diff options
Diffstat (limited to 'llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp')
-rw-r--r-- | llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp | 507 |
1 files changed, 507 insertions, 0 deletions
diff --git a/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp b/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp new file mode 100644 index 000000000000..baa8515baf3e --- /dev/null +++ b/llvm/lib/Target/AArch64/GISel/AArch64PostLegalizerCombiner.cpp @@ -0,0 +1,507 @@ + //=== lib/CodeGen/GlobalISel/AArch64PostLegalizerCombiner.cpp -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This performs post-legalization combines on generic MachineInstrs. +// +// Any combine that this pass performs must preserve instruction legality. +// Combines unconcerned with legality should be handled by the +// PreLegalizerCombiner instead. +// +//===----------------------------------------------------------------------===// + +#include "AArch64TargetMachine.h" +#include "llvm/CodeGen/GlobalISel/Combiner.h" +#include "llvm/CodeGen/GlobalISel/CombinerHelper.h" +#include "llvm/CodeGen/GlobalISel/CombinerInfo.h" +#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" +#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/Support/Debug.h" + +#define DEBUG_TYPE "aarch64-postlegalizer-combiner" + +using namespace llvm; +using namespace MIPatternMatch; + +/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR. +/// +/// Used for matching target-supported shuffles before codegen. +struct ShuffleVectorPseudo { + unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1) + Register Dst; ///< Destination register. + SmallVector<SrcOp, 2> SrcOps; ///< Source registers. + ShuffleVectorPseudo(unsigned Opc, Register Dst, + std::initializer_list<SrcOp> SrcOps) + : Opc(Opc), Dst(Dst), SrcOps(SrcOps){}; + ShuffleVectorPseudo() {} +}; + +/// \returns The splat index of a G_SHUFFLE_VECTOR \p MI when \p MI is a splat. +/// If \p MI is not a splat, returns None. +static Optional<int> getSplatIndex(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && + "Only G_SHUFFLE_VECTOR can have a splat index!"); + ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); + auto FirstDefinedIdx = find_if(Mask, [](int Elt) { return Elt >= 0; }); + + // If all elements are undefined, this shuffle can be considered a splat. + // Return 0 for better potential for callers to simplify. + if (FirstDefinedIdx == Mask.end()) + return 0; + + // Make sure all remaining elements are either undef or the same + // as the first non-undef value. + int SplatValue = *FirstDefinedIdx; + if (any_of(make_range(std::next(FirstDefinedIdx), Mask.end()), + [&SplatValue](int Elt) { return Elt >= 0 && Elt != SplatValue; })) + return None; + + return SplatValue; +} + +/// Check if a vector shuffle corresponds to a REV instruction with the +/// specified blocksize. +static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts, + unsigned BlockSize) { + assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && + "Only possible block sizes for REV are: 16, 32, 64"); + assert(EltSize != 64 && "EltSize cannot be 64 for REV mask."); + + unsigned BlockElts = M[0] + 1; + + // If the first shuffle index is UNDEF, be optimistic. + if (M[0] < 0) + BlockElts = BlockSize / EltSize; + + if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize) + return false; + + for (unsigned i = 0; i < NumElts; ++i) { + // Ignore undef indices. + if (M[i] < 0) + continue; + if (static_cast<unsigned>(M[i]) != + (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) + return false; + } + + return true; +} + +/// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts. +/// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult. +static bool isTRNMask(ArrayRef<int> M, unsigned NumElts, + unsigned &WhichResult) { + if (NumElts % 2 != 0) + return false; + WhichResult = (M[0] == 0 ? 0 : 1); + for (unsigned i = 0; i < NumElts; i += 2) { + if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) || + (M[i + 1] >= 0 && + static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult)) + return false; + } + return true; +} + +/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector +/// sources of the shuffle are different. +static Optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M, + unsigned NumElts) { + // Look for the first non-undef element. + auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); + if (FirstRealElt == M.end()) + return None; + + // Use APInt to handle overflow when calculating expected element. + unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); + APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); + + // The following shuffle indices must be the successive elements after the + // first real element. + if (any_of( + make_range(std::next(FirstRealElt), M.end()), + [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; })) + return None; + + // The index of an EXT is the first element if it is not UNDEF. + // Watch out for the beginning UNDEFs. The EXT index should be the expected + // value of the first element. E.g. + // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. + // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. + // ExpectedElt is the last mask index plus 1. + uint64_t Imm = ExpectedElt.getZExtValue(); + bool ReverseExt = false; + + // There are two difference cases requiring to reverse input vectors. + // For example, for vector <4 x i32> we have the following cases, + // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) + // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) + // For both cases, we finally use mask <5, 6, 7, 0>, which requires + // to reverse two input vectors. + if (Imm < NumElts) + ReverseExt = true; + else + Imm -= NumElts; + return std::make_pair(ReverseExt, Imm); +} + +/// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts. +/// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult. +static bool isUZPMask(ArrayRef<int> M, unsigned NumElts, + unsigned &WhichResult) { + WhichResult = (M[0] == 0 ? 