aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/Hexagon/RDFGraph.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/Hexagon/RDFGraph.cpp')
-rw-r--r--llvm/lib/Target/Hexagon/RDFGraph.cpp1835
1 files changed, 0 insertions, 1835 deletions
diff --git a/llvm/lib/Target/Hexagon/RDFGraph.cpp b/llvm/lib/Target/Hexagon/RDFGraph.cpp
deleted file mode 100644
index 0cb35dc98819..000000000000
--- a/llvm/lib/Target/Hexagon/RDFGraph.cpp
+++ /dev/null
@@ -1,1835 +0,0 @@
-//===- RDFGraph.cpp -------------------------------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// Target-independent, SSA-based data flow graph for register data flow (RDF).
-//
-#include "RDFGraph.h"
-#include "RDFRegisters.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineDominanceFrontier.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/IR/Function.h"
-#include "llvm/MC/LaneBitmask.h"
-#include "llvm/MC/MCInstrDesc.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <cstring>
-#include <iterator>
-#include <set>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-using namespace rdf;
-
-// Printing functions. Have them here first, so that the rest of the code
-// can use them.
-namespace llvm {
-namespace rdf {
-
-raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
- if (!P.Mask.all())
- OS << ':' << PrintLaneMask(P.Mask);
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
- auto &TRI = P.G.getTRI();
- if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
- OS << TRI.getName(P.Obj.Reg);
- else
- OS << '#' << P.Obj.Reg;
- OS << PrintLaneMaskOpt(P.Obj.Mask);
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
- auto NA = P.G.addr<NodeBase*>(P.Obj);
- uint16_t Attrs = NA.Addr->getAttrs();
- uint16_t Kind = NodeAttrs::kind(Attrs);
- uint16_t Flags = NodeAttrs::flags(Attrs);
- switch (NodeAttrs::type(Attrs)) {
- case NodeAttrs::Code:
- switch (Kind) {
- case NodeAttrs::Func: OS << 'f'; break;
- case NodeAttrs::Block: OS << 'b'; break;
- case NodeAttrs::Stmt: OS << 's'; break;
- case NodeAttrs::Phi: OS << 'p'; break;
- default: OS << "c?"; break;
- }
- break;
- case NodeAttrs::Ref:
- if (Flags & NodeAttrs::Undef)
- OS << '/';
- if (Flags & NodeAttrs::Dead)
- OS << '\\';
- if (Flags & NodeAttrs::Preserving)
- OS << '+';
- if (Flags & NodeAttrs::Clobbering)
- OS << '~';
- switch (Kind) {
- case NodeAttrs::Use: OS << 'u'; break;
- case NodeAttrs::Def: OS << 'd'; break;
- case NodeAttrs::Block: OS << 'b'; break;
- default: OS << "r?"; break;
- }
- break;
- default:
- OS << '?';
- break;
- }
- OS << P.Obj;
- if (Flags & NodeAttrs::Shadow)
- OS << '"';
- return OS;
-}
-
-static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
- const DataFlowGraph &G) {
- OS << Print<NodeId>(RA.Id, G) << '<'
- << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
- if (RA.Addr->getFlags() & NodeAttrs::Fixed)
- OS << '!';
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
- printRefHeader(OS, P.Obj, P.G);
- OS << '(';
- if (NodeId N = P.Obj.Addr->getReachingDef())
- OS << Print<NodeId>(N, P.G);
- OS << ',';
- if (NodeId N = P.Obj.Addr->getReachedDef())
- OS << Print<NodeId>(N, P.G);
- OS << ',';
- if (NodeId N = P.Obj.Addr->getReachedUse())
- OS << Print<NodeId>(N, P.G);
- OS << "):";
- if (NodeId N = P.Obj.Addr->getSibling())
- OS << Print<NodeId>(N, P.G);
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
- printRefHeader(OS, P.Obj, P.G);
- OS << '(';
- if (NodeId N = P.Obj.Addr->getReachingDef())
- OS << Print<NodeId>(N, P.G);
- OS << "):";
- if (NodeId N = P.Obj.Addr->getSibling())
- OS << Print<NodeId>(N, P.G);
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS,
- const Print<NodeAddr<PhiUseNode*>> &P) {
- printRefHeader(OS, P.Obj, P.G);
- OS << '(';
- if (NodeId N = P.Obj.Addr->getReachingDef())
- OS << Print<NodeId>(N, P.G);
- OS << ',';
- if (NodeId N = P.Obj.Addr->getPredecessor())
- OS << Print<NodeId>(N, P.G);
- OS << "):";
- if (NodeId N = P.Obj.Addr->getSibling())
- OS << Print<NodeId>(N, P.G);
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
- switch (P.Obj.Addr->getKind()) {
- case NodeAttrs::Def:
- OS << PrintNode<DefNode*>(P.Obj, P.G);
- break;
- case NodeAttrs::Use:
- if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
- OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
- else
- OS << PrintNode<UseNode*>(P.Obj, P.G);
- break;
- }
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
- unsigned N = P.Obj.size();
- for (auto I : P.Obj) {
- OS << Print<NodeId>(I.Id, P.G);
- if (--N)
- OS << ' ';
- }
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
- unsigned N = P.Obj.size();
- for (auto I : P.Obj) {
- OS << Print<NodeId>(I, P.G);
- if (--N)
- OS << ' ';
- }
- return OS;
-}
-
-namespace {
-
- template <typename T>
- struct PrintListV {
- PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
-
- using Type = T;
- const NodeList &List;
- const DataFlowGraph &G;
- };
-
- template <typename T>
- raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
- unsigned N = P.List.size();
- for (NodeAddr<T> A : P.List) {
- OS << PrintNode<T>(A, P.G);
- if (--N)
- OS << ", ";
- }
- return OS;
- }
-
-} // end anonymous namespace
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
- OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
- << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
- return OS;
-}
-
-raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
- const MachineInstr &MI = *P.Obj.Addr->getCode();
- unsigned Opc = MI.getOpcode();
- OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
- // Print the target for calls and branches (for readability).
