diff options
Diffstat (limited to 'llvm/lib/CodeGen/TargetLoweringBase.cpp')
| -rw-r--r-- | llvm/lib/CodeGen/TargetLoweringBase.cpp | 2003 | 
1 files changed, 2003 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/TargetLoweringBase.cpp b/llvm/lib/CodeGen/TargetLoweringBase.cpp new file mode 100644 index 000000000000..9b23012f47e3 --- /dev/null +++ b/llvm/lib/CodeGen/TargetLoweringBase.cpp @@ -0,0 +1,2003 @@ +//===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements the TargetLoweringBase class. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/StackMaps.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <string> +#include <tuple> +#include <utility> + +using namespace llvm; + +static cl::opt<bool> JumpIsExpensiveOverride( +    "jump-is-expensive", cl::init(false), +    cl::desc("Do not create extra branches to split comparison logic."), +    cl::Hidden); + +static cl::opt<unsigned> MinimumJumpTableEntries +  ("min-jump-table-entries", cl::init(4), cl::Hidden, +   cl::desc("Set minimum number of entries to use a jump table.")); + +static cl::opt<unsigned> MaximumJumpTableSize +  ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, +   cl::desc("Set maximum size of jump tables.")); + +/// Minimum jump table density for normal functions. +static cl::opt<unsigned> +    JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, +                     cl::desc("Minimum density for building a jump table in " +                              "a normal function")); + +/// Minimum jump table density for -Os or -Oz functions. +static cl::opt<unsigned> OptsizeJumpTableDensity( +    "optsize-jump-table-density", cl::init(40), cl::Hidden, +    cl::desc("Minimum density for building a jump table in " +             "an optsize function")); + +static bool darwinHasSinCos(const Triple &TT) { +  assert(TT.isOSDarwin() && "should be called with darwin triple"); +  // Don't bother with 32 bit x86. +  if (TT.getArch() == Triple::x86) +    return false; +  // Macos < 10.9 has no sincos_stret. +  if (TT.isMacOSX()) +    return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); +  // iOS < 7.0 has no sincos_stret. +  if (TT.isiOS()) +    return !TT.isOSVersionLT(7, 0); +  // Any other darwin such as WatchOS/TvOS is new enough. +  return true; +} + +// Although this default value is arbitrary, it is not random. It is assumed +// that a condition that evaluates the same way by a higher percentage than this +// is best represented as control flow. Therefore, the default value N should be +// set such that the win from N% correct executions is greater than the loss +// from (100 - N)% mispredicted executions for the majority of intended targets. +static cl::opt<int> MinPercentageForPredictableBranch( +    "min-predictable-branch", cl::init(99), +    cl::desc("Minimum percentage (0-100) that a condition must be either true " +             "or false to assume that the condition is predictable"), +    cl::Hidden); + +void TargetLoweringBase::InitLibcalls(const Triple &TT) { +#define HANDLE_LIBCALL(code, name) \ +  setLibcallName(RTLIB::code, name); +#include "llvm/IR/RuntimeLibcalls.def" +#undef HANDLE_LIBCALL +  // Initialize calling conventions to their default. +  for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) +    setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); + +  // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". +  if (TT.getArch() == Triple::ppc || TT.isPPC64()) { +    setLibcallName(RTLIB::ADD_F128, "__addkf3"); +    setLibcallName(RTLIB::SUB_F128, "__subkf3"); +    setLibcallName(RTLIB::MUL_F128, "__mulkf3"); +    setLibcallName(RTLIB::DIV_F128, "__divkf3"); +    setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); +    setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); +    setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); +    setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); +    setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); +    setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); +    setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); +    setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); +    setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); +    setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); +    setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); +    setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); +    setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); +    setLibcallName(RTLIB::UNE_F128, "__nekf2"); +    setLibcallName(RTLIB::OGE_F128, "__gekf2"); +    setLibcallName(RTLIB::OLT_F128, "__ltkf2"); +    setLibcallName(RTLIB::OLE_F128, "__lekf2"); +    setLibcallName(RTLIB::OGT_F128, "__gtkf2"); +    setLibcallName(RTLIB::UO_F128, "__unordkf2"); +    setLibcallName(RTLIB::O_F128, "__unordkf2"); +  } + +  // A few names are different on particular architectures or environments. +  if (TT.isOSDarwin()) { +    // For f16/f32 conversions, Darwin uses the standard naming scheme, instead +    // of the gnueabi-style __gnu_*_ieee. +    // FIXME: What about other targets? +    setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); +    setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); + +    // Some darwins have an optimized __bzero/bzero function. +    switch (TT.getArch()) { +    case Triple::x86: +    case Triple::x86_64: +      if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) +        setLibcallName(RTLIB::BZERO, "__bzero"); +      break; +    case Triple::aarch64: +    case Triple::aarch64_32: +      setLibcallName(RTLIB::BZERO, "bzero"); +      break; +    default: +      break; +    } + +    if (darwinHasSinCos(TT)) { +      setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); +      setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); +      if (TT.isWatchABI()) { +        setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, +                              CallingConv::ARM_AAPCS_VFP); +        setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, +                              CallingConv::ARM_AAPCS_VFP); +      } +    } +  } else { +    setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); +    setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); +  } + +  if (TT.isGNUEnvironment() || TT.isOSFuchsia() || +      (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { +    setLibcallName(RTLIB::SINCOS_F32, "sincosf"); +    setLibcallName(RTLIB::SINCOS_F64, "sincos"); +    setLibcallName(RTLIB::SINCOS_F80, "sincosl"); +    setLibcallName(RTLIB::SINCOS_F128, "sincosl"); +    setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); +  } + +  if (TT.isPS4CPU()) { +    setLibcallName(RTLIB::SINCOS_F32, "sincosf"); +    setLibcallName(RTLIB::SINCOS_F64, "sincos"); +  } + +  if (TT.isOSOpenBSD()) { +    setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); +  } +} + +/// getFPEXT - Return the FPEXT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { +  if (OpVT == MVT::f16) { +    if (RetVT == MVT::f32) +      return FPEXT_F16_F32; +  } else if (OpVT == MVT::f32) { +    if (RetVT == MVT::f64) +      return FPEXT_F32_F64; +    if (RetVT == MVT::f128) +      return FPEXT_F32_F128; +    if (RetVT == MVT::ppcf128) +      return FPEXT_F32_PPCF128; +  } else if (OpVT == MVT::f64) { +    if (RetVT == MVT::f128) +      return FPEXT_F64_F128; +    else if (RetVT == MVT::ppcf128) +      return FPEXT_F64_PPCF128; +  } else if (OpVT == MVT::f80) { +    if (RetVT == MVT::f128) +      return FPEXT_F80_F128; +  } + +  return UNKNOWN_LIBCALL; +} + +/// getFPROUND - Return the FPROUND_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { +  if (RetVT == MVT::f16) { +    if (OpVT == MVT::f32) +      return FPROUND_F32_F16; +    if (OpVT == MVT::f64) +      return FPROUND_F64_F16; +    if (OpVT == MVT::f80) +      return FPROUND_F80_F16; +    if (OpVT == MVT::f128) +      return FPROUND_F128_F16; +    if (OpVT == MVT::ppcf128) +      return FPROUND_PPCF128_F16; +  } else if (RetVT == MVT::f32) { +    if (OpVT == MVT::f64) +      return FPROUND_F64_F32; +    if (OpVT == MVT::f80) +      return FPROUND_F80_F32; +    if (OpVT == MVT::f128) +      return FPROUND_F128_F32; +    if (OpVT == MVT::ppcf128) +      return FPROUND_PPCF128_F32; +  } else if (RetVT == MVT::f64) { +    if (OpVT == MVT::f80) +      return FPROUND_F80_F64; +    if (OpVT == MVT::f128) +      return FPROUND_F128_F64; +    if (OpVT == MVT::ppcf128) +      return FPROUND_PPCF128_F64; +  } else if (RetVT == MVT::f80) { +    if (OpVT == MVT::f128) +      return FPROUND_F128_F80; +  } + +  return UNKNOWN_LIBCALL; +} + +/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { +  if (OpVT == MVT::f32) { +    if (RetVT == MVT::i32) +      return FPTOSINT_F32_I32; +    if (RetVT == MVT::i64) +      return FPTOSINT_F32_I64; +    if (RetVT == MVT::i128) +      return FPTOSINT_F32_I128; +  } else if (OpVT == MVT::f64) { +    if (RetVT == MVT::i32) +      return FPTOSINT_F64_I32; +    if (RetVT == MVT::i64) +      return FPTOSINT_F64_I64; +    if (RetVT == MVT::i128) +      return FPTOSINT_F64_I128; +  } else if (OpVT == MVT::f80) { +    if (RetVT == MVT::i32) +      return FPTOSINT_F80_I32; +    if (RetVT == MVT::i64) +      return FPTOSINT_F80_I64; +    if (RetVT == MVT::i128) +      return FPTOSINT_F80_I128; +  } else if (OpVT == MVT::f128) { +    if (RetVT == MVT::i32) +      return FPTOSINT_F128_I32; +    if (RetVT == MVT::i64) +      return FPTOSINT_F128_I64; +    