *I, unsigned Opcode) { +  switch (Opcode) { +  case Instruction::Add: +    return selectBinaryOp(I, ISD::ADD); +  case Instruction::FAdd: +    return selectBinaryOp(I, ISD::FADD); +  case Instruction::Sub: +    return selectBinaryOp(I, ISD::SUB); +  case Instruction::FSub: { +    // FNeg is currently represented in LLVM IR as a special case of FSub. +    Value *X; +    if (match(I, m_FNeg(m_Value(X)))) +       return selectFNeg(I, X); +    return selectBinaryOp(I, ISD::FSUB); +  } +  case Instruction::Mul: +    return selectBinaryOp(I, ISD::MUL); +  case Instruction::FMul: +    return selectBinaryOp(I, ISD::FMUL); +  case Instruction::SDiv: +    return selectBinaryOp(I, ISD::SDIV); +  case Instruction::UDiv: +    return selectBinaryOp(I, ISD::UDIV); +  case Instruction::FDiv: +    return selectBinaryOp(I, ISD::FDIV); +  case Instruction::SRem: +    return selectBinaryOp(I, ISD::SREM); +  case Instruction::URem: +    return selectBinaryOp(I, ISD::UREM); +  case Instruction::FRem: +    return selectBinaryOp(I, ISD::FREM); +  case Instruction::Shl: +    return selectBinaryOp(I, ISD::SHL); +  case Instruction::LShr: +    return selectBinaryOp(I, ISD::SRL); +  case Instruction::AShr: +    return selectBinaryOp(I, ISD::SRA); +  case Instruction::And: +    return selectBinaryOp(I, ISD::AND); +  case Instruction::Or: +    return selectBinaryOp(I, ISD::OR); +  case Instruction::Xor: +    return selectBinaryOp(I, ISD::XOR); + +  case Instruction::FNeg: +    return selectFNeg(I, I->getOperand(0)); + +  case Instruction::GetElementPtr: +    return selectGetElementPtr(I); + +  case Instruction::Br: { +    const BranchInst *BI = cast<BranchInst>(I); + +    if (BI->isUnconditional()) { +      const BasicBlock *LLVMSucc = BI->getSuccessor(0); +      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; +      fastEmitBranch(MSucc, BI->getDebugLoc()); +      return true; +    } + +    // Conditional branches are not handed yet. +    // Halt "fast" selection and bail. +    return false; +  } + +  case Instruction::Unreachable: +    if (TM.Options.TrapUnreachable) +      return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; +    else +      return true; + +  case Instruction::Alloca: +    // FunctionLowering has the static-sized case covered. +    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) +      return true; + +    // Dynamic-sized alloca is not handled yet. +    return false; + +  case Instruction::Call: +    // On AIX, call lowering uses the DAG-ISEL path currently so that the +    // callee of the direct function call instruction will be mapped to the +    // symbol for the function's entry point, which is distinct from the +    // function descriptor symbol. The latter is the symbol whose XCOFF symbol +    // name is the C-linkage name of the source level function. +    if (TM.getTargetTriple().isOSAIX()) +      return false; +    return selectCall(I); + +  case Instruction::BitCast: +    return selectBitCast(I); + +  case Instruction::FPToSI: +    return selectCast(I, ISD::FP_TO_SINT); +  case Instruction::ZExt: +    return selectCast(I, ISD::ZERO_EXTEND); +  case Instruction::SExt: +    return selectCast(I, ISD::SIGN_EXTEND); +  case Instruction::Trunc: +    return selectCast(I, ISD::TRUNCATE); +  case Instruction::SIToFP: +    return selectCast(I, ISD::SINT_TO_FP); + +  case Instruction::IntToPtr: // Deliberate fall-through. +  case Instruction::PtrToInt: { +    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType()); +    EVT DstVT = TLI.getValueType(DL, I->getType()); +    if (DstVT.bitsGT(SrcVT)) +      return selectCast(I, ISD::ZERO_EXTEND); +    if (DstVT.bitsLT(SrcVT)) +      return selectCast(I, ISD::TRUNCATE); +    unsigned Reg = getRegForValue(I->getOperand(0)); +    if (!Reg) +      return false; +    updateValueMap(I, Reg); +    return true; +  } + +  case Instruction::ExtractValue: +    return selectExtractValue(I); + +  case Instruction::PHI: +    llvm_unreachable("FastISel shouldn't visit PHI nodes!"); + +  default: +    // Unhandled instruction. Halt "fast" selection and bail. +    return false; +  } +} + +FastISel::FastISel(FunctionLoweringInfo &FuncInfo, +                   const TargetLibraryInfo *LibInfo, +                   bool SkipTargetIndependentISel) +    : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()), +      MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()), +      TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()), +      TII(*MF->getSubtarget().getInstrInfo()), +      TLI(*MF->getSubtarget().getTargetLowering()), +      TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo), +      SkipTargetIndependentISel(SkipTargetIndependentISel) {} + +FastISel::~FastISel() = default; + +bool FastISel::fastLowerArguments() { return false; } + +bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; } + +bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) { +  return false; +} + +unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; } + +unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/, +                              bool /*Op0IsKill*/) { +  return 0; +} + +unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/, +                               bool /*Op0IsKill*/, unsigned /*Op1*/, +                               bool /*Op1IsKill*/) { +  return 0; +} + +unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { +  return 0; +} + +unsigned FastISel::fastEmit_f(MVT, MVT, unsigned, +                              const ConstantFP * /*FPImm*/) { +  return 0; +} + +unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/, +                               bool /*Op0IsKill*/, uint64_t /*Imm*/) { +  return 0; +} + +/// This method is a wrapper of fastEmit_ri. It first tries to emit an +/// instruction with