diff options
Diffstat (limited to 'llvm/lib/Target/X86/X86InterleavedAccess.cpp')
-rw-r--r-- | llvm/lib/Target/X86/X86InterleavedAccess.cpp | 159 |
1 files changed, 83 insertions, 76 deletions
diff --git a/llvm/lib/Target/X86/X86InterleavedAccess.cpp b/llvm/lib/Target/X86/X86InterleavedAccess.cpp index 8f74a8fe041d..a19e12766e10 100644 --- a/llvm/lib/Target/X86/X86InterleavedAccess.cpp +++ b/llvm/lib/Target/X86/X86InterleavedAccess.cpp @@ -69,7 +69,7 @@ class X86InterleavedAccessGroup { /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors. - void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T, + void decompose(Instruction *Inst, unsigned NumSubVectors, FixedVectorType *T, SmallVectorImpl<Instruction *> &DecomposedVectors); /// Performs matrix transposition on a 4x4 matrix \p InputVectors and @@ -127,7 +127,7 @@ public: bool X86InterleavedAccessGroup::isSupported() const { VectorType *ShuffleVecTy = Shuffles[0]->getType(); - Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType(); + Type *ShuffleEltTy = ShuffleVecTy->getElementType(); unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy); unsigned WideInstSize; @@ -150,7 +150,7 @@ bool X86InterleavedAccessGroup::isSupported() const { // We support shuffle represents stride 4 for byte type with size of // WideInstSize. if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4) - return true; + return true; if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 && (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 || @@ -165,7 +165,7 @@ bool X86InterleavedAccessGroup::isSupported() const { } void X86InterleavedAccessGroup::decompose( - Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy, + Instruction *VecInst, unsigned NumSubVectors, FixedVectorType *SubVecTy, SmallVectorImpl<Instruction *> &DecomposedVectors) { assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) && "Expected Load or Shuffle"); @@ -186,8 +186,8 @@ void X86InterleavedAccessGroup::decompose( DecomposedVectors.push_back( cast<ShuffleVectorInst>(Builder.CreateShuffleVector( Op0, Op1, - createSequentialMask(Builder, Indices[i], - SubVecTy->getVectorNumElements(), 0)))); + createSequentialMask(Indices[i], SubVecTy->getNumElements(), + 0)))); return; } @@ -201,7 +201,7 @@ void X86InterleavedAccessGroup::decompose( // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1] unsigned VecLength = DL.getTypeSizeInBits(VecWidth); if (VecLength == 768 || VecLength == 1536) { - VecBaseTy = VectorType::get(Type::getInt8Ty(LI->getContext()), 16); + VecBaseTy = FixedVectorType::get(Type::getInt8Ty(LI->getContext()), 16); VecBasePtrTy = VecBaseTy->getPointerTo(LI->getPointerAddressSpace()); VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); NumLoads = NumSubVectors * (VecLength / 384); @@ -211,13 +211,20 @@ void X86InterleavedAccessGroup::decompose( VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy); } // Generate N loads of T type. + assert(VecBaseTy->getPrimitiveSizeInBits().isByteSized() && + "VecBaseTy's size must be a multiple of 8"); + const Align FirstAlignment = LI->getAlign(); + const Align SubsequentAlignment = commonAlignment( + FirstAlignment, VecBaseTy->getPrimitiveSizeInBits().getFixedSize() / 8); + Align Alignment = FirstAlignment; for (unsigned i = 0; i < NumLoads; i++) { // TODO: Support inbounds GEP. Value *NewBasePtr = Builder.CreateGEP(VecBaseTy, VecBasePtr, Builder.getInt32(i)); Instruction *NewLoad = - Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, LI->getAlignment()); + Builder.CreateAlignedLoad(VecBaseTy, NewBasePtr, Alignment); DecomposedVectors.push_back(NewLoad); + Alignment = SubsequentAlignment; } } @@ -229,11 +236,11 @@ static MVT scaleVectorType(MVT VT) { VT.getVectorNumElements() / 2); } -static uint32_t Concat[] = { - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, - 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, - 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, - 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }; +static constexpr int Concat[] = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}; // genShuffleBland - Creates shuffle according