- if (MI.isCall() || MI.isBranch()) {
- MachineInstr::const_mop_iterator T =
- llvm::find_if(MI.operands(),
- [] (const MachineOperand &Op) -> bool {
- return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
- });
- if (T != MI.operands_end()) {
- OS << ' ';
- if (T->isMBB())
- OS << printMBBReference(*T->getMBB());
- else if (T->isGlobal())
- OS << T->getGlobal()->getName();
- else if (T->isSymbol())
- OS << T->getSymbolName();
- }
- }
- OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS,
- const Print<NodeAddr<InstrNode*>> &P) {
- switch (P.Obj.Addr->getKind()) {
- case NodeAttrs::Phi:
- OS << PrintNode<PhiNode*>(P.Obj, P.G);
- break;
- case NodeAttrs::Stmt:
- OS << PrintNode<StmtNode*>(P.Obj, P.G);
- break;
- default:
- OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
- break;
- }
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS,
- const Print<NodeAddr<BlockNode*>> &P) {
- MachineBasicBlock *BB = P.Obj.Addr->getCode();
- unsigned NP = BB->pred_size();
- std::vector<int> Ns;
- auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
- unsigned N = Ns.size();
- for (int I : Ns) {
- OS << "%bb." << I;
- if (--N)
- OS << ", ";
- }
- };
-
- OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
- << " --- preds(" << NP << "): ";
- for (MachineBasicBlock *B : BB->predecessors())
- Ns.push_back(B->getNumber());
- PrintBBs(Ns);
-
- unsigned NS = BB->succ_size();
- OS << " succs(" << NS << "): ";
- Ns.clear();
- for (MachineBasicBlock *B : BB->successors())
- Ns.push_back(B->getNumber());
- PrintBBs(Ns);
- OS << '\n';
-
- for (auto I : P.Obj.Addr->members(P.G))
- OS << PrintNode<InstrNode*>(I, P.G) << '\n';
- return OS;
-}
-
-raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
- OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
- << P.Obj.Addr->getCode()->getName() << '\n';
- for (auto I : P.Obj.Addr->members(P.G))
- OS << PrintNode<BlockNode*>(I, P.G) << '\n';
- OS << "]\n";
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
- OS << '{';
- for (auto I : P.Obj)
- OS << ' ' << Print<RegisterRef>(I, P.G);
- OS << " }";
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
- P.Obj.print(OS);
- return OS;
-}
-
-raw_ostream &operator<< (raw_ostream &OS,
- const Print<DataFlowGraph::DefStack> &P) {
- for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
- OS << Print<NodeId>(I->Id, P.G)
- << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
- I.down();
- if (I != E)
- OS << ' ';
- }
- return OS;
-}
-
-} // end namespace rdf
-} // end namespace llvm
-
-// Node allocation functions.
-//
-// Node allocator is like a slab memory allocator: it allocates blocks of
-// memory in sizes that are multiples of the size of a node. Each block has
-// the same size. Nodes are allocated from the currently active block, and
-// when it becomes full, a new one is created.
-// There is a mapping scheme between node id and its location in a block,
-// and within that block is described in the header file.
-//
-void NodeAllocator::startNewBlock() {
- void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
- char *P = static_cast<char*>(T);
- Blocks.push_back(P);
- // Check if the block index is still within the allowed range, i.e. less
- // than 2^N, where N is the number of bits in NodeId for the block index.
- // BitsPerIndex is the number of bits per node index.
- assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
- "Out of bits for block index");
- ActiveEnd = P;
-}
-
-bool NodeAllocator::needNewBlock() {
- if (Blocks.empty())
- return true;
-
- char *ActiveBegin = Blocks.back();
- uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
- return Index >= NodesPerBlock;
-}
-
-NodeAddr<NodeBase*> NodeAllocator::New() {
- if (needNewBlock())
- startNewBlock();
-
- uint32_t ActiveB = Blocks.size()-1;
- uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
- NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
- makeId(ActiveB, Index) };
- ActiveEnd += NodeMemSize;
- return NA;
-}
-
-NodeId NodeAllocator::id(const NodeBase *P) const {
- uintptr_t A = reinterpret_cast<uintptr_t>(P);
- for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
- uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
- if (A < B || A >= B + NodesPerBlock*NodeMemSize)
- continue;
- uint32_t Idx = (A-B)/NodeMemSize;
- return makeId(i, Idx);
- }
- llvm_unreachable("Invalid node address");
-}
-
-void NodeAllocator::clear() {
- MemPool.Reset();
- Blocks.clear();
- ActiveEnd = nullptr;
-}
-
-// Insert node NA after "this" in the circular chain.
-void NodeBase::append(NodeAddr<NodeBase*> NA) {
- NodeId Nx = Next;
- // If NA is already "next", do nothing.
- if (Next != NA.Id) {
- Next = NA.Id;
- NA.Addr->Next = Nx;
- }
-}
-
-// Fundamental node manipulator functions.
-
-// Obtain the register reference from a reference node.
-RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
- assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
- if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
- return G.unpack(Ref.PR);
- assert(Ref.Op != nullptr);
- return G.makeRegRef(*Ref.Op);
-}
-
-// Set the register reference in the reference node directly (for references
-// in phi nodes).
-void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
- assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
- assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
- Ref.PR = G.pack(RR);
-}
-
-// Set the register reference in the reference node based on a machine
-// operand (for references in statement nodes).
-void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
- assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
- assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
- (void)G;
- Ref.Op = Op;
-}
-
-// Get the owner of a given reference node.
-NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
- NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
-
- while (NA.Addr != this) {
- if (NA.Addr->getType() == NodeAttrs::Code)
- return NA;
- NA = G.addr<NodeBase*>(NA.Addr->getNext());
- }
- llvm_unreachable("No owner in circular list");
-}
-
-// Connect the def node to the reaching def node.
-void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
- Ref.RD = DA.Id;
- Ref.Sib = DA.Addr->getReachedDef();
- DA.Addr->setReachedDef(Self);
-}
-
-// Connect the use node to the reaching def node.
-void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
- Ref.RD = DA.Id;
- Ref.Sib = DA.Addr->getReachedUse();
- DA.Addr->setReachedUse(Self);
-}
-
-// Get the first member of the code node.
-NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
- if (Code.FirstM == 0)
- return NodeAddr<NodeBase*>();
- return G.addr<NodeBase*>(Code.FirstM);
-}
-
-// Get the last member of the code node.
-NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
- if (Code.LastM == 0)
- return NodeAddr<NodeBase*>();
- return G.addr<NodeBase*>(Code.LastM);
-}
-
-// Add node NA at the end of the member list of the given code node.
-void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
- NodeAddr<NodeBase*> ML = getLastMember(G);
- if (ML.Id != 0) {
- ML.Addr->append(NA);
- } else {
- Code.FirstM = NA.Id;
- NodeId Self = G.id(this);
- NA.Addr->setNext(Self);
- }
- Code.LastM = NA.Id;
-}
-
-// Add node NA after member node MA in the given code node.
-void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
- const DataFlowGraph &G) {
- MA.Addr->append(NA);
- if (Code.LastM == MA.Id)
- Code.LastM = NA.Id;
-}
-
-// Remove member node NA from the given code node.
-void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
- NodeAddr<NodeBase*> MA = getFirstMember(G);
- assert(MA.Id != 0);
-
- // Special handling if the member to remove is the first member.
- if (MA.Id == NA.Id) {
- if (Code.LastM == MA.Id) {
- // If it is the only member, set both first and last to 0.
- Code.FirstM = Code.LastM = 0;
- } else {
- // Otherwise, advance the first member.
