aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/IPO/FunctionSpecialization.cpp')
-rw-r--r--llvm/lib/Transforms/IPO/FunctionSpecialization.cpp707
1 files changed, 484 insertions, 223 deletions
diff --git a/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp b/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
index 4a7efb28e853..3d6c501e4596 100644
--- a/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
+++ b/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
@@ -48,11 +48,13 @@
#include "llvm/Transforms/IPO/FunctionSpecialization.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InlineCost.h"
-#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
+#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
@@ -64,42 +66,324 @@ using namespace llvm;
#define DEBUG_TYPE "function-specialization"
-STATISTIC(NumFuncSpecialized, "Number of functions specialized");
+STATISTIC(NumSpecsCreated, "Number of specializations created");
-static cl::opt<bool> ForceFunctionSpecialization(
- "force-function-specialization", cl::init(false), cl::Hidden,
- cl::desc("Force function specialization for every call site with a "
- "constant argument"));
+static cl::opt<bool> ForceSpecialization(
+ "force-specialization", cl::init(false), cl::Hidden, cl::desc(
+ "Force function specialization for every call site with a constant "
+ "argument"));
-static cl::opt<unsigned> MaxClonesThreshold(
- "func-specialization-max-clones", cl::Hidden,
- cl::desc("The maximum number of clones allowed for a single function "
- "specialization"),
- cl::init(3));
+static cl::opt<unsigned> MaxClones(
+ "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc(
+ "The maximum number of clones allowed for a single function "
+ "specialization"));
-static cl::opt<unsigned> SmallFunctionThreshold(
- "func-specialization-size-threshold", cl::Hidden,
- cl::desc("Don't specialize functions that have less than this theshold "
- "number of instructions"),
- cl::init(100));
+static cl::opt<unsigned> MaxIncomingPhiValues(
+ "funcspec-max-incoming-phi-values", cl::init(4), cl::Hidden, cl::desc(
+ "The maximum number of incoming values a PHI node can have to be "
+ "considered during the specialization bonus estimation"));
-static cl::opt<unsigned>
- AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
- cl::desc("Average loop iteration count cost"),
- cl::init(10));
+static cl::opt<unsigned> MinFunctionSize(
+ "funcspec-min-function-size", cl::init(100), cl::Hidden, cl::desc(
+ "Don't specialize functions that have less than this number of "
+ "instructions"));
-static cl::opt<bool> SpecializeOnAddresses(
- "func-specialization-on-address", cl::init(false), cl::Hidden,
- cl::desc("Enable function specialization on the address of global values"));
+static cl::opt<bool> SpecializeOnAddress(
+ "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc(
+ "Enable function specialization on the address of global values"));
// Disabled by default as it can significantly increase compilation times.
//
// https://llvm-compile-time-tracker.com
// https://github.com/nikic/llvm-compile-time-tracker
-static cl::opt<bool> EnableSpecializationForLiteralConstant(
- "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
- cl::desc("Enable specialization of functions that take a literal constant "
- "as an argument."));
+static cl::opt<bool> SpecializeLiteralConstant(
+ "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc(
+ "Enable specialization of functions that take a literal constant as an "
+ "argument"));
+
+// Estimates the instruction cost of all the basic blocks in \p WorkList.
+// The successors of such blocks are added to the list as long as they are
+// executable and they have a unique predecessor. \p WorkList represents
+// the basic blocks of a specialization which become dead once we replace
+// instructions that are known to be constants. The aim here is to estimate
+// the combination of size and latency savings in comparison to the non
+// specialized version of the function.
+static Cost estimateBasicBlocks(SmallVectorImpl<BasicBlock *> &WorkList,
+ DenseSet<BasicBlock *> &DeadBlocks,
+ ConstMap &KnownConstants, SCCPSolver &Solver,
+ BlockFrequencyInfo &BFI,
+ TargetTransformInfo &TTI) {
+ Cost Bonus = 0;
+
+ // Accumulate the instruction cost of each basic block weighted by frequency.
+ while (!WorkList.empty()) {
+ BasicBlock *BB = WorkList.pop_back_val();
+
+ uint64_t Weight = BFI.getBlockFreq(BB).getFrequency() /
+ BFI.getEntryFreq();
+ if (!Weight)
+ continue;
+
+ // These blocks are considered dead as far as the InstCostVisitor is
+ // concerned. They haven't been proven dead yet by the Solver, but
+ // may become if we propagate the constant specialization arguments.
+ if (!DeadBlocks.insert(BB).second)
+ continue;
+
+ for (Instruction &I : *BB) {
+ // Disregard SSA copies.
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::ssa_copy)
+ continue;
+ // If it's a known constant we have already accounted for it.
+ if (KnownConstants.contains(&I))
+ continue;
+
+ Bonus += Weight *
+ TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
+
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Bonus " << Bonus
+ << " after user " << I << "\n");
+ }
+
+ // Keep adding dead successors to the list as long as they are
+ // executable and they have a unique predecessor.
+ for (BasicBlock *SuccBB : successors(BB))
+ if (Solver.isBlockExecutable(SuccBB) &&
+ SuccBB->getUniquePredecessor() == BB)
+ WorkList.push_back(SuccBB);
+ }
+ return Bonus;
+}
+
+static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) {
+ if (auto *C = dyn_cast<Constant>(V))
+ return C;
+ if (auto It = KnownConstants.find(V); It != KnownConstants.end())
+ return It->second;
+ return nullptr;
+}
+
+Cost InstCostVisitor::getBonusFromPendingPHIs() {
+ Cost Bonus = 0;
+ while (!PendingPHIs.empty()) {
+ Instruction *Phi = PendingPHIs.pop_back_val();
+ Bonus += getUserBonus(Phi);
+ }
+ return Bonus;
+}
+
+Cost InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) {
+ // Cache the iterator before visiting.
+ LastVisited = Use ? KnownConstants.insert({Use, C}).first
+ : KnownConstants.end();
+
+ if (auto *I = dyn_cast<SwitchInst>(User))
+ return estimateSwitchInst(*I);
+
+ if (auto *I = dyn_cast<BranchInst>(User))
+ return estimateBranchInst(*I);
+
+ C = visit(*User);
+ if (!C)
+ return 0;
+
+ KnownConstants.insert({User, C});
+
+ uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() /
+ BFI.getEntryFreq();
+ if (!Weight)
+ return 0;
+
+ Cost Bonus = Weight *
+ TTI.getInstructionCost(User, TargetTransformInfo::TCK_SizeAndLatency);
+
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Bonus " << Bonus
+ << " for user " << *User << "\n");
+
+ for (auto *U : User->users())
+ if (auto *UI = dyn_cast<Instruction>(U))
+ if (UI != User && Solver.isBlockExecutable(UI->getParent()))
+ Bonus += getUserBonus(UI, User, C);
+
+ return Bonus;
+}
+
+Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ if (I.getCondition() != LastVisited->first)
+ return 0;
+
+ auto *C = dyn_cast<ConstantInt>(LastVisited->second);
+ if (!C)
+ return 0;
+
+ BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor();
+ // Initialize the worklist with the dead basic blocks. These are the
+ // destination labels which are different from the one corresponding
+ // to \p C. They should be executable and have a unique predecessor.
+ SmallVector<BasicBlock *> WorkList;
+ for (const auto &Case : I.cases()) {
+ BasicBlock *BB = Case.getCaseSuccessor();
+ if (BB == Succ || !Solver.isBlockExecutable(BB) ||
+ BB->getUniquePredecessor() != I.getParent())
+ continue;
+ WorkList.push_back(BB);
+ }
+
+ return estimateBasicBlocks(WorkList, DeadBlocks, KnownConstants, Solver, BFI,
+ TTI);
+}
+
+Cost InstCostVisitor::estimateBranchInst(BranchInst &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ if (I.getCondition() != LastVisited->first)
+ return 0;
+
+ BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue());
+ // Initialize the worklist with the dead successor as long as
+ // it is executable and has a unique predecessor.
+ SmallVector<BasicBlock *> WorkList;
+ if (Solver.isBlockExecutable(Succ) &&
+ Succ->getUniquePredecessor() == I.getParent())
+ WorkList.push_back(Succ);
+
+ return estimateBasicBlocks(WorkList, DeadBlocks, KnownConstants, Solver, BFI,
+ TTI);
+}
+
+Constant *InstCostVisitor::visitPHINode(PHINode &I) {
+ if (I.getNumIncomingValues() > MaxIncomingPhiValues)
+ return nullptr;
+
+ bool Inserted = VisitedPHIs.insert(&I).second;
+ Constant *Const = nullptr;
+
+ for (unsigned Idx = 0, E = I.getNumIncomingValues(); Idx != E; ++Idx) {
+ Value *V = I.getIncomingValue(Idx);
+ if (auto *Inst = dyn_cast<Instruction>(V))
+ if (Inst == &I || DeadBlocks.contains(I.getIncomingBlock(Idx)))
+ continue;
+ Constant *C = findConstantFor(V, KnownConstants);
+ if (!C) {
+ if (Inserted)
+ PendingPHIs.push_back(&I);
+ return nullptr;
+ }
+ if (!Const)
+ Const = C;
+ else if (C != Const)
+ return nullptr;
+ }
+ return Const;
+}
+
+Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second))
+ return LastVisited->second;
+ return nullptr;
+}
+
+Constant *InstCostVisitor::visitCallBase(CallBase &I) {
+ Function *F = I.getCalledFunction();
+ if (!F || !canConstantFoldCallTo(&I, F))
+ return nullptr;
+
+ SmallVector<Constant *, 8> Operands;
+ Operands.reserve(I.getNumOperands());
+
+ for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) {
+ Value *V = I.getOperand(Idx);
+ Constant *C = findConstantFor(V, KnownConstants);
+ if (!C)
+ return nullptr;
+ Operands.push_back(C);
+ }
+
+ auto Ops = ArrayRef(Operands.begin(), Operands.end());
+ return ConstantFoldCall(&I, F, Ops);
+}
+
+Constant *InstCostVisitor::visitLoadInst(LoadInst &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ if (isa<ConstantPointerNull>(LastVisited->second))
+ return nullptr;
+ return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL);
+}
+
+Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
+ SmallVector<Constant *, 8> Operands;
+ Operands.reserve(I.getNumOperands());
+
+ for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) {
+ Value *V = I.getOperand(Idx);
+ Constant *C = findConstantFor(V, KnownConstants);
+ if (!C)
+ return nullptr;
+ Operands.push_back(C);
+ }
+
+ auto Ops = ArrayRef(Operands.begin(), Operands.end());
+ return ConstantFoldInstOperands(&I, Ops, DL);
+}
+
+Constant *InstCostVisitor::visitSelectInst(SelectInst &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ if (I.getCondition() != LastVisited->first)
+ return nullptr;
+
+ Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue()
+ : I.getTrueValue();
+ Constant *C = findConstantFor(V, KnownConstants);
+ return C;
+}
+
+Constant *InstCostVisitor::visitCastInst(CastInst &I) {
+ return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second,
+ I.getType(), DL);
+}
+
+Constant *InstCostVisitor::visitCmpInst(CmpInst &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ bool Swap = I.getOperand(1) == LastVisited->first;
+ Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
+ Constant *Other = findConstantFor(V, KnownConstants);
+ if (!Other)
+ return nullptr;
+
+ Constant *Const = LastVisited->second;
+ return Swap ?
+ ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL)
+ : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL);
+}
+
+Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL);
+}
+
+Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) {
+ assert(LastVisited != KnownConstants.end() && "Invalid iterator!");
+
+ bool Swap = I.getOperand(1) == LastVisited->first;
+ Value *V = Swap ? I.getOperand(0) : I.getOperand(1);
+ Constant *Other = findConstantFor(V, KnownConstants);
+ if (!Other)
+ return nullptr;
+
+ Constant *Const = LastVisited->second;
+ return dyn_cast_or_null<Constant>(Swap ?
+ simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL))
+ : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL)));
+}
Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
CallInst *Call) {
@@ -125,6 +409,10 @@ Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca,
// Bail if there is any other unknown usage.
return nullptr;
}
+
+ if (!StoreValue)
+ return nullptr;
+
return getCandidateConstant(StoreValue);
}
@@ -165,49 +453,37 @@ Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call,
// ret void
// }
//
-void FunctionSpecializer::promoteConstantStackValues() {
- // Iterate over the argument tracked functions see if there
- // are any new constant values for the call instruction via
- // stack variables.
- for (Function &F : M) {
- if (!Solver.isArgumentTrackedFunction(&F))
+// See if there are any new constant values for the callers of \p F via
+// stack variables and promote them to global variables.
+void FunctionSpecializer::promoteConstantStackValues(Function *F) {
+ for (User *U : F->users()) {
+
+ auto *Call = dyn_cast<CallInst>(U);
+ if (!Call)
continue;
- for (auto *User : F.users()) {
+ if (!Solver.isBlockExecutable(Call->getParent()))
+ continue;
- auto *Call = dyn_cast<CallInst>(User);
- if (!Call)
- continue;
+ for (const Use &U : Call->args()) {
+ unsigned Idx = Call->getArgOperandNo(&U);
+ Value *ArgOp = Call->getArgOperand(Idx);
+ Type *ArgOpType = ArgOp->getType();
- if (!Solver.isBlockExecutable(Call->getParent()))
+ if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
continue;
- bool Changed = false;
- for (const Use &U : Call->args()) {
- unsigned Idx = Call->getArgOperandNo(&U);
- Value *ArgOp = Call->getArgOperand(Idx);
- Type *ArgOpType = ArgOp->getType();
-
- if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
- continue;
-
- auto *ConstVal = getConstantStackValue(Call, ArgOp);
- if (!ConstVal)
- continue;
-
- Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
- GlobalValue::InternalLinkage, ConstVal,
- "funcspec.arg");
- if (ArgOpType != ConstVal->getType())
- GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
+ auto *ConstVal = getConstantStackValue(Call, ArgOp);
+ if (!ConstVal)
+ continue;
- Call->setArgOperand(Idx, GV);
- Changed = true;
- }
+ Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
+ GlobalValue::InternalLinkage, ConstVal,
+ "funcspec.arg");
+ if (ArgOpType != ConstVal->getType())
+ GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
- // Add the changed CallInst to Solver Worklist
- if (Changed)
- Solver.visitCall(*Call);
+ Call->setArgOperand(Idx, GV);
}
}
}
@@ -230,7 +506,7 @@ static void removeSSACopy(Function &F) {
/// Remove any ssa_copy intrinsics that may have been introduced.
void FunctionSpecializer::cleanUpSSA() {
- for (Function *F : SpecializedFuncs)
+ for (Function *F : Specializations)
removeSSACopy(*F);
}
@@ -249,6 +525,16 @@ template <> struct llvm::DenseMapInfo<SpecSig> {
}
};
+FunctionSpecializer::~FunctionSpecializer() {
+ LLVM_DEBUG(
+ if (NumSpecsCreated > 0)
+ dbgs() << "FnSpecialization: Created " << NumSpecsCreated
+ << " specializations in module " << M.getName() << "\n");
+ // Eliminate dead code.
+ removeDeadFunctions();
+ cleanUpSSA();
+}
+
/// Attempt to specialize functions in the module to enable constant
/// propagation across function boundaries.
///
@@ -262,17 +548,37 @@ bool FunctionSpecializer::run() {
if (!isCandidateFunction(&F))
continue;
- auto Cost = getSpecializationCost(&F);
- if (!Cost.isValid()) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialization cost for "
- << F.getName() << "\n");
- continue;
+ auto [It, Inserted] = FunctionMetrics.try_emplace(&F);
+ CodeMetrics &Metrics = It->second;
+ //Analyze the function.
+ if (Inserted) {
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues);
+ for (BasicBlock &BB : F)
+ Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues);
}
+ // If the code metrics reveal that we shouldn't duplicate the function,
+ // or if the code size implies that this function is easy to get inlined,
+ // then we shouldn't specialize it.
+ if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
+ (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) &&
+ Metrics.NumInsts < MinFunctionSize))
+ continue;
+
+ // TODO: For now only consider recursive functions when running multiple
+ // times. This should change if specialization on literal constants gets
+ // enabled.
+ if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant)
+ continue;
+
LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
- << F.getName() << " is " << Cost << "\n");
+ << F.getName() << " is " << Metrics.NumInsts << "\n");
+
+ if (Inserted && Metrics.isRecursive)
+ promoteConstantStackValues(&F);
- if (!findSpecializations(&F, Cost, AllSpecs, SM)) {
+ if (!findSpecializations(&F, Metrics.NumInsts, AllSpecs, SM)) {
LLVM_DEBUG(
dbgs() << "FnSpecialization: No possible specializations found for "
<< F.getName() << "\n");
@@ -292,11 +598,11 @@ bool FunctionSpecializer::run() {
// Choose the most profitable specialisations, which fit in the module
// specialization budget, which is derived from maximum number of
// specializations per specialization candidate function.
- auto CompareGain = [&AllSpecs](unsigned I, unsigned J) {
- return AllSpecs[I].Gain > AllSpecs[J].Gain;
+ auto CompareScore = [&AllSpecs](unsigned I, unsigned J) {
+ return AllSpecs[I].Score > AllSpecs[J].Score;
};
const unsigned NSpecs =
- std::min(NumCandidates * MaxClonesThreshold, unsigned(AllSpecs.size()));
+ std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size()));
SmallVector<unsigned> BestSpecs(NSpecs + 1);
std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0);
if (AllSpecs.size() > NSpecs) {
@@ -305,11 +611,11 @@ bool FunctionSpecializer::run() {
<< "FnSpecialization: Specializing the "
<< NSpecs
<< " most profitable candidates.\n");
- std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareGain);
+ std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore);
for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) {
BestSpecs[NSpecs] = I;
- std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
- std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareGain);
+ std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
+ std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore);
}
}
@@ -317,7 +623,7 @@ bool FunctionSpecializer::run() {
for (unsigned I = 0; I < NSpecs; ++I) {
const Spec &S = AllSpecs[BestSpecs[I]];
dbgs() << "FnSpecialization: Function " << S.F->getName()
- << " , gain " << S.Gain << "\n";
+ << " , score " << S.Score << "\n";
for (const ArgInfo &Arg : S.Sig.Args)
dbgs() << "FnSpecialization: FormalArg = "
<< Arg.Formal->getNameOrAsOperand()
@@ -353,12 +659,37 @@ bool FunctionSpecializer::run() {
updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End);
}
- promoteConstantStackValues();
- LLVM_DEBUG(if (NbFunctionsSpecialized) dbgs()
- << "FnSpecialization: Specialized " << NbFunctionsSpecialized
- << " functions in module " << M.getName() << "\n");
+ for (Function *F : Clones) {
+ if (F->getReturnType()->isVoidTy())
+ continue;
+ if (F->getReturnType()->isStructTy()) {
+ auto *STy = cast<StructType>(F->getReturnType());
+ if (!Solver.isStructLatticeConstant(F, STy))
+ continue;
+ } else {
+ auto It = Solver.getTrackedRetVals().find(F);
+ assert(It != Solver.getTrackedRetVals().end() &&
+ "Return value ought to be tracked");
+ if (SCCPSolver::isOverdefined(It->second))
+ continue;
+ }
+ for (User *U : F->users()) {
+ if (auto *CS = dyn_cast<CallBase>(U)) {
+ //The user instruction does not call our function.
+ if (CS->getCalledFunction() != F)
+ continue;
+ Solver.resetLatticeValueFor(CS);
+ }
+ }
+ }
+
+ // Rerun the solver to notify the users of the modified callsites.
+ Solver.solveWhileResolvedUndefs();
+
+ for (Function *F : OriginalFuncs)
+ if (FunctionMetrics[F].isRecursive)
+ promoteConstantStackValues(F);
- NumFuncSpecialized += NbFunctionsSpecialized;
return true;
}
@@ -373,24 +704,6 @@ void FunctionSpecializer::removeDeadFunctions() {
FullySpecialized.clear();
}
-// Compute the code metrics for function \p F.
-CodeMetrics &FunctionSpecializer::analyzeFunction(Function *F) {
- auto I = FunctionMetrics.insert({F, CodeMetrics()});
- CodeMetrics &Metrics = I.first->second;
- if (I.second) {
- // The code metrics were not cached.
- SmallPtrSet<const Value *, 32> EphValues;
- CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
- for (BasicBlock &BB : *F)
- Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
-
- LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
- << F->getName() << " is " << Metrics.NumInsts
- << " instructions\n");
- }
- return Metrics;
-}
-
/// Clone the function \p F and remove the ssa_copy intrinsics added by
/// the SCCPSolver in the cloned version.
static Function *cloneCandidateFunction(Function *F) {
@@ -400,13 +713,13 @@ static Function *cloneCandidateFunction(Function *F) {
return Clone;
}
-bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
+bool FunctionSpecializer::findSpecializations(Function *F, Cost SpecCost,
SmallVectorImpl<Spec> &AllSpecs,
SpecMap &SM) {
// A mapping from a specialisation signature to the index of the respective
// entry in the all specialisation array. Used to ensure uniqueness of
// specialisations.
- DenseMap<SpecSig, unsigned> UM;
+ DenseMap<SpecSig, unsigned> UniqueSpecs;
// Get a list of interesting arguments.
SmallVector<Argument *> Args;
@@ -417,7 +730,6 @@ bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
if (Args.empty())
return false;
- bool Found = false;
for (User *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
@@ -454,7 +766,7 @@ bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
continue;
// Check if we have encountered the same specialisation already.
- if (auto It = UM.find(S); It != UM.end()) {
+ if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) {
// Existing specialisation. Add the call to the list to rewrite, unless
// it's a recursive call. A specialisation, generated because of a
// recursive call may end up as not the best specialisation for all
@@ -467,42 +779,42 @@ bool FunctionSpecializer::findSpecializations(Function *F, InstructionCost Cost,
AllSpecs[Index].CallSites.push_back(&CS);
} else {
// Calculate the specialisation gain.
- InstructionCost Gain = 0 - Cost;
+ Cost Score = 0;
+ InstCostVisitor Visitor = getInstCostVisitorFor(F);
for (ArgInfo &A : S.Args)
- Gain +=
- getSpecializationBonus(A.Formal, A.Actual, Solver.getLoopInfo(*F));
+ Score += getSpecializationBonus(A.Formal, A.Actual, Visitor);
+ Score += Visitor.getBonusFromPendingPHIs();
+
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization score = "
+ << Score << "\n");
// Discard unprofitable specialisations.
- if (!ForceFunctionSpecialization && Gain <= 0)
+ if (!ForceSpecialization && Score <= SpecCost)
continue;
// Create a new specialisation entry.
- auto &Spec = AllSpecs.emplace_back(F, S, Gain);
+ auto &Spec = AllSpecs.emplace_back(F, S, Score);
if (CS.getFunction() != F)
Spec.CallSites.push_back(&CS);
const unsigned Index = AllSpecs.size() - 1;
- UM[S] = Index;
+ UniqueSpecs[S] = Index;
if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted)
It->second.second = Index + 1;
- Found = true;
}
}
- return Found;
+ return !UniqueSpecs.empty();
}
bool FunctionSpecializer::isCandidateFunction(Function *F) {
- if (F->isDeclaration())
+ if (F->isDeclaration() || F->arg_empty())
return false;
if (F->hasFnAttribute(Attribute::NoDuplicate))
return false;
- if (!Solver.isArgumentTrackedFunction(F))
- return false;
-
// Do not specialize the cloned function again.
- if (SpecializedFuncs.contains(F))
+ if (Specializations.contains(F))
return false;
// If we're optimizing the function for size, we shouldn't specialize it.
@@ -524,86 +836,50 @@ bool FunctionSpecializer::isCandidateFunction(Function *F) {
return true;
}
-Function *FunctionSpecializer::createSpecialization(Function *F, const SpecSig &S) {
+Function *FunctionSpecializer::createSpecialization(Function *F,
+ const SpecSig &S) {
Function *Clone = cloneCandidateFunction(F);
+ // The original function does not neccessarily have internal linkage, but the
+ // clone must.
+ Clone->setLinkage(GlobalValue::InternalLinkage);
+
// Initialize the lattice state of the arguments of the function clone,
// marking the argument on which we specialized the function constant
// with the given value.
- Solver.markArgInFuncSpecialization(Clone, S.Args);
-
- Solver.addArgumentTrackedFunction(Clone);
+ Solver.setLatticeValueForSpecializationArguments(Clone, S.Args);
Solver.markBlockExecutable(&Clone->front());
+ Solver.addArgumentTrackedFunction(Clone);
+ Solver.addTrackedFunction(Clone);
// Mark all the specialized functions
- SpecializedFuncs.insert(Clone);
- NbFunctionsSpecialized++;
+ Specializations.insert(Clone);
+ ++NumSpecsCreated;
return Clone;
}
-/// Compute and return the cost of specializing function \p F.
-InstructionCost FunctionSpecializer::getSpecializationCost(Function *F) {
- CodeMetrics &Metrics = analyzeFunction(F);
- // If the code metrics reveal that we shouldn't duplicate the function, we
- // shouldn't specialize it. Set the specialization cost to Invalid.
- // Or if the lines of codes implies that this function is easy to get
- // inlined so that we shouldn't specialize it.
- if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
- (!ForceFunctionSpecialization &&
- !F->hasFnAttribute(Attribute::NoInline) &&
- Metrics.NumInsts < SmallFunctionThreshold))
- return InstructionCost::getInvalid();
-
- // Otherwise, set the specialization cost to be the cost of all the
- // instructions in the function.
- return Metrics.NumInsts * InlineConstants::getInstrCost();
-}
-
-static InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
- const LoopInfo &LI) {
- auto *I = dyn_cast_or_null<Instruction>(U);
- // If not an instruction we do not know how to evaluate.
- // Keep minimum possible cost for now so that it doesnt affect
- // specialization.
- if (!I)
- return std::numeric_limits<unsigned>::min();
-
- InstructionCost Cost =
- TTI.getInstructionCost(U, TargetTransformInfo::TCK_SizeAndLatency);
-
- // Increase the cost if it is inside the loop.
- unsigned LoopDepth = LI.getLoopDepth(I->getParent());
- Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
-
- // Traverse recursively if there are more uses.
- // TODO: Any other instructions to be added here?
- if (I->mayReadFromMemory() || I->isCast())
- for (auto *User : I->users())
- Cost += getUserBonus(User, TTI, LI);
-
- return Cost;
-}
-
/// Compute a bonus for replacing argument \p A with constant \p C.
-InstructionCost
-FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
- const LoopInfo &LI) {
- Function *F = A->getParent();
- auto &TTI = (GetTTI)(*F);
+Cost FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C,
+ InstCostVisitor &Visitor) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
<< C->getNameOrAsOperand() << "\n");
- InstructionCost TotalCost = 0;
- for (auto *U : A->users()) {
- TotalCost += getUserBonus(U, TTI, LI);
- LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
- TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
- }
+ Cost TotalCost = 0;
+ for (auto *U : A->users())
+ if (auto *UI = dyn_cast<Instruction>(U))
+ if (Solver.isBlockExecutable(UI->getParent()))
+ TotalCost += Visitor.getUserBonus(UI, A, C);
+
+ LLVM_DEBUG(dbgs() << "FnSpecialization: Accumulated user bonus "
+ << TotalCost << " for argument " << *A << "\n");
// The below heuristic is only concerned with exposing inlining
// opportunities via indirect call promotion. If the argument is not a
// (potentially casted) function pointer, give up.
+ //
+ // TODO: Perhaps we should consider checking such inlining opportunities
+ // while traversing the users of the specialization arguments ?
Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
if (!CalledFunction)
return TotalCost;
@@ -661,16 +937,9 @@ bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
if (A->user_empty())
return false;
- // For now, don't attempt to specialize functions based on the values of
- // composite types.
- Type *ArgTy = A->getType();
- if (!ArgTy->isSingleValueType())
- return false;
-
- // Specialization of integer and floating point types needs to be explicitly
- // enabled.
- if (!EnableSpecializationForLiteralConstant &&
- (ArgTy->isIntegerTy() || ArgTy->isFloatingPointTy()))
+ Type *Ty = A->getType();
+ if (!Ty->isPointerTy() && (!SpecializeLiteralConstant ||
+ (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy())))
return false;
// SCCP solver does not record an argument that will be constructed on
@@ -678,54 +947,46 @@ bool FunctionSpecializer::isArgumentInteresting(Argument *A) {
if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
return false;
+ // For non-argument-tracked functions every argument is overdefined.
+ if (!Solver.isArgumentTrackedFunction(A->getParent()))
+ return true;
+
// Check the lattice value and decide if we should attemt to specialize,
// based on this argument. No point in specialization, if the lattice value
// is already a constant.
- const ValueLatticeElement &LV = Solver.getLatticeValueFor(A);
- if (LV.isUnknownOrUndef() || LV.isConstant() ||
- (LV.isConstantRange() && LV.getConstantRange().isSingleElement())) {
- LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, parameter "
- << A->getNameOrAsOperand() << " is already constant\n");
- return false;
- }
-
- LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting parameter "
- << A->getNameOrAsOperand() << "\n");
-
- return true;
+ bool IsOverdefined = Ty->isStructTy()
+ ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined)
+ : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A));
+
+ LLVM_DEBUG(
+ if (IsOverdefined)
+ dbgs() << "FnSpecialization: Found interesting parameter "
+ << A->getNameOrAsOperand() << "\n";
+ else
+ dbgs() << "FnSpecialization: Nothing to do, parameter "
+ << A->getNameOrAsOperand() << " is already constant\n";
+ );
+ return IsOverdefined;
}
-/// Check if the valuy \p V (an actual argument) is a constant or can only
+/// Check if the value \p V (an actual argument) is a constant or can only
/// have a constant value. Return that constant.
Constant *FunctionSpecializer::getCandidateConstant(Value *V) {
if (isa<PoisonValue>(V))
return nullptr;
- // TrackValueOfGlobalVariable only tracks scalar global variables.
- if (auto *GV = dyn_cast<GlobalVariable>(V)) {
- // Check if we want to specialize on the address of non-constant
- // global values.
- if (!GV->isConstant() && !SpecializeOnAddresses)
- return nullptr;
-
- if (!GV->getValueType()->isSingleValueType())
- return nullptr;
- }
-
// Select for possible specialisation values that are constants or
// are deduced to be constants or constant ranges with a single element.
Constant *C = dyn_cast<Constant>(V);
- if (!C) {
- const ValueLatticeElement &LV = Solver.getLatticeValueFor(V);
- if (LV.isConstant())
- C = LV.getConstant();
- else if (LV.isConstantRange() && LV.getConstantRange().isSingleElement()) {
- assert(V->getType()->isIntegerTy() && "Non-integral constant range");
- C = Constant::getIntegerValue(V->getType(),
- *LV.getConstantRange().getSingleElement());
- } else
+ if (!C)
+ C = Solver.getConstantOrNull(V);
+
+ // Don't specialize on (anything derived from) the address of a non-constant
+ // global variable, unless explicitly enabled.
+ if (C && C->getType()->isPointerTy() && !C->isNullValue())
+ if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
+ GV && !(GV->isConstant() || SpecializeOnAddress))
return nullptr;
- }
return C;
}
@@ -747,7 +1008,7 @@ void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
// Find the best matching specialisation.
const Spec *BestSpec = nullptr;
for (const Spec &S : make_range(Begin, End)) {
- if (!S.Clone || (BestSpec && S.Gain <= BestSpec->Gain))
+ if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score))
continue;
if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) {
@@ -772,7 +1033,7 @@ void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin,
// If the function has been completely specialized, the original function
// is no longer needed. Mark it unreachable.
- if (NCallsLeft == 0) {
+ if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) {
Solver.markFunctionUnreachable(F);
FullySpecialized.insert(F);
}