diff options
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp')
| -rw-r--r-- | llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp | 2666 | 
1 files changed, 2666 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp new file mode 100644 index 000000000000..9fc871e49b30 --- /dev/null +++ b/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp @@ -0,0 +1,2666 @@ +//===- InstCombineSelect.cpp ----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitSelect function. +// +//===----------------------------------------------------------------------===// + +#include "InstCombineInternal.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CmpInstAnalysis.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Transforms/InstCombine/InstCombineWorklist.h" +#include <cassert> +#include <utility> + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +static Value *createMinMax(InstCombiner::BuilderTy &Builder, +                           SelectPatternFlavor SPF, Value *A, Value *B) { +  CmpInst::Predicate Pred = getMinMaxPred(SPF); +  assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); +  return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); +} + +/// Replace a select operand based on an equality comparison with the identity +/// constant of a binop. +static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, +                                            const TargetLibraryInfo &TLI) { +  // The select condition must be an equality compare with a constant operand. +  Value *X; +  Constant *C; +  CmpInst::Predicate Pred; +  if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) +    return nullptr; + +  bool IsEq; +  if (ICmpInst::isEquality(Pred)) +    IsEq = Pred == ICmpInst::ICMP_EQ; +  else if (Pred == FCmpInst::FCMP_OEQ) +    IsEq = true; +  else if (Pred == FCmpInst::FCMP_UNE) +    IsEq = false; +  else +    return nullptr; + +  // A select operand must be a binop. +  BinaryOperator *BO; +  if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) +    return nullptr; + +  // The compare constant must be the identity constant for that binop. +  // If this a floating-point compare with 0.0, any zero constant will do. +  Type *Ty = BO->getType(); +  Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); +  if (IdC != C) { +    if (!IdC || !CmpInst::isFPPredicate(Pred)) +      return nullptr; +    if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) +      return nullptr; +  } + +  // Last, match the compare variable operand with a binop operand. +  Value *Y; +  if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) +    return nullptr; +  if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) +    return nullptr; + +  // +0.0 compares equal to -0.0, and so it does not behave as required for this +  // transform. Bail out if we can not exclude that possibility. +  if (isa<FPMathOperator>(BO)) +    if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) +      return nullptr; + +  // BO = binop Y, X +  // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } +  // => +  // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y } +  Sel.setOperand(IsEq ? 1 : 2, Y); +  return &Sel; +} + +/// This folds: +///  select (icmp eq (and X, C1)), TC, FC +///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2. +/// To something like: +///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC +/// Or: +///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC +/// With some variations depending if FC is larger than TC, or the shift +/// isn't needed, or the bit widths don't match. +static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, +                                InstCombiner::BuilderTy &Builder) { +  const APInt *SelTC, *SelFC; +  if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || +      !match(Sel.getFalseValue(), m_APInt(SelFC))) +    return nullptr; + +  // If this is a vector select, we need a vector compare. +  Type *SelType = Sel.getType(); +  if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) +    return nullptr; + +  Value *V; +  APInt AndMask; +  bool CreateAnd = false; +  ICmpInst::Predicate Pred = Cmp->getPredicate(); +  if (ICmpInst::isEquality(Pred)) { +    if (!match(Cmp->getOperand(1), m_Zero())) +      return nullptr; + +    V = Cmp->getOperand(0); +    const APInt *AndRHS; +    if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) +      return nullptr; + +    AndMask = *AndRHS; +  } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), +                                  Pred, V, AndMask)) { +    assert(ICmpInst::isEquality(Pred) && "Not equality test?"); +    if (!AndMask.isPowerOf2()) +      return nullptr; + +    CreateAnd = true; +  } else { +    return nullptr; +  } + +  // In general, when both constants are non-zero, we would need an offset to +  // replace the select. This would require more instructions than we started +  // with. But there's one special-case that we handle here because it can +  // simplify/reduce the instructions. +  APInt TC = *SelTC; +  APInt FC = *SelFC; +  if (!TC.isNullValue() && !FC.isNullValue()) { +    // If the select constants differ by exactly one bit and that's the same +    // bit that is masked and checked by the select condition, the select