diff options
Diffstat (limited to 'llvm/lib/Target/Hexagon/RDFGraph.cpp')
-rw-r--r-- | llvm/lib/Target/Hexagon/RDFGraph.cpp | 1835 |
1 files changed, 0 insertions, 1835 deletions
diff --git a/llvm/lib/Target/Hexagon/RDFGraph.cpp b/llvm/lib/Target/Hexagon/RDFGraph.cpp deleted file mode 100644 index 0cb35dc98819..000000000000 --- a/llvm/lib/Target/Hexagon/RDFGraph.cpp +++ /dev/null @@ -1,1835 +0,0 @@ -//===- RDFGraph.cpp -------------------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Target-independent, SSA-based data flow graph for register data flow (RDF). -// -#include "RDFGraph.h" -#include "RDFRegisters.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineDominanceFrontier.h" -#include "llvm/CodeGen/MachineDominators.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/IR/Function.h" -#include "llvm/MC/LaneBitmask.h" -#include "llvm/MC/MCInstrDesc.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <cstring> -#include <iterator> -#include <set> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace rdf; - -// Printing functions. Have them here first, so that the rest of the code -// can use them. -namespace llvm { -namespace rdf { - -raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { - if (!P.Mask.all()) - OS << ':' << PrintLaneMask(P.Mask); - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { - auto &TRI = P.G.getTRI(); - if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) - OS << TRI.getName(P.Obj.Reg); - else - OS << '#' << P.Obj.Reg; - OS << PrintLaneMaskOpt(P.Obj.Mask); - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { - auto NA = P.G.addr<NodeBase*>(P.Obj); - uint16_t Attrs = NA.Addr->getAttrs(); - uint16_t Kind = NodeAttrs::kind(Attrs); - uint16_t Flags = NodeAttrs::flags(Attrs); - switch (NodeAttrs::type(Attrs)) { - case NodeAttrs::Code: - switch (Kind) { - case NodeAttrs::Func: OS << 'f'; break; - case NodeAttrs::Block: OS << 'b'; break; - case NodeAttrs::Stmt: OS << 's'; break; - case NodeAttrs::Phi: OS << 'p'; break; - default: OS << "c?"; break; - } - break; - case NodeAttrs::Ref: - if (Flags & NodeAttrs::Undef) - OS << '/'; - if (Flags & NodeAttrs::Dead) - OS << '\\'; - if (Flags & NodeAttrs::Preserving) - OS << '+'; - if (Flags & NodeAttrs::Clobbering) - OS << '~'; - switch (Kind) { - case NodeAttrs::Use: OS << 'u'; break; - case NodeAttrs::Def: OS << 'd'; break; - case NodeAttrs::Block: OS << 'b'; break; - default: OS << "r?"; break; - } - break; - default: - OS << '?'; - break; - } - OS << P.Obj; - if (Flags & NodeAttrs::Shadow) - OS << '"'; - return OS; -} - -static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, - const DataFlowGraph &G) { - OS << Print<NodeId>(RA.Id, G) << '<' - << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>'; - if (RA.Addr->getFlags() & NodeAttrs::Fixed) - OS << '!'; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { - printRefHeader(OS, P.Obj, P.G); - OS << '('; - if (NodeId N = P.Obj.Addr->getReachingDef()) - OS << Print<NodeId>(N, P.G); - OS << ','; - if (NodeId N = P.Obj.Addr->getReachedDef()) - OS << Print<NodeId>(N, P.G); - OS << ','; - if (NodeId N = P.Obj.Addr->getReachedUse()) - OS << Print<NodeId>(N, P.G); - OS << "):"; - if (NodeId N = P.Obj.Addr->getSibling()) - OS << Print<NodeId>(N, P.G); - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { - printRefHeader(OS, P.Obj, P.G); - OS << '('; - if (NodeId N = P.Obj.Addr->getReachingDef()) - OS << Print<NodeId>(N, P.G); - OS << "):"; - if (NodeId N = P.Obj.Addr->getSibling()) - OS << Print<NodeId>(N, P.G); - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, - const Print<NodeAddr<PhiUseNode*>> &P) { - printRefHeader(OS, P.Obj, P.G); - OS << '('; - if (NodeId N = P.Obj.Addr->getReachingDef()) - OS << Print<NodeId>(N, P.G); - OS << ','; - if (NodeId N = P.Obj.Addr->getPredecessor()) - OS << Print<NodeId>(N, P.G); - OS << "):"; - if (NodeId N = P.Obj.Addr->getSibling()) - OS << Print<NodeId>(N, P.G); - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { - switch (P.Obj.Addr->getKind()) { - case NodeAttrs::Def: - OS << PrintNode<DefNode*>(P.Obj, P.G); - break; - case NodeAttrs::Use: - if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) - OS << PrintNode<PhiUseNode*>(P.Obj, P.G); - else - OS << PrintNode<UseNode*>(P.Obj, P.G); - break; - } - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { - unsigned N = P.Obj.size(); - for (auto I : P.Obj) { - OS << Print<NodeId>(I.Id, P.G); - if (--N) - OS << ' '; - } - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { - unsigned N = P.Obj.size(); - for (auto I : P.Obj) { - OS << Print<NodeId>(I, P.G); - if (--N) - OS << ' '; - } - return OS; -} - -namespace { - - template <typename T> - struct PrintListV { - PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} - - using Type = T; - const NodeList &List; - const DataFlowGraph &G; - }; - - template <typename T> - raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { - unsigned N = P.List.size(); - for (NodeAddr<T> A : P.List) { - OS << PrintNode<T>(A, P.G); - if (--N) - OS << ", "; - } - return OS; - } - -} // end anonymous namespace - -raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { - OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi [" - << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; - return OS; -} - -raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) { - const MachineInstr &MI = *P.Obj.Addr->getCode(); - unsigned Opc = MI.getOpcode(); - OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); - // Print the target for calls and branches (for readability). - if (MI.isCall() || MI.isBranch()) { - MachineInstr::const_mop_iterator T = - llvm::find_if(MI.operands(), - [] (const MachineOperand &Op) -> bool { - return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); - }); - if (T != MI.operands_end()) { - OS << ' '; - if (T->isMBB()) - OS << printMBBReference(*T->getMBB()); - else if (T->isGlobal()) - OS << T->getGlobal()->getName(); - else if (T->isSymbol()) - OS << T->getSymbolName(); - } - } - OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, - const Print<NodeAddr<InstrNode*>> &P) { - switch (P.Obj.Addr->getKind()) { - case NodeAttrs::Phi: - OS << PrintNode<PhiNode*>(P.Obj, P.G); - break; - case NodeAttrs::Stmt: - OS << PrintNode<StmtNode*>(P.Obj, P.G); - break; - default: - OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G); - break; - } - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, - const Print<NodeAddr<BlockNode*>> &P) { - MachineBasicBlock *BB = P.Obj.Addr->getCode(); - unsigned NP = BB->pred_size(); - std::vector<int> Ns; - auto PrintBBs = [&OS] (std::vector<int> Ns) -> void { - unsigned N = Ns.size(); - for (int I : Ns) { - OS << "%bb." << I; - if (--N) - OS << ", "; - } - }; - - OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) - << " --- preds(" << NP << "): "; - for (MachineBasicBlock *B : BB->predecessors()) - Ns.push_back(B->getNumber()); - PrintBBs(Ns); - - unsigned NS = BB->succ_size(); - OS << " succs(" << NS << "): "; - Ns.clear(); - for (MachineBasicBlock *B : BB->successors()) - Ns.push_back(B->getNumber()); - PrintBBs(Ns); - OS << '\n'; - - for (auto I : P.Obj.Addr->members(P.G)) - OS << PrintNode<InstrNode*>(I, P.G) << '\n'; - return OS; -} - -raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) { - OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: " - << P.Obj.Addr->getCode()->getName() << '\n'; - for (auto I : P.Obj.Addr->members(P.G)) - OS << PrintNode<BlockNode*>(I, P.G) << '\n'; - OS << "]\n"; - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { - OS << '{'; - for (auto I : P.Obj) - OS << ' ' << Print<RegisterRef>(I, P.G); - OS << " }"; - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { - P.Obj.print(OS); - return OS; -} - -raw_ostream &operator<< (raw_ostream &OS, - const Print<DataFlowGraph::DefStack> &P) { - for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { - OS << Print<NodeId>(I->Id, P.G) - << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>'; - I.down(); - if (I != E) - OS << ' '; - } - return OS; -} - -} // end namespace rdf -} // end namespace llvm - -// Node allocation functions. -// -// Node allocator is like a slab memory allocator: it allocates blocks of -// memory in sizes that are multiples of the size of a node. Each block has -// the same size. Nodes are allocated from the currently active block, and -// when it becomes full, a new one is created. -// There is a mapping scheme between node id and its location in a block, -// and within that block is described in the header file. -// -void NodeAllocator::startNewBlock() { - void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); - char *P = static_cast<char*>(T); - Blocks.push_back(P); - // Check if the block index is still within the allowed range, i.e. less - // than 2^N, where N is the number of bits in NodeId for the block index. - // BitsPerIndex is the number of bits per node index. - assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && - "Out of bits for block index"); - ActiveEnd = P; -} - -bool NodeAllocator::needNewBlock() { - if (Blocks.empty()) - return true; - - char *ActiveBegin = Blocks.back(); - uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; - return Index >= NodesPerBlock; -} - -NodeAddr<NodeBase*> NodeAllocator::New() { - if (needNewBlock()) - startNewBlock(); - - uint32_t ActiveB = Blocks.size()-1; - uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; - NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), - makeId(ActiveB, Index) }; - ActiveEnd += NodeMemSize; - return NA; -} - -NodeId NodeAllocator::id(const NodeBase *P) const { - uintptr_t A = reinterpret_cast<uintptr_t>(P); - for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { - uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); - if (A < B || A >= B + NodesPerBlock*NodeMemSize) - continue; - uint32_t Idx = (A-B)/NodeMemSize; - return makeId(i, Idx); - } - llvm_unreachable("Invalid node address"); -} - -void NodeAllocator::clear() { - MemPool.Reset(); - Blocks.clear(); - ActiveEnd = nullptr; -} - -// Insert node NA after "this" in the circular chain. -void NodeBase::append(NodeAddr<NodeBase*> NA) { - NodeId Nx = Next; - // If NA is already "next", do nothing. - if (Next != NA.Id) { - Next = NA.Id; - NA.Addr->Next = Nx; - } -} - -// Fundamental node manipulator functions. - -// Obtain the register reference from a reference node. -RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { - assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); - if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) - return G.unpack(Ref.PR); - assert(Ref.Op != nullptr); - return G.makeRegRef(*Ref.Op); -} - -// Set the register reference in the reference node directly (for references -// in phi nodes). -void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { - assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); - assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); - Ref.PR = G.pack(RR); -} - -// Set the register reference in the reference node based on a machine -// operand (for references in statement nodes). -void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { - assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); - assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); - (void)G; - Ref.Op = Op; -} - -// Get the owner of a given reference node. -NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { - NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); - - while (NA.Addr != this) { - if (NA.Addr->getType() == NodeAttrs::Code) - return NA; - NA = G.addr<NodeBase*>(NA.Addr->getNext()); - } - llvm_unreachable("No owner in circular list"); -} - -// Connect the def node to the reaching def node. -void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { - Ref.RD = DA.Id; - Ref.Sib = DA.Addr->getReachedDef(); - DA.Addr->setReachedDef(Self); -} - -// Connect the use node to the reaching def node. -void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { - Ref.RD = DA.Id; - Ref.Sib = DA.Addr->getReachedUse(); - DA.Addr->setReachedUse(Self); -} - -// Get the first member of the code node. -NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { - if (Code.FirstM == 0) - return NodeAddr<NodeBase*>(); - return G.addr<NodeBase*>(Code.FirstM); -} - -// Get the last member of the code node. -NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { - if (Code.LastM == 0) - return NodeAddr<NodeBase*>(); - return G.addr<NodeBase*>(Code.LastM); -} - -// Add node NA at the end of the member list of the given code node. -void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { - NodeAddr<NodeBase*> ML = getLastMember(G); - if (ML.Id != 0) { - ML.Addr->append(NA); - } else { - Code.FirstM = NA.Id; - NodeId Self = G.id(this); - NA.Addr->setNext(Self); - } - Code.LastM = NA.Id; -} - -// Add node NA after member node MA in the given code node. -void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, - const DataFlowGraph &G) { - MA.Addr->append(NA); - if (Code.LastM == MA.Id) - Code.LastM = NA.Id; -} - -// Remove member node NA from the given code node. -void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { - NodeAddr<NodeBase*> MA = getFirstMember(G); - assert(MA.Id != 0); - - // Special handling if the member to remove is the first member. - if (MA.Id == NA.Id) { - if (Code.LastM == MA.Id) { - // If it is the only member, set both first and last to 0. - Code.FirstM = Code.LastM = 0; - } else { - // Otherwise, advance the first member. - Code.FirstM = MA.Addr->getNext(); - } - return; - } - - while (MA.Addr != this) { - NodeId MX = MA.Addr->getNext(); - if (MX == NA.Id) { - MA.Addr->setNext(NA.Addr->getNext()); - // If the member to remove happens to be the last one, update the - // LastM indicator. - if (Code.LastM == NA.Id) - Code.LastM = MA.Id; - return; - } - MA = G.addr<NodeBase*>(MX); - } - llvm_unreachable("No such member"); -} - -// Return the list of all members of the code node. -NodeList CodeNode::members(const