- Code.FirstM = MA.Addr->getNext();
- }
- return;
- }
-
- while (MA.Addr != this) {
- NodeId MX = MA.Addr->getNext();
- if (MX == NA.Id) {
- MA.Addr->setNext(NA.Addr->getNext());
- // If the member to remove happens to be the last one, update the
- // LastM indicator.
- if (Code.LastM == NA.Id)
- Code.LastM = MA.Id;
- return;
- }
- MA = G.addr<NodeBase*>(MX);
- }
- llvm_unreachable("No such member");
-}
-
-// Return the list of all members of the code node.
-NodeList CodeNode::members(const DataFlowGraph &G) const {
- static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
- return members_if(True, G);
-}
-
-// Return the owner of the given instr node.
-NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
- NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
-
- while (NA.Addr != this) {
- assert(NA.Addr->getType() == NodeAttrs::Code);
- if (NA.Addr->getKind() == NodeAttrs::Block)
- return NA;
- NA = G.addr<NodeBase*>(NA.Addr->getNext());
- }
- llvm_unreachable("No owner in circular list");
-}
-
-// Add the phi node PA to the given block node.
-void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
- NodeAddr<NodeBase*> M = getFirstMember(G);
- if (M.Id == 0) {
- addMember(PA, G);
- return;
- }
-
- assert(M.Addr->getType() == NodeAttrs::Code);
- if (M.Addr->getKind() == NodeAttrs::Stmt) {
- // If the first member of the block is a statement, insert the phi as
- // the first member.
- Code.FirstM = PA.Id;
- PA.Addr->setNext(M.Id);
- } else {
- // If the first member is a phi, find the last phi, and append PA to it.
- assert(M.Addr->getKind() == NodeAttrs::Phi);
- NodeAddr<NodeBase*> MN = M;
- do {
- M = MN;
- MN = G.addr<NodeBase*>(M.Addr->getNext());
- assert(MN.Addr->getType() == NodeAttrs::Code);
- } while (MN.Addr->getKind() == NodeAttrs::Phi);
-
- // M is the last phi.
- addMemberAfter(M, PA, G);
- }
-}
-
-// Find the block node corresponding to the machine basic block BB in the
-// given func node.
-NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
- const DataFlowGraph &G) const {
- auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
- return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
- };
- NodeList Ms = members_if(EqBB, G);
- if (!Ms.empty())
- return Ms[0];
- return NodeAddr<BlockNode*>();
-}
-
-// Get the block node for the entry block in the given function.
-NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
- MachineBasicBlock *EntryB = &getCode()->front();
- return findBlock(EntryB, G);
-}
-
-// Target operand information.
-//
-
-// For a given instruction, check if there are any bits of RR that can remain
-// unchanged across this def.
-bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
- const {
- return TII.isPredicated(In);
-}
-
-// Check if the definition of RR produces an unspecified value.
-bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
- const {
- const MachineOperand &Op = In.getOperand(OpNum);
- if (Op.isRegMask())
- return true;
- assert(Op.isReg());
- if (In.isCall())
- if (Op.isDef() && Op.isDead())
- return true;
- return false;
-}
-
-// Check if the given instruction specifically requires
-bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
- const {
- if (In.isCall() || In.isReturn() || In.isInlineAsm())
- return true;
- // Check for a tail call.
- if (In.isBranch())
- for (const MachineOperand &O : In.operands())
- if (O.isGlobal() || O.isSymbol())
- return true;
-
- const MCInstrDesc &D = In.getDesc();
- if (!D.getImplicitDefs() && !D.getImplicitUses())
- return false;
- const MachineOperand &Op = In.getOperand(OpNum);
- // If there is a sub-register, treat the operand as non-fixed. Currently,
- // fixed registers are those that are listed in the descriptor as implicit
- // uses or defs, and those lists do not allow sub-registers.
- if (Op.getSubReg() != 0)
- return false;
- Register Reg = Op.getReg();
- const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
- : D.getImplicitUses();
- if (!ImpR)
- return false;
- while (*ImpR)
- if (*ImpR++ == Reg)
- return true;
- return false;
-}
-
-//
-// The data flow graph construction.
-//
-
-DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
- const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
- const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
- : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
- LiveIns(PRI) {
-}
-
-// The implementation of the definition stack.
-// Each register reference has its own definition stack. In particular,
-// for a register references "Reg" and "Reg:subreg" will each have their
-// own definition stacks.
-
-// Construct a stack iterator.
-DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
- bool Top) : DS(S) {
- if (!Top) {
- // Initialize to bottom.
- Pos = 0;
- return;
- }
- // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
- Pos = DS.Stack.size();
- while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
- Pos--;
-}
-
-// Return the size of the stack, including block delimiters.
-unsigned DataFlowGraph::DefStack::size() const {
- unsigned S = 0;
- for (auto I = top(), E = bottom(); I != E; I.down())
- S++;
- return S;
-}
-
-// Remove the top entry from the stack. Remove all intervening delimiters
-// so that after this, the stack is either empty, or the top of the stack
-// is a non-delimiter.
-void DataFlowGraph::DefStack::pop() {
- assert(!empty());
- unsigned P = nextDown(Stack.size());
- Stack.resize(P);
-}
-
-// Push a delimiter for block node N on the stack.
-void DataFlowGraph::DefStack::start_block(NodeId N) {
- assert(N != 0);
- Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
-}
-
-// Remove all nodes from the top of the stack, until the delimited for
-// block node N is encountered. Remove the delimiter as well. In effect,
-// this will remove from the stack all definitions from block N.
-void DataFlowGraph::DefStack::clear_block(NodeId N) {
- assert(N != 0);
- unsigned P = Stack.size();
- while (P > 0) {
- bool Found = isDelimiter(Stack[P-1], N);
- P--;
- if (Found)
- break;
- }
- // This will also remove the delimiter, if found.
- Stack.resize(P);
-}
-
-// Move the stack iterator up by one.
-unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
- // Get the next valid position after P (skipping all delimiters).
- // The input position P does not have to point to a non-delimiter.
- unsigned SS = Stack.size();
- bool IsDelim;
- assert(P < SS);
- do {
- P++;
- IsDelim = isDelimiter(Stack[P-1]);
- } while (P < SS && IsDelim);
- assert(!IsDelim);
- return P;
-}
-
-// Move the stack iterator down by one.
-unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
- // Get the preceding valid position before P (skipping all delimiters).
- // The input position P does not have to point to a non-delimiter.
- assert(P > 0 && P <= Stack.size());
- bool IsDelim = isDelimiter(Stack[P-1]);
- do {
- if (--P == 0)
- break;
- IsDelim = isDelimiter(Stack[P-1]);
- } while (P > 0 && IsDelim);
- assert(!IsDelim);
- return P;
-}
-
-// Register information.