to two vectors.This function is // only works on instructions with lane inside 256 registers. According to @@ -251,11 +258,11 @@ static uint32_t Concat[] = { // By computing the shuffle on a sequence of 16 elements(one lane) and add the // correct offset. We are creating a vpsuffed + blend sequence between two // shuffles. -static void genShuffleBland(MVT VT, ArrayRef<uint32_t> Mask, - SmallVectorImpl<uint32_t> &Out, int LowOffset, - int HighOffset) { +static void genShuffleBland(MVT VT, ArrayRef<int> Mask, + SmallVectorImpl<int> &Out, int LowOffset, + int HighOffset) { assert(VT.getSizeInBits() >= 256 && - "This function doesn't accept width smaller then 256"); + "This function doesn't accept width smaller then 256"); unsigned NumOfElm = VT.getVectorNumElements(); for (unsigned i = 0; i < Mask.size(); i++) Out.push_back(Mask[i] + LowOffset); @@ -282,36 +289,35 @@ static void genShuffleBland(MVT VT, ArrayRef<uint32_t> Mask, // Invec[2] - |2|5|8|11| TransposedMatrix[2] - |8|9|10|11| static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix, - ArrayRef<Value *> Vec, ArrayRef<uint32_t> VPShuf, - unsigned VecElems, unsigned Stride, - IRBuilder<> Builder) { + ArrayRef<Value *> Vec, ArrayRef<int> VPShuf, + unsigned VecElems, unsigned Stride, + IRBuilder<> &Builder) { if (VecElems == 16) { for (unsigned i = 0; i < Stride; i++) TransposedMatrix[i] = Builder.CreateShuffleVector( - Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf); + Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf); return; } - SmallVector<uint32_t, 32> OptimizeShuf; + SmallVector<int, 32> OptimizeShuf; Value *Temp[8]; for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) { genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16, - (i + 1) / Stride * 16); + (i + 1) / Stride * 16); Temp[i / 2] = Builder.CreateShuffleVector( - Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf); + Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf); OptimizeShuf.clear(); } if (VecElems == 32) { std::copy(Temp, Temp + Stride, TransposedMatrix.begin()); return; - } - else + } else for (unsigned i = 0; i < Stride; i++) TransposedMatrix[i] = - Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat); + Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat); } void X86InterleavedAccessGroup::interleave8bitStride4VF8( @@ -325,19 +331,19 @@ void X86InterleavedAccessGroup::interleave8bitStride4VF8( MVT VT = MVT::v8i16; TransposedMatrix.resize(2); - SmallVector<uint32_t, 16> MaskLow; - SmallVector<uint32_t, 32> MaskLowTemp1, MaskLowWord; - SmallVector<uint32_t, 32> MaskHighTemp1, MaskHighWord; + SmallVector<int, 16> MaskLow; + SmallVector<int, 32> MaskLowTemp1, MaskLowWord; + SmallVector<int, 32> MaskHighTemp1, MaskHighWord; for (unsigned i = 0; i < 8; ++i) { MaskLow.push_back(i); MaskLow.push_back(i + 8); } - createUnpackShuffleMask<uint32_t>(VT, MaskLowTemp1, true, false); - createUnpackShuffleMask<uint32_t>(VT, MaskHighTemp1, false, false); - scaleShuffleMask<uint32_t>(2, MaskHighTemp1, MaskHighWord); - scaleShuffleMask<uint32_t>(2, MaskLowTemp1, MaskLowWord); + createUnpackShuffleMask(VT, MaskLowTemp1, true, false); + createUnpackShuffleMask(VT, MaskHighTemp1, false, false); + narrowShuffleMaskElts(2, MaskHighTemp1, MaskHighWord); + narrowShuffleMaskElts(2, MaskLowTemp1, MaskLowWord); // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7 // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7 Value *IntrVec1Low = @@ -367,25 +373,25 @@ void X86InterleavedAccessGroup::interleave8bitStride4( MVT HalfVT = scaleVectorType(VT); TransposedMatrix.resize(4); - SmallVector<uint32_t, 32> MaskHigh; - SmallVector<uint32_t, 32> MaskLow; - SmallVector<uint32_t, 32> LowHighMask[2]; - SmallVector<uint32_t, 32> MaskHighTemp; - SmallVector<uint32_t, 32> MaskLowTemp; + SmallVector<int, 32> MaskHigh; + SmallVector<int, 32> MaskLow; + SmallVector<int, 32> LowHighMask[2]; + SmallVector<int, 32> MaskHighTemp; + SmallVector<int, 32> MaskLowTemp; // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86 // shuffle