aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp')
-rw-r--r--llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp507
1 files changed, 507 insertions, 0 deletions
diff --git a/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp b/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp
new file mode 100644
index 000000000000..baa8515baf3e
--- /dev/null
+++ b/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp
@@ -0,0 +1,507 @@
+ //=== lib/CodeGen/GlobalISel/AArch64PostLegalizerCombiner.cpp -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This performs post-legalization combines on generic MachineInstrs.
+//
+// Any combine that this pass performs must preserve instruction legality.
+// Combines unconcerned with legality should be handled by the
+// PreLegalizerCombiner instead.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AArch64TargetMachine.h"
+#include "llvm/CodeGen/GlobalISel/Combiner.h"
+#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
+#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
+#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
+#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/Support/Debug.h"
+
+#define DEBUG_TYPE "aarch64-postlegalizer-combiner"
+
+using namespace llvm;
+using namespace MIPatternMatch;
+
+/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
+///
+/// Used for matching target-supported shuffles before codegen.
+struct ShuffleVectorPseudo {
+ unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
+ Register Dst; ///< Destination register.
+ SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
+ ShuffleVectorPseudo(unsigned Opc, Register Dst,
+ std::initializer_list<SrcOp> SrcOps)
+ : Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
+ ShuffleVectorPseudo() {}
+};
+
+/// \returns The splat index of a G_SHUFFLE_VECTOR \p MI when \p MI is a splat.
+/// If \p MI is not a splat, returns None.
+static Optional<int> getSplatIndex(MachineInstr &MI) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
+ "Only G_SHUFFLE_VECTOR can have a splat index!");
+ ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
+ auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; });
+
+ // If all elements are undefined, this shuffle can be considered a splat.
+ // Return 0 for better potential for callers to simplify.
+ if (FirstDefinedIdx == Mask.end())
+ return 0;
+
+ // Make sure all remaining elements are either undef or the same
+ // as the first non-undef value.
+ int SplatValue = *FirstDefinedIdx;
+ if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()),
+ [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; }))
+ return None;
+
+ return SplatValue;
+}
+
+/// Check if a vector shuffle corresponds to a REV instruction with the
+/// specified blocksize.
+static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
+ unsigned BlockSize) {
+ assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
+ "Only possible block sizes for REV are: 16, 32, 64");
+ assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");
+
+ unsigned BlockElts = M[0] + 1;
+
+ // If the first shuffle index is UNDEF, be optimistic.
+ if (M[0] < 0)
+ BlockElts = BlockSize / EltSize;
+
+ if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ // Ignore undef indices.
+ if (M[i] < 0)
+ continue;
+ if (static_cast<unsigned>(M[i]) !=
+ (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+/// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
+/// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
+static bool isTRNMask(ArrayRef<int> M, unsigned NumElts,
+ unsigned &WhichResult) {
+ if (NumElts % 2 != 0)
+ return false;
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i < NumElts; i += 2) {
+ if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
+ (M[i + 1] >= 0 &&
+ static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
+ return false;
+ }
+ return true;
+}
+
+/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
+/// sources of the shuffle are different.
+static Optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
+ unsigned NumElts) {
+ // Look for the first non-undef element.
+ auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
+ if (FirstRealElt == M.end())
+ return None;
+
+ // Use APInt to handle overflow when calculating expected element.
+ unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
+ APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
+
+ // The following shuffle indices must be the successive elements after the
+ // first real element.
+ if (any_of(
+ make_range(std::next(FirstRealElt), M.end()),
+ [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
+ return None;
+
+ // The index of an EXT is the first element if it is not UNDEF.
+ // Watch out for the beginning UNDEFs. The EXT index should be the expected
+ // value of the first element. E.g.
+ // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
+ // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
+ // ExpectedElt is the last mask index plus 1.
+ uint64_t Imm = ExpectedElt.getZExtValue();
+ bool ReverseExt = false;
+
+ // There are two difference cases requiring to reverse input vectors.
+ // For example, for vector <4 x i32> we have the following cases,
+ // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
+ // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
+ // For both cases, we finally use mask <5, 6, 7, 0>, which requires
+ // to reverse two input vectors.
+ if (Imm < NumElts)
+ ReverseExt = true;
+ else
+ Imm -= NumElts;
+ return std::make_pair(ReverseExt, Imm);
+}
+
+/// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
+/// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
+static bool isUZPMask(ArrayRef<int> M, unsigned NumElts,
+ unsigned &WhichResult) {
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // Skip undef indices.
+ if (M[i] < 0)
+ continue;
+ if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
+ return false;
+ }
+ return true;
+}
+
+/// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
+/// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
+static bool isZipMask(ArrayRef<int> M, unsigned NumElts,
+ unsigned &WhichResult) {
+ if (NumElts % 2 != 0)
+ return false;
+
+ // 0 means use ZIP1, 1 means use ZIP2.
+ WhichResult = (M[0] == 0 ? 0 : 1);
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned i = 0; i != NumElts; i += 2) {
+ if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
+ (M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
+ return false;
+ Idx += 1;
+ }
+ return true;
+}
+
+/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
+/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
+static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
+ ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
+ Register Dst = MI.getOperand(0).getReg();
+ Register Src = MI.getOperand(1).getReg();
+ LLT Ty = MRI.getType(Dst);
+ unsigned EltSize = Ty.getScalarSizeInBits();
+
+ // Element size for a rev cannot be 64.
+ if (EltSize == 64)
+ return false;
+
+ unsigned NumElts = Ty.getNumElements();
+
+ // Try to produce G_REV64
+ if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
+ MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
+ return true;
+ }
+
+ // TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
+ // This should be identical to above, but with a constant 32 and constant
+ // 16.
+ return false;
+}
+
+/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
+/// a G_TRN1 or G_TRN2 instruction.
+static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
+ unsigned WhichResult;
+ ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
+ Register Dst = MI.getOperand(0).getReg();
+ unsigned NumElts = MRI.getType(Dst).getNumElements();
+ if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
+ return false;
+ unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
+ Register V1 = MI.getOperand(1).getReg();
+ Register V2 = MI.getOperand(2).getReg();
+ MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
+ return true;
+}
+
+/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
+/// a G_UZP1 or G_UZP2 instruction.
+///
+/// \param [in] MI - The shuffle vector instruction.
+/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
+static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
+ unsigned WhichResult;
+ ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
+ Register Dst = MI.getOperand(0).getReg();
+ unsigned NumElts = MRI.getType(Dst).getNumElements();
+ if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
+ return false;
+ unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
+ Register V1 = MI.getOperand(1).getReg();
+ Register V2 = MI.getOperand(2).getReg();
+ MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
+ return true;
+}
+
+static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
+ unsigned WhichResult;
+ ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
+ Register Dst = MI.getOperand(0).getReg();
+ unsigned NumElts = MRI.getType(Dst).getNumElements();
+ if (!isZipMask(ShuffleMask, NumElts, WhichResult))
+ return false;
+ unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
+ Register V1 = MI.getOperand(1).getReg();
+ Register V2 = MI.getOperand(2).getReg();
+ MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
+ return true;
+}
+
+/// Helper function for matchDup.
+static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
+ MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ if (Lane != 0)
+ return false;
+
+ // Try to match a vector splat operation into a dup instruction.
+ // We're looking for this pattern:
+ //
+ // %scalar:gpr(s64) = COPY $x0
+ // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
+ // %cst0:gpr(s32) = G_CONSTANT i32 0
+ // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
+ // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
+ // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>)
+ //
+ // ...into:
+ // %splat = G_DUP %scalar
+
+ // Begin matching the insert.
+ auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
+ MI.getOperand(1).getReg(), MRI);
+ if (!InsMI)
+ return false;
+ // Match the undef vector operand.
+ if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
+ MRI))
+ return false;
+
+ // Match the index constant 0.
+ int64_t Index = 0;
+ if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index)
+ return false;
+
+ MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
+ {InsMI->getOperand(2).getReg()});
+ return true;
+}
+
+/// Helper function for matchDup.
+static bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
+ MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ assert(Lane >= 0 && "Expected positive lane?");
+ // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
+ // lane's definition directly.
+ auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
+ MI.getOperand(1).getReg(), MRI);
+ if (!BuildVecMI)
+ return false;
+ Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
+ MatchInfo =
+ ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
+ return true;
+}
+
+static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
+ auto MaybeLane = getSplatIndex(MI);
+ if (!MaybeLane)
+ return false;
+ int Lane = *MaybeLane;
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane < 0)
+ Lane = 0;
+ if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
+ return true;
+ if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
+ return true;
+ return false;
+}
+
+static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
+ ShuffleVectorPseudo &MatchInfo) {
+ assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
+ Register Dst = MI.getOperand(0).getReg();
+ auto ExtInfo = getExtMask(MI.getOperand(3).getShuffleMask(),
+ MRI.getType(Dst).getNumElements());
+ if (!ExtInfo)
+ return false;
+ bool ReverseExt;
+ uint64_t Imm;
+ std::tie(ReverseExt, Imm) = *ExtInfo;
+ Register V1 = MI.getOperand(1).getReg();
+ Register V2 = MI.getOperand(2).getReg();
+ if (ReverseExt)
+ std::swap(V1, V2);
+ uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
+ Imm *= ExtFactor;
+ MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
+ return true;
+}
+
+/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
+/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
+static bool applyShuffleVectorPseudo(MachineInstr &MI,
+ ShuffleVectorPseudo &MatchInfo) {
+ MachineIRBuilder MIRBuilder(MI);
+ MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
+ MI.eraseFromParent();
+ return true;
+}
+
+/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
+/// Special-cased because the constant operand must be emitted as a G_CONSTANT
+/// for the imported tablegen patterns to work.
+static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
+ MachineIRBuilder MIRBuilder(MI);
+ // Tablegen patterns expect an i32 G_CONSTANT as the final op.
+ auto Cst =
+ MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
+ MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
+ {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
+ MI.eraseFromParent();
+ return true;
+}
+
+#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
+#include "AArch64GenPostLegalizeGICombiner.inc"
+#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
+
+namespace {
+#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
+#include "AArch64GenPostLegalizeGICombiner.inc"
+#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
+
+class AArch64PostLegalizerCombinerInfo : public CombinerInfo {
+ GISelKnownBits *KB;
+ MachineDominatorTree *MDT;
+
+public:
+ AArch64GenPostLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;
+
+ AArch64PostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
+ GISelKnownBits *KB,
+ MachineDominatorTree *MDT)
+ : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
+ /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
+ KB(KB), MDT(MDT) {
+ if (!GeneratedRuleCfg.parseCommandLineOption())
+ report_fatal_error("Invalid rule identifier");
+ }
+
+ virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
+ MachineIRBuilder &B) const override;
+};
+
+bool AArch64PostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
+ MachineInstr &MI,
+ MachineIRBuilder &B) const {
+ const auto *LI =
+ MI.getParent()->getParent()->getSubtarget().getLegalizerInfo();
+ CombinerHelper Helper(Observer, B, KB, MDT, LI);
+ AArch64GenPostLegalizerCombinerHelper Generated(GeneratedRuleCfg);
+ return Generated.tryCombineAll(Observer, MI, B, Helper);
+}
+
+#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
+#include "AArch64GenPostLegalizeGICombiner.inc"
+#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
+
+class AArch64PostLegalizerCombiner : public MachineFunctionPass {
+public:
+ static char ID;
+
+ AArch64PostLegalizerCombiner(bool IsOptNone = false);
+
+ StringRef getPassName() const override {
+ return "AArch64PostLegalizerCombiner";
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+private:
+ bool IsOptNone;
+};
+} // end anonymous namespace
+
+void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<TargetPassConfig>();
+ AU.setPreservesCFG();
+ getSelectionDAGFallbackAnalysisUsage(AU);
+ AU.addRequired<GISelKnownBitsAnalysis>();
+ AU.addPreserved<GISelKnownBitsAnalysis>();
+ if (!IsOptNone) {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ }
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone)
+ : MachineFunctionPass(ID), IsOptNone(IsOptNone) {
+ initializeAArch64PostLegalizerCombinerPass(*PassRegistry::getPassRegistry());
+}
+
+bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel))
+ return false;
+ assert(MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Legalized) &&
+ "Expected a legalized function?");
+ auto *TPC = &getAnalysis<TargetPassConfig>();
+ const Function &F = MF.getFunction();
+ bool EnableOpt =
+ MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
+ GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
+ MachineDominatorTree *MDT =
+ IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
+ AArch64PostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
+ F.hasMinSize(), KB, MDT);
+ Combiner C(PCInfo, TPC);
+ return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
+}
+
+char AArch64PostLegalizerCombiner::ID = 0;
+INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE,
+ "Combine AArch64 MachineInstrs after legalization", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
+INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE,
+ "Combine AArch64 MachineInstrs after legalization", false,
+ false)
+
+namespace llvm {
+FunctionPass *createAArch64PostLegalizeCombiner(bool IsOptNone) {
+ return new AArch64PostLegalizerCombiner(IsOptNone);
+}
+} // end namespace llvm