-
-RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
- RegisterSet LR;
- const Function &F = MF.getFunction();
- const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
- : nullptr;
- const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
- if (RegisterId R = TLI.getExceptionPointerRegister(PF))
- LR.insert(RegisterRef(R));
- if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
- LR.insert(RegisterRef(R));
- return LR;
-}
-
-// Node management functions.
-
-// Get the pointer to the node with the id N.
-NodeBase *DataFlowGraph::ptr(NodeId N) const {
- if (N == 0)
- return nullptr;
- return Memory.ptr(N);
-}
-
-// Get the id of the node at the address P.
-NodeId DataFlowGraph::id(const NodeBase *P) const {
- if (P == nullptr)
- return 0;
- return Memory.id(P);
-}
-
-// Allocate a new node and set the attributes to Attrs.
-NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
- NodeAddr<NodeBase*> P = Memory.New();
- P.Addr->init();
- P.Addr->setAttrs(Attrs);
- return P;
-}
-
-// Make a copy of the given node B, except for the data-flow links, which
-// are set to 0.
-NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
- NodeAddr<NodeBase*> NA = newNode(0);
- memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
- // Ref nodes need to have the data-flow links reset.
- if (NA.Addr->getType() == NodeAttrs::Ref) {
- NodeAddr<RefNode*> RA = NA;
- RA.Addr->setReachingDef(0);
- RA.Addr->setSibling(0);
- if (NA.Addr->getKind() == NodeAttrs::Def) {
- NodeAddr<DefNode*> DA = NA;
- DA.Addr->setReachedDef(0);
- DA.Addr->setReachedUse(0);
- }
- }
- return NA;
-}
-
-// Allocation routines for specific node types/kinds.
-
-NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
- MachineOperand &Op, uint16_t Flags) {
- NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
- UA.Addr->setRegRef(&Op, *this);
- return UA;
-}
-
-NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
- RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
- NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
- assert(Flags & NodeAttrs::PhiRef);
- PUA.Addr->setRegRef(RR, *this);
- PUA.Addr->setPredecessor(PredB.Id);
- return PUA;
-}
-
-NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
- MachineOperand &Op, uint16_t Flags) {
- NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
- DA.Addr->setRegRef(&Op, *this);
- return DA;
-}
-
-NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
- RegisterRef RR, uint16_t Flags) {
- NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
- assert(Flags & NodeAttrs::PhiRef);
- DA.Addr->setRegRef(RR, *this);
- return DA;
-}
-
-NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
- NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
- Owner.Addr->addPhi(PA, *this);
- return PA;
-}
-
-NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
- MachineInstr *MI) {
- NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
- SA.Addr->setCode(MI);
- Owner.Addr->addMember(SA, *this);
- return SA;
-}
-
-NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
- MachineBasicBlock *BB) {
- NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
- BA.Addr->setCode(BB);
- Owner.Addr->addMember(BA, *this);
- return BA;
-}
-
-NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
- NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
- FA.Addr->setCode(MF);
- return FA;
-}
-
-// Build the data flow graph.
-void DataFlowGraph::build(unsigned Options) {
- reset();
- Func = newFunc(&MF);
-
- if (MF.empty())
- return;
-
- for (MachineBasicBlock &B : MF) {
- NodeAddr<BlockNode*> BA = newBlock(Func, &B);
- BlockNodes.insert(std::make_pair(&B, BA));
- for (MachineInstr &I : B) {
- if (I.isDebugInstr())
- continue;
- buildStmt(BA, I);
- }
- }
-
- NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
- NodeList Blocks = Func.Addr->members(*this);
-
- // Collect information about block references.
- RegisterSet AllRefs;
- for (NodeAddr<BlockNode*> BA : Blocks)
- for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
- for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
- AllRefs.insert(RA.Addr->getRegRef(*this));
-
- // Collect function live-ins and entry block live-ins.
- MachineRegisterInfo &MRI = MF.getRegInfo();
- MachineBasicBlock &EntryB = *EA.Addr->getCode();
- assert(EntryB.pred_empty() && "Function entry block has predecessors");
- for (std::pair<unsigned,unsigned> P : MRI.liveins())
- LiveIns.insert(RegisterRef(P.first));
- if (MRI.tracksLiveness()) {
- for (auto I : EntryB.liveins())
- LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
- }
-
- // Add function-entry phi nodes for the live-in registers.
- //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
- for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
- RegisterRef RR = *I;
- NodeAddr<PhiNode*> PA = newPhi(EA);
- uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
- NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
- PA.Addr->addMember(DA, *this);
- }
-
- // Add phis for landing pads.
- // Landing pads, unlike usual backs blocks, are not entered through
- // branches in the program, or fall-throughs from other blocks. They
- // are entered from the exception handling runtime and target's ABI
- // may define certain registers as defined on entry to such a block.
- RegisterSet EHRegs = getLandingPadLiveIns();
- if (!EHRegs.empty()) {
- for (NodeAddr<BlockNode*> BA : Blocks) {
- const MachineBasicBlock &B = *BA.Addr->getCode();
- if (!B.isEHPad())
- continue;
-
- // Prepare a list of NodeIds of the block's predecessors.
- NodeList Preds;
- for (MachineBasicBlock *PB : B.predecessors())
- Preds.push_back(findBlock(PB));
-
- // Build phi nodes for each live-in.
- for (RegisterRef RR : EHRegs) {
- NodeAddr<PhiNode*> PA = newPhi(BA);
- uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
- // Add def:
- NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
- PA.Addr->addMember(DA, *this);
- // Add uses (no reaching defs for phi uses):
- for (NodeAddr<BlockNode*> PBA : Preds) {
- NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
- PA.Addr->addMember(PUA, *this);
- }
- }
- }
- }
-
- // Build a map "PhiM" which will contain, for each block, the set
- // of references that will require phi definitions in that block.
- BlockRefsMap PhiM;
- for (NodeAddr<BlockNode*> BA : Blocks)
- recordDefsForDF(PhiM, BA);
- for (NodeAddr<BlockNode*> BA : Blocks)
- buildPhis(PhiM, AllRefs, BA);
-
- // Link all the refs. This will recursively traverse the dominator tree.
- DefStackMap DM;
- linkBlockRefs(DM, EA);
-
- // Finally, remove all unused phi nodes.
- if (!(Options & BuildOptions::KeepDeadPhis))
- removeUnusedPhis();
-}
-
-RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
- assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
- Register::isPhysicalRegister(Reg));
- assert(Reg != 0);
- if (Sub != 0)
- Reg = TRI.getSubReg(Reg, Sub);
- return RegisterRef(Reg);
-}
-
-RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
- assert(Op.isReg() || Op.isRegMask());
- if (Op.isReg())
- return makeRegRef(Op.getReg(), Op.getSubReg());
- return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
-}
-
-RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
- if (AR.Reg == BR.Reg) {
- LaneBitmask M = AR.Mask & BR.Mask;
- return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
- }
-#ifndef NDEBUG
-// RegisterRef NAR = PRI.normalize(AR);
-// RegisterRef NBR = PRI.normalize(BR);
-// assert(NAR.Reg != NBR.Reg);
-#endif
- // This isn't strictly correct, because the overlap may happen in the
- // part masked out.