pattern. - createUnpackShuffleMask<uint32_t>(VT, MaskLow, true, false); - createUnpackShuffleMask<uint32_t>(VT, MaskHigh, false, false); + createUnpackShuffleMask(VT, MaskLow, true, false); + createUnpackShuffleMask(VT, MaskHigh, false, false); // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86 // shuffle pattern. - createUnpackShuffleMask<uint32_t>(HalfVT, MaskLowTemp, true, false); - createUnpackShuffleMask<uint32_t>(HalfVT, MaskHighTemp, false, false); - scaleShuffleMask<uint32_t>(2, MaskLowTemp, LowHighMask[0]); - scaleShuffleMask<uint32_t>(2, MaskHighTemp, LowHighMask[1]); + createUnpackShuffleMask(HalfVT, MaskLowTemp, true, false); + createUnpackShuffleMask(HalfVT, MaskHighTemp, false, false); + narrowShuffleMaskElts(2, MaskLowTemp, LowHighMask[0]); + narrowShuffleMaskElts(2, MaskHighTemp, LowHighMask[1]); // IntrVec1Low = c0 m0 c1 m1 ... c7 m7 | c16 m16 c17 m17 ... c23 m23 // IntrVec1High = c8 m8 c9 m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31 @@ -433,7 +439,7 @@ void X86InterleavedAccessGroup::interleave8bitStride4( // For example shuffle pattern for VF 16 register size 256 -> lanes = 2 // {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>} static void createShuffleStride(MVT VT, int Stride, - SmallVectorImpl<uint32_t> &Mask) { + SmallVectorImpl<int> &Mask) { int VectorSize = VT.getSizeInBits(); int VF = VT.getVectorNumElements(); int LaneCount = std::max(VectorSize / 128, 1); @@ -446,7 +452,7 @@ static void createShuffleStride(MVT VT, int Stride, // inside mask a shuffleMask. A mask contains exactly 3 groups, where // each group is a monotonically increasing sequence with stride 3. // For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2} -static void setGroupSize(MVT VT, SmallVectorImpl<uint32_t> &SizeInfo) { +static void setGroupSize(MVT VT, SmallVectorImpl<int> &SizeInfo) { int VectorSize = VT.getSizeInBits(); int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1); for (int i = 0, FirstGroupElement = 0; i < 3; i++) { @@ -470,7 +476,7 @@ static void setGroupSize(MVT VT, SmallVectorImpl<uint32_t> &SizeInfo) { // direction of the alignment. (false - align to the "right" side while true - // align to the "left" side) static void DecodePALIGNRMask(MVT VT, unsigned Imm, - SmallVectorImpl<uint32_t> &ShuffleMask, + SmallVectorImpl<int> &ShuffleMask, bool AlignDirection = true, bool Unary = false) { unsigned NumElts = VT.getVectorNumElements(); unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1); @@ -519,7 +525,7 @@ static void DecodePALIGNRMask(MVT VT, unsigned Imm, // Invec[2] - |8|9|10|11| Vec[2] - |2|5|8|11| static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec, - unsigned VecElems, IRBuilder<> Builder) { + unsigned VecElems, IRBuilder<> &Builder) { if (VecElems == 16) { for (int i = 0; i < 3; i++) Vec[i] = InVec[i]; @@ -547,11 +553,11 @@ void X86InterleavedAccessGroup::deinterleave8bitStride3( // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7 TransposedMatrix.resize(3); - SmallVector<uint32_t, 32> VPShuf; - SmallVector<uint32_t, 32> VPAlign[2]; - SmallVector<uint32_t, 32> VPAlign2; - SmallVector<uint32_t, 32> VPAlign3; - SmallVector<uint32_t, 3> GroupSize; + SmallVector<int, 32> VPShuf; + SmallVector<int, 32> VPAlign[2]; + SmallVector<int, 32> VPAlign2; + SmallVector<int, 32> VPAlign3; + SmallVector<int, 3> GroupSize; Value *Vec[6], *TempVector[3]; MVT VT = MVT::getVT(Shuffles[0]->getType()); @@ -605,8 +611,8 @@ void X86InterleavedAccessGroup::deinterleave8bitStride3( // group2Shuffle reorder the shuffle stride back into continuous order. // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} => // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}. -static void group2Shuffle(MVT VT, SmallVectorImpl<uint32_t> &Mask, - SmallVectorImpl<uint32_t> &Output) { +static void group2Shuffle(MVT VT, SmallVectorImpl<int> &Mask, + SmallVectorImpl<int> &Output) { int IndexGroup[3] = {0, 0, 0}; int Index = 0; int VectorWidth = VT.getSizeInBits(); @@ -633,11 +639,11 @@ void X86InterleavedAccessGroup::interleave8bitStride3( // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7 TransposedMatrix.resize(3); - SmallVector<uint32_t, 3> GroupSize; - SmallVector<uint32_t, 