0 : 1); + for (unsigned i = 0; i != NumElts; ++i) { + // Skip undef indices. + if (M[i] < 0) + continue; + if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult) + return false; + } + return true; +} + +/// \return true if \p M is a zip mask for a shuffle vector of \p NumElts. +/// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult. +static bool isZipMask(ArrayRef<int> M, unsigned NumElts, + unsigned &WhichResult) { + if (NumElts % 2 != 0) + return false; + + // 0 means use ZIP1, 1 means use ZIP2. + WhichResult = (M[0] == 0 ? 0 : 1); + unsigned Idx = WhichResult * NumElts / 2; + for (unsigned i = 0; i != NumElts; i += 2) { + if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) || + (M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts)) + return false; + Idx += 1; + } + return true; +} + +/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a +/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc. +static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); + ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask(); + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + LLT Ty = MRI.getType(Dst); + unsigned EltSize = Ty.getScalarSizeInBits(); + + // Element size for a rev cannot be 64. + if (EltSize == 64) + return false; + + unsigned NumElts = Ty.getNumElements(); + + // Try to produce G_REV64 + if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) { + MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src}); + return true; + } + + // TODO: Produce G_REV32 and G_REV16 once we have proper legalization support. + // This should be identical to above, but with a constant 32 and constant + // 16. + return false; +} + +/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with +/// a G_TRN1 or G_TRN2 instruction. +static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); + unsigned WhichResult; + ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask(); + Register Dst = MI.getOperand(0).getReg(); + unsigned NumElts = MRI.getType(Dst).getNumElements(); + if (!isTRNMask(ShuffleMask, NumElts, WhichResult)) + return false; + unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2; + Register V1 = MI.getOperand(1).getReg(); + Register V2 = MI.getOperand(2).getReg(); + MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); + return true; +} + +/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with +/// a G_UZP1 or G_UZP2 instruction. +/// +/// \param [in] MI - The shuffle vector instruction. +/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success. +static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); + unsigned WhichResult; + ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask(); + Register Dst = MI.getOperand(0).getReg(); + unsigned NumElts = MRI.getType(Dst).getNumElements(); + if (!isUZPMask(ShuffleMask, NumElts, WhichResult)) + return false; + unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2; + Register V1 = MI.getOperand(1).getReg(); + Register V2 = MI.getOperand(2).getReg(); + MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); + return true; +} + +static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); + unsigned WhichResult; + ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask(); + Register Dst = MI.getOperand(0).getReg(); + unsigned NumElts = MRI.getType(Dst).getNumElements(); + if (!isZipMask(ShuffleMask, NumElts, WhichResult)) + return false; + unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2; + Register V1 = MI.getOperand(1).getReg(); + Register V2 = MI.getOperand(2).getReg(); + MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2}); + return true; +} + +/// Helper function for matchDup. +static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI, + MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + if (Lane != 0) + return false; + + // Try to match a vector splat operation into a dup instruction. + // We're looking for this pattern: + // + // %scalar:gpr(s64) = COPY $x0 + // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF + // %cst0:gpr(s32) = G_CONSTANT i32 0 + // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32) + // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32) + // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>) + // + // ...into: + // %splat = G_DUP %scalar + + // Begin matching the insert. + auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT, + MI.getOperand(1).getReg(), MRI); + if (!InsMI) + return false; + // Match the undef vector operand. + if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(), + MRI)) + return false; + + // Match the index constant 0. + int64_t Index = 0; + if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ICst(Index)) || Index) + return false; + + MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), + {InsMI->getOperand(2).getReg()}); + return true; +} + +/// Helper function for matchDup. +static bool matchDupFromBuildVector(int Lane, MachineInstr &MI, + MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + assert(Lane >= 0 && "Expected positive lane?"); + // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the + // lane's definition directly. + auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, + MI.getOperand(1).getReg(), MRI); + if (!BuildVecMI) + return false; + Register Reg = BuildVecMI->getOperand(Lane + 1).getReg(); + MatchInfo = + ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg}); + return true; +} + +static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); + auto MaybeLane = getSplatIndex(MI); + if (!MaybeLane) + return false; + int Lane = *MaybeLane; + // If this is undef splat, generate it