- if (PRI.alias(AR, BR))
- return AR;
- return RegisterRef();
-}
-
-// For each stack in the map DefM, push the delimiter for block B on it.
-void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
- // Push block delimiters.
- for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
- I->second.start_block(B);
-}
-
-// Remove all definitions coming from block B from each stack in DefM.
-void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
- // Pop all defs from this block from the definition stack. Defs that were
- // added to the map during the traversal of instructions will not have a
- // delimiter, but for those, the whole stack will be emptied.
- for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
- I->second.clear_block(B);
-
- // Finally, remove empty stacks from the map.
- for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
- NextI = std::next(I);
- // This preserves the validity of iterators other than I.
- if (I->second.empty())
- DefM.erase(I);
- }
-}
-
-// Push all definitions from the instruction node IA to an appropriate
-// stack in DefM.
-void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
- pushClobbers(IA, DefM);
- pushDefs(IA, DefM);
-}
-
-// Push all definitions from the instruction node IA to an appropriate
-// stack in DefM.
-void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
- NodeSet Visited;
- std::set<RegisterId> Defined;
-
- // The important objectives of this function are:
- // - to be able to handle instructions both while the graph is being
- // constructed, and after the graph has been constructed, and
- // - maintain proper ordering of definitions on the stack for each
- // register reference:
- // - if there are two or more related defs in IA (i.e. coming from
- // the same machine operand), then only push one def on the stack,
- // - if there are multiple unrelated defs of non-overlapping
- // subregisters of S, then the stack for S will have both (in an
- // unspecified order), but the order does not matter from the data-
- // -flow perspective.
-
- for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
- if (Visited.count(DA.Id))
- continue;
- if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
- continue;
-
- NodeList Rel = getRelatedRefs(IA, DA);
- NodeAddr<DefNode*> PDA = Rel.front();
- RegisterRef RR = PDA.Addr->getRegRef(*this);
-
- // Push the definition on the stack for the register and all aliases.
- // The def stack traversal in linkNodeUp will check the exact aliasing.
- DefM[RR.Reg].push(DA);
- Defined.insert(RR.Reg);
- for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
- // Check that we don't push the same def twice.
- assert(A != RR.Reg);
- if (!Defined.count(A))
- DefM[A].push(DA);
- }
- // Mark all the related defs as visited.
- for (NodeAddr<NodeBase*> T : Rel)
- Visited.insert(T.Id);
- }
-}
-
-// Push all definitions from the instruction node IA to an appropriate
-// stack in DefM.
-void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
- NodeSet Visited;
-#ifndef NDEBUG
- std::set<RegisterId> Defined;
-#endif
-
- // The important objectives of this function are:
- // - to be able to handle instructions both while the graph is being
- // constructed, and after the graph has been constructed, and
- // - maintain proper ordering of definitions on the stack for each
- // register reference:
- // - if there are two or more related defs in IA (i.e. coming from
- // the same machine operand), then only push one def on the stack,
- // - if there are multiple unrelated defs of non-overlapping
- // subregisters of S, then the stack for S will have both (in an
- // unspecified order), but the order does not matter from the data-
- // -flow perspective.
-
- for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
- if (Visited.count(DA.Id))
- continue;
- if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
- continue;
-
- NodeList Rel = getRelatedRefs(IA, DA);
- NodeAddr<DefNode*> PDA = Rel.front();
- RegisterRef RR = PDA.Addr->getRegRef(*this);
-#ifndef NDEBUG
- // Assert if the register is defined in two or more unrelated defs.
- // This could happen if there are two or more def operands defining it.
- if (!Defined.insert(RR.Reg).second) {
- MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
- dbgs() << "Multiple definitions of register: "
- << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in "
- << printMBBReference(*MI->getParent()) << '\n';
- llvm_unreachable(nullptr);
- }
-#endif
- // Push the definition on the stack for the register and all aliases.
- // The def stack traversal in linkNodeUp will check the exact aliasing.
- DefM[RR.Reg].push(DA);
- for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
- // Check that we don't push the same def twice.
- assert(A != RR.Reg);
- DefM[A].push(DA);
- }
- // Mark all the related defs as visited.
- for (NodeAddr<NodeBase*> T : Rel)
- Visited.insert(T.Id);
- }
-}
-
-// Return the list of all reference nodes related to RA, including RA itself.
-// See "getNextRelated" for the meaning of a "related reference".
-NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const {
- assert(IA.Id != 0 && RA.Id != 0);
-
- NodeList Refs;
- NodeId Start = RA.Id;
- do {
- Refs.push_back(RA);
- RA = getNextRelated(IA, RA);
- } while (RA.Id != 0 && RA.Id != Start);
- return Refs;
-}
-
-// Clear all information in the graph.
-void DataFlowGraph::reset() {
- Memory.clear();
- BlockNodes.clear();
- Func = NodeAddr<FuncNode*>();
-}
-
-// Return the next reference node in the instruction node IA that is related
-// to RA. Conceptually, two reference nodes are related if they refer to the
-// same instance of a register access, but differ in flags or other minor
-// characteristics. Specific examples of related nodes are shadow reference
-// nodes.
-// Return the equivalent of nullptr if there are no more related references.
-NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const {
- assert(IA.Id != 0 && RA.Id != 0);
-
- auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
- if (TA.Addr->getKind() != RA.Addr->getKind())
- return false;
- if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
- return false;
- return true;
- };
- auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
- return Related(TA) &&
- &RA.Addr->getOp() == &TA.Addr->getOp();
- };
- auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
- if (!Related(TA))
- return false;
- if (TA.Addr->getKind() != NodeAttrs::Use)
- return true;
- // For phi uses, compare predecessor blocks.
- const NodeAddr<const PhiUseNode*> TUA = TA;
- const NodeAddr<const PhiUseNode*> RUA = RA;
- return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
- };
-
- RegisterRef RR = RA.Addr->getRegRef(*this);
- if (IA.Addr->getKind() == NodeAttrs::Stmt)
- return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
- return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
-}
-
-// Find the next node related to RA in IA that satisfies condition P.
-// If such a node was found, return a pair where the second element is the
-// located node. If such a node does not exist, return a pair where the
-// first element is the element after which such a node should be inserted,
-// and the second element is a null-address.