if (RetVT == MVT::i128) +      return FPTOSINT_F128_I128; +  } else if (OpVT == MVT::ppcf128) { +    if (RetVT == MVT::i32) +      return FPTOSINT_PPCF128_I32; +    if (RetVT == MVT::i64) +      return FPTOSINT_PPCF128_I64; +    if (RetVT == MVT::i128) +      return FPTOSINT_PPCF128_I128; +  } +  return UNKNOWN_LIBCALL; +} + +/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { +  if (OpVT == MVT::f32) { +    if (RetVT == MVT::i32) +      return FPTOUINT_F32_I32; +    if (RetVT == MVT::i64) +      return FPTOUINT_F32_I64; +    if (RetVT == MVT::i128) +      return FPTOUINT_F32_I128; +  } else if (OpVT == MVT::f64) { +    if (RetVT == MVT::i32) +      return FPTOUINT_F64_I32; +    if (RetVT == MVT::i64) +      return FPTOUINT_F64_I64; +    if (RetVT == MVT::i128) +      return FPTOUINT_F64_I128; +  } else if (OpVT == MVT::f80) { +    if (RetVT == MVT::i32) +      return FPTOUINT_F80_I32; +    if (RetVT == MVT::i64) +      return FPTOUINT_F80_I64; +    if (RetVT == MVT::i128) +      return FPTOUINT_F80_I128; +  } else if (OpVT == MVT::f128) { +    if (RetVT == MVT::i32) +      return FPTOUINT_F128_I32; +    if (RetVT == MVT::i64) +      return FPTOUINT_F128_I64; +    if (RetVT == MVT::i128) +      return FPTOUINT_F128_I128; +  } else if (OpVT == MVT::ppcf128) { +    if (RetVT == MVT::i32) +      return FPTOUINT_PPCF128_I32; +    if (RetVT == MVT::i64) +      return FPTOUINT_PPCF128_I64; +    if (RetVT == MVT::i128) +      return FPTOUINT_PPCF128_I128; +  } +  return UNKNOWN_LIBCALL; +} + +/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { +  if (OpVT == MVT::i32) { +    if (RetVT == MVT::f32) +      return SINTTOFP_I32_F32; +    if (RetVT == MVT::f64) +      return SINTTOFP_I32_F64; +    if (RetVT == MVT::f80) +      return SINTTOFP_I32_F80; +    if (RetVT == MVT::f128) +      return SINTTOFP_I32_F128; +    if (RetVT == MVT::ppcf128) +      return SINTTOFP_I32_PPCF128; +  } else if (OpVT == MVT::i64) { +    if (RetVT == MVT::f32) +      return SINTTOFP_I64_F32; +    if (RetVT == MVT::f64) +      return SINTTOFP_I64_F64; +    if (RetVT == MVT::f80) +      return SINTTOFP_I64_F80; +    if (RetVT == MVT::f128) +      return SINTTOFP_I64_F128; +    if (RetVT == MVT::ppcf128) +      return SINTTOFP_I64_PPCF128; +  } else if (OpVT == MVT::i128) { +    if (RetVT == MVT::f32) +      return SINTTOFP_I128_F32; +    if (RetVT == MVT::f64) +      return SINTTOFP_I128_F64; +    if (RetVT == MVT::f80) +      return SINTTOFP_I128_F80; +    if (RetVT == MVT::f128) +      return SINTTOFP_I128_F128; +    if (RetVT == MVT::ppcf128) +      return SINTTOFP_I128_PPCF128; +  } +  return UNKNOWN_LIBCALL; +} + +/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or +/// UNKNOWN_LIBCALL if there is none. +RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { +  if (OpVT == MVT::i32) { +    if (RetVT == MVT::f32) +      return UINTTOFP_I32_F32; +    if (RetVT == MVT::f64) +      return UINTTOFP_I32_F64; +    if (RetVT == MVT::f80) +      return UINTTOFP_I32_F80; +    if (RetVT == MVT::f128) +      return UINTTOFP_I32_F128; +    if (RetVT == MVT::ppcf128) +      return UINTTOFP_I32_PPCF128; +  } else if (OpVT == MVT::i64) { +    if (RetVT == MVT::f32) +      return UINTTOFP_I64_F32; +    if (RetVT == MVT::f64) +      return UINTTOFP_I64_F64; +    if (RetVT == MVT::f80) +      return UINTTOFP_I64_F80; +    if (RetVT == MVT::f128) +      return UINTTOFP_I64_F128; +    if (RetVT == MVT::ppcf128) +      return UINTTOFP_I64_PPCF128; +  } else if (OpVT == MVT::i128) { +    if (RetVT == MVT::f32) +      return UINTTOFP_I128_F32; +    if (RetVT == MVT::f64) +      return UINTTOFP_I128_F64; +    if (RetVT == MVT::f80) +      return UINTTOFP_I128_F80; +    if (RetVT == MVT::f128) +      return UINTTOFP_I128_F128; +    if (RetVT == MVT::ppcf128) +      return UINTTOFP_I128_PPCF128; +  } +  return UNKNOWN_LIBCALL; +} + +RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { +#define OP_TO_LIBCALL(Name, Enum)                                              \ +  case Name:                                                                   \ +    switch (VT.SimpleTy) {                                                     \ +    default:                                                                   \ +      return UNKNOWN_LIBCALL;                                                  \ +    case MVT::i8:                                                              \ +      return Enum##_1;                                                         \ +    case MVT::i16:                                                             \ +      return Enum##_2;                                                         \ +    case MVT::i32:                                                             \ +      return Enum##_4;                                                         \ +    case MVT::i64:                                                             \ +      return Enum##_8;                                                         \ +    case MVT::i128:                                                            \ +      return Enum##_16;                                                        \ +    } + +  switch (Opc) { +    OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) +    OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) +    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) +  } + +#undef OP_TO_LIBCALL + +  return UNKNOWN_LIBCALL; +} + +RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { +  switch (ElementSize) { +  case 1: +    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; +  case 2: +    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; +  case 4: +    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; +  case 8: +    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; +  case 16: +    return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; +  default: +    return UNKNOWN_LIBCALL; +  } +} + +RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { +  switch (ElementSize) { +  case 1: +    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; +  case 2: +    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; +  case 4: +    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; +  case 8: +    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; +  case 16: +    return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; +  default: +    return UNKNOWN_LIBCALL; +  } +} + +RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { +  switch (ElementSize) { +  case 1: +    return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; +  case 2: +    return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; +  case 4: +    return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; +  case 8: +    return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; +  case 16: +    return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; +  default: +    return UNKNOWN_LIBCALL; +  } +} + +/// InitCmpLibcallCCs - Set default comparison libcall CC. +static void InitCmpLibcallCCs(ISD::CondCode *CCs) { +  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); +  CCs[RTLIB::OEQ_F32] = ISD::SETEQ; +  CCs[RTLIB::OEQ_F64] = ISD::SETEQ; +  CCs[RTLIB::OEQ_F128] = ISD::SETEQ; +  CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; +  CCs[RTLIB::UNE_F32] = ISD::SETNE; +  CCs[RTLIB::UNE_F64] = ISD::SETNE; +  CCs[RTLIB::UNE_F128] = ISD::SETNE; +  CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; +  CCs[RTLIB::OGE_F32] = ISD::SETGE; +  CCs[RTLIB::OGE_F64] = ISD::SETGE; +  CCs[RTLIB::OGE_F128] = ISD::SETGE; +  CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; +  CCs[RTLIB::OLT_F32] = ISD::SETLT; +  CCs[RTLIB::OLT_F64] = ISD::SETLT; +  CCs[RTLIB::OLT_F128] = ISD::SETLT; +  CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; +  CCs[RTLIB::OLE_F32] = ISD::SETLE; +  CCs[RTLIB::OLE_F64] = ISD::SETLE; +  CCs[RTLIB::OLE_F128] = ISD::SETLE; +  CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; +  CCs[RTLIB::OGT_F32] = ISD::SETGT; +  CCs[RTLIB::OGT_F64] = ISD::SETGT; +  CCs[RTLIB::OGT_F128] = ISD::SETGT; +  CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; +  CCs[RTLIB::UO_F32] = ISD::SETNE; +  CCs[RTLIB::UO_F64] = ISD::SETNE; +  CCs[RTLIB::UO_F128] = ISD::SETNE; +  CCs[RTLIB::UO_PPCF128] = ISD::SETNE; +  CCs[RTLIB::O_F32] = ISD::SETEQ; +  CCs[RTLIB::O_F64] = ISD::SETEQ; +  CCs[RTLIB::O_F128] = ISD::SETEQ; +  CCs[RTLIB::O_PPCF128] = ISD::SETEQ; +} + +/// NOTE: The TargetMachine owns TLOF. +TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { +  initActions(); + +  // Perform these initializations only once. +  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = +      MaxLoadsPerMemcmp = 8; +  MaxGluedStoresPerMemcpy = 0; +  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = +      MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; +  UseUnderscoreSetJmp = false; +  UseUnderscoreLongJmp = false; +  HasMultipleConditionRegisters = false; +  HasExtractBitsInsn = false; +  JumpIsExpensive = JumpIsExpensiveOverride; +  PredictableSelectIsExpensive = false; +  EnableExtLdPromotion = false; +  StackPointerRegisterToSaveRestore = 0; +  BooleanContents = UndefinedBooleanContent; +  BooleanFloatContents = UndefinedBooleanContent; +  BooleanVectorContents = UndefinedBooleanContent; +  SchedPreferenceInfo = Sched::ILP; +  GatherAllAliasesMaxDepth = 18; +  // TODO: the default will be switched to 0 in the next commit, along +  // with the Target-specific changes necessary. +  