DataFlowGraph &G) const { - static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; - return members_if(True, G); -} - -// Return the owner of the given instr node. -NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { - NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); - - while (NA.Addr != this) { - assert(NA.Addr->getType() == NodeAttrs::Code); - if (NA.Addr->getKind() == NodeAttrs::Block) - return NA; - NA = G.addr<NodeBase*>(NA.Addr->getNext()); - } - llvm_unreachable("No owner in circular list"); -} - -// Add the phi node PA to the given block node. -void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { - NodeAddr<NodeBase*> M = getFirstMember(G); - if (M.Id == 0) { - addMember(PA, G); - return; - } - - assert(M.Addr->getType() == NodeAttrs::Code); - if (M.Addr->getKind() == NodeAttrs::Stmt) { - // If the first member of the block is a statement, insert the phi as - // the first member. - Code.FirstM = PA.Id; - PA.Addr->setNext(M.Id); - } else { - // If the first member is a phi, find the last phi, and append PA to it. - assert(M.Addr->getKind() == NodeAttrs::Phi); - NodeAddr<NodeBase*> MN = M; - do { - M = MN; - MN = G.addr<NodeBase*>(M.Addr->getNext()); - assert(MN.Addr->getType() == NodeAttrs::Code); - } while (MN.Addr->getKind() == NodeAttrs::Phi); - - // M is the last phi. - addMemberAfter(M, PA, G); - } -} - -// Find the block node corresponding to the machine basic block BB in the -// given func node. -NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, - const DataFlowGraph &G) const { - auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { - return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; - }; - NodeList Ms = members_if(EqBB, G); - if (!Ms.empty()) - return Ms[0]; - return NodeAddr<BlockNode*>(); -} - -// Get the block node for the entry block in the given function. -NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { - MachineBasicBlock *EntryB = &getCode()->front(); - return findBlock(EntryB, G); -} - -// Target operand information. -// - -// For a given instruction, check if there are any bits of RR that can remain -// unchanged across this def. -bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) - const { - return TII.isPredicated(In); -} - -// Check if the definition of RR produces an unspecified value. -bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) - const { - const MachineOperand &Op = In.getOperand(OpNum); - if (Op.isRegMask()) - return true; - assert(Op.isReg()); - if (In.isCall()) - if (Op.isDef() && Op.isDead()) - return true; - return false; -} - -// Check if the given instruction specifically requires -bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) - const { - if (In.isCall() || In.isReturn() || In.isInlineAsm()) - return true; - // Check for a tail call. - if (In.isBranch()) - for (const MachineOperand &O : In.operands()) - if (O.isGlobal() || O.isSymbol()) - return true; - - const MCInstrDesc &D = In.getDesc(); - if (!D.getImplicitDefs() && !D.getImplicitUses()) - return false; - const MachineOperand &Op = In.getOperand(OpNum); - // If there is a sub-register, treat the operand as non-fixed. Currently, - // fixed registers are those that are listed in the descriptor as implicit - // uses or defs, and those lists do not allow sub-registers. - if (Op.getSubReg() != 0) - return false; - Register Reg = Op.getReg(); - const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() - : D.getImplicitUses(); - if (!ImpR) - return false; - while (*ImpR) - if (*ImpR++ == Reg) - return true; - return false; -} - -// -// The data flow graph construction. -// - -DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, - const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, - const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) - : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), - LiveIns(PRI) { -} - -// The implementation of the definition stack. -// Each register reference has its own definition stack. In particular, -// for a register references "Reg" and "Reg:subreg" will each have their -// own definition stacks. - -// Construct a stack iterator. -DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, - bool Top) : DS(S) { - if (!Top) { - // Initialize to bottom. - Pos = 0; - return; - } - // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). - Pos = DS.Stack.size(); - while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) - Pos--; -} - -// Return the size of the stack, including block delimiters. -unsigned DataFlowGraph::DefStack::size() const { - unsigned S = 0; - for (auto I = top(), E = bottom(); I != E; I.down()) - S++; - return S; -} - -// Remove the top entry from the stack. Remove all intervening delimiters -// so that after this, the stack is either empty, or the top of the stack -// is a non-delimiter. -void DataFlowGraph::DefStack::pop() { - assert(!empty()); - unsigned P = nextDown(Stack.size()); - Stack.resize(P); -} - -// Push a delimiter for block node N on the stack. -void DataFlowGraph::DefStack::start_block(NodeId N) { - assert(N != 0); - Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); -} - -// Remove all nodes from the top of the stack, until the delimited for -// block node N is encountered. Remove the delimiter as well. In effect, -// this will remove from the stack all definitions from block N. -void DataFlowGraph::DefStack::clear_block(NodeId N) { - assert(N != 0); - unsigned P = Stack.size(); - while (P > 0) { - bool Found = isDelimiter(Stack[P-1], N); - P--; - if (Found) - break; - } - // This will also remove the delimiter, if found. - Stack.resize(P); -} - -// Move the stack iterator up by one. -unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { - // Get the next valid position after P (skipping all delimiters). - // The input position P does not have to point to a non-delimiter. - unsigned SS = Stack.size(); - bool IsDelim; - assert(P < SS); - do { - P++; - IsDelim = isDelimiter(Stack[P-1]); - } while (P < SS && IsDelim); - assert(!IsDelim); - return P; -} - -// Move the stack iterator down by one. -unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { - // Get the preceding valid position before P (skipping all delimiters). - // The input position P does not have to point to a non-delimiter. - assert(P > 0 && P <= Stack.size()); - bool IsDelim = isDelimiter(Stack[P-1]); - do { - if (--P == 0) - break; - IsDelim = isDelimiter(Stack[P-1]); - } while (P > 0 && IsDelim); - assert(!IsDelim); - return P; -} - -// Register information. - -RegisterSet DataFlowGraph::getLandingPadLiveIns() const { - RegisterSet LR; - const Function &F = MF.getFunction(); - const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() - : nullptr; - const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); - if (RegisterId R = TLI.getExceptionPointerRegister(PF)) - LR.insert(RegisterRef(R)); - if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) - LR.insert(RegisterRef(R)); - return LR; -} - -// Node