an immediate operand using fastEmit_ri. +/// If that fails, it materializes the immediate into a register and try +/// fastEmit_rr instead. +unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, +                                bool Op0IsKill, uint64_t Imm, MVT ImmType) { +  // If this is a multiply by a power of two, emit this as a shift left. +  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { +    Opcode = ISD::SHL; +    Imm = Log2_64(Imm); +  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { +    // div x, 8 -> srl x, 3 +    Opcode = ISD::SRL; +    Imm = Log2_64(Imm); +  } + +  // Horrible hack (to be removed), check to make sure shift amounts are +  // in-range. +  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && +      Imm >= VT.getSizeInBits()) +    return 0; + +  // First check if immediate type is legal. If not, we can't use the ri form. +  unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); +  if (ResultReg) +    return ResultReg; +  unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm); +  bool IsImmKill = true; +  if (!MaterialReg) { +    // This is a bit ugly/slow, but failing here means falling out of +    // fast-isel, which would be very slow. +    IntegerType *ITy = +        IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits()); +    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); +    if (!MaterialReg) +      return 0; +    // FIXME: If the materialized register here has no uses yet then this +    // will be the first use and we should be able to mark it as killed. +    // However, the local value area for materialising constant expressions +    // grows down, not up, which means that any constant expressions we generate +    // later which also use 'Imm' could be after this instruction and therefore +    // after this kill. +    IsImmKill = false; +  } +  return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill); +} + +unsigned FastISel::createResultReg(const TargetRegisterClass *RC) { +  return MRI.createVirtualRegister(RC); +} + +unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op, +                                            unsigned OpNum) { +  if (Register::isVirtualRegister(Op)) { +    const TargetRegisterClass *RegClass = +        TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); +    if (!MRI.constrainRegClass(Op, RegClass)) { +      // If it's not legal to COPY between the register classes, something +      // has gone very wrong before we got here. +      unsigned NewOp = createResultReg(RegClass); +      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +              TII.get(TargetOpcode::COPY), NewOp).addReg(Op); +      return NewOp; +    } +  } +  return Op; +} + +unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode, +                                 const TargetRegisterClass *RC) { +  unsigned ResultReg = createResultReg(RC); +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode, +                                  const TargetRegisterClass *RC, unsigned Op0, +                                  bool Op0IsKill) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  unsigned ResultReg = createResultReg(RC); +  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addReg(Op0, getKillRegState(Op0IsKill)); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +        .addReg(Op0, getKillRegState(Op0IsKill)); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } + +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode, +                                   const TargetRegisterClass *RC, unsigned Op0, +                                   bool Op0IsKill, unsigned Op1, +                                   bool Op1IsKill) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  unsigned ResultReg = createResultReg(RC); +  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); +  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addReg(Op1, getKillRegState(Op1IsKill)); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addReg(Op1, getKillRegState(Op1IsKill)); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, +                                    const TargetRegisterClass *RC, unsigned Op0, +                                    bool Op0IsKill, unsigned Op1, +                                    bool Op1IsKill, unsigned Op2, +                                    bool Op2IsKill) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  unsigned ResultReg = createResultReg(RC); +  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); +  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); +  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addReg(Op1, getKillRegState(Op1IsKill)) +        .addReg(Op2, getKillRegState(Op2IsKill)); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addReg(Op1, getKillRegState(Op1IsKill)) +        .addReg(Op2, getKillRegState(Op2IsKill)); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode, +                                   const TargetRegisterClass *RC, unsigned Op0, +                                   bool Op0IsKill, uint64_t Imm) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  unsigned ResultReg = createResultReg(RC); +  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addImm(Imm); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addImm(Imm); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode, +                                    const TargetRegisterClass *RC, unsigned Op0, +                                    bool Op0IsKill, uint64_t Imm1, +                                    uint64_t Imm2) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  unsigned ResultReg = createResultReg(RC); +  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addImm(Imm1) +        .addImm(Imm2); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addImm(Imm1) +        .addImm(Imm2); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode, +                                  const TargetRegisterClass *RC, +                                  const ConstantFP *FPImm) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  unsigned ResultReg = createResultReg(RC); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addFPImm(FPImm); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +        .addFPImm(FPImm); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode, +                                    const TargetRegisterClass *RC, unsigned Op0, +                                    bool Op0IsKill, unsigned Op1, +                                    bool Op1IsKill, uint64_t Imm) { +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  unsigned ResultReg = createResultReg(RC); +  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); +  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addReg(Op1, getKillRegState(Op1IsKill)) +        .addImm(Imm); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) +        .addReg(Op0, getKillRegState(Op0IsKill)) +        .addReg(Op1, getKillRegState(Op1IsKill)) +        .addImm(Imm); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode, +                                  const TargetRegisterClass *RC, uint64_t Imm) { +  unsigned ResultReg = createResultReg(RC); +  const MCInstrDesc &II = TII.get(MachineInstOpcode); + +  if (II.getNumDefs() >= 1) +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) +        .addImm(Imm); +  else { +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); +    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, +            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); +  } +  return ResultReg; +} + +unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, +                                              bool Op0IsKill, uint32_t Idx) { +  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); +  assert(Register::isVirtualRegister(Op0) && +         "Cannot yet extract from physregs"); +  const TargetRegisterClass *RC = MRI.getRegClass(Op0); +  MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); +  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY), +          ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx); +  return ResultReg; +} + +/// Emit MachineInstrs to compute the value of Op with all but the least +/// significant bit set to zero. +unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { +  return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); +} + +/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. +/// Emit code to ensure constants are copied into registers when needed. +/// Remember the virtual registers that need to be added to the Machine PHI +/// nodes as input.  We cannot just directly add them, because expansion +/// might result in multiple MBB's for one BB.  As such, the start of the +/// BB might correspond to a different MBB than the end. +bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { +  const Instruction *TI = LLVMBB->getTerminator(); + +  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; +  FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); + +  // Check successor nodes' PHI nodes that expect a constant to be available +  // from this block. +  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { +    const BasicBlock *SuccBB = TI->getSuccessor(succ); +    if (!isa<PHINode>(SuccBB->begin())) +      continue; +    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; + +    // If this terminator has multiple identical successors (common for +    // switches), only handle each succ once. +    if (!SuccsHandled.insert(SuccMBB).second) +      continue; + +    MachineBasicBlock::iterator MBBI = SuccMBB->begin(); + +    // At this point we know that there is a 1-1 correspondence between LLVM PHI +    // nodes and Machine PHI nodes, but the incoming operands have not been +    // emitted yet. +    for (const PHINode &PN : SuccBB->phis()) { +      // Ignore dead phi's. +      if (PN.use_empty()) +        continue; + +      // Only handle legal types. Two interesting things to note here. First, +      // by bailing out early, we may leave behind some dead instructions, +      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its +      // own moves. Second, this check is necessary because FastISel doesn't +      // use CreateRegs to create registers, so it always creates +      // exactly one register for each non-void instruction. +      EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true); +      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { +        // Handle integer promotions, though, because they're common and easy. +        if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) { +          FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); +          return false; +        } +      } + +      const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); + +      // Set the DebugLoc for the copy. Prefer the location of the operand +      // if there is one; use the location of the PHI otherwise. +      DbgLoc = PN.getDebugLoc(); +      if (const auto *Inst = dyn_cast<Instruction>(PHIOp)) +        DbgLoc = Inst->getDebugLoc(); + +      unsigned Reg = getRegForValue(PHIOp); +      if (!Reg) { +        FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate); +        return false; +      } +      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg)); +      DbgLoc = DebugLoc(); +    } +  } + +  return true; +} + +bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { +  assert(LI->hasOneUse() && +         "tryToFoldLoad expected a LoadInst with a single use"); +  // We know that the load has a single use, but don't know what it is.  