MaxAtomicSizeInBitsSupported = 1024; + +  MinCmpXchgSizeInBits = 0; +  SupportsUnalignedAtomics = false; + +  std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); + +  InitLibcalls(TM.getTargetTriple()); +  InitCmpLibcallCCs(CmpLibcallCCs); +} + +void TargetLoweringBase::initActions() { +  // All operations default to being supported. +  memset(OpActions, 0, sizeof(OpActions)); +  memset(LoadExtActions, 0, sizeof(LoadExtActions)); +  memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); +  memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); +  memset(CondCodeActions, 0, sizeof(CondCodeActions)); +  std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); +  std::fill(std::begin(TargetDAGCombineArray), +            std::end(TargetDAGCombineArray), 0); + +  for (MVT VT : MVT::fp_valuetypes()) { +    MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); +    if (IntVT.isValid()) { +      setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); +      AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); +    } +  } + +  // Set default actions for various operations. +  for (MVT VT : MVT::all_valuetypes()) { +    // Default all indexed load / store to expand. +    for (unsigned IM = (unsigned)ISD::PRE_INC; +         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { +      setIndexedLoadAction(IM, VT, Expand); +      setIndexedStoreAction(IM, VT, Expand); +    } + +    // Most backends expect to see the node which just returns the value loaded. +    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); + +    // These operations default to expand. +    setOperationAction(ISD::FGETSIGN, VT, Expand); +    setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); +    setOperationAction(ISD::FMINNUM, VT, Expand); +    setOperationAction(ISD::FMAXNUM, VT, Expand); +    setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); +    setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); +    setOperationAction(ISD::FMINIMUM, VT, Expand); +    setOperationAction(ISD::FMAXIMUM, VT, Expand); +    setOperationAction(ISD::FMAD, VT, Expand); +    setOperationAction(ISD::SMIN, VT, Expand); +    setOperationAction(ISD::SMAX, VT, Expand); +    setOperationAction(ISD::UMIN, VT, Expand); +    setOperationAction(ISD::UMAX, VT, Expand); +    setOperationAction(ISD::ABS, VT, Expand); +    setOperationAction(ISD::FSHL, VT, Expand); +    setOperationAction(ISD::FSHR, VT, Expand); +    setOperationAction(ISD::SADDSAT, VT, Expand); +    setOperationAction(ISD::UADDSAT, VT, Expand); +    setOperationAction(ISD::SSUBSAT, VT, Expand); +    setOperationAction(ISD::USUBSAT, VT, Expand); +    setOperationAction(ISD::SMULFIX, VT, Expand); +    setOperationAction(ISD::SMULFIXSAT, VT, Expand); +    setOperationAction(ISD::UMULFIX, VT, Expand); +    setOperationAction(ISD::UMULFIXSAT, VT, Expand); + +    // Overflow operations default to expand +    setOperationAction(ISD::SADDO, VT, Expand); +    setOperationAction(ISD::SSUBO, VT, Expand); +    setOperationAction(ISD::UADDO, VT, Expand); +    setOperationAction(ISD::USUBO, VT, Expand); +    setOperationAction(ISD::SMULO, VT, Expand); +    setOperationAction(ISD::UMULO, VT, Expand); + +    // ADDCARRY operations default to expand +    setOperationAction(ISD::ADDCARRY, VT, Expand); +    setOperationAction(ISD::SUBCARRY, VT, Expand); +    setOperationAction(ISD::SETCCCARRY, VT, Expand); + +    // ADDC/ADDE/SUBC/SUBE default to expand. +    setOperationAction(ISD::ADDC, VT, Expand); +    setOperationAction(ISD::ADDE, VT, Expand); +    setOperationAction(ISD::SUBC, VT, Expand); +    setOperationAction(ISD::SUBE, VT, Expand); + +    // These default to Expand so they will be expanded to CTLZ/CTTZ by default. +    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); +    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); + +    setOperationAction(ISD::BITREVERSE, VT, Expand); + +    // These library functions default to expand. +    setOperationAction(ISD::FROUND, VT, Expand); +    setOperationAction(ISD::FPOWI, VT, Expand); + +    // These operations default to expand for vector types. +    if (VT.isVector()) { +      setOperationAction(ISD::FCOPYSIGN, VT, Expand); +      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); +      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); +      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); +      setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); +    } + +    // Constrained floating-point operations default to expand. +    setOperationAction(ISD::STRICT_FADD, VT, Expand); +    setOperationAction(ISD::STRICT_FSUB, VT, Expand); +    setOperationAction(ISD::STRICT_FMUL, VT, Expand); +    setOperationAction(ISD::STRICT_FDIV, VT, Expand); +    setOperationAction(ISD::STRICT_FREM, VT, Expand); +    setOperationAction(ISD::STRICT_FMA, VT, Expand); +    setOperationAction(ISD::STRICT_FSQRT, VT, Expand); +    setOperationAction(ISD::STRICT_FPOW, VT, Expand); +    setOperationAction(ISD::STRICT_FPOWI, VT, Expand); +    setOperationAction(ISD::STRICT_FSIN, VT, Expand); +    setOperationAction(ISD::STRICT_FCOS, VT, Expand); +    setOperationAction(ISD::STRICT_FEXP, VT, Expand); +    setOperationAction(ISD::STRICT_FEXP2, VT, Expand); +    setOperationAction(ISD::STRICT_FLOG, VT, Expand); +    setOperationAction(ISD::STRICT_FLOG10, VT, Expand); +    setOperationAction(ISD::STRICT_FLOG2, VT, Expand); +    setOperationAction(ISD::STRICT_LRINT, VT, Expand); +    setOperationAction(ISD::STRICT_LLRINT, VT, Expand); +    setOperationAction(ISD::STRICT_FRINT, VT, Expand); +    setOperationAction(ISD::STRICT_FNEARBYINT, VT, Expand); +    setOperationAction(ISD::STRICT_FCEIL, VT, Expand); +    setOperationAction(ISD::STRICT_FFLOOR, VT, Expand); +    setOperationAction(ISD::STRICT_LROUND, VT, Expand); +    setOperationAction(ISD::STRICT_LLROUND, VT, Expand); +    setOperationAction(ISD::STRICT_FROUND, VT, Expand); +    setOperationAction(ISD::STRICT_FTRUNC, VT, Expand); +    setOperationAction(ISD::STRICT_FMAXNUM, VT, Expand); +    setOperationAction(ISD::STRICT_FMINNUM, VT, Expand); +    setOperationAction(ISD::STRICT_FP_ROUND, VT, Expand); +    setOperationAction(ISD::STRICT_FP_EXTEND, VT, Expand); +    setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Expand); +    setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Expand); + +    // For most targets @llvm.get.dynamic.area.offset just returns 0. +    setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); + +    // Vector reduction default to expand. +    setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); +    setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); +    setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); +    setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); +    setOperationAction(ISD::VECREDUCE_AND, VT, Expand); +    setOperationAction(ISD::VECREDUCE_OR, VT, Expand); +    setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); +    setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); +    setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); +    setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); +    setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); +    setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); +    setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); +  } + +  // Most targets ignore the @llvm.prefetch intrinsic. +  setOperationAction(ISD::PREFETCH, MVT::Other, Expand); + +  // Most targets also ignore the @llvm.readcyclecounter intrinsic. +  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); + +  // ConstantFP nodes default to expand.  Targets can either change this to +  // Legal, in which case all fp constants are legal, or use isFPImmLegal() +  // to optimize expansions for certain constants. +  setOperationAction(ISD::ConstantFP, MVT::f16, Expand); +  setOperationAction(ISD::ConstantFP, MVT::f32, Expand); +  setOperationAction(ISD::ConstantFP, MVT::f64, Expand); +  setOperationAction(ISD::ConstantFP, MVT::f80, Expand); +  setOperationAction(ISD::ConstantFP, MVT::f128, Expand); + +  // These library functions default to expand. +  for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { +    setOperationAction(ISD::FCBRT,      VT, Expand); +    setOperationAction(ISD::FLOG ,      VT, Expand); +    setOperationAction(ISD::FLOG2,      VT, Expand); +    setOperationAction(ISD::FLOG10,     VT, Expand); +    setOperationAction(ISD::FEXP ,      VT, Expand); +    setOperationAction(ISD::FEXP2,      VT, Expand); +    setOperationAction(ISD::FFLOOR,     VT, Expand); +    setOperationAction(ISD::FNEARBYINT, VT, Expand); +    setOperationAction(ISD::FCEIL,      VT, Expand); +    setOperationAction(ISD::FRINT,      VT, Expand); +    setOperationAction(ISD::FTRUNC,     VT, Expand); +    setOperationAction(ISD::FROUND,     VT, Expand); +    setOperationAction(ISD::LROUND,     VT, Expand); +    setOperationAction(ISD::LLROUND,    VT, Expand); +    setOperationAction(ISD::LRINT,      VT, Expand); +    setOperationAction(ISD::LLRINT,     VT, Expand); +  } + +  // Default ISD::TRAP to expand (which turns it into abort). +  setOperationAction(ISD::TRAP, MVT::Other, Expand); + +  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" +  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. +  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); +} + +MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, +                                               