aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/IR/DataLayout.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/IR/DataLayout.cpp')
-rw-r--r--llvm/lib/IR/DataLayout.cpp877
1 files changed, 877 insertions, 0 deletions
diff --git a/llvm/lib/IR/DataLayout.cpp b/llvm/lib/IR/DataLayout.cpp
new file mode 100644
index 000000000000..5fe7a2e94b6a
--- /dev/null
+++ b/llvm/lib/IR/DataLayout.cpp
@@ -0,0 +1,877 @@
+//===- DataLayout.cpp - Data size & alignment routines ---------------------==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines layout properties related to datatype size/offset/alignment
+// information.
+//
+// This structure should be created once, filled in if the defaults are not
+// correct and then passed around by const&. None of the members functions
+// require modification to the object.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/IR/DataLayout.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TypeSize.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstdlib>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+
+//===----------------------------------------------------------------------===//
+// Support for StructLayout
+//===----------------------------------------------------------------------===//
+
+StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
+ assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
+ StructSize = 0;
+ IsPadded = false;
+ NumElements = ST->getNumElements();
+
+ // Loop over each of the elements, placing them in memory.
+ for (unsigned i = 0, e = NumElements; i != e; ++i) {
+ Type *Ty = ST->getElementType(i);
+ const Align TyAlign(ST->isPacked() ? 1 : DL.getABITypeAlignment(Ty));
+
+ // Add padding if necessary to align the data element properly.
+ if (!isAligned(TyAlign, StructSize)) {
+ IsPadded = true;
+ StructSize = alignTo(StructSize, TyAlign);
+ }
+
+ // Keep track of maximum alignment constraint.
+ StructAlignment = std::max(TyAlign, StructAlignment);
+
+ MemberOffsets[i] = StructSize;
+ StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item
+ }
+
+ // Add padding to the end of the struct so that it could be put in an array
+ // and all array elements would be aligned correctly.
+ if (!isAligned(StructAlignment, StructSize)) {
+ IsPadded = true;
+ StructSize = alignTo(StructSize, StructAlignment);
+ }
+}
+
+/// getElementContainingOffset - Given a valid offset into the structure,
+/// return the structure index that contains it.
+unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
+ const uint64_t *SI =
+ std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
+ assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
+ --SI;
+ assert(*SI <= Offset && "upper_bound didn't work");
+ assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
+ (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
+ "Upper bound didn't work!");
+
+ // Multiple fields can have the same offset if any of them are zero sized.
+ // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
+ // at the i32 element, because it is the last element at that offset. This is
+ // the right one to return, because anything after it will have a higher
+ // offset, implying that this element is non-empty.
+ return SI-&MemberOffsets[0];
+}
+
+//===----------------------------------------------------------------------===//
+// LayoutAlignElem, LayoutAlign support
+//===----------------------------------------------------------------------===//
+
+LayoutAlignElem LayoutAlignElem::get(AlignTypeEnum align_type, Align abi_align,
+ Align pref_align, uint32_t bit_width) {
+ assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
+ LayoutAlignElem retval;
+ retval.AlignType = align_type;
+ retval.ABIAlign = abi_align;
+ retval.PrefAlign = pref_align;
+ retval.TypeBitWidth = bit_width;
+ return retval;
+}
+
+bool
+LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
+ return (AlignType == rhs.AlignType
+ && ABIAlign == rhs.ABIAlign
+ && PrefAlign == rhs.PrefAlign
+ && TypeBitWidth == rhs.TypeBitWidth);
+}
+
+//===----------------------------------------------------------------------===//
+// PointerAlignElem, PointerAlign support
+//===----------------------------------------------------------------------===//
+
+PointerAlignElem PointerAlignElem::get(uint32_t AddressSpace, Align ABIAlign,
+ Align PrefAlign, uint32_t TypeByteWidth,
+ uint32_t IndexWidth) {
+ assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
+ PointerAlignElem retval;
+ retval.AddressSpace = AddressSpace;
+ retval.ABIAlign = ABIAlign;
+ retval.PrefAlign = PrefAlign;
+ retval.TypeByteWidth = TypeByteWidth;
+ retval.IndexWidth = IndexWidth;
+ return retval;
+}
+
+bool
+PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
+ return (ABIAlign == rhs.ABIAlign
+ && AddressSpace == rhs.AddressSpace
+ && PrefAlign == rhs.PrefAlign
+ && TypeByteWidth == rhs.TypeByteWidth
+ && IndexWidth == rhs.IndexWidth);
+}
+
+//===----------------------------------------------------------------------===//
+// DataLayout Class Implementation
+//===----------------------------------------------------------------------===//
+
+const char *DataLayout::getManglingComponent(const Triple &T) {
+ if (T.isOSBinFormatMachO())
+ return "-m:o";
+ if (T.isOSWindows() && T.isOSBinFormatCOFF())
+ return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
+ return "-m:e";
+}
+
+static const LayoutAlignElem DefaultAlignments[] = {
+ {INTEGER_ALIGN, 1, Align(1), Align(1)}, // i1
+ {INTEGER_ALIGN, 8, Align(1), Align(1)}, // i8
+ {INTEGER_ALIGN, 16, Align(2), Align(2)}, // i16
+ {INTEGER_ALIGN, 32, Align(4), Align(4)}, // i32
+ {INTEGER_ALIGN, 64, Align(4), Align(8)}, // i64
+ {FLOAT_ALIGN, 16, Align(2), Align(2)}, // half
+ {FLOAT_ALIGN, 32, Align(4), Align(4)}, // float
+ {FLOAT_ALIGN, 64, Align(8), Align(8)}, // double
+ {FLOAT_ALIGN, 128, Align(16), Align(16)}, // ppcf128, quad, ...
+ {VECTOR_ALIGN, 64, Align(8), Align(8)}, // v2i32, v1i64, ...
+ {VECTOR_ALIGN, 128, Align(16), Align(16)}, // v16i8, v8i16, v4i32, ...
+ {AGGREGATE_ALIGN, 0, Align(1), Align(8)} // struct
+};
+
+void DataLayout::reset(StringRef Desc) {
+ clear();
+
+ LayoutMap = nullptr;
+ BigEndian = false;
+ AllocaAddrSpace = 0;
+ StackNaturalAlign.reset();
+ ProgramAddrSpace = 0;
+ FunctionPtrAlign.reset();
+ TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
+ ManglingMode = MM_None;
+ NonIntegralAddressSpaces.clear();
+
+ // Default alignments
+ for (const LayoutAlignElem &E : DefaultAlignments) {
+ setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign, E.PrefAlign,
+ E.TypeBitWidth);
+ }
+ setPointerAlignment(0, Align(8), Align(8), 8, 8);
+
+ parseSpecifier(Desc);
+}
+
+/// Checked version of split, to ensure mandatory subparts.
+static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) {
+ assert(!Str.empty() && "parse error, string can't be empty here");
+ std::pair<StringRef, StringRef> Split = Str.split(Separator);
+ if (Split.second.empty() && Split.first != Str)
+ report_fatal_error("Trailing separator in datalayout string");
+ if (!Split.second.empty() && Split.first.empty())
+ report_fatal_error("Expected token before separator in datalayout string");
+ return Split;
+}
+
+/// Get an unsigned integer, including error checks.
+static unsigned getInt(StringRef R) {
+ unsigned Result;
+ bool error = R.getAsInteger(10, Result); (void)error;
+ if (error)
+ report_fatal_error("not a number, or does not fit in an unsigned int");
+ return Result;
+}
+
+/// Convert bits into bytes. Assert if not a byte width multiple.
+static unsigned inBytes(unsigned Bits) {
+ if (Bits % 8)
+ report_fatal_error("number of bits must be a byte width multiple");
+ return Bits / 8;
+}
+
+static unsigned getAddrSpace(StringRef R) {
+ unsigned AddrSpace = getInt(R);
+ if (!isUInt<24>(AddrSpace))
+ report_fatal_error("Invalid address space, must be a 24-bit integer");
+ return AddrSpace;
+}
+
+void DataLayout::parseSpecifier(StringRef Desc) {
+ StringRepresentation = Desc;
+ while (!Desc.empty()) {
+ // Split at '-'.
+ std::pair<StringRef, StringRef> Split = split(Desc, '-');
+ Desc = Split.second;
+
+ // Split at ':'.
+ Split = split(Split.first, ':');
+
+ // Aliases used below.
+ StringRef &Tok = Split.first; // Current token.
+ StringRef &Rest = Split.second; // The rest of the string.
+
+ if (Tok == "ni") {
+ do {
+ Split = split(Rest, ':');
+ Rest = Split.second;
+ unsigned AS = getInt(Split.first);
+ if (AS == 0)
+ report_fatal_error("Address space 0 can never be non-integral");
+ NonIntegralAddressSpaces.push_back(AS);
+ } while (!Rest.empty());
+
+ continue;
+ }
+
+ char Specifier = Tok.front();
+ Tok = Tok.substr(1);
+
+ switch (Specifier) {
+ case 's':
+ // Ignored for backward compatibility.
+ // FIXME: remove this on LLVM 4.0.
+ break;
+ case 'E':
+ BigEndian = true;
+ break;
+ case 'e':
+ BigEndian = false;
+ break;
+ case 'p': {
+ // Address space.
+ unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok);
+ if (!isUInt<24>(AddrSpace))
+ report_fatal_error("Invalid address space, must be a 24bit integer");
+
+ // Size.
+ if (Rest.empty())
+ report_fatal_error(
+ "Missing size specification for pointer in datalayout string");
+ Split = split(Rest, ':');
+ unsigned PointerMemSize = inBytes(getInt(Tok));
+ if (!PointerMemSize)
+ report_fatal_error("Invalid pointer size of 0 bytes");
+
+ // ABI alignment.
+ if (Rest.empty())
+ report_fatal_error(
+ "Missing alignment specification for pointer in datalayout string");
+ Split = split(Rest, ':');
+ unsigned PointerABIAlign = inBytes(getInt(Tok));
+ if (!isPowerOf2_64(PointerABIAlign))
+ report_fatal_error(
+ "Pointer ABI alignment must be a power of 2");
+
+ // Size of index used in GEP for address calculation.
+ // The parameter is optional. By default it is equal to size of pointer.
+ unsigned IndexSize = PointerMemSize;
+
+ // Preferred alignment.
+ unsigned PointerPrefAlign = PointerABIAlign;
+ if (!Rest.empty()) {
+ Split = split(Rest, ':');
+ PointerPrefAlign = inBytes(getInt(Tok));
+ if (!isPowerOf2_64(PointerPrefAlign))
+ report_fatal_error(
+ "Pointer preferred alignment must be a power of 2");
+
+ // Now read the index. It is the second optional parameter here.
+ if (!Rest.empty()) {
+ Split = split(Rest, ':');
+ IndexSize = inBytes(getInt(Tok));
+ if (!IndexSize)
+ report_fatal_error("Invalid index size of 0 bytes");
+ }
+ }
+ setPointerAlignment(AddrSpace, assumeAligned(PointerABIAlign),
+ assumeAligned(PointerPrefAlign), PointerMemSize,
+ IndexSize);
+ break;
+ }
+ case 'i':
+ case 'v':
+ case 'f':
+ case 'a': {
+ AlignTypeEnum AlignType;
+ switch (Specifier) {
+ default: llvm_unreachable("Unexpected specifier!");
+ case 'i': AlignType = INTEGER_ALIGN; break;
+ case 'v': AlignType = VECTOR_ALIGN; break;
+ case 'f': AlignType = FLOAT_ALIGN; break;
+ case 'a': AlignType = AGGREGATE_ALIGN; break;
+ }
+
+ // Bit size.
+ unsigned Size = Tok.empty() ? 0 : getInt(Tok);
+
+ if (AlignType == AGGREGATE_ALIGN && Size != 0)
+ report_fatal_error(
+ "Sized aggregate specification in datalayout string");
+
+ // ABI alignment.
+ if (Rest.empty())
+ report_fatal_error(
+ "Missing alignment specification in datalayout string");
+ Split = split(Rest, ':');
+ const unsigned ABIAlign = inBytes(getInt(Tok));
+ if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
+ report_fatal_error(
+ "ABI alignment specification must be >0 for non-aggregate types");
+
+ if (!isUInt<16>(ABIAlign))
+ report_fatal_error("Invalid ABI alignment, must be a 16bit integer");
+ if (ABIAlign != 0 && !isPowerOf2_64(ABIAlign))
+ report_fatal_error("Invalid ABI alignment, must be a power of 2");
+
+ // Preferred alignment.
+ unsigned PrefAlign = ABIAlign;
+ if (!Rest.empty()) {
+ Split = split(Rest, ':');
+ PrefAlign = inBytes(getInt(Tok));
+ }
+
+ if (!isUInt<16>(PrefAlign))
+ report_fatal_error(
+ "Invalid preferred alignment, must be a 16bit integer");
+ if (PrefAlign != 0 && !isPowerOf2_64(PrefAlign))
+ report_fatal_error("Invalid preferred alignment, must be a power of 2");
+
+ setAlignment(AlignType, assumeAligned(ABIAlign), assumeAligned(PrefAlign),
+ Size);
+
+ break;
+ }
+ case 'n': // Native integer types.
+ while (true) {
+ unsigned Width = getInt(Tok);
+ if (Width == 0)
+ report_fatal_error(
+ "Zero width native integer type in datalayout string");
+ LegalIntWidths.push_back(Width);
+ if (Rest.empty())
+ break;
+ Split = split(Rest, ':');
+ }
+ break;
+ case 'S': { // Stack natural alignment.
+ uint64_t Alignment = inBytes(getInt(Tok));
+ if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
+ report_fatal_error("Alignment is neither 0 nor a power of 2");
+ StackNaturalAlign = MaybeAlign(Alignment);
+ break;
+ }
+ case 'F': {
+ switch (Tok.front()) {
+ case 'i':
+ TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
+ break;
+ case 'n':
+ TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
+ break;
+ default:
+ report_fatal_error("Unknown function pointer alignment type in "
+ "datalayout string");
+ }
+ Tok = Tok.substr(1);
+ uint64_t Alignment = inBytes(getInt(Tok));
+ if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
+ report_fatal_error("Alignment is neither 0 nor a power of 2");
+ FunctionPtrAlign = MaybeAlign(Alignment);
+ break;
+ }
+ case 'P': { // Function address space.
+ ProgramAddrSpace = getAddrSpace(Tok);
+ break;
+ }
+ case 'A': { // Default stack/alloca address space.
+ AllocaAddrSpace = getAddrSpace(Tok);
+ break;
+ }
+ case 'm':
+ if (!Tok.empty())
+ report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string");
+ if (Rest.empty())
+ report_fatal_error("Expected mangling specifier in datalayout string");
+ if (Rest.size() > 1)
+ report_fatal_error("Unknown mangling specifier in datalayout string");
+ switch(Rest[0]) {
+ default:
+ report_fatal_error("Unknown mangling in datalayout string");
+ case 'e':
+ ManglingMode = MM_ELF;
+ break;
+ case 'o':
+ ManglingMode = MM_MachO;
+ break;
+ case 'm':
+ ManglingMode = MM_Mips;
+ break;
+ case 'w':
+ ManglingMode = MM_WinCOFF;
+ break;
+ case 'x':
+ ManglingMode = MM_WinCOFFX86;
+ break;
+ }
+ break;
+ default:
+ report_fatal_error("Unknown specifier in datalayout string");
+ break;
+ }
+ }
+}
+
+DataLayout::DataLayout(const Module *M) {
+ init(M);
+}
+
+void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }
+
+bool DataLayout::operator==(const DataLayout &Other) const {
+ bool Ret = BigEndian == Other.BigEndian &&
+ AllocaAddrSpace == Other.AllocaAddrSpace &&
+ StackNaturalAlign == Other.StackNaturalAlign &&
+ ProgramAddrSpace == Other.ProgramAddrSpace &&
+ FunctionPtrAlign == Other.FunctionPtrAlign &&
+ TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
+ ManglingMode == Other.ManglingMode &&
+ LegalIntWidths == Other.LegalIntWidths &&
+ Alignments == Other.Alignments && Pointers == Other.Pointers;
+ // Note: getStringRepresentation() might differs, it is not canonicalized
+ return Ret;
+}
+
+DataLayout::AlignmentsTy::iterator
+DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType,
+ uint32_t BitWidth) {
+ auto Pair = std::make_pair((unsigned)AlignType, BitWidth);
+ return partition_point(Alignments, [=](const LayoutAlignElem &E) {
+ return std::make_pair(E.AlignType, E.TypeBitWidth) < Pair;
+ });
+}
+
+void DataLayout::setAlignment(AlignTypeEnum align_type, Align abi_align,
+ Align pref_align, uint32_t bit_width) {
+ // AlignmentsTy::ABIAlign and AlignmentsTy::PrefAlign were once stored as
+ // uint16_t, it is unclear if there are requirements for alignment to be less
+ // than 2^16 other than storage. In the meantime we leave the restriction as
+ // an assert. See D67400 for context.
+ assert(Log2(abi_align) < 16 && Log2(pref_align) < 16 && "Alignment too big");
+ if (!isUInt<24>(bit_width))
+ report_fatal_error("Invalid bit width, must be a 24bit integer");
+ if (pref_align < abi_align)
+ report_fatal_error(
+ "Preferred alignment cannot be less than the ABI alignment");
+
+ AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width);
+ if (I != Alignments.end() &&
+ I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) {
+ // Update the abi, preferred alignments.
+ I->ABIAlign = abi_align;
+ I->PrefAlign = pref_align;
+ } else {
+ // Insert before I to keep the vector sorted.
+ Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align,
+ pref_align, bit_width));
+ }
+}
+
+DataLayout::PointersTy::iterator
+DataLayout::findPointerLowerBound(uint32_t AddressSpace) {
+ return std::lower_bound(Pointers.begin(), Pointers.end(), AddressSpace,
+ [](const PointerAlignElem &A, uint32_t AddressSpace) {
+ return A.AddressSpace < AddressSpace;
+ });
+}
+
+void DataLayout::setPointerAlignment(uint32_t AddrSpace, Align ABIAlign,
+ Align PrefAlign, uint32_t TypeByteWidth,
+ uint32_t IndexWidth) {
+ if (PrefAlign < ABIAlign)
+ report_fatal_error(
+ "Preferred alignment cannot be less than the ABI alignment");
+
+ PointersTy::iterator I = findPointerLowerBound(AddrSpace);
+ if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
+ Pointers.insert(I, PointerAlignElem::get(AddrSpace, ABIAlign, PrefAlign,
+ TypeByteWidth, IndexWidth));
+ } else {
+ I->ABIAlign = ABIAlign;
+ I->PrefAlign = PrefAlign;
+ I->TypeByteWidth = TypeByteWidth;
+ I->IndexWidth = IndexWidth;
+ }
+}
+
+/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
+/// preferred if ABIInfo = false) the layout wants for the specified datatype.
+Align DataLayout::getAlignmentInfo(AlignTypeEnum AlignType, uint32_t BitWidth,
+ bool ABIInfo, Type *Ty) const {
+ AlignmentsTy::const_iterator I = findAlignmentLowerBound(AlignType, BitWidth);
+ // See if we found an exact match. Of if we are looking for an integer type,
+ // but don't have an exact match take the next largest integer. This is where
+ // the lower_bound will point to when it fails an exact match.
+ if (I != Alignments.end() && I->AlignType == (unsigned)AlignType &&
+ (I->TypeBitWidth == BitWidth || AlignType == INTEGER_ALIGN))
+ return ABIInfo ? I->ABIAlign : I->PrefAlign;
+
+ if (AlignType == INTEGER_ALIGN) {
+ // If we didn't have a larger value try the largest value we have.
+ if (I != Alignments.begin()) {
+ --I; // Go to the previous entry and see if its an integer.
+ if (I->AlignType == INTEGER_ALIGN)
+ return ABIInfo ? I->ABIAlign : I->PrefAlign;
+ }
+ } else if (AlignType == VECTOR_ALIGN) {
+ // By default, use natural alignment for vector types. This is consistent
+ // with what clang and llvm-gcc do.
+ unsigned Alignment =
+ getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
+ Alignment *= cast<VectorType>(Ty)->getNumElements();
+ Alignment = PowerOf2Ceil(Alignment);
+ return Align(Alignment);
+ }
+
+ // If we still couldn't find a reasonable default alignment, fall back
+ // to a simple heuristic that the alignment is the first power of two
+ // greater-or-equal to the store size of the type. This is a reasonable
+ // approximation of reality, and if the user wanted something less
+ // less conservative, they should have specified it explicitly in the data
+ // layout.
+ unsigned Alignment = getTypeStoreSize(Ty);
+ Alignment = PowerOf2Ceil(Alignment);
+ return Align(Alignment);
+}
+
+namespace {
+
+class StructLayoutMap {
+ using LayoutInfoTy = DenseMap<StructType*, StructLayout*>;
+ LayoutInfoTy LayoutInfo;
+
+public:
+ ~StructLayoutMap() {
+ // Remove any layouts.
+ for (const auto &I : LayoutInfo) {
+ StructLayout *Value = I.second;
+ Value->~StructLayout();
+ free(Value);
+ }
+ }
+
+ StructLayout *&operator[](StructType *STy) {
+ return LayoutInfo[STy];
+ }
+};
+
+} // end anonymous namespace
+
+void DataLayout::clear() {
+ LegalIntWidths.clear();
+ Alignments.clear();
+ Pointers.clear();
+ delete static_cast<StructLayoutMap *>(LayoutMap);
+ LayoutMap = nullptr;
+}
+
+DataLayout::~DataLayout() {
+ clear();
+}
+
+const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
+ if (!LayoutMap)
+ LayoutMap = new StructLayoutMap();
+
+ StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
+ StructLayout *&SL = (*STM)[Ty];
+ if (SL) return SL;
+
+ // Otherwise, create the struct layout. Because it is variable length, we
+ // malloc it, then use placement new.
+ int NumElts = Ty->getNumElements();
+ StructLayout *L = (StructLayout *)
+ safe_malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
+
+ // Set SL before calling StructLayout's ctor. The ctor could cause other
+ // entries to be added to TheMap, invalidating our reference.
+ SL = L;
+
+ new (L) StructLayout(Ty, *this);
+
+ return L;
+}
+
+Align DataLayout::getPointerABIAlignment(unsigned AS) const {
+ PointersTy::const_iterator I = findPointerLowerBound(AS);
+ if (I == Pointers.end() || I->AddressSpace != AS) {
+ I = findPointerLowerBound(0);
+ assert(I->AddressSpace == 0);
+ }
+ return I->ABIAlign;
+}
+
+Align DataLayout::getPointerPrefAlignment(unsigned AS) const {
+ PointersTy::const_iterator I = findPointerLowerBound(AS);
+ if (I == Pointers.end() || I->AddressSpace != AS) {
+ I = findPointerLowerBound(0);
+ assert(I->AddressSpace == 0);
+ }
+ return I->PrefAlign;
+}
+
+unsigned DataLayout::getPointerSize(unsigned AS) const {
+ PointersTy::const_iterator I = findPointerLowerBound(AS);
+ if (I == Pointers.end() || I->AddressSpace != AS) {
+ I = findPointerLowerBound(0);
+ assert(I->AddressSpace == 0);
+ }
+ return I->TypeByteWidth;
+}
+
+unsigned DataLayout::getMaxPointerSize() const {
+ unsigned MaxPointerSize = 0;
+ for (auto &P : Pointers)
+ MaxPointerSize = std::max(MaxPointerSize, P.TypeByteWidth);
+
+ return MaxPointerSize;
+}
+
+unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "This should only be called with a pointer or pointer vector type");
+ Ty = Ty->getScalarType();
+ return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
+}
+
+unsigned DataLayout::getIndexSize(unsigned AS) const {
+ PointersTy::const_iterator I = findPointerLowerBound(AS);
+ if (I == Pointers.end() || I->AddressSpace != AS) {
+ I = findPointerLowerBound(0);
+ assert(I->AddressSpace == 0);
+ }
+ return I->IndexWidth;
+}
+
+unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "This should only be called with a pointer or pointer vector type");
+ Ty = Ty->getScalarType();
+ return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
+}
+
+/*!
+ \param abi_or_pref Flag that determines which alignment is returned. true
+ returns the ABI alignment, false returns the preferred alignment.
+ \param Ty The underlying type for which alignment is determined.
+
+ Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
+ == false) for the requested type \a Ty.
+ */
+Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
+ AlignTypeEnum AlignType;
+
+ assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
+ switch (Ty->getTypeID()) {
+ // Early escape for the non-numeric types.
+ case Type::LabelTyID:
+ return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
+ case Type::PointerTyID: {
+ unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
+ return abi_or_pref ? getPointerABIAlignment(AS)
+ : getPointerPrefAlignment(AS);
+ }
+ case Type::ArrayTyID:
+ return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
+
+ case Type::StructTyID: {
+ // Packed structure types always have an ABI alignment of one.
+ if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
+ return Align::None();
+
+ // Get the layout annotation... which is lazily created on demand.
+ const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
+ const Align Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
+ return std::max(Align, Layout->getAlignment());
+ }
+ case Type::IntegerTyID:
+ AlignType = INTEGER_ALIGN;
+ break;
+ case Type::HalfTyID:
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ // PPC_FP128TyID and FP128TyID have different data contents, but the
+ // same size and alignment, so they look the same here.
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID:
+ case Type::X86_FP80TyID:
+ AlignType = FLOAT_ALIGN;
+ break;
+ case Type::X86_MMXTyID:
+ case Type::VectorTyID:
+ AlignType = VECTOR_ALIGN;
+ break;
+ default:
+ llvm_unreachable("Bad type for getAlignment!!!");
+ }
+
+ // If we're dealing with a scalable vector, we just need the known minimum
+ // size for determining alignment. If not, we'll get the exact size.
+ return getAlignmentInfo(AlignType, getTypeSizeInBits(Ty).getKnownMinSize(),
+ abi_or_pref, Ty);
+}
+
+unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
+ return getAlignment(Ty, true).value();
+}
+
+/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
+/// an integer type of the specified bitwidth.
+Align DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
+ return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, nullptr);
+}
+
+unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
+ return getAlignment(Ty, false).value();
+}
+
+IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
+ unsigned AddressSpace) const {
+ return IntegerType::get(C, getIndexSizeInBits(AddressSpace));
+}
+
+Type *DataLayout::getIntPtrType(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "Expected a pointer or pointer vector type.");
+ unsigned NumBits = getIndexTypeSizeInBits(Ty);
+ IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
+ if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
+ return VectorType::get(IntTy, VecTy->getNumElements());
+ return IntTy;
+}
+
+Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
+ for (unsigned LegalIntWidth : LegalIntWidths)
+ if (Width <= LegalIntWidth)
+ return Type::getIntNTy(C, LegalIntWidth);
+ return nullptr;
+}
+
+unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
+ auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
+ return Max != LegalIntWidths.end() ? *Max : 0;
+}
+
+Type *DataLayout::getIndexType(Type *Ty) const {
+ assert(Ty->isPtrOrPtrVectorTy() &&
+ "Expected a pointer or pointer vector type.");
+ unsigned NumBits = getIndexTypeSizeInBits(Ty);
+ IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
+ if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
+ return VectorType::get(IntTy, VecTy->getNumElements());
+ return IntTy;
+}
+
+int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
+ ArrayRef<Value *> Indices) const {
+ int64_t Result = 0;
+
+ generic_gep_type_iterator<Value* const*>
+ GTI = gep_type_begin(ElemTy, Indices),
+ GTE = gep_type_end(ElemTy, Indices);
+ for (; GTI != GTE; ++GTI) {
+ Value *Idx = GTI.getOperand();
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
+ unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();
+
+ // Get structure layout information...
+ const StructLayout *Layout = getStructLayout(STy);
+
+ // Add in the offset, as calculated by the structure layout info...
+ Result += Layout->getElementOffset(FieldNo);
+ } else {
+ // Get the array index and the size of each array element.
+ if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
+ Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType());
+ }
+ }
+
+ return Result;
+}
+
+/// getPreferredAlignment - Return the preferred alignment of the specified
+/// global. This includes an explicitly requested alignment (if the global
+/// has one).
+unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const {
+ unsigned GVAlignment = GV->getAlignment();
+ // If a section is specified, always precisely honor explicit alignment,
+ // so we don't insert padding into a section we don't control.
+ if (GVAlignment && GV->hasSection())
+ return GVAlignment;
+
+ // If no explicit alignment is specified, compute the alignment based on
+ // the IR type. If an alignment is specified, increase it to match the ABI
+ // alignment of the IR type.
+ //
+ // FIXME: Not sure it makes sense to use the alignment of the type if
+ // there's already an explicit alignment specification.
+ Type *ElemType = GV->getValueType();
+ unsigned Alignment = getPrefTypeAlignment(ElemType);
+ if (GVAlignment >= Alignment) {
+ Alignment = GVAlignment;
+ } else if (GVAlignment != 0) {
+ Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
+ }
+
+ // If no explicit alignment is specified, and the global is large, increase
+ // the alignment to 16.
+ // FIXME: Why 16, specifically?
+ if (GV->hasInitializer() && GVAlignment == 0) {
+ if (Alignment < 16) {
+ // If the global is not external, see if it is large. If so, give it a
+ // larger alignment.
+ if (getTypeSizeInBits(ElemType) > 128)
+ Alignment = 16; // 16-byte alignment.
+ }
+ }
+ return Alignment;
+}
+
+/// getPreferredAlignmentLog - Return the preferred alignment of the
+/// specified global, returned in log form. This includes an explicitly
+/// requested alignment (if the global has one).
+unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
+ return Log2_32(getPreferredAlignment(GV));
+}