management functions. - -// Get the pointer to the node with the id N. -NodeBase *DataFlowGraph::ptr(NodeId N) const { - if (N == 0) - return nullptr; - return Memory.ptr(N); -} - -// Get the id of the node at the address P. -NodeId DataFlowGraph::id(const NodeBase *P) const { - if (P == nullptr) - return 0; - return Memory.id(P); -} - -// Allocate a new node and set the attributes to Attrs. -NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { - NodeAddr<NodeBase*> P = Memory.New(); - P.Addr->init(); - P.Addr->setAttrs(Attrs); - return P; -} - -// Make a copy of the given node B, except for the data-flow links, which -// are set to 0. -NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { - NodeAddr<NodeBase*> NA = newNode(0); - memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); - // Ref nodes need to have the data-flow links reset. - if (NA.Addr->getType() == NodeAttrs::Ref) { - NodeAddr<RefNode*> RA = NA; - RA.Addr->setReachingDef(0); - RA.Addr->setSibling(0); - if (NA.Addr->getKind() == NodeAttrs::Def) { - NodeAddr<DefNode*> DA = NA; - DA.Addr->setReachedDef(0); - DA.Addr->setReachedUse(0); - } - } - return NA; -} - -// Allocation routines for specific node types/kinds. - -NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, - MachineOperand &Op, uint16_t Flags) { - NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); - UA.Addr->setRegRef(&Op, *this); - return UA; -} - -NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, - RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { - NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); - assert(Flags & NodeAttrs::PhiRef); - PUA.Addr->setRegRef(RR, *this); - PUA.Addr->setPredecessor(PredB.Id); - return PUA; -} - -NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, - MachineOperand &Op, uint16_t Flags) { - NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); - DA.Addr->setRegRef(&Op, *this); - return DA; -} - -NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, - RegisterRef RR, uint16_t Flags) { - NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); - assert(Flags & NodeAttrs::PhiRef); - DA.Addr->setRegRef(RR, *this); - return DA; -} - -NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { - NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); - Owner.Addr->addPhi(PA, *this); - return PA; -} - -NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, - MachineInstr *MI) { - NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); - SA.Addr->setCode(MI); - Owner.Addr->addMember(SA, *this); - return SA; -} - -NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, - MachineBasicBlock *BB) { - NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); - BA.Addr->setCode(BB); - Owner.Addr->addMember(BA, *this); - return BA; -} - -NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { - NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); - FA.Addr->setCode(MF); - return FA; -} - -// Build the data flow graph. -void DataFlowGraph::build(unsigned Options) { - reset(); - Func = newFunc(&MF); - - if (MF.empty()) - return; - - for (MachineBasicBlock &B : MF) { - NodeAddr<BlockNode*> BA = newBlock(Func, &B); - BlockNodes.insert(std::make_pair(&B, BA)); - for (MachineInstr &I : B) { - if (I.isDebugInstr()) - continue; - buildStmt(BA, I); - } - } - - NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); - NodeList Blocks = Func.Addr->members(*this); - - // Collect information about block references. - RegisterSet AllRefs; - for (NodeAddr<BlockNode*> BA : Blocks) - for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) - for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) - AllRefs.insert(RA.Addr->getRegRef(*this)); - - // Collect function live-ins and entry block live-ins. - MachineRegisterInfo &MRI = MF.getRegInfo(); - MachineBasicBlock &EntryB = *EA.Addr->getCode(); - assert(EntryB.pred_empty() && "Function entry block has predecessors"); - for (std::pair<unsigned,unsigned> P : MRI.liveins()) - LiveIns.insert(RegisterRef(P.first)); - if (MRI.tracksLiveness()) { - for (auto I : EntryB.liveins()) - LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); - } - - // Add function-entry phi nodes for the live-in registers. - //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) { - for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) { - RegisterRef RR = *I; - NodeAddr<PhiNode*> PA = newPhi(EA); - uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; - NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); - PA.Addr->addMember(DA, *this); - } - - // Add phis for landing pads. - // Landing pads, unlike usual backs blocks, are not entered through - // branches in the program, or fall-throughs from other blocks. They - // are entered from the exception handling runtime and target's ABI - // may define certain registers as defined on entry to such a block. - RegisterSet EHRegs = getLandingPadLiveIns(); - if (!EHRegs.empty()) { - for (NodeAddr<BlockNode*> BA : Blocks) { - const MachineBasicBlock &B = *BA.Addr->getCode(); - if (!B.isEHPad()) - continue; - - // Prepare a list of NodeIds of the block's predecessors. - NodeList Preds; - for (MachineBasicBlock *PB : B.predecessors()) - Preds.push_back(findBlock(PB)); - - // Build phi nodes for each live-in. - for (RegisterRef RR : EHRegs) { - NodeAddr<PhiNode*> PA = newPhi(BA); - uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; - // Add def: - NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); - PA.Addr->addMember(DA, *this); - // Add uses (no reaching defs for phi uses): - for (NodeAddr<BlockNode*> PBA : Preds) { - NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); - PA.Addr->addMember(PUA, *this); - } - } - } - } - - // Build a map "PhiM" which will contain, for each block, the set - // of references that will require phi definitions in that block. - BlockRefsMap PhiM; - for (NodeAddr<BlockNode*> BA : Blocks) - recordDefsForDF(PhiM, BA); - for (NodeAddr<BlockNode*> BA : Blocks) - buildPhis(PhiM, AllRefs, BA); - - // Link all the refs. This will recursively traverse the dominator tree. - DefStackMap DM; - linkBlockRefs(DM, EA); - - // Finally, remove all unused phi nodes. - if (!