EVT) const { +  return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); +} + +EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, +                                         bool LegalTypes) const { +  assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); +  if (LHSTy.isVector()) +    return LHSTy; +  return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) +                    : getPointerTy(DL); +} + +bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { +  assert(isTypeLegal(VT)); +  switch (Op) { +  default: +    return false; +  case ISD::SDIV: +  case ISD::UDIV: +  case ISD::SREM: +  case ISD::UREM: +    return true; +  } +} + +void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { +  // If the command-line option was specified, ignore this request. +  if (!JumpIsExpensiveOverride.getNumOccurrences()) +    JumpIsExpensive = isExpensive; +} + +TargetLoweringBase::LegalizeKind +TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { +  // If this is a simple type, use the ComputeRegisterProp mechanism. +  if (VT.isSimple()) { +    MVT SVT = VT.getSimpleVT(); +    assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); +    MVT NVT = TransformToType[SVT.SimpleTy]; +    LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); + +    assert((LA == TypeLegal || LA == TypeSoftenFloat || +            (NVT.isVector() || +             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && +           "Promote may not follow Expand or Promote"); + +    if (LA == TypeSplitVector) +      return LegalizeKind(LA, +                          EVT::getVectorVT(Context, SVT.getVectorElementType(), +                                           SVT.getVectorNumElements() / 2)); +    if (LA == TypeScalarizeVector) +      return LegalizeKind(LA, SVT.getVectorElementType()); +    return LegalizeKind(LA, NVT); +  } + +  // Handle Extended Scalar Types. +  if (!VT.isVector()) { +    assert(VT.isInteger() && "Float types must be simple"); +    unsigned BitSize = VT.getSizeInBits(); +    // First promote to a power-of-two size, then expand if necessary. +    if (BitSize < 8 || !isPowerOf2_32(BitSize)) { +      EVT NVT = VT.getRoundIntegerType(Context); +      assert(NVT != VT && "Unable to round integer VT"); +      LegalizeKind NextStep = getTypeConversion(Context, NVT); +      // Avoid multi-step promotion. +      if (NextStep.first == TypePromoteInteger) +        return NextStep; +      // Return rounded integer type. +      return LegalizeKind(TypePromoteInteger, NVT); +    } + +    return LegalizeKind(TypeExpandInteger, +                        EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); +  } + +  // Handle vector types. +  unsigned NumElts = VT.getVectorNumElements(); +  EVT EltVT = VT.getVectorElementType(); + +  // Vectors with only one element are always scalarized. +  if (NumElts == 1) +    return LegalizeKind(TypeScalarizeVector, EltVT); + +  // Try to widen vector elements until the element type is a power of two and +  // promote it to a legal type later on, for example: +  // <3 x i8> -> <4 x i8> -> <4 x i32> +  if (EltVT.isInteger()) { +    // Vectors with a number of elements that is not a power of two are always +    // widened, for example <3 x i8> -> <4 x i8>. +    if (!VT.isPow2VectorType()) { +      NumElts = (unsigned)NextPowerOf2(NumElts); +      EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); +      return LegalizeKind(TypeWidenVector, NVT); +    } + +    // Examine the element type. +    LegalizeKind LK = getTypeConversion(Context, EltVT); + +    // If type is to be expanded, split the vector. +    //  <4 x i140> -> <2 x i140> +    if (LK.first == TypeExpandInteger) +      return LegalizeKind(TypeSplitVector, +                          EVT::getVectorVT(Context, EltVT, NumElts / 2)); + +    // Promote the integer element types until a legal vector type is found +    // or until the element integer type is too big. If a legal type was not +    // found, fallback to the usual mechanism of widening/splitting the +    // vector. +    EVT OldEltVT = EltVT; +    while (true) { +      // Increase the bitwidth of the element to the next pow-of-two +      // (which is greater than 8 bits). +      EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) +                  .getRoundIntegerType(Context); + +      // Stop trying when getting a non-simple element type. +      // Note that vector elements may be greater than legal vector element +      // types. Example: X86 XMM registers hold 64bit element on 32bit +      // systems. +      if (!EltVT.isSimple()) +        break; + +      // Build a new vector type and check if it is legal. +      MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); +      // Found a legal promoted vector type. +      if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) +        return LegalizeKind(TypePromoteInteger, +                            EVT::getVectorVT(Context, EltVT, NumElts)); +    } + +    // Reset the type to the unexpanded type if we did not find a legal vector +    // type with a promoted vector element type. +    EltVT = OldEltVT; +  } + +  // Try to widen the vector until a legal type is found. +  // If there is no wider legal type, split the vector. +  while (true) { +    // Round up to the next power of 2. +    NumElts = (unsigned)NextPowerOf2(NumElts); + +    // If there is no simple vector type with this many elements then there +    // cannot be a larger legal vector type.  Note that this assumes that +    // there are no skipped intermediate vector types in the simple types. +    if (!EltVT.isSimple()) +      break; +    MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); +    if (LargerVector == MVT()) +      break; + +    // If this type is legal then widen the vector. +    if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) +      return LegalizeKind(TypeWidenVector, LargerVector); +  } + +  // Widen odd vectors to next power of two. +  if (!VT.isPow2VectorType()) { +    EVT NVT = VT.getPow2VectorType(Context); +    return LegalizeKind(TypeWidenVector, NVT); +  } + +  // Vectors with illegal element types are expanded. +  EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); +  return LegalizeKind(TypeSplitVector, NVT); +} + +static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, +                                          unsigned &NumIntermediates, +                                          MVT &RegisterVT, +                                          TargetLoweringBase *TLI) { +  // Figure out the right, legal destination reg to copy into. +  unsigned NumElts = VT.getVectorNumElements(); +  MVT EltTy = VT.getVectorElementType(); + +  unsigned NumVectorRegs = 1; + +  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we +  // could break down into LHS/RHS like LegalizeDAG does. +  if (!isPowerOf2_32(NumElts)) { +    NumVectorRegs = NumElts; +    NumElts = 1; +  } + +  // Divide the input until we get to a supported size.  This will always +  // end with a scalar if the target doesn't support vectors. +  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { +    NumElts >>= 1; +    NumVectorRegs <<= 1; +  } + +  NumIntermediates = NumVectorRegs; + +  MVT NewVT = MVT::getVectorVT(EltTy, NumElts); +  if (!TLI->isTypeLegal(NewVT)) +    NewVT = EltTy; +  IntermediateVT = NewVT; + +  unsigned NewVTSize = NewVT.getSizeInBits(); + +  // Convert sizes such as i33 to i64. +  if (!isPowerOf2_32(NewVTSize)) +    NewVTSize = NextPowerOf2(NewVTSize); + +  MVT DestVT = TLI->getRegisterType(NewVT); +  RegisterVT = DestVT; +  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16. +    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); + +  // Otherwise, promotion or legal types use the same number of registers as +  // the vector decimated to the appropriate level. +  return NumVectorRegs; +} + +/// isLegalRC - Return true if the value types that can be represented by the +/// specified register class are all legal. +bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, +                                   const TargetRegisterClass &RC) const { +  for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) +    if (isTypeLegal(*I)) +      return true; +  return false; +} + +/// Replace/modify any TargetFrameIndex operands with a targte-dependent +/// sequence of memory operands that is recognized by PrologEpilogInserter. +MachineBasicBlock * +TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, +                                   MachineBasicBlock *MBB) const { +  MachineInstr *MI = &InitialMI; +  MachineFunction &MF = *MI->getMF(); +  MachineFrameInfo &MFI = MF.getFrameInfo(); + +  // We're handling multiple types of operands here: +  // PATCHPOINT MetaArgs - live-in, read only, direct +  // STATEPOINT Deopt Spill - live-through, read only, indirect +  // STATEPOINT Deopt Alloca - live-through, read only, direct +  // (We're currently conservative and mark the deopt slots read/write in +  // practice.) +  // STATEPOINT GC Spill - live-through, read/write, indirect +  // STATEPOINT GC Alloca - live-through, read/write, direct +  // The live-in vs live-through is handled already (the live through ones are +  // all stack slots), but we need to handle the different type of stackmap +  // operands and memory effects here. + +  // MI changes inside this loop as we grow operands. +  for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { +    MachineOperand &MO = MI->getOperand(OperIdx); +    if (!MO.isFI()) +      continue; + +    // foldMemoryOperand builds a new MI after replacing a single FI operand +    // with the canonical set of five x86 addressing-mode operands. +    int FI = MO.getIndex(); +    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); + +    // Copy operands before the frame-index. +    for (unsigned i = 0; i < OperIdx; ++i) +      MIB.add(MI->getOperand(i)); +    // Add frame index operands recognized by stackmaps.cpp +    if (MFI.isStatepointSpillSlotObjectIndex(FI)) { +      // indirect-mem-ref tag, size, #FI, offset. +      // Used for spills inserted by StatepointLowering.  