If it +  // isn't one of the folded instructions, then we can't succeed here.  Handle +  // this by scanning the single-use users of the load until we get to FoldInst. +  unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. + +  const Instruction *TheUser = LI->user_back(); +  while (TheUser != FoldInst && // Scan up until we find FoldInst. +         // Stay in the right block. +         TheUser->getParent() == FoldInst->getParent() && +         --MaxUsers) { // Don't scan too far. +    // If there are multiple or no uses of this instruction, then bail out. +    if (!TheUser->hasOneUse()) +      return false; + +    TheUser = TheUser->user_back(); +  } + +  // If we didn't find the fold instruction, then we failed to collapse the +  // sequence. +  if (TheUser != FoldInst) +    return false; + +  // Don't try to fold volatile loads.  Target has to deal with alignment +  // constraints. +  if (LI->isVolatile()) +    return false; + +  // Figure out which vreg this is going into.  If there is no assigned vreg yet +  // then there actually was no reference to it.  Perhaps the load is referenced +  // by a dead instruction. +  unsigned LoadReg = getRegForValue(LI); +  if (!LoadReg) +    return false; + +  // We can't fold if this vreg has no uses or more than one use.  Multiple uses +  // may mean that the instruction got lowered to multiple MIs, or the use of +  // the loaded value ended up being multiple operands of the result. +  if (!MRI.hasOneUse(LoadReg)) +    return false; + +  MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); +  MachineInstr *User = RI->getParent(); + +  // Set the insertion point properly.  Folding the load can cause generation of +  // other random instructions (like sign extends) for addressing modes; make +  // sure they get inserted in a logical place before the new instruction. +  FuncInfo.InsertPt = User; +  FuncInfo.MBB = User->getParent(); + +  // Ask the target to try folding the load. +  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); +} + +bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { +  // Must be an add. +  if (!isa<AddOperator>(Add)) +    return false; +  // Type size needs to match. +  if (DL.getTypeSizeInBits(GEP->getType()) != +      DL.getTypeSizeInBits(Add->getType())) +    return false; +  // Must be in the same basic block. +  if (isa<Instruction>(Add) && +      FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) +    return false; +  // Must have a constant operand. +  return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); +} + +MachineMemOperand * +FastISel::createMachineMemOperandFor(const Instruction *I) const { +  const Value *Ptr; +  Type *ValTy; +  unsigned Alignment; +  MachineMemOperand::Flags Flags; +  bool IsVolatile; + +  if (const auto *LI = dyn_cast<LoadInst>(I)) { +    Alignment = LI->getAlignment(); +    IsVolatile = LI->isVolatile(); +    Flags = MachineMemOperand::MOLoad; +    Ptr = LI->getPointerOperand(); +    ValTy = LI->getType(); +  } else if (const auto *SI = dyn_cast<StoreInst>(I)) { +    Alignment = SI->getAlignment(); +    IsVolatile = SI->isVolatile(); +    Flags = MachineMemOperand::MOStore; +    Ptr = SI->getPointerOperand(); +    ValTy = SI->getValueOperand()->getType(); +  } else +    return nullptr; + +  bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal); +  bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load); +  bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable); +  const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); + +  AAMDNodes AAInfo; +  I->getAAMetadata(AAInfo); + +  if (Alignment == 0) // Ensure that codegen never sees alignment 0. +    Alignment = DL.getABITypeAlignment(ValTy); + +  unsigned Size = DL.getTypeStoreSize(ValTy); + +  if (IsVolatile) +    Flags |= MachineMemOperand::MOVolatile; +  if (IsNonTemporal) +    Flags |= MachineMemOperand::MONonTemporal; +  if (IsDereferenceable) +    Flags |= MachineMemOperand::MODereferenceable; +  if (IsInvariant) +    Flags |= MachineMemOperand::MOInvariant; + +  return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, +                                           Alignment, AAInfo, Ranges); +} + +CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const { +  // If both operands are the same, then try to optimize or fold the cmp. +  CmpInst::Predicate Predicate = CI->getPredicate(); +  if (CI->getOperand(0) != CI->getOperand(1)) +    return Predicate; + +  switch (Predicate) { +  default: llvm_unreachable("Invalid predicate!"); +  case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break; +  case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break; +  case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break; +  case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break; +  case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break; +  case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break; +  case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break; +  case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break; +  case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break; +  case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break; +  case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break; +  case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break; + +  case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break; +  case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break; +  case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break; +  case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break; +  case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break; +  case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break; +  } + +  return Predicate; +}  | 