(Options & BuildOptions::KeepDeadPhis)) - removeUnusedPhis(); -} - -RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { - assert(PhysicalRegisterInfo::isRegMaskId(Reg) || - Register::isPhysicalRegister(Reg)); - assert(Reg != 0); - if (Sub != 0) - Reg = TRI.getSubReg(Reg, Sub); - return RegisterRef(Reg); -} - -RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { - assert(Op.isReg() || Op.isRegMask()); - if (Op.isReg()) - return makeRegRef(Op.getReg(), Op.getSubReg()); - return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll()); -} - -RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const { - if (AR.Reg == BR.Reg) { - LaneBitmask M = AR.Mask & BR.Mask; - return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef(); - } -#ifndef NDEBUG -// RegisterRef NAR = PRI.normalize(AR); -// RegisterRef NBR = PRI.normalize(BR); -// assert(NAR.Reg != NBR.Reg); -#endif - // This isn't strictly correct, because the overlap may happen in the - // part masked out. - if (PRI.alias(AR, BR)) - return AR; - return RegisterRef(); -} - -// For each stack in the map DefM, push the delimiter for block B on it. -void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { - // Push block delimiters. - for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) - I->second.start_block(B); -} - -// Remove all definitions coming from block B from each stack in DefM. -void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { - // Pop all defs from this block from the definition stack. Defs that were - // added to the map during the traversal of instructions will not have a - // delimiter, but for those, the whole stack will be emptied. - for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) - I->second.clear_block(B); - - // Finally, remove empty stacks from the map. - for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { - NextI = std::next(I); - // This preserves the validity of iterators other than I. - if (I->second.empty()) - DefM.erase(I); - } -} - -// Push all definitions from the instruction node IA to an appropriate -// stack in DefM. -void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { - pushClobbers(IA, DefM); - pushDefs(IA, DefM); -} - -// Push all definitions from the instruction node IA to an appropriate -// stack in DefM. -void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { - NodeSet Visited; - std::set<RegisterId> Defined; - - // The important objectives of this function are: - // - to be able to handle instructions both while the graph is being - // constructed, and after the graph has been constructed, and - // - maintain proper ordering of definitions on the stack for each - // register reference: - // - if there are two or more related defs in IA (i.e. coming from - // the same machine operand), then only push one def on the stack, - // - if there are multiple unrelated defs of non-overlapping - // subregisters of S, then the stack for S will have both (in an - // unspecified order), but the order does not matter from the data- - // -flow perspective. - - for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { - if (Visited.count(DA.Id)) - continue; - if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) - continue; - - NodeList Rel = getRelatedRefs(IA, DA); - NodeAddr<DefNode*> PDA = Rel.front(); - RegisterRef RR = PDA.Addr->getRegRef(*this); - - // Push the definition on the stack for the register and all aliases. - // The def stack traversal in linkNodeUp will check the exact aliasing. - DefM[RR.Reg].push(DA); - Defined.insert(RR.Reg); - for (RegisterId A : PRI.getAliasSet(RR.Reg)) { - // Check that we don't push the same def twice. - assert(A != RR.Reg); - if (!Defined.count(A)) - DefM[A].push(DA); - } - // Mark all the related defs as visited. - for (NodeAddr<NodeBase*> T : Rel) - Visited.insert(T.Id); - } -} - -// Push all definitions from the instruction node IA to an appropriate -// stack in DefM. -void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { - NodeSet Visited; -#ifndef NDEBUG - std::set<RegisterId> Defined; -#endif - - // The important objectives of this function are: - // - to be able to handle instructions both while the graph is being - // constructed, and after the graph has been constructed, and - // - maintain proper ordering of definitions on the stack for each - // register reference: - // - if there are two or more related defs in IA (i.e. coming from - // the same machine operand), then only push one def on the stack, - // - if there are multiple unrelated defs of non-overlapping - // subregisters of S, then the stack for S will have both (in an - // unspecified order), but the order does not matter from the data- - // -flow perspective. - - for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { - if (Visited.count(DA.Id)) - continue; - if (DA.Addr->getFlags() & NodeAttrs::Clobbering) - continue; - - NodeList Rel = getRelatedRefs(IA, DA); - NodeAddr<DefNode*> PDA = Rel.front(); - RegisterRef RR = PDA.Addr->getRegRef(*this); -#ifndef NDEBUG - // Assert if the register is defined in two or more unrelated defs. - // This could happen if there are two or more def operands defining it. - if (!Defined.insert(RR.Reg).second) { - MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); - dbgs() << "Multiple definitions of register: " - << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in " - << printMBBReference(*MI->getParent()) << '\n'; - llvm_unreachable(nullptr); - } -#endif - // Push the definition on the stack for the register and all aliases. - // The def stack traversal in linkNodeUp will check the exact aliasing. - DefM[RR.Reg].push(DA); - for (RegisterId A : PRI.getAliasSet(RR.Reg)) { - // Check that we don't push the same def twice. - assert(A != RR.Reg); - DefM[A].push(DA); - } - // Mark all the related defs as visited. - for (NodeAddr<NodeBase*> T : Rel) - Visited.insert(T.Id); - } -} - -// Return the list of all reference nodes related to RA, including RA itself. -// See "getNextRelated" for the meaning of a "related reference". -NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, - NodeAddr<RefNode*> RA) const { - assert(IA.Id != 0 && RA.Id != 0); - - NodeList Refs; - NodeId Start = RA.Id; - do { - Refs.push_back(RA); - RA = getNextRelated(IA, RA); - } while (RA.Id != 0 && RA.Id != Start); - return Refs; -} - -// Clear all information in the graph. -void DataFlowGraph::reset() { - Memory.clear(); - BlockNodes.clear(); - Func = NodeAddr<FuncNode*>(); -} - -// Return the next reference node in the instruction node IA that is related -// to RA. Conceptually, two reference nodes are related if they refer to the -// same instance of a register access, but differ in flags or other minor -// characteristics. Specific examples of related nodes are shadow reference -// nodes. -// Return the equivalent of nullptr if there are no more related references. -NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, - NodeAddr<RefNode*> RA) const { - assert(IA.Id != 0 && RA.Id != 0); - - auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { - if (TA.Addr->getKind() != RA.Addr->getKind()) - return false; - if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) - return false; - return true; - }; - auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { - return Related(TA) && - &RA.Addr->getOp() == &TA.Addr->getOp(); - }; - auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { - if (!Related(TA)) - return false; - if (TA.Addr->getKind() != NodeAttrs::Use) - return true; - // For phi uses, compare predecessor blocks. - const NodeAddr<const PhiUseNode*> TUA = TA; - const NodeAddr<const PhiUseNode*> RUA = RA; - return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); - }; - - RegisterRef RR = RA.Addr->getRegRef(*this); - if (IA.Addr->getKind() == NodeAttrs::Stmt) - return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); - return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); -} - -// Find the next node related to RA in IA that satisfies condition P. -// If such a node was found, return a pair where the second element is the -// located node. If such a node does not exist, return a pair where the -// first element is the element after which such a node should be inserted, -// and the second element is a null-address. -template <typename Predicate> -std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> -DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, - Predicate P) const { - assert(IA.Id != 0 && RA.Id != 0); - - NodeAddr<RefNode*> NA; - NodeId Start = RA.Id; - while (true) { - NA = getNextRelated(IA, RA); - if (NA.Id == 0 || NA.Id == Start) - break; - if (P(NA)) - break; - RA = NA; - } - - if (NA.Id != 0 && NA.Id != Start) - return std::make_pair(RA, NA); - return std::make_pair(RA, NodeAddr<RefNode*>()); -} - -// Get the next shadow node in IA corresponding to RA, and optionally create -// such a node if it does not exist. -NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, - NodeAddr<RefNode*> RA, bool Create) { - assert(IA.Id != 0 && RA.Id != 0); - - uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; - auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { - return TA.Addr->getFlags() == Flags; - }; - auto Loc = locateNextRef(IA, RA, IsShadow); - if (Loc.second.Id != 0 || !Create) - return Loc.second; - - // Create a copy of RA and mark is as shadow. - NodeAddr<RefNode*> NA = cloneNode(RA); - NA.Addr->setFlags(Flags | NodeAttrs::Shadow); - IA.Addr->addMemberAfter(Loc.first, NA, *this); - return NA; -} - -// Get the next shadow node in IA corresponding to RA. Return null-address -// if such a node does not exist. -NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, - NodeAddr<RefNode*> RA) const { - assert(IA.Id != 0 && RA.Id != 0); - uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; - auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { - return TA.Addr->getFlags() == Flags; - }; - return locateNextRef(IA, RA, IsShadow).second; -} - -// Create a new statement node in the block node BA that corresponds to -// the machine instruction MI. -void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { - NodeAddr<StmtNode*> SA = newStmt(BA, &In); - - auto isCall = [] (const MachineInstr &In) -> bool { - if (In.isCall()) - return true; - // Is tail call? - if (In.isBranch()) { - for (const MachineOperand &Op : In.operands()) - if (Op.isGlobal() || Op.isSymbol()) - return true; - // Assume indirect branches are calls. This is for the purpose of - // keeping implicit operands, and so it won't hurt on intra-function - // indirect branches. - if (In.isIndirectBranch()) - return true; - } - return false; - }; - - auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { - // This instruction defines DR. Check if there is a use operand that - // would make DR live on entry to the instruction. - for (const MachineOperand &Op : In.operands()) { - if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef()) - continue; - RegisterRef UR = makeRegRef(Op); - if (PRI.alias(DR, UR)) - return false; - } - return true; - }; - - bool IsCall = isCall(In); - unsigned NumOps = In.getNumOperands(); - - // Avoid duplicate implicit defs. This will not detect cases of implicit - // defs that define registers that overlap, but it is not clear how to - // interpret that in the absence of explicit defs. Overlapping explicit - // defs are likely illegal already. - BitVector DoneDefs(TRI.getNumRegs()); - // Process explicit defs first. - for (unsigned OpN = 0; OpN < NumOps; ++OpN) { - MachineOperand &Op = In.getOperand(OpN); - if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) - continue; - Register R = Op.getReg(); - if (!R || !Register::isPhysicalRegister(R)) - continue; - uint16_t Flags = NodeAttrs::None; - if (TOI.isPreserving(In, OpN)) { - Flags |= NodeAttrs::Preserving; - // If the def is preserving, check if it is also undefined. - if (isDefUndef(In, makeRegRef(Op))) - Flags |= NodeAttrs::Undef; - } - if (TOI.isClobbering(In, OpN)) - Flags |= NodeAttrs::Clobbering; - if (TOI.isFixedReg(In, OpN)) - Flags |= NodeAttrs::Fixed; - if (IsCall && Op.isDead()) - Flags |= NodeAttrs::Dead; - NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); - SA.Addr->addMember(DA, *this); - assert(!DoneDefs.test(R)); - DoneDefs.set(R); - } - - // Process reg-masks (as clobbers). - BitVector DoneClobbers(TRI.getNumRegs()); - for (unsigned OpN = 0; OpN < NumOps; ++OpN) { - MachineOperand &Op = In.getOperand(OpN); - if (!Op.isRegMask()) - continue; - uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | - NodeAttrs::Dead; - NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); - SA.Addr->addMember(DA, *this); - // Record all clobbered registers in DoneDefs. - const uint32_t *RM = Op.getRegMask(); - for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) - if (!(RM[i/32] & (1u << (i%32)))) - DoneClobbers.set(i); - } - - // Process implicit defs, skipping those that have already been added - // as explicit. - for (unsigned OpN = 0; OpN < NumOps; ++OpN) { - MachineOperand &Op = In.getOperand(OpN); - if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) - continue; - Register R = Op.getReg(); - if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R)) - continue; - RegisterRef RR = makeRegRef(Op); - uint16_t Flags = NodeAttrs::None; - if (TOI.isPreserving(In, OpN)) { - Flags |= NodeAttrs::Preserving; - // If the def is preserving, check if it is also undefined. - if (isDefUndef(In, RR)) - Flags |= NodeAttrs::Undef; - } - if (TOI.isClobbering(In, OpN)) - Flags |= NodeAttrs::Clobbering; - if (TOI.isFixedReg(In, OpN)) - Flags |= NodeAttrs::Fixed; - if (IsCall && Op.isDead()) { - if (DoneClobbers.test(R)) - continue; - Flags |= NodeAttrs::Dead; - } - NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); - SA.Addr->addMember(DA, *this); - DoneDefs.set(R); - } - - for (unsigned OpN = 0; OpN < NumOps; ++OpN) { - MachineOperand &Op = In.getOperand(OpN); - if (!Op.isReg() || !Op.isUse()) - continue; - Register R = Op.getReg(); - if (!R || !Register::isPhysicalRegister(R)) - continue; - uint16_t Flags = NodeAttrs::None; - if (Op.isUndef()) - Flags |= NodeAttrs::Undef; - if (TOI.isFixedReg(In, OpN)) - Flags |= NodeAttrs::Fixed; - NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); - SA.Addr->addMember(UA, *this); - } -} - -// Scan all defs in the block node BA and record in PhiM the locations of -// phi nodes corresponding to these defs. -void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, - NodeAddr<BlockNode*> BA) { - // Check all defs from block BA and record them in each block in BA's - // iterated dominance frontier. This information will later be used to - // create phi nodes. - MachineBasicBlock *BB = BA.Addr->getCode(); - assert(BB); - auto DFLoc = MDF.find(BB); - if (DFLoc == MDF.end() || DFLoc->second.empty()) - return; - - // Traverse all instructions in the block and collect the set of all - // defined references. For each reference there will be a phi created - // in the block's iterated dominance frontier. - // This is done to make sure that each defined reference gets only one - // phi node, even if it is defined multiple times. - RegisterSet Defs; - for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) - for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) - Defs.insert(RA.Addr->getRegRef(*this)); - - // Calculate the iterated dominance frontier of BB. - const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; - SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); - for (unsigned i = 0; i < IDF.size(); ++i) { - auto F = MDF.find(IDF[i]); - if (F != MDF.end()) - IDF.insert(F->second.begin(), F->second.end()); - } - - // Finally, add the set of defs to each block in the iterated dominance - // frontier. - for (auto DB : IDF) { - NodeAddr<BlockNode*> DBA = findBlock(DB); - PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); - } -} - -// Given the locations of phi nodes in the map PhiM, create the phi nodes -// that are located in the block node BA. -void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, - NodeAddr<BlockNode*> BA) { - // Check if this blocks has any DF defs, i.e. if there are any defs - // that this block is in the iterated dominance frontier of. - auto HasDF = PhiM.find(BA.Id); - if (HasDF == PhiM.end() || HasDF->second.empty()) - return; - - // First, remove all R in Refs in such that there exists T in Refs - // such that T covers R. In other words, only leave those refs that - // are not covered by another ref (i.e. maximal with respect to covering). - - auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { - for (RegisterRef I : RRs) - if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI)) - RR = I; - return RR; - }; - - RegisterSet MaxDF; - for (RegisterRef I : HasDF->second) - MaxDF.insert(MaxCoverIn(I, HasDF->second)); - - std::vector<RegisterRef> MaxRefs; - for (RegisterRef I : MaxDF) - MaxRefs.push_back(MaxCoverIn(I, AllRefs)); - - // Now, for each R in MaxRefs, get the alias closure of R. If the closure - // only has R in it, create a phi a def for R. Otherwise, create a phi, - // and add a def for each S in the closure. - - // Sort the refs so that the phis will be created in a deterministic order. - llvm::sort(MaxRefs); - // Remove duplicates. - auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); - MaxRefs.erase(NewEnd, MaxRefs.end()); - - auto Aliased = [this,&MaxRefs](RegisterRef RR, - std::vector<unsigned> &Closure) -> bool { - for (unsigned I : Closure) - if (PRI.alias(RR, MaxRefs[I])) - return true; - return false; - }; - - // Prepare a list of NodeIds of the block's predecessors. - NodeList Preds; - const MachineBasicBlock *MBB = BA.Addr->getCode(); - for (MachineBasicBlock *PB : MBB->predecessors()) - Preds.push_back(findBlock(PB)); - - while (!MaxRefs.empty()) { - // Put the first element in the closure, and then add all subsequent - // elements from MaxRefs to it, if they alias at least one element - // already in the closure. - // ClosureIdx: vector of indices in MaxRefs of members of the closure. - std::vector<unsigned> ClosureIdx = { 0 }; - for (unsigned i = 1; i != MaxRefs.size(); ++i) - if (Aliased(MaxRefs[i], ClosureIdx)) - ClosureIdx.push_back(i); - - // Build a phi for the closure. - unsigned CS = ClosureIdx.size(); - NodeAddr<PhiNode*> PA = newPhi(BA); - - // Add defs. - for (unsigned X = 0; X != CS; ++X) { - RegisterRef RR = MaxRefs[ClosureIdx[X]]; - uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; - NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); - PA.Addr->addMember(DA, *this); - } - // Add phi uses. - for (NodeAddr<BlockNode*> PBA : Preds) { - for (unsigned X = 0; X != CS; ++X) { - RegisterRef RR = MaxRefs[ClosureIdx[X]]; - NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); - PA.Addr->addMember(PUA, *this); - } - } - - // Erase from MaxRefs all elements in the closure. - auto Begin = MaxRefs.begin(); - for (unsigned i = ClosureIdx.size(); i != 0; --i) - MaxRefs.erase(Begin + ClosureIdx[i-1]); - } -} - -// Remove any unneeded phi nodes that were created during the build process. -void DataFlowGraph::removeUnusedPhis() { - // This will remove unused phis, i.e. phis where each def does not reach - // any uses or other defs. This will not detect or remove circular phi - // chains that are otherwise dead. Unused/dead phis are created during - // the build process and this function is intended to remove these cases - // that are easily determinable to be unnecessary. - - SetVector<NodeId> PhiQ; - for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { - for (auto P : BA.Addr->members_if(IsPhi, *this)) - PhiQ.insert(P.Id); - } - - static auto HasUsedDef = [](NodeList &Ms) -> bool { - for (NodeAddr<NodeBase*> M : Ms) { - if (M.Addr->getKind() != NodeAttrs::Def) - continue; - NodeAddr<DefNode*> DA = M; - if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) - return true; - } - return false; - }; - - // Any phi, if it is removed, may affect other phis (make them dead). - // For each removed phi, collect the potentially affected phis and add - // them back to the queue. - while (!PhiQ.empty()) { - auto PA = addr<PhiNode*>(PhiQ[0]); - PhiQ.remove(PA.Id); - NodeList Refs = PA.Addr->members(*this); - if (HasUsedDef(Refs)) - continue; - for (NodeAddr<RefNode*> RA : Refs) { - if (NodeId RD = RA.Addr->getReachingDef()) { - auto RDA = addr<DefNode*>(RD); - NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); - if (IsPhi(OA)) - PhiQ.insert(OA.Id); - } - if (RA.Addr->isDef()) - unlinkDef(RA, true); - else - unlinkUse(RA, true); - } - NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); - BA.Addr->removeMember(PA, *this); - } -} - -// For a given reference node TA in an instruction node IA, connect the -// reaching def of TA to the appropriate def node. Create any shadow nodes -// as appropriate. -template <typename T> -void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, - DefStack &DS) { - if (DS.empty()) - return; - RegisterRef RR = TA.Addr->getRegRef(*this); - NodeAddr<T> TAP; - - // References from the def stack that have been examined so far. - RegisterAggr Defs(PRI); - - for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { - RegisterRef QR = I->Addr->getRegRef(*this); - - // Skip all defs that are aliased to any of the defs that we have already - // seen. If this completes a cover of RR, stop the stack traversal. - bool Alias = Defs.hasAliasOf(QR); - bool Cover = Defs.insert(QR).hasCoverOf(RR); - if (Alias) { - if (Cover) - break; - continue; - } - - // The reaching def. - NodeAddr<DefNode*> RDA = *I; - - // Pick the reached node. - if (TAP.Id == 0) { - TAP = TA; - } else { - // Mark the existing ref as "shadow" and create a new shadow. - TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); - TAP = getNextShadow(IA, TAP, true); - } - - // Create the link. - TAP.Addr->linkToDef(TAP.Id, RDA); - - if (Cover) - break; - } -} - -// Create data-flow links for all reference nodes in the statement node SA. -template <typename Predicate> -void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA, - Predicate P) { -#ifndef NDEBUG - RegisterSet Defs; -#endif - - // Link all nodes (upwards in the data-flow) with their reaching defs. - for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) { - uint16_t Kind = RA.Addr->getKind(); - assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); - RegisterRef RR = RA.Addr->getRegRef(*this); -#ifndef NDEBUG - // Do not expect multiple defs of the same reference. - assert(Kind != NodeAttrs::Def || !Defs.count(RR)); - Defs.insert(RR); -#endif - - auto F = DefM.find(RR.Reg); - if (F == DefM.end()) - continue; - DefStack &DS = F->second; - if (Kind == NodeAttrs::Use) - linkRefUp<UseNode*>(SA, RA, DS); - else if (Kind == NodeAttrs::Def) - linkRefUp<DefNode*>(SA, RA, DS); - else - llvm_unreachable("Unexpected node in instruction"); - } -} - -// Create data-flow links for all instructions in the block node BA. This -// will include updating any phi nodes in BA. -void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { - // Push block delimiters. - markBlock(BA.Id, DefM); - - auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool { - return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); - }; - auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool { - return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); - }; - - assert(BA.Addr && "block node address is needed to create a data-flow link"); - // For each non-phi instruction in the block, link all the defs and uses - // to their reaching defs. For any member of the block (including phis), - // push the defs on the corresponding stacks. - for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { - // Ignore phi nodes here. They will be linked part by part from the - // predecessors. - if (IA.Addr->getKind() == NodeAttrs::Stmt) { - linkStmtRefs(DefM, IA, IsUse); - linkStmtRefs(DefM, IA, IsClobber); - } - - // Push the definitions on the stack. - pushClobbers(IA, DefM); - - if (IA.Addr->getKind() == NodeAttrs::Stmt) - linkStmtRefs(DefM, IA, IsNoClobber); - - pushDefs(IA, DefM); - } - - // Recursively process all children in the dominator tree. - MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); - for (auto I : *N) { - MachineBasicBlock *SB = I->getBlock(); - NodeAddr<BlockNode*> SBA = findBlock(SB); - linkBlockRefs(DefM, SBA); - } - - // Link the phi uses from the successor blocks. - auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { - if (NA.Addr->getKind() != NodeAttrs::Use) - return false; - assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); - NodeAddr<PhiUseNode*> PUA = NA; - return PUA.Addr->getPredecessor() == BA.Id; - }; - - RegisterSet EHLiveIns = getLandingPadLiveIns(); - MachineBasicBlock *MBB = BA.Addr->getCode(); - - for (MachineBasicBlock *SB : MBB->successors()) { - bool IsEHPad = SB->isEHPad(); - NodeAddr<BlockNode*> SBA = findBlock(SB); - for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { - // Do not link phi uses for landing pad live-ins. - if (IsEHPad) { - // Find what register this phi is for. - NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); - assert(RA.Id != 0); - if (EHLiveIns.count(RA.Addr->getRegRef(*this))) - continue; - } - // Go over each phi use associated with MBB, and link it. - for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { - NodeAddr<PhiUseNode*> PUA = U; - RegisterRef RR = PUA.Addr->getRegRef(*this); - linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); - } - } - } - - // Pop all defs from this block from the definition stacks. - releaseBlock(BA.Id, DefM); -} - -// Remove the use node UA from any data-flow and structural links. -void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { - NodeId RD = UA.Addr->getReachingDef(); - NodeId Sib = UA.Addr->getSibling(); - - if (RD == 0) { - assert(Sib == 0); - return; - } - - auto RDA = addr<DefNode*>(RD); - auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); - if (TA.Id == UA.Id) { - RDA.Addr->setReachedUse(Sib); - return; - } - - while (TA.Id != 0) { - NodeId S = TA.Addr->getSibling(); - if (S == UA.Id) { - TA.Addr->setSibling(UA.Addr->getSibling()); - return; - } - TA = addr<UseNode*>(S); - } -} - -// Remove the def node DA from any data-flow and structural links. -void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { - // - // RD - // | reached - // | def - // : - // . - // +----+ - // ... -- | DA | -- ... -- 0 : sibling chain of DA - // +----+ - // | | reached - // | : def - // | . - // | ... : Siblings (defs) - // | - // : reached - // . use - // ... : sibling chain of reached uses - - NodeId RD = DA.Addr->getReachingDef(); - - // Visit all siblings of the reached def and reset their reaching defs. - // Also, defs reached by DA are now "promoted" to being reached by RD, - // so all of them will need to be spliced into the sibling chain where - // DA belongs. - auto getAllNodes = [this] (NodeId N) -> NodeList { - NodeList Res; - while (N) { - auto RA = addr<RefNode*>(N); - // Keep the nodes in the exact sibling order. - Res.push_back(RA); - N = RA.Addr->getSibling(); - } - return Res; - }; - NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); - NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); - - if (RD == 0) { - for (NodeAddr<RefNode*> I : ReachedDefs) - I.Addr->setSibling(0); - for (NodeAddr<RefNode*> I : ReachedUses) - I.Addr->setSibling(0); - } - for (NodeAddr<DefNode*> I : ReachedDefs) - I.Addr->setReachingDef(RD); - for (NodeAddr<UseNode*> I : ReachedUses) - I.Addr->setReachingDef(RD); - - NodeId Sib = DA.Addr->getSibling(); - if (RD == 0) { - assert(Sib == 0); - return; - } - - // Update the reaching def node and remove DA from the sibling list. - auto RDA = addr<DefNode*>(RD); - auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); - if (TA.Id == DA.Id) { - // If DA is the first reached def, just update the RD's reached def - // to the DA's sibling. - RDA.Addr->setReachedDef(Sib); - } else { - // Otherwise, traverse the sibling list of the reached defs and remove - // DA from it. - while (TA.Id != 0) { - NodeId S = TA.Addr->getSibling(); - if (S == DA.Id) { - TA.Addr->setSibling(Sib); - break; - } - TA = addr<DefNode*>(S); - } - } - - // Splice the DA's reached defs into the RDA's reached def chain. - if (!ReachedDefs.empty()) { - auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); - Last.Addr->setSibling(RDA.Addr->getReachedDef()); - RDA.Addr->setReachedDef(ReachedDefs.front().Id); - } - // Splice the DA's reached uses into the RDA's reached use chain. - if (!ReachedUses.empty()) { - auto Last = NodeAddr<UseNode*>(ReachedUses.back()); - Last.Addr->setSibling(RDA.Addr->getReachedUse()); - RDA.Addr->setReachedUse(ReachedUses.front().Id); - } -} |