This codepath is not +      // used for patchpoints/stackmaps at all, for these spilling is done via +      // foldMemoryOperand callback only. +      assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); +      MIB.addImm(StackMaps::IndirectMemRefOp); +      MIB.addImm(MFI.getObjectSize(FI)); +      MIB.add(MI->getOperand(OperIdx)); +      MIB.addImm(0); +    } else { +      // direct-mem-ref tag, #FI, offset. +      // Used by patchpoint, and direct alloca arguments to statepoints +      MIB.addImm(StackMaps::DirectMemRefOp); +      MIB.add(MI->getOperand(OperIdx)); +      MIB.addImm(0); +    } +    // Copy the operands after the frame index. +    for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) +      MIB.add(MI->getOperand(i)); + +    // Inherit previous memory operands. +    MIB.cloneMemRefs(*MI); +    assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); + +    // Add a new memory operand for this FI. +    assert(MFI.getObjectOffset(FI) != -1); + +    // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and +    // PATCHPOINT should be updated to do the same. (TODO) +    if (MI->getOpcode() != TargetOpcode::STATEPOINT) { +      auto Flags = MachineMemOperand::MOLoad; +      MachineMemOperand *MMO = MF.getMachineMemOperand( +          MachinePointerInfo::getFixedStack(MF, FI), Flags, +          MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); +      MIB->addMemOperand(MF, MMO); +    } +     +    // Replace the instruction and update the operand index. +    MBB->insert(MachineBasicBlock::iterator(MI), MIB); +    OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; +    MI->eraseFromParent(); +    MI = MIB; +  } +  return MBB; +} + +MachineBasicBlock * +TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, +                                        MachineBasicBlock *MBB) const { +  assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && +         "Called emitXRayCustomEvent on the wrong MI!"); +  auto &MF = *MI.getMF(); +  auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); +  for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) +    MIB.add(MI.getOperand(OpIdx)); + +  MBB->insert(MachineBasicBlock::iterator(MI), MIB); +  MI.eraseFromParent(); +  return MBB; +} + +MachineBasicBlock * +TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI, +                                       MachineBasicBlock *MBB) const { +  assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL && +         "Called emitXRayTypedEvent on the wrong MI!"); +  auto &MF = *MI.getMF(); +  auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); +  for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) +    MIB.add(MI.getOperand(OpIdx)); + +  MBB->insert(MachineBasicBlock::iterator(MI), MIB); +  MI.eraseFromParent(); +  return MBB; +} + +/// findRepresentativeClass - Return the largest legal super-reg register class +/// of the register class for the specified type and its associated "cost". +// This function is in TargetLowering because it uses RegClassForVT which would +// need to be moved to TargetRegisterInfo and would necessitate moving +// isTypeLegal over as well - a massive change that would just require +// TargetLowering having a TargetRegisterInfo class member that it would use. +std::pair<const TargetRegisterClass *, uint8_t> +TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, +                                            MVT VT) const { +  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; +  if (!RC) +    return std::make_pair(RC, 0); + +  // Compute the set of all super-register classes. +  BitVector SuperRegRC(TRI->getNumRegClasses()); +  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) +    SuperRegRC.setBitsInMask(RCI.getMask()); + +  // Find the first legal register class with the largest spill size. +  const TargetRegisterClass *BestRC = RC; +  for (unsigned i : SuperRegRC.set_bits()) { +    const TargetRegisterClass *SuperRC = TRI->getRegClass(i); +    // We want the largest possible spill size. +    if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) +      continue; +    if (!isLegalRC(*TRI, *SuperRC)) +      continue; +    BestRC = SuperRC; +  } +  return std::make_pair(BestRC, 1); +} + +/// computeRegisterProperties - Once all of the register classes are added, +/// this allows us to compute derived properties we expose. +void TargetLoweringBase::computeRegisterProperties( +    const TargetRegisterInfo *TRI) { +  static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, +                "Too many value types for ValueTypeActions to hold!"); + +  // Everything defaults to needing one register. +  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { +    NumRegistersForVT[i] = 1; +    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; +  } +  // ...except isVoid, which doesn't need any registers. +  NumRegistersForVT[MVT::isVoid] = 0; + +  // Find the largest integer register class. +  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; +  for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) +    assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); + +  // Every integer value type larger than this largest register takes twice as +  // many registers to represent as the previous ValueType. +  for (unsigned ExpandedReg = LargestIntReg + 1; +       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { +    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; +    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; +    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); +    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, +                                   TypeExpandInteger); +  } + +  // Inspect all of the ValueType's smaller than the largest integer +  // register to see which ones need promotion. +  unsigned LegalIntReg = LargestIntReg; +  for (unsigned IntReg = LargestIntReg - 1; +       IntReg >= (unsigned)MVT::i1; --IntReg) { +    MVT IVT = (MVT::SimpleValueType)IntReg; +    if (isTypeLegal(IVT)) { +      LegalIntReg = IntReg; +    } else { +      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = +        (MVT::SimpleValueType)LegalIntReg; +      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); +    } +  } + +  // ppcf128 type is really two f64's. +  if (!isTypeLegal(MVT::ppcf128)) { +    if (isTypeLegal(MVT::f64)) { +      NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; +      RegisterTypeForVT[MVT::ppcf128] = MVT::f64; +      TransformToType[MVT::ppcf128] = MVT::f64; +      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); +    } else { +      NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; +      RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; +      TransformToType[MVT::ppcf128] = MVT::i128; +      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); +    } +  } + +  // Decide how to handle f128. If the target does not have native f128 support, +  // expand it to i128 and we will be generating soft float library calls. +  if (!isTypeLegal(MVT::f128)) { +    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; +    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; +    TransformToType[MVT::f128] = MVT::i128; +    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); +  } + +  // Decide how to handle f64. If the target does not have native f64 support, +  // expand it to i64 and we will be generating soft float library calls. +  if (!isTypeLegal(MVT::f64)) { +    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; +    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; +    TransformToType[MVT::f64] = MVT::i64; +    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); +  } + +  // Decide how to handle f32. If the target does not have native f32 support, +  // expand it to i32 and we will be generating soft float library calls. +  if (!isTypeLegal(MVT::f32)) { +    NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; +    RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; +    TransformToType[MVT::f32] = MVT::i32; +    ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); +  } + +  // Decide how to handle f16. If the target does not have native f16 support, +  // promote it to f32, because there are no f16 library calls (except for +  // conversions). +  if (!isTypeLegal(MVT::f16)) { +    NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; +    RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; +    TransformToType[MVT::f16] = MVT::f32; +    ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); +  } + +  // Loop over all of the vector value types to see which need transformations. +  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; +       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { +    MVT VT = (MVT::SimpleValueType) i; +    if (isTypeLegal(VT)) +      