-template <typename Predicate>
-std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
-DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
- Predicate P) const {
- assert(IA.Id != 0 && RA.Id != 0);
-
- NodeAddr<RefNode*> NA;
- NodeId Start = RA.Id;
- while (true) {
- NA = getNextRelated(IA, RA);
- if (NA.Id == 0 || NA.Id == Start)
- break;
- if (P(NA))
- break;
- RA = NA;
- }
-
- if (NA.Id != 0 && NA.Id != Start)
- return std::make_pair(RA, NA);
- return std::make_pair(RA, NodeAddr<RefNode*>());
-}
-
-// Get the next shadow node in IA corresponding to RA, and optionally create
-// such a node if it does not exist.
-NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA, bool Create) {
- assert(IA.Id != 0 && RA.Id != 0);
-
- uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
- auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
- return TA.Addr->getFlags() == Flags;
- };
- auto Loc = locateNextRef(IA, RA, IsShadow);
- if (Loc.second.Id != 0 || !Create)
- return Loc.second;
-
- // Create a copy of RA and mark is as shadow.
- NodeAddr<RefNode*> NA = cloneNode(RA);
- NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
- IA.Addr->addMemberAfter(Loc.first, NA, *this);
- return NA;
-}
-
-// Get the next shadow node in IA corresponding to RA. Return null-address
-// if such a node does not exist.
-NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const {
- assert(IA.Id != 0 && RA.Id != 0);
- uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
- auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
- return TA.Addr->getFlags() == Flags;
- };
- return locateNextRef(IA, RA, IsShadow).second;
-}
-
-// Create a new statement node in the block node BA that corresponds to
-// the machine instruction MI.
-void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
- NodeAddr<StmtNode*> SA = newStmt(BA, &In);
-
- auto isCall = [] (const MachineInstr &In) -> bool {
- if (In.isCall())
- return true;
- // Is tail call?
- if (In.isBranch()) {
- for (const MachineOperand &Op : In.operands())
- if (Op.isGlobal() || Op.isSymbol())
- return true;
- // Assume indirect branches are calls. This is for the purpose of
- // keeping implicit operands, and so it won't hurt on intra-function
- // indirect branches.
- if (In.isIndirectBranch())
- return true;
- }
- return false;
- };
-
- auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
- // This instruction defines DR. Check if there is a use operand that
- // would make DR live on entry to the instruction.
- for (const MachineOperand &Op : In.operands()) {
- if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
- continue;
- RegisterRef UR = makeRegRef(Op);
- if (PRI.alias(DR, UR))
- return false;
- }
- return true;
- };
-
- bool IsCall = isCall(In);
- unsigned NumOps = In.getNumOperands();
-
- // Avoid duplicate implicit defs. This will not detect cases of implicit
- // defs that define registers that overlap, but it is not clear how to
- // interpret that in the absence of explicit defs. Overlapping explicit
- // defs are likely illegal already.
- BitVector DoneDefs(TRI.getNumRegs());
- // Process explicit defs first.
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
- continue;
- Register R = Op.getReg();
- if (!R || !Register::isPhysicalRegister(R))
- continue;
- uint16_t Flags = NodeAttrs::None;
- if (TOI.isPreserving(In, OpN)) {
- Flags |= NodeAttrs::Preserving;
- // If the def is preserving, check if it is also undefined.
- if (isDefUndef(In, makeRegRef(Op)))
- Flags |= NodeAttrs::Undef;
- }
- if (TOI.isClobbering(In, OpN))
- Flags |= NodeAttrs::Clobbering;
- if (TOI.isFixedReg(In, OpN))
- Flags |= NodeAttrs::Fixed;
- if (IsCall && Op.isDead())
- Flags |= NodeAttrs::Dead;
- NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
- SA.Addr->addMember(DA, *this);
- assert(!DoneDefs.test(R));
- DoneDefs.set(R);
- }
-
- // Process reg-masks (as clobbers).
- BitVector DoneClobbers(TRI.getNumRegs());
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isRegMask())
- continue;
- uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
- NodeAttrs::Dead;
- NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
- SA.Addr->addMember(DA, *this);
- // Record all clobbered registers in DoneDefs.
- const uint32_t *RM = Op.getRegMask();
- for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
- if (!(RM[i/32] & (1u << (i%32))))
- DoneClobbers.set(i);
- }
-
- // Process implicit defs, skipping those that have already been added
- // as explicit.
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
- continue;
- Register R = Op.getReg();
- if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
- continue;
- RegisterRef RR = makeRegRef(Op);
- uint16_t Flags = NodeAttrs::None;
- if (TOI.isPreserving(In, OpN)) {
- Flags |= NodeAttrs::Preserving;
- // If the def is preserving, check if it is also undefined.
- if (isDefUndef(In, RR))
- Flags |= NodeAttrs::Undef;
- }
- if (TOI.isClobbering(In, OpN))
- Flags |= NodeAttrs::Clobbering;
- if (TOI.isFixedReg(In, OpN))
- Flags |= NodeAttrs::Fixed;
- if (IsCall && Op.isDead()) {
- if (DoneClobbers.test(R))
- continue;
- Flags |= NodeAttrs::Dead;
- }
- NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
- SA.Addr->addMember(DA, *this);
- DoneDefs.set(R);
- }
-
- for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
- MachineOperand &Op = In.getOperand(OpN);
- if (!Op.isReg() || !Op.isUse())
- continue;
- Register R = Op.getReg();
- if (!R || !Register::isPhysicalRegister(R))
- continue;
- uint16_t Flags = NodeAttrs::None;
- if (Op.isUndef())
- Flags |= NodeAttrs::Undef;
- if (TOI.isFixedReg(In, OpN))
- Flags |= NodeAttrs::Fixed;
- NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
- SA.Addr->addMember(UA, *this);
- }
-}
-
-// Scan all defs in the block node BA and record in PhiM the locations of
-// phi nodes corresponding to these defs.
-void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
- NodeAddr<BlockNode*> BA) {
- // Check all defs from block BA and record them in each block in BA's
- // iterated dominance frontier. This information will later be used to
- // create phi nodes.
- MachineBasicBlock *BB = BA.Addr->getCode();
- assert(BB);
- auto DFLoc = MDF.find(BB);
- if (DFLoc == MDF.end() || DFLoc->second.empty())
- return;
-
- // Traverse all instructions in the block and collect the set of all
- // defined references. For each reference there will be a phi created
- // in the block's iterated dominance frontier.
- // This is done to make sure that each defined reference gets only one
- // phi node, even if it is defined multiple times.
- RegisterSet Defs;
- for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
- for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
- Defs.insert(RA.Addr->getRegRef(*this));
-
- // Calculate the iterated dominance frontier of BB.
- const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
- SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
- for (unsigned i = 0; i < IDF.size(); ++i) {
- auto F = MDF.find(IDF[i]);
- if (F != MDF.end())
- IDF.insert(F->second.begin(), F->second.end());
- }
-
- // Finally, add the set of defs to each block in the iterated dominance
- // frontier.