can +    // be replaced by bitwise logic to set/clear one bit of the constant result. +    if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) +      return nullptr; +    if (CreateAnd) { +      // If we have to create an 'and', then we must kill the cmp to not +      // increase the instruction count. +      if (!Cmp->hasOneUse()) +        return nullptr; +      V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); +    } +    bool ExtraBitInTC = TC.ugt(FC); +    if (Pred == ICmpInst::ICMP_EQ) { +      // If the masked bit in V is clear, clear or set the bit in the result: +      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC +      // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC +      Constant *C = ConstantInt::get(SelType, TC); +      return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); +    } +    if (Pred == ICmpInst::ICMP_NE) { +      // If the masked bit in V is set, set or clear the bit in the result: +      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC +      // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC +      Constant *C = ConstantInt::get(SelType, FC); +      return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); +    } +    llvm_unreachable("Only expecting equality predicates"); +  } + +  // Make sure one of the select arms is a power-of-2. +  if (!TC.isPowerOf2() && !FC.isPowerOf2()) +    return nullptr; + +  // Determine which shift is needed to transform result of the 'and' into the +  // desired result. +  const APInt &ValC = !TC.isNullValue() ? TC : FC; +  unsigned ValZeros = ValC.logBase2(); +  unsigned AndZeros = AndMask.logBase2(); + +  // Insert the 'and' instruction on the input to the truncate. +  if (CreateAnd) +    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); + +  // If types don't match, we can still convert the select by introducing a zext +  // or a trunc of the 'and'. +  if (ValZeros > AndZeros) { +    V = Builder.CreateZExtOrTrunc(V, SelType); +    V = Builder.CreateShl(V, ValZeros - AndZeros); +  } else if (ValZeros < AndZeros) { +    V = Builder.CreateLShr(V, AndZeros - ValZeros); +    V = Builder.CreateZExtOrTrunc(V, SelType); +  } else { +    V = Builder.CreateZExtOrTrunc(V, SelType); +  } + +  // Okay, now we know that everything is set up, we just don't know whether we +  // have a icmp_ne or icmp_eq and whether the true or false val is the zero. +  bool ShouldNotVal = !TC.isNullValue(); +  ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; +  if (ShouldNotVal) +    V = Builder.CreateXor(V, ValC); + +  return V; +} + +/// We want to turn code that looks like this: +///   %C = or %A, %B +///   %D = select %cond, %C, %A +/// into: +///   %C = select %cond, %B, 0 +///   %D = or %A, %C +/// +/// Assuming that the specified instruction is an operand to the select, return +/// a bitmask indicating which operands of this instruction are foldable if they +/// equal the other incoming value of the select. +static unsigned getSelectFoldableOperands(BinaryOperator *I) { +  switch (I->getOpcode()) { +  case Instruction::Add: +  case Instruction::Mul: +  case Instruction::And: +  case Instruction::Or: +  case Instruction::Xor: +    return 3;              // Can fold through either operand. +  case Instruction::Sub:   // Can only fold on the amount subtracted. +  case Instruction::Shl:   // Can only fold on the shift amount. +  case Instruction::LShr: +  case Instruction::AShr: +    return 1; +  default: +    return 0;              // Cannot fold +  } +} + +/// For the same transformation as the previous function, return the identity +/// constant that goes into the select. +static APInt getSelectFoldableConstant(BinaryOperator *I) { +  switch (I->getOpcode()) { +  default: llvm_unreachable("This cannot happen!"); +  case Instruction::Add: +  case Instruction::Sub: +  case Instruction::Or: +  case Instruction::Xor: +  case Instruction::Shl: +  case Instruction::LShr: +  case Instruction::AShr: +    return APInt::getNullValue(I->getType()->getScalarSizeInBits()); +  case Instruction::And: +    return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); +  case Instruction::Mul: +    return APInt(I->getType()->getScalarSizeInBits(), 1); +  } +} + +/// We have (select c, TI, FI), and we know that TI and FI have the same opcode. +Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, +                                          Instruction *FI) { +  // Don't break up min/max patterns. The hasOneUse checks below prevent that +  // for most cases, but vector min/max with bitcasts can be transformed. If the +  // one-use restrictions are eased for other patterns, we still don't want to +  // obfuscate min/max. +  if ((match(&SI, m_SMin(m_Value(), m_Value())) || +       match(&SI, m_SMax(m_Value(), m_Value())) || +       match(&SI, m_UMin(m_Value(), m_Value())) || +       match(&SI, m_UMax(m_Value(), m_Value())))) +    return nullptr; + +  // If this is a cast from the same type, merge. +  Value *Cond = SI.getCondition(); +  Type *CondTy = Cond->getType(); +  if (TI->getNumOperands() == 1 && TI->isCast()) { +    Type *FIOpndTy = FI->getOperand(0)->getType(); +    if (TI->getOperand(0)->getType() != FIOpndTy) +      return nullptr; + +    // The select