continue; + +    MVT EltVT = VT.getVectorElementType(); +    unsigned NElts = VT.getVectorNumElements(); +    bool IsLegalWiderType = false; +    bool IsScalable = VT.isScalableVector(); +    LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); +    switch (PreferredAction) { +    case TypePromoteInteger: { +      MVT::SimpleValueType EndVT = IsScalable ? +                                   MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : +                                   MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; +      // Try to promote the elements of integer vectors. If no legal +      // promotion was found, fall through to the widen-vector method. +      for (unsigned nVT = i + 1; +           (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { +        MVT SVT = (MVT::SimpleValueType) nVT; +        // Promote vectors of integers to vectors with the same number +        // of elements, with a wider element type. +        if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && +            SVT.getVectorNumElements() == NElts && +            SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) { +          TransformToType[i] = SVT; +          RegisterTypeForVT[i] = SVT; +          NumRegistersForVT[i] = 1; +          ValueTypeActions.setTypeAction(VT, TypePromoteInteger); +          IsLegalWiderType = true; +          break; +        } +      } +      if (IsLegalWiderType) +        break; +      LLVM_FALLTHROUGH; +    } + +    case TypeWidenVector: +      if (isPowerOf2_32(NElts)) { +        // Try to widen the vector. +        for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { +          MVT SVT = (MVT::SimpleValueType) nVT; +          if (SVT.getVectorElementType() == EltVT +              && SVT.getVectorNumElements() > NElts +              && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) { +            TransformToType[i] = SVT; +            RegisterTypeForVT[i] = SVT; +            NumRegistersForVT[i] = 1; +            ValueTypeActions.setTypeAction(VT, TypeWidenVector); +            IsLegalWiderType = true; +            break; +          } +        } +        if (IsLegalWiderType) +          break; +      } else { +        // Only widen to the next power of 2 to keep consistency with EVT. +        MVT NVT = VT.getPow2VectorType(); +        if (isTypeLegal(NVT)) { +          TransformToType[i] = NVT; +          ValueTypeActions.setTypeAction(VT, TypeWidenVector); +          RegisterTypeForVT[i] = NVT; +          NumRegistersForVT[i] = 1; +          break; +        } +      } +      LLVM_FALLTHROUGH; + +    case TypeSplitVector: +    case TypeScalarizeVector: { +      MVT IntermediateVT; +      MVT RegisterVT; +      unsigned NumIntermediates; +      NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, +          NumIntermediates, RegisterVT, this); +      RegisterTypeForVT[i] = RegisterVT; + +      MVT NVT = VT.getPow2VectorType(); +      if (NVT == VT) { +        // Type is already a power of 2.  The default action is to split. +        TransformToType[i] = MVT::Other; +        if (PreferredAction == TypeScalarizeVector) +          ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); +        else if (PreferredAction == TypeSplitVector) +          ValueTypeActions.setTypeAction(VT, TypeSplitVector); +        else +          // Set type action according to the number of elements. +          ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector +                                                        : TypeSplitVector); +      } else { +        TransformToType[i] = NVT; +        ValueTypeActions.setTypeAction(VT, TypeWidenVector); +      } +      break; +    } +    default: +      llvm_unreachable("Unknown vector legalization action!"); +    } +  } + +  // Determine the 'representative' register class for each value type. +  // An representative register class is the largest (meaning one which is +  // not a sub-register class / subreg register class) legal register class for +  // a group of value types. For example, on i386, i8, i16, and i32 +  // representative would be GR32; while on x86_64 it's GR64. +  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { +    const TargetRegisterClass* RRC; +    uint8_t Cost; +    std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); +    RepRegClassForVT[i] = RRC; +    RepRegClassCostForVT[i] = Cost; +  } +} + +EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, +                                           EVT VT) const { +  assert(!VT.isVector() && "No default SetCC type for vectors!"); +  return getPointerTy(DL).SimpleTy; +} + +MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { +  return MVT::i32; // return the default value +} + +/// getVectorTypeBreakdown - Vector types are broken down into some number of +/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32 +/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. +/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. +/// +/// This method returns the number of registers needed, and the VT for each +/// register.  It also returns the VT and quantity of the intermediate values +/// before they are promoted/expanded. +unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, +                                                EVT &IntermediateVT, +                                                unsigned &NumIntermediates, +                                                MVT &RegisterVT) const { +  unsigned NumElts = VT.getVectorNumElements(); + +  // If there is a wider vector type with the same element type as this one, +  // or a promoted vector type that has the same number of elements which +  // are wider, then we should convert to that legal vector type. +  // This handles things like <2 x float> -> <4 x float> and +  // <4 x i1> -> <4 x i32>. +  LegalizeTypeAction TA = getTypeAction(Context, VT); +  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { +    EVT RegisterEVT = getTypeToTransformTo(Context, VT); +    if (isTypeLegal(RegisterEVT)) { +      IntermediateVT = RegisterEVT; +      RegisterVT = RegisterEVT.getSimpleVT(); +      NumIntermediates = 1; +      return 1; +    } +  } + +  // Figure out the right, legal destination reg to copy into. +  EVT EltTy = VT.getVectorElementType(); + +  unsigned NumVectorRegs = 1; + +  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we +  // could break down into LHS/RHS like LegalizeDAG does. +  if (!isPowerOf2_32(NumElts)) { +    NumVectorRegs = NumElts; +    NumElts = 1; +  } + +  // Divide the input until we get to a supported size.  This will always +  // end with a scalar if the target doesn't support vectors. +  while (NumElts > 1 && !isTypeLegal( +                                   EVT::getVectorVT(Context, EltTy, NumElts))) { +    NumElts >>= 1; +    NumVectorRegs <<= 1; +  } + +  NumIntermediates = NumVectorRegs; + +  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); +  if (!isTypeLegal(NewVT)) +    NewVT = EltTy; +  IntermediateVT = NewVT; + +  MVT DestVT = getRegisterType(Context, NewVT); +  RegisterVT = DestVT; +  unsigned NewVTSize = NewVT.getSizeInBits(); + +  // Convert sizes such as i33 to i64. +  if (!isPowerOf2_32(NewVTSize)) +    NewVTSize = NextPowerOf2(NewVTSize); + +  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16. +    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); + +  // Otherwise, promotion or legal types use the same number of registers as +  // the vector decimated to the appropriate level. +  return NumVectorRegs; +} + +/// Get the EVTs and ArgFlags collections that represent the legalized return +/// type of the given function.  This does not require a DAG or a return value, +/// and is suitable for use before any DAGs for the function are constructed. +/// TODO: Move this out of TargetLowering.cpp. +void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, +                         AttributeList attr, +                         SmallVectorImpl<ISD::OutputArg> &Outs, +                         const TargetLowering &TLI, const DataLayout &DL) { +  SmallVector<EVT, 4> ValueVTs; +  ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); +  unsigned NumValues = ValueVTs.size(); +  if (NumValues == 0) return; + +  for (unsigned j = 0, f = NumValues; j != f; ++j) { +    EVT VT = ValueVTs[j]; +    ISD::NodeType ExtendKind = ISD::ANY_EXTEND; + +    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) +      ExtendKind = ISD::SIGN_EXTEND; +    else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) +      ExtendKind = ISD::ZERO_EXTEND; + +    // FIXME: C calling convention requires the return type to be promoted to +    // at least 32-bit. But this is not necessary for non-C calling +    // conventions. The frontend should mark functions whose return values +    // require promoting with signext or zeroext attributes. +    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { +      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); +      if (VT.bitsLT(MinVT)) +        VT = MinVT; +    } + +    unsigned NumParts = +        TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); +    MVT PartVT = +        TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); + +    // 'inreg' on function refers to return value +    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); +    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) +      Flags.setInReg(); + +    // Propagate extension type if any +    if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) +      Flags.setSExt(); +    else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) +      Flags.setZExt(); + +    for (unsigned i = 0; i < NumParts; ++i) +      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); +  } +} + +/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area.  