32> VPShuf; - SmallVector<uint32_t, 32> VPAlign[3]; - SmallVector<uint32_t, 32> VPAlign2; - SmallVector<uint32_t, 32> VPAlign3; + SmallVector<int, 3> GroupSize; + SmallVector<int, 32> VPShuf; + SmallVector<int, 32> VPAlign[3]; + SmallVector<int, 32> VPAlign2; + SmallVector<int, 32> VPAlign3; Value *Vec[3], *TempVector[3]; MVT VT = MVT::getVectorVT(MVT::i8, VecElems); @@ -682,7 +688,7 @@ void X86InterleavedAccessGroup::interleave8bitStride3( unsigned NumOfElm = VT.getVectorNumElements(); group2Shuffle(VT, GroupSize, VPShuf); - reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm,3, Builder); + reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm, 3, Builder); } void X86InterleavedAccessGroup::transpose_4x4( @@ -692,25 +698,25 @@ void X86InterleavedAccessGroup::transpose_4x4( TransposedMatrix.resize(4); // dst = src1[0,1],src2[0,1] - uint32_t IntMask1[] = {0, 1, 4, 5}; - ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4); + static constexpr int IntMask1[] = {0, 1, 4, 5}; + ArrayRef<int> Mask = makeArrayRef(IntMask1, 4); Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[2,3],src2[2,3] - uint32_t IntMask2[] = {2, 3, 6, 7}; + static constexpr int IntMask2[] = {2, 3, 6, 7}; Mask = makeArrayRef(IntMask2, 4); Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask); Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask); // dst = src1[0],src2[0],src1[2],src2[2] - uint32_t IntMask3[] = {0, 4, 2, 6}; + static constexpr int IntMask3[] = {0, 4, 2, 6}; Mask = makeArrayRef(IntMask3, 4); TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); // dst = src1[1],src2[1],src1[3],src2[3] - uint32_t IntMask4[] = {1, 5, 3, 7}; + static constexpr int IntMask4[] = {1, 5, 3, 7}; Mask = makeArrayRef(IntMask4, 4); TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask); TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask); @@ -721,14 +727,14 @@ void X86InterleavedAccessGroup::transpose_4x4( bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { SmallVector<Instruction *, 4> DecomposedVectors; SmallVector<Value *, 4> TransposedVectors; - VectorType *ShuffleTy = Shuffles[0]->getType(); + auto *ShuffleTy = cast<FixedVectorType>(Shuffles[0]->getType()); if (isa<LoadInst>(Inst)) { // Try to generate target-sized register(/instruction). decompose(Inst, Factor, ShuffleTy, DecomposedVectors); - Type *ShuffleEltTy = Inst->getType(); - unsigned NumSubVecElems = ShuffleEltTy->getVectorNumElements() / Factor; + auto *ShuffleEltTy = cast<FixedVectorType>(Inst->getType()); + unsigned NumSubVecElems = ShuffleEltTy->getNumElements() / Factor; // Perform matrix-transposition in order to compute interleaved // results by generating some sort of (optimized) target-specific // instructions. @@ -756,13 +762,14 @@ bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { return true; } - Type *ShuffleEltTy = ShuffleTy->getVectorElementType(); - unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor; + Type *ShuffleEltTy = ShuffleTy->getElementType(); + unsigned NumSubVecElems = ShuffleTy->getNumElements() / Factor; // Lower the interleaved stores: // 1. Decompose the interleaved wide shuffle into individual shuffle // vectors. - decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems), + decompose(Shuffles[0], Factor, + FixedVectorType::get(ShuffleEltTy, NumSubVecElems), DecomposedVectors); // 2. Transpose the interleaved-vectors into vectors of contiguous @@ -793,8 +800,7 @@ bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() { // 4. Generate a store instruction for wide-vec. StoreInst *SI = cast<StoreInst>(Inst); - Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), - SI->getAlignment()); + Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(), SI->getAlign()); return true; } @@ -826,7 +832,8 @@ bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI, assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor"); - assert(SVI->getType()->getVectorNumElements() % Factor == 0 && + assert(cast<FixedVectorType>(SVI->getType())->getNumElements() % Factor == + 0 && "Invalid interleaved store"); // Holds the indices of SVI that correspond to the starting index of each |