via "just" vdup, if possible. + if (Lane < 0) + Lane = 0; + if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo)) + return true; + if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo)) + return true; + return false; +} + +static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI, + ShuffleVectorPseudo &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); + Register Dst = MI.getOperand(0).getReg(); + auto ExtInfo = getExtMask(MI.getOperand(3).getShuffleMask(), + MRI.getType(Dst).getNumElements()); + if (!ExtInfo) + return false; + bool ReverseExt; + uint64_t Imm; + std::tie(ReverseExt, Imm) = *ExtInfo; + Register V1 = MI.getOperand(1).getReg(); + Register V2 = MI.getOperand(2).getReg(); + if (ReverseExt) + std::swap(V1, V2); + uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8; + Imm *= ExtFactor; + MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm}); + return true; +} + +/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo. +/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR. +static bool applyShuffleVectorPseudo(MachineInstr &MI, + ShuffleVectorPseudo &MatchInfo) { + MachineIRBuilder MIRBuilder(MI); + MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps); + MI.eraseFromParent(); + return true; +} + +/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT. +/// Special-cased because the constant operand must be emitted as a G_CONSTANT +/// for the imported tablegen patterns to work. +static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) { + MachineIRBuilder MIRBuilder(MI); + // Tablegen patterns expect an i32 G_CONSTANT as the final op. + auto Cst = + MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm()); + MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, + {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst}); + MI.eraseFromParent(); + return true; +} + +#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS +#include "AArch64GenPostLegalizeGICombiner.inc" +#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS + +namespace { +#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H +#include "AArch64GenPostLegalizeGICombiner.inc" +#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H + +class AArch64PostLegalizerCombinerInfo : public CombinerInfo { + GISelKnownBits *KB; + MachineDominatorTree *MDT; + +public: + AArch64GenPostLegalizerCombinerHelperRuleConfig GeneratedRuleCfg; + + AArch64PostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize, + GISelKnownBits *KB, + MachineDominatorTree *MDT) + : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false, + /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize), + KB(KB), MDT(MDT) { + if (!GeneratedRuleCfg.parseCommandLineOption()) + report_fatal_error("Invalid rule identifier"); + } + + virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI, + MachineIRBuilder &B) const override; +}; + +bool AArch64PostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer, + MachineInstr &MI, + MachineIRBuilder &B) const { + const auto *LI = + MI.getParent()->getParent()->getSubtarget().getLegalizerInfo(); + CombinerHelper Helper(Observer, B, KB, MDT, LI); + AArch64GenPostLegalizerCombinerHelper Generated(GeneratedRuleCfg); + return Generated.tryCombineAll(Observer, MI, B, Helper); +} + +#define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP +#include "AArch64GenPostLegalizeGICombiner.inc" +#undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP + +class AArch64PostLegalizerCombiner : public MachineFunctionPass { +public: + static char ID; + + AArch64PostLegalizerCombiner(bool IsOptNone = false); + + StringRef getPassName() const override { + return "AArch64PostLegalizerCombiner"; + } + + bool runOnMachineFunction(MachineFunction &MF) override; + void getAnalysisUsage(AnalysisUsage &AU) const override; + +private: + bool IsOptNone; +}; +} // end anonymous namespace + +void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<TargetPassConfig>(); + AU.setPreservesCFG(); + getSelectionDAGFallbackAnalysisUsage(AU); + AU.addRequired<GISelKnownBitsAnalysis>(); + AU.addPreserved<GISelKnownBitsAnalysis>(); + if (!IsOptNone) { + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + } + MachineFunctionPass::getAnalysisUsage(AU); +} + +AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone) + : MachineFunctionPass(ID), IsOptNone(IsOptNone) { + initializeAArch64PostLegalizerCombinerPass(*PassRegistry::getPassRegistry()); +} + +bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) { + if (MF.getProperties().hasProperty( + MachineFunctionProperties::Property::FailedISel)) + return false; + assert(MF.getProperties().hasProperty( + MachineFunctionProperties::Property::Legalized) && + "Expected a legalized function?"); + auto *TPC = &getAnalysis<TargetPassConfig>(); + const Function &F = MF.getFunction(); + bool EnableOpt = + MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F); + GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF); + MachineDominatorTree *MDT = + IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>(); + AArch64PostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(), + F.hasMinSize(), KB, MDT); + Combiner C(PCInfo, TPC); + return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr); +} + +char AArch64PostLegalizerCombiner::ID = 0; +INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE, + "Combine AArch64 MachineInstrs after legalization", false, + false) +INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) +INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis) +INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE, + "Combine AArch64 MachineInstrs after legalization", false, + false) + +namespace llvm { +FunctionPass *createAArch64PostLegalizeCombiner(bool IsOptNone) { + return new AArch64PostLegalizerCombiner(IsOptNone); +} +} // end namespace llvm |