This is the actual +/// alignment, not its logarithm. +unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, +                                                   const DataLayout &DL) const { +  return DL.getABITypeAlignment(Ty); +} + +bool TargetLoweringBase::allowsMemoryAccessForAlignment( +    LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, +    unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { +  // Check if the specified alignment is sufficient based on the data layout. +  // TODO: While using the data layout works in practice, a better solution +  // would be to implement this check directly (make this a virtual function). +  // For example, the ABI alignment may change based on software platform while +  // this function should only be affected by hardware implementation. +  Type *Ty = VT.getTypeForEVT(Context); +  if (Alignment >= DL.getABITypeAlignment(Ty)) { +    // Assume that an access that meets the ABI-specified alignment is fast. +    if (Fast != nullptr) +      *Fast = true; +    return true; +  } + +  // This is a misaligned access. +  return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); +} + +bool TargetLoweringBase::allowsMemoryAccessForAlignment( +    LLVMContext &Context, const DataLayout &DL, EVT VT, +    const MachineMemOperand &MMO, bool *Fast) const { +  return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), +                                        MMO.getAlignment(), MMO.getFlags(), +                                        Fast); +} + +bool TargetLoweringBase::allowsMemoryAccess( +    LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, +    unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { +  return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, +                                        Flags, Fast); +} + +bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, +                                            const DataLayout &DL, EVT VT, +                                            const MachineMemOperand &MMO, +                                            bool *Fast) const { +  return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), +                            MMO.getAlignment(), MMO.getFlags(), Fast); +} + +BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { +  return BranchProbability(MinPercentageForPredictableBranch, 100); +} + +//===----------------------------------------------------------------------===// +//  TargetTransformInfo Helpers +//===----------------------------------------------------------------------===// + +int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { +  enum InstructionOpcodes { +#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, +#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM +#include "llvm/IR/Instruction.def" +  }; +  switch (static_cast<InstructionOpcodes>(Opcode)) { +  case Ret:            return 0; +  case Br:             return 0; +  case Switch:         return 0; +  case IndirectBr:     return 0; +  case Invoke:         return 0; +  case CallBr:         return 0; +  case Resume:         return 0; +  case Unreachable:    return 0; +  case CleanupRet:     return 0; +  case CatchRet:       return 0; +  case CatchPad:       return 0; +  case CatchSwitch:    return 0; +  case CleanupPad:     return 0; +  case FNeg:           return ISD::FNEG; +  case Add:            return ISD::ADD; +  case FAdd:           return ISD::FADD; +  case Sub:            return ISD::SUB; +  case FSub:           return ISD::FSUB; +  case Mul:            return ISD::MUL; +  case FMul:           return ISD::FMUL; +  case UDiv:           return ISD::UDIV; +  case SDiv:           return ISD::SDIV; +  case FDiv:           return ISD::FDIV; +  case URem:           return ISD::UREM; +  case SRem:           return ISD::SREM; +  case FRem:           return ISD::FREM; +  case Shl:            return ISD::SHL; +  case LShr:           return ISD::SRL; +  case AShr:           return ISD::SRA; +  case And:            return ISD::AND; +  case Or:             return ISD::OR; +  case Xor:            return ISD::XOR; +  case Alloca:         return 0; +  case Load:           return ISD::LOAD; +  case Store:          return ISD::STORE; +  case GetElementPtr:  return 0; +  case Fence:          return 0; +  case AtomicCmpXchg:  return 0; +  case AtomicRMW:      return 0; +  case Trunc:          return ISD::TRUNCATE; +  case ZExt:           return ISD::ZERO_EXTEND; +  case SExt:           return ISD::SIGN_EXTEND; +  case FPToUI:         return ISD::FP_TO_UINT; +  case FPToSI:         return ISD::FP_TO_SINT; +  case UIToFP:         return ISD::UINT_TO_FP; +  case SIToFP:         return ISD::SINT_TO_FP; +  case FPTrunc:        return ISD::FP_ROUND; +  case FPExt:          return ISD::FP_EXTEND; +  case PtrToInt:       return ISD::BITCAST; +  case IntToPtr:       return ISD::BITCAST; +  case BitCast:        return ISD::BITCAST; +  case AddrSpaceCast:  return ISD::ADDRSPACECAST; +  case ICmp:           return ISD::SETCC; +  case FCmp:           return ISD::SETCC; +  case PHI:            return 0; +  case Call:           return 0; +  case Select:         return ISD::SELECT; +  case UserOp1:        return 0; +  case UserOp2:        return 0; +  case VAArg:          return 0; +  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; +  case InsertElement:  return ISD::INSERT_VECTOR_ELT; +  case ShuffleVector:  return ISD::VECTOR_SHUFFLE; +  case ExtractValue:   return ISD::MERGE_VALUES; +  case InsertValue:    return ISD::MERGE_VALUES; +  case LandingPad:     return 0; +  } + +  llvm_unreachable("Unknown instruction type encountered!"); +} + +std::pair<int, MVT> +TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, +                                            Type *Ty) const { +  LLVMContext &C = Ty->getContext(); +  EVT MTy = getValueType(DL, Ty); + +  int Cost = 1; +  // We keep legalizing the type until we find a legal kind. We assume that +  // the only operation that costs anything is the split. After splitting +  // we need to handle two types. +  while (true) { +    LegalizeKind LK = getTypeConversion(C, MTy); + +    if (LK.first == TypeLegal) +      return std::make_pair(Cost, MTy.getSimpleVT()); + +    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) +      Cost *= 2; + +    // Do not loop with f128 type. +    if (MTy == LK.second) +      return std::make_pair(Cost, MTy.getSimpleVT()); + +    // Keep legalizing the type. +    MTy = LK.second; +  } +} + +Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, +                                                              bool UseTLS) const { +  // compiler-rt provides a variable with a magic name.  Targets that do not +  // link with compiler-rt may also provide such a variable. +  Module *M = IRB.GetInsertBlock()->getParent()->getParent(); +  const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; +  auto UnsafeStackPtr = +      dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); + +  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); + +  if (!UnsafeStackPtr) { +    auto TLSModel = UseTLS ? +        GlobalValue::InitialExecTLSModel : +        GlobalValue::NotThreadLocal; +    // The global variable is not defined yet, define it ourselves. +    // We use the initial-exec TLS model because we do not support the +    // variable living anywhere other than in the main executable. +    UnsafeStackPtr = new GlobalVariable( +        *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, +        UnsafeStackPtrVar, nullptr, TLSModel); +  } else { +    // The variable exists, check its type and attributes. +    if (UnsafeStackPtr->getValueType() != StackPtrTy) +      report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); +    if (UseTLS != UnsafeStackPtr->isThreadLocal()) +      report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + +                         (UseTLS ? "" : "not ") + "be thread-local"); +  } +  return UnsafeStackPtr; +} + +Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { +  if (!TM.getTargetTriple().isAndroid()) +    return getDefaultSafeStackPointerLocation(IRB, true); + +  // Android provides a libc function to retrieve the address of the current +  // thread's unsafe stack pointer. +  Module *M = IRB.GetInsertBlock()->getParent()->getParent(); +  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); +  FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", +                                             StackPtrTy->getPointerTo(0)); +  return IRB.CreateCall(Fn); +} + +//===----------------------------------------------------------------------===// +//  Loop Strength Reduction hooks +//===----------------------------------------------------------------------===// + +/// isLegalAddressingMode - Return true if the addressing mode represented +/// by AM is legal for this target, for a load/store of the specified type. +bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, +                                               const AddrMode &AM, Type *Ty, +                                               unsigned AS, Instruction *I) const { +  // The default implementation of this implements a conservative RISCy, r+r and +  // r+i addr mode. + +  // Allows a sign-extended 16-bit immediate field. +  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) +    return false; + +  // No global is ever allowed as a base. +  if (AM.BaseGV) +    return false; + +  // Only support r+r, +  switch (AM.Scale) { +  case 0:  // "r+i" or just "i", depending on HasBaseReg. +    break; +  case 1: +    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. +      return false; +    // Otherwise we have r+r or r+i. +    break; +  case 2: +    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. +      return false; +    // Allow 2*r as r+r. +    break; +  default: // Don't allow n * r +    return false; +  } + +  return true; +} + +//===----------------------------------------------------------------------===// +//  Stack Protector +//===----------------------------------------------------------------------===// + +// For OpenBSD return its special guard variable. Otherwise return nullptr, +// so that SelectionDAG handle SSP. +Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { +  if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { +    Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); +    PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); +    return M.getOrInsertGlobal("__guard_local", PtrTy); +  } +  return nullptr; +} + +// Currently only support "standard" __stack_chk_guard. +// TODO: add LOAD_STACK_GUARD support. +void TargetLoweringBase::insertSSPDeclarations(Module &M) const { +  if (!M.getNamedValue("__stack_chk_guard")) +    new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, +                       GlobalVariable::ExternalLinkage, +                       nullptr, "__stack_chk_guard"); +} + +// Currently only support "standard" __stack_chk_guard. +// TODO: add LOAD_STACK_GUARD support. +Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { +  return M.getNamedValue("__stack_chk_guard"); +} + +Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { +  return nullptr; +} + +unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { +  return MinimumJumpTableEntries; +} + +void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { +  MinimumJumpTableEntries = Val; +} + +unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { +  return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; +} + +unsigned TargetLoweringBase::getMaximumJumpTableSize() const { +  return MaximumJumpTableSize; +} + +void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { +  MaximumJumpTableSize = Val; +} + +//===----------------------------------------------------------------------===// +//  Reciprocal Estimates +//===----------------------------------------------------------------------===// + +/// Get the reciprocal estimate attribute string for a function that will +/// override the target defaults. +static StringRef getRecipEstimateForFunc(MachineFunction &MF) { +  const Function &F = MF.getFunction(); +  return F.getFnAttribute("reciprocal-estimates").getValueAsString(); +} + +/// Construct a string for the given reciprocal operation of the given type. +/// This string should match the corresponding option to the front-end's +/// "-mrecip" flag assuming those strings have been passed through in an +/// attribute string. For example, "vec-divf" for a division of a vXf32. +static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { +  std::string Name = VT.isVector() ? "vec-" : ""; + +  Name += IsSqrt ? "sqrt" : "div"; + +  // TODO: Handle "half" or other float types? +  if (VT.getScalarType() == MVT::f64) { +    Name += "d"; +  } else { +    assert(VT.getScalarType() == MVT::f32 && +           "Unexpected FP type for reciprocal estimate"); +    Name += "f"; +  } + +  return Name; +} + +/// Return the character position and value (a single numeric character) of a +/// customized refinement operation in the input string if it exists. Return +/// false if there is no customized refinement step count. +static bool parseRefinementStep(StringRef In, size_t &Position, +                                uint8_t &Value) { +  const char RefStepToken = ':'; +  Position = In.find(RefStepToken); +  if (Position == StringRef::npos) +    return false; + +  StringRef RefStepString = In.substr(Position + 1); +  // Allow exactly one numeric character for the additional refinement +  // step parameter. +  if (RefStepString.size() == 1) { +    char RefStepChar = RefStepString[0]; +    if (RefStepChar >= '0' && RefStepChar <= '9') { +      Value = RefStepChar - '0'; +      return true; +    } +  } +  report_fatal_error("Invalid refinement step for -recip."); +} + +/// For the input attribute string, return one of the ReciprocalEstimate enum +/// status values (enabled, disabled, or not specified) for this operation on +/// the specified data type. +static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { +  if (Override.empty()) +    return TargetLoweringBase::ReciprocalEstimate::Unspecified; + +  SmallVector<StringRef, 4> OverrideVector; +  Override.split(OverrideVector, ','); +  unsigned NumArgs = OverrideVector.size(); + +  // Check if "all", "none", or "default" was specified. +  if (NumArgs == 1) { +    // Look for an optional setting of the number of refinement steps needed +    // for this type of reciprocal operation. +    size_t RefPos; +    uint8_t RefSteps; +    if (parseRefinementStep(Override, RefPos, RefSteps)) { +      // Split the string for further processing. +      Override = Override.substr(0, RefPos); +    } + +    // All reciprocal types are enabled. +    if (Override == "all") +      return TargetLoweringBase::ReciprocalEstimate::Enabled; + +    // All reciprocal types are disabled. +    if (Override == "none") +      return TargetLoweringBase::ReciprocalEstimate::Disabled; + +    // Target defaults for enablement are used. +    if (Override == "default") +      return TargetLoweringBase::ReciprocalEstimate::Unspecified; +  } + +  // The attribute string may omit the size suffix ('f'/'d'). +  std::string VTName = getReciprocalOpName(IsSqrt, VT); +  std::string VTNameNoSize = VTName; +  VTNameNoSize.pop_back(); +  static const char DisabledPrefix = '!'; + +  for (StringRef RecipType : OverrideVector) { +    size_t RefPos; +    uint8_t RefSteps; +    if (parseRefinementStep(RecipType, RefPos, RefSteps)) +      RecipType = RecipType.substr(0, RefPos); + +    // Ignore the disablement token for string matching. +    bool IsDisabled = RecipType[0] == DisabledPrefix; +    if (IsDisabled) +      RecipType = RecipType.substr(1); + +    if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) +      return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled +                        : TargetLoweringBase::ReciprocalEstimate::Enabled; +  } + +  return TargetLoweringBase::ReciprocalEstimate::Unspecified; +} + +/// For the input attribute string, return the customized refinement step count +/// for this operation on the specified data type. If the step count does not +/// exist, return the ReciprocalEstimate enum value for unspecified. +static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { +  if (Override.empty()) +    return TargetLoweringBase::ReciprocalEstimate::Unspecified; + +  SmallVector<StringRef, 4> OverrideVector; +  Override.split(OverrideVector, ','); +  unsigned NumArgs = OverrideVector.size(); + +  // Check if "all", "default", or "none" was specified. +  if (NumArgs == 1) { +    // Look for an optional setting of the number of refinement steps needed +    // for this type of reciprocal operation. +    size_t RefPos; +    uint8_t RefSteps; +    if (!parseRefinementStep(Override, RefPos, RefSteps)) +      return TargetLoweringBase::ReciprocalEstimate::Unspecified; + +    // Split the string for further processing. +    Override = Override.substr(0, RefPos); +    assert(Override != "none" && +           "Disabled reciprocals, but specifed refinement steps?"); + +    // If this is a general override, return the specified number of steps. +    if (Override == "all" || Override == "default") +      return RefSteps; +  } + +  // The attribute string may omit the size suffix ('f'/'d'). +  std::string VTName = getReciprocalOpName(IsSqrt, VT); +  std::string VTNameNoSize = VTName; +  VTNameNoSize.pop_back(); + +  for (StringRef RecipType : OverrideVector) { +    size_t RefPos; +    uint8_t RefSteps; +    if (!parseRefinementStep(RecipType, RefPos, RefSteps)) +      continue; + +    RecipType = RecipType.substr(0, RefPos); +    if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) +      return RefSteps; +  } + +  return TargetLoweringBase::ReciprocalEstimate::Unspecified; +} + +int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, +                                                    MachineFunction &MF) const { +  return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, +                                                   MachineFunction &MF) const { +  return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, +                                               MachineFunction &MF) const { +  return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); +} + +int TargetLoweringBase::getDivRefinementSteps(EVT VT, +                                              MachineFunction &MF) const { +  return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); +} + +void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { +  MF.getRegInfo().freezeReservedRegs(MF); +}  | 