- for (auto DB : IDF) {
- NodeAddr<BlockNode*> DBA = findBlock(DB);
- PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
- }
-}
-
-// Given the locations of phi nodes in the map PhiM, create the phi nodes
-// that are located in the block node BA.
-void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
- NodeAddr<BlockNode*> BA) {
- // Check if this blocks has any DF defs, i.e. if there are any defs
- // that this block is in the iterated dominance frontier of.
- auto HasDF = PhiM.find(BA.Id);
- if (HasDF == PhiM.end() || HasDF->second.empty())
- return;
-
- // First, remove all R in Refs in such that there exists T in Refs
- // such that T covers R. In other words, only leave those refs that
- // are not covered by another ref (i.e. maximal with respect to covering).
-
- auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
- for (RegisterRef I : RRs)
- if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
- RR = I;
- return RR;
- };
-
- RegisterSet MaxDF;
- for (RegisterRef I : HasDF->second)
- MaxDF.insert(MaxCoverIn(I, HasDF->second));
-
- std::vector<RegisterRef> MaxRefs;
- for (RegisterRef I : MaxDF)
- MaxRefs.push_back(MaxCoverIn(I, AllRefs));
-
- // Now, for each R in MaxRefs, get the alias closure of R. If the closure
- // only has R in it, create a phi a def for R. Otherwise, create a phi,
- // and add a def for each S in the closure.
-
- // Sort the refs so that the phis will be created in a deterministic order.
- llvm::sort(MaxRefs);
- // Remove duplicates.
- auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
- MaxRefs.erase(NewEnd, MaxRefs.end());
-
- auto Aliased = [this,&MaxRefs](RegisterRef RR,
- std::vector<unsigned> &Closure) -> bool {
- for (unsigned I : Closure)
- if (PRI.alias(RR, MaxRefs[I]))
- return true;
- return false;
- };
-
- // Prepare a list of NodeIds of the block's predecessors.
- NodeList Preds;
- const MachineBasicBlock *MBB = BA.Addr->getCode();
- for (MachineBasicBlock *PB : MBB->predecessors())
- Preds.push_back(findBlock(PB));
-
- while (!MaxRefs.empty()) {
- // Put the first element in the closure, and then add all subsequent
- // elements from MaxRefs to it, if they alias at least one element
- // already in the closure.
- // ClosureIdx: vector of indices in MaxRefs of members of the closure.
- std::vector<unsigned> ClosureIdx = { 0 };
- for (unsigned i = 1; i != MaxRefs.size(); ++i)
- if (Aliased(MaxRefs[i], ClosureIdx))
- ClosureIdx.push_back(i);
-
- // Build a phi for the closure.
- unsigned CS = ClosureIdx.size();
- NodeAddr<PhiNode*> PA = newPhi(BA);
-
- // Add defs.
- for (unsigned X = 0; X != CS; ++X) {
- RegisterRef RR = MaxRefs[ClosureIdx[X]];
- uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
- NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
- PA.Addr->addMember(DA, *this);
- }
- // Add phi uses.
- for (NodeAddr<BlockNode*> PBA : Preds) {
- for (unsigned X = 0; X != CS; ++X) {
- RegisterRef RR = MaxRefs[ClosureIdx[X]];
- NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
- PA.Addr->addMember(PUA, *this);
- }
- }
-
- // Erase from MaxRefs all elements in the closure.
- auto Begin = MaxRefs.begin();
- for (unsigned i = ClosureIdx.size(); i != 0; --i)
- MaxRefs.erase(Begin + ClosureIdx[i-1]);
- }
-}
-
-// Remove any unneeded phi nodes that were created during the build process.
-void DataFlowGraph::removeUnusedPhis() {
- // This will remove unused phis, i.e. phis where each def does not reach
- // any uses or other defs. This will not detect or remove circular phi
- // chains that are otherwise dead. Unused/dead phis are created during
- // the build process and this function is intended to remove these cases
- // that are easily determinable to be unnecessary.
-
- SetVector<NodeId> PhiQ;
- for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
- for (auto P : BA.Addr->members_if(IsPhi, *this))
- PhiQ.insert(P.Id);
- }
-
- static auto HasUsedDef = [](NodeList &Ms) -> bool {
- for (NodeAddr<NodeBase*> M : Ms) {
- if (M.Addr->getKind() != NodeAttrs::Def)
- continue;
- NodeAddr<DefNode*> DA = M;
- if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
- return true;
- }
- return false;
- };
-
- // Any phi, if it is removed, may affect other phis (make them dead).
- // For each removed phi, collect the potentially affected phis and add
- // them back to the queue.
- while (!PhiQ.empty()) {
- auto PA = addr<PhiNode*>(PhiQ[0]);
- PhiQ.remove(PA.Id);
- NodeList Refs = PA.Addr->members(*this);
- if (HasUsedDef(Refs))
- continue;
- for (NodeAddr<RefNode*> RA : Refs) {
- if (NodeId RD = RA.Addr->getReachingDef()) {
- auto RDA = addr<DefNode*>(RD);
- NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
- if (IsPhi(OA))
- PhiQ.insert(OA.Id);
- }
- if (RA.Addr->isDef())
- unlinkDef(RA, true);
- else
- unlinkUse(RA, true);
- }
- NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
- BA.Addr->removeMember(PA, *this);
- }
-}
-
-// For a given reference node TA in an instruction node IA, connect the
-// reaching def of TA to the appropriate def node. Create any shadow nodes
-// as appropriate.
-template <typename T>
-void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
- DefStack &DS) {
- if (DS.empty())
- return;
- RegisterRef RR = TA.Addr->getRegRef(*this);
- NodeAddr<T> TAP;
-
- // References from the def stack that have been examined so far.
- RegisterAggr Defs(PRI);
-
- for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
- RegisterRef QR = I->Addr->getRegRef(*this);
-
- // Skip all defs that are aliased to any of the defs that we have already
- // seen. If this completes a cover of RR, stop the stack traversal.
- bool Alias = Defs.hasAliasOf(QR);
- bool Cover = Defs.insert(QR).hasCoverOf(RR);
- if (Alias) {
- if (Cover)
- break;
- continue;
- }
-
- // The reaching def.
- NodeAddr<DefNode*> RDA = *I;
-
- // Pick the reached node.
- if (TAP.Id == 0) {
- TAP = TA;
- } else {
- // Mark the existing ref as "shadow" and create a new shadow.
- TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
- TAP = getNextShadow(IA, TAP, true);
- }
-
- // Create the link.
- TAP.Addr->linkToDef(TAP.Id, RDA);
-
- if (Cover)
- break;
- }
-}
-
-// Create data-flow links for all reference nodes in the statement node SA.
-template <typename Predicate>
-void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
- Predicate P) {
-#ifndef NDEBUG
- RegisterSet Defs;
-#endif
-
- // Link all nodes (upwards in the data-flow) with their reaching defs.
- for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
- uint16_t Kind = RA.Addr->getKind();
- assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
- RegisterRef RR = RA.Addr->getRegRef(*this);
-#ifndef NDEBUG
- // Do not expect multiple defs of the same reference.
- assert(Kind != NodeAttrs::Def || !Defs.count(RR));
- Defs.insert(RR);
-#endif
-
- auto F = DefM.find(RR.Reg);
- if (F == DefM.end())
- continue;
- DefStack &DS = F->second;
- if (Kind == NodeAttrs::Use)
- linkRefUp<UseNode*>(SA, RA, DS);
- else if (Kind == NodeAttrs::Def)
- linkRefUp<DefNode*>(SA, RA, DS);
- else
- llvm_unreachable("Unexpected node in instruction");
- }
-}
-
-// Create data-flow links for all instructions in the block node BA. This
-// will include updating any phi nodes in BA.
-void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
- // Push block delimiters.
- markBlock(BA.Id, DefM);
-
- auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
- return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
- };
- auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
- return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
- };
-
- assert(BA.Addr && "block node address is needed to create a data-flow link");
- // For each non-phi instruction in the block, link all the defs and uses
- // to their reaching defs. For any member of the block (including phis),
- // push the defs on the corresponding stacks.
- for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
- // Ignore phi nodes here. They will be linked part by part from the
- // predecessors.
- if (IA.Addr->getKind() == NodeAttrs::Stmt) {
- linkStmtRefs(DefM, IA, IsUse);
- linkStmtRefs(DefM, IA, IsClobber);
- }
-
- // Push the definitions on the stack.
- pushClobbers(IA, DefM);
-
- if (IA.Addr->getKind() == NodeAttrs::Stmt)
- linkStmtRefs(DefM, IA, IsNoClobber);
-
- pushDefs(IA, DefM);
- }
-
- // Recursively process all children in the dominator tree.
- MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
- for (auto I : *N) {
- MachineBasicBlock *SB = I->getBlock();
- NodeAddr<BlockNode*> SBA = findBlock(SB);
- linkBlockRefs(DefM, SBA);
- }
-
- // Link the phi uses from the successor blocks.
- auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
- if (NA.Addr->getKind() != NodeAttrs::Use)
- return false;
- assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
- NodeAddr<PhiUseNode*> PUA = NA;
- return PUA.Addr->getPredecessor() == BA.Id;
- };
-
- RegisterSet EHLiveIns = getLandingPadLiveIns();
- MachineBasicBlock *MBB = BA.Addr->getCode();
-
- for (MachineBasicBlock *SB : MBB->successors()) {
- bool IsEHPad = SB->isEHPad();
- NodeAddr<BlockNode*> SBA = findBlock(SB);
- for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
- // Do not link phi uses for landing pad live-ins.
- if (IsEHPad) {
- // Find what register this phi is for.
- NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
- assert(RA.Id != 0);
- if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
- continue;
- }
- // Go over each phi use associated with MBB, and link it.
- for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
- NodeAddr<PhiUseNode*> PUA = U;
- RegisterRef RR = PUA.Addr->getRegRef(*this);
- linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
- }
- }
- }
-
- // Pop all defs from this block from the definition stacks.
- releaseBlock(BA.Id, DefM);
-}
-
-// Remove the use node UA from any data-flow and structural links.
-void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
- NodeId RD = UA.Addr->getReachingDef();
- NodeId Sib = UA.Addr->getSibling();
-
- if (RD == 0) {
- assert(Sib == 0);
- return;
- }
-
- auto RDA = addr<DefNode*>(RD);
- auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
- if (TA.Id == UA.Id) {
- RDA.Addr->setReachedUse(Sib);
- return;
- }
-
- while (TA.Id != 0) {
- NodeId S = TA.Addr->getSibling();
- if (S == UA.Id) {
- TA.Addr->setSibling(UA.Addr->getSibling());
- return;
- }
- TA = addr<UseNode*>(S);
- }
-}
-
-// Remove the def node DA from any data-flow and structural links.
-void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
- //
- // RD
- // | reached
- // | def
- // :
- // .
- // +----+
- // ... -- | DA | -- ... -- 0 : sibling chain of DA
- // +----+
- // | | reached
- // | : def
- // | .
- // | ... : Siblings (defs)
- // |
- // : reached
- // . use
- // ... : sibling chain of reached uses
-
- NodeId RD = DA.Addr->getReachingDef();
-
- // Visit all siblings of the reached def and reset their reaching defs.
- // Also, defs reached by DA are now "promoted" to being reached by RD,
- // so all of them will need to be spliced into the sibling chain where
- // DA belongs.
- auto getAllNodes = [this] (NodeId N) -> NodeList {
- NodeList Res;
- while (N) {
- auto RA = addr<RefNode*>(N);
- // Keep the nodes in the exact sibling order.
- Res.push_back(RA);
- N = RA.Addr->getSibling();
- }
- return Res;
- };
- NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
- NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
-
- if (RD == 0) {
- for (NodeAddr<RefNode*> I : ReachedDefs)
- I.Addr->setSibling(0);
- for (NodeAddr<RefNode*> I : ReachedUses)
- I.Addr->setSibling(0);
- }
- for (NodeAddr<DefNode*> I : ReachedDefs)
- I.Addr->setReachingDef(RD);
- for (NodeAddr<UseNode*> I : ReachedUses)
- I.Addr->setReachingDef(RD);
-
- NodeId Sib = DA.Addr->getSibling();
- if (RD == 0) {
- assert(Sib == 0);
- return;
- }
-
- // Update the reaching def node and remove DA from the sibling list.
- auto RDA = addr<DefNode*>(RD);
- auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
- if (TA.Id == DA.Id) {
- // If DA is the first reached def, just update the RD's reached def
- // to the DA's sibling.
- RDA.Addr->setReachedDef(Sib);
- } else {
- // Otherwise, traverse the sibling list of the reached defs and remove
- // DA from it.
- while (TA.Id != 0) {
- NodeId S = TA.Addr->getSibling();
- if (S == DA.Id) {
- TA.Addr->setSibling(Sib);
- break;
- }
- TA = addr<DefNode*>(S);
- }
- }
-
- // Splice the DA's reached defs into the RDA's reached def chain.
- if (!ReachedDefs.empty()) {
- auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
- Last.Addr->setSibling(RDA.Addr->getReachedDef());
- RDA.Addr->setReachedDef(ReachedDefs.front().Id);
- }
- // Splice the DA's reached uses into the RDA's reached use chain.
- if (!ReachedUses.empty()) {
- auto Last = NodeAddr<UseNode*>(ReachedUses.back());
- Last.Addr->setSibling(RDA.Addr->getReachedUse());
- RDA.Addr->setReachedUse(ReachedUses.front().Id);
- }
-}