condition may be a vector. We may only change the operand +    // type if the vector width remains the same (and matches the condition). +    if (CondTy->isVectorTy()) { +      if (!FIOpndTy->isVectorTy()) +        return nullptr; +      if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) +        return nullptr; + +      // TODO: If the backend knew how to deal with casts better, we could +      // remove this limitation. For now, there's too much potential to create +      // worse codegen by promoting the select ahead of size-altering casts +      // (PR28160). +      // +      // Note that ValueTracking's matchSelectPattern() looks through casts +      // without checking 'hasOneUse' when it matches min/max patterns, so this +      // transform may end up happening anyway. +      if (TI->getOpcode() != Instruction::BitCast && +          (!TI->hasOneUse() || !FI->hasOneUse())) +        return nullptr; +    } else if (!TI->hasOneUse() || !FI->hasOneUse()) { +      // TODO: The one-use restrictions for a scalar select could be eased if +      // the fold of a select in visitLoadInst() was enhanced to match a pattern +      // that includes a cast. +      return nullptr; +    } + +    // Fold this by inserting a select from the input values. +    Value *NewSI = +        Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), +                             SI.getName() + ".v", &SI); +    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, +                            TI->getType()); +  } + +  // Cond ? -X : -Y --> -(Cond ? X : Y) +  Value *X, *Y; +  if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && +      (TI->hasOneUse() || FI->hasOneUse())) { +    Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); +    // TODO: Remove the hack for the binop form when the unary op is optimized +    //       properly with all IR passes. +    if (TI->getOpcode() != Instruction::FNeg) +      return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI)); +    return UnaryOperator::CreateFNeg(NewSel); +  } + +  // Only handle binary operators (including two-operand getelementptr) with +  // one-use here. As with the cast case above, it may be possible to relax the +  // one-use constraint, but that needs be examined carefully since it may not +  // reduce the total number of instructions. +  if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || +      (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || +      !TI->hasOneUse() || !FI->hasOneUse()) +    return nullptr; + +  // Figure out if the operations have any operands in common. +  Value *MatchOp, *OtherOpT, *OtherOpF; +  bool MatchIsOpZero; +  if (TI->getOperand(0) == FI->getOperand(0)) { +    MatchOp  = TI->getOperand(0); +    OtherOpT = TI->getOperand(1); +    OtherOpF = FI->getOperand(1); +    MatchIsOpZero = true; +  } else if (TI->getOperand(1) == FI->getOperand(1)) { +    MatchOp  = TI->getOperand(1); +    OtherOpT = TI->getOperand(0); +    OtherOpF = FI->getOperand(0); +    MatchIsOpZero = false; +  } else if (!TI->isCommutative()) { +    return nullptr; +  } else if (TI->getOperand(0) == FI->getOperand(1)) { +    MatchOp  = TI->getOperand(0); +    OtherOpT = TI->getOperand(1); +    OtherOpF = FI->getOperand(0); +    MatchIsOpZero = true; +  } else if (TI->getOperand(1) == FI->getOperand(0)) { +    MatchOp  = TI->getOperand(1); +    OtherOpT = TI->getOperand(0); +    OtherOpF = FI->getOperand(1); +    MatchIsOpZero = true; +  } else { +    return nullptr; +  } + +  // If the select condition is a vector, the operands of the original select's +  // operands also must be vectors. This may not be the case for getelementptr +  // for example. +  if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || +                               !OtherOpF->getType()->isVectorTy())) +    return nullptr; + +  // If we reach here, they do have operations in common. +  Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, +                                      SI.getName() + ".v", &SI); +  Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; +  Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; +  if (auto *BO = dyn_cast<BinaryOperator>(TI)) { +    BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); +    NewBO->copyIRFlags(TI); +    NewBO->andIRFlags(FI); +    return NewBO; +  } +  if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { +    auto *FGEP = cast<GetElementPtrInst>(FI); +    Type *ElementType = TGEP->getResultElementType(); +    return TGEP->isInBounds() && FGEP->isInBounds() +               ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) +               : GetElementPtrInst::Create(ElementType, Op0, {Op1}); +  } +  llvm_unreachable("Expected BinaryOperator or GEP"); +  return nullptr; +} + +static bool isSelect01(const APInt &C1I, const APInt &C2I) { +  if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. +    return false; +  return C1I.isOneValue() || C1I.isAllOnesValue() || +         C2I.isOneValue() || C2I.isAllOnesValue(); +} + +/// Try to fold the select into one of the operands to allow further +/// optimization. +Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, +                                            Value *FalseVal) { +  // See the comment above GetSelectFoldableOperands for a description of the +  // transformation we are doing here. +  if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { +    if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { +      if (unsigned SFO = getSelectFoldableOperands(TVI)) { +        unsigned OpToFold = 0; +        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { +          OpToFold = 1; +        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { +          OpToFold = 2; +        } + +        if (OpToFold) { +          APInt CI = getSelectFoldableConstant(TVI); +          Value *OOp = TVI->getOperand(2-OpToFold); +          // Avoid creating select between 2 constants unless it's selecting +          // between 0, 1 and -1. +          const APInt *OOpC; +          bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); +          if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { +            Value *C = ConstantInt::get(OOp->getType(), CI); +            Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); +            NewSel->takeName(TVI); +            BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), +                                                        FalseVal, NewSel); +            BO->copyIRFlags(TVI); +            return BO; +          } +        } +      } +    } +  } + +  if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { +    if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { +      if (unsigned SFO = getSelectFoldableOperands(FVI)) { +        unsigned OpToFold = 0; +        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { +          OpToFold = 1; +        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { +          OpToFold = 2; +        } + +        if (OpToFold) { +          APInt CI = getSelectFoldableConstant(FVI); +          Value *OOp = FVI->getOperand(2-OpToFold); +          // Avoid creating select between 2 constants unless it's selecting +          // between 0, 1 and -1. +          const APInt *OOpC; +          bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); +          if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { +            Value *C = ConstantInt::get(OOp->getType(), CI); +            Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); +            NewSel->takeName(FVI); +            BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), +                                                        TrueVal, NewSel); +            BO->copyIRFlags(FVI); +            return BO; +          } +        } +      } +    } +  } + +  return nullptr; +} + +/// We want to turn: +///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) +/// into: +///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) +/// Note: +///   Z may be 0 if lshr is missing. +/// Worst-case scenario is that we will replace 5 instructions with 5 different +/// instructions, but we got rid of select. +static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, +                                         Value *TVal, Value *FVal, +                                         InstCombiner::BuilderTy &Builder) { +  if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && +        Cmp->getPredicate() == ICmpInst::ICMP_EQ && +        match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) +    return nullptr; + +  // The TrueVal has general form of:  and %B, 1 +  Value *B; +  if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) +    return nullptr; + +  // Where %B may be optionally shifted:  lshr %X, %Z. +  Value *X, *Z; +  const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); +  if (!HasShift) +    X = B; + +  Value *Y; +  if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) +    return nullptr; + +  // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 +  // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 +  Constant *One = ConstantInt::get(SelType, 1); +  Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; +  Value *FullMask = Builder.CreateOr(Y, MaskB); +  Value *MaskedX = Builder.CreateAnd(X, FullMask); +  Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); +  return new ZExtInst(ICmpNeZero, SelType); +} + +/// We want to turn: +///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 +///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 +/// into: +///   ashr (X, Y) +static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, +                                     Value *FalseVal, +                                     InstCombiner::BuilderTy &Builder) { +  ICmpInst::Predicate Pred = IC->getPredicate(); +  Value *CmpLHS = IC->getOperand(0); +  Value *CmpRHS = IC->getOperand(1); +  if (!CmpRHS->getType()->isIntOrIntVectorTy()) +    return nullptr; + +  Value *X, *Y; +  unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); +  if ((Pred != ICmpInst::ICMP_SGT || +       !match(CmpRHS, +              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && +      (Pred != ICmpInst::ICMP_SLT || +       !match(CmpRHS, +              m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) +    return nullptr; + +  // Canonicalize so that ashr is in FalseVal. +  if (Pred == ICmpInst::ICMP_SLT) +    std::swap(TrueVal, FalseVal); + +  if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && +      match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && +      match(CmpLHS, m_Specific(X))) { +    const auto *Ashr = cast<Instruction>(FalseVal); +    // if lshr is not exact and ashr is, this new ashr must not be exact. +    bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); +    return Builder.CreateAShr(X, Y, IC->getName(), IsExact); +  } + +  return nullptr; +} + +/// We want to turn: +///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) +/// into: +///   (or (shl (and X, C1), C3), Y) +/// iff: +///   C1 and C2 are both powers of 2 +/// where: +///   C3 = Log(C2) - Log(C1) +/// +/// This transform handles cases where: +/// 1. The icmp predicate is inverted +/// 2. The select operands are reversed +/// 3. The magnitude of C2 and C1 are flipped +static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, +                                  Value *FalseVal, +                                  InstCombiner::BuilderTy &Builder) { +  // Only handle integer compares. Also, if this is a vector select, we need a +  // vector compare. +  if (!TrueVal->getType()->isIntOrIntVectorTy() || +      TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) +    return nullptr; + +  Value *CmpLHS = IC->getOperand(0); +  Value *CmpRHS = IC->getOperand(1); + +  Value *V; +  unsigned C1Log; +  bool IsEqualZero; +  bool NeedAnd = false; +  if (IC->isEquality()) { +    if (!match(CmpRHS, m_Zero())) +      return nullptr; + +    const APInt *C1; +    if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) +      return nullptr; + +    V = CmpLHS; +    C1Log = C1->logBase2(); +    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; +  } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || +             IC->getPredicate() == ICmpInst::ICMP_SGT) { +    // We also need to recognize (icmp slt (trunc (X)), 0) and +    // (icmp sgt (trunc (X)), -1). +    IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; +    if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || +        (!IsEqualZero && !match(CmpRHS, m_Zero()))) +      return nullptr; + +    if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) +      return nullptr; + +    C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; +    NeedAnd = true; +  } else { +    return nullptr; +  } + +  const APInt *C2; +  bool OrOnTrueVal = false; +  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); +  if (!OrOnFalseVal) +    OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); + +  if (!OrOnFalseVal && !OrOnTrueVal) +    return nullptr; + +  Value *Y = OrOnFalseVal ? TrueVal : FalseVal; + +  unsigned C2Log = C2->logBase2(); + +  bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); +  bool NeedShift = C1Log != C2Log; +  bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != +                       V->getType()->getScalarSizeInBits(); + +  // Make sure we don't create more instructions than we save. +  Value *Or = OrOnFalseVal ? FalseVal : TrueVal; +  if ((NeedShift + NeedXor + NeedZExtTrunc) > +      (IC->hasOneUse() + Or->hasOneUse())) +    return nullptr; + +  if (NeedAnd) { +    // Insert the AND instruction on the input to the truncate. +    APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); +    V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); +  } + +  if (C2Log > C1Log) { +    V = Builder.CreateZExtOrTrunc(V, Y->getType()); +    V = Builder.CreateShl(V, C2Log - C1Log); +  } else if (C1Log > C2Log) { +    V = Builder.CreateLShr(V, C1Log - C2Log); +    V = Builder.CreateZExtOrTrunc(V, Y->getType()); +  } else +    V = Builder.CreateZExtOrTrunc(V, Y->getType()); + +  if (NeedXor) +    V = Builder.CreateXor(V, *C2); + +  return Builder.CreateOr(V, Y); +} + +/// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). +/// There are 8 commuted/swapped variants of this pattern. +/// TODO: Also support a - UMIN(a,b) patterns. +static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, +                                            const Value *TrueVal, +                                            const Value *FalseVal, +                                            InstCombiner::BuilderTy &Builder) { +  ICmpInst::Predicate Pred = ICI->getPredicate(); +  if (!ICmpInst::isUnsigned(Pred)) +    return nullptr; + +  // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 +  if (match(TrueVal, m_Zero())) { +    Pred = ICmpInst::getInversePredicate(Pred); +    std::swap(TrueVal, FalseVal); +  } +  if (!match(FalseVal, m_Zero())) +    return nullptr; + +  Value *A = ICI->getOperand(0); +  Value *B = ICI->getOperand(1); +  if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { +    // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 +    std::swap(A, B); +    Pred = ICmpInst::getSwappedPredicate(Pred); +  } + +  assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && +         "Unexpected isUnsigned predicate!"); + +  // Account for swapped form of subtraction: ((a > b) ? b - a : 0). +  bool IsNegative = false; +  if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) +    IsNegative = true; +  else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) +    return nullptr; + +  // If sub is used anywhere else, we wouldn't be able to eliminate it +  // afterwards. +  if (!TrueVal->hasOneUse()) +    return nullptr; + +  // (a > b) ? a - b : 0 -> usub.sat(a, b) +  // (a > b) ? b - a : 0 -> -usub.sat(a, b) +  Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); +  if (IsNegative) +    Result = Builder.CreateNeg(Result); +  return Result; +} + +static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, +                                       InstCombiner::BuilderTy &Builder) { +  if (!Cmp->hasOneUse()) +    return nullptr; + +  // Match unsigned saturated add with constant. +  Value *Cmp0 = Cmp->getOperand(0); +  Value *Cmp1 = Cmp->getOperand(1); +  ICmpInst::Predicate Pred = Cmp->getPredicate(); +  Value *X; +  const APInt *C, *CmpC; +  if (Pred == ICmpInst::ICMP_ULT && +      match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && +      match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { +    // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) +    return Builder.CreateBinaryIntrinsic( +        Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); +  } + +  // Match unsigned saturated add of 2 variables with an unnecessary 'not'. +  // There are 8 commuted variants. +  // Canonicalize -1 (saturated result) to true value of the select. Just +  // swapping the compare operands is legal, because the selected value is the +  // same in case of equality, so we can interchange u< and u<=. +  if (match(FVal, m_AllOnes())) { +    std::swap(TVal, FVal); +    std::swap(Cmp0, Cmp1); +  } +  if (!match(TVal, m_AllOnes())) +    return nullptr; + +  // Canonicalize predicate to 'ULT'. +  if (Pred == ICmpInst::ICMP_UGT) { +    Pred = ICmpInst::ICMP_ULT; +    std::swap(Cmp0, Cmp1); +  } +  if (Pred != ICmpInst::ICMP_ULT) +    return nullptr; + +  // Match unsigned saturated add of 2 variables with an unnecessary 'not'. +  Value *Y; +  if (match(Cmp0, m_Not(m_Value(X))) && +      match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { +    // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) +    // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) +    return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); +  } +  // The 'not' op may be included in the sum but not the compare. +  X = Cmp0; +  Y = Cmp1; +  if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { +    // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) +    // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) +    BinaryOperator *BO = cast<BinaryOperator>(FVal); +    return Builder.CreateBinaryIntrinsic( +        Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); +  } + +  return nullptr; +} + +/// Fold the following code sequence: +/// \code +///   int a = ctlz(x & -x); +//    x ? 31 - a : a; +/// \code +/// +/// into: +///   cttz(x) +static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, +                                         Value *FalseVal, +                                         InstCombiner::BuilderTy &Builder) { +  unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); +  if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) +    return nullptr; + +  if (ICI->getPredicate() == ICmpInst::ICMP_NE) +    std::swap(TrueVal, FalseVal); + +  if (!match(FalseVal, +             m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) +    return nullptr; + +  if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) +    return nullptr; + +  Value *X = ICI->getOperand(0); +  auto *II = cast<IntrinsicInst>(TrueVal); +  if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) +    return nullptr; + +  Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, +                                          II->getType()); +  return CallInst::Create(F, {X, II->getArgOperand(1)}); +} + +/// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single +/// call to cttz/ctlz with flag 'is_zero_undef' cleared. +/// +/// For example, we can fold the following code sequence: +/// \code +///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) +///   %1 = icmp ne i32 %x, 0 +///   %2 = select i1 %1, i32 %0, i32 32 +/// \code +/// +/// into: +///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) +static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, +                                 InstCombiner::BuilderTy &Builder) { +  ICmpInst::Predicate Pred = ICI->getPredicate(); +  Value *CmpLHS = ICI->getOperand(0); +  Value *CmpRHS = ICI->getOperand(1); + +  // Check if the condition value compares a value for equality against zero. +  if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) +    return nullptr; + +  Value *Count = FalseVal; +  Value *ValueOnZero = TrueVal; +  if (Pred == ICmpInst::ICMP_NE) +    std::swap(Count, ValueOnZero); + +  // Skip zero extend/truncate. +  Value *V = nullptr; +  if (match(Count, m_ZExt(m_Value(V))) || +      match(Count, m_Trunc(m_Value(V)))) +    Count = V; + +  // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the +  // input to the cttz/ctlz is used as LHS for the compare instruction. +  if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && +      !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) +    return nullptr; + +  IntrinsicInst *II = cast<IntrinsicInst>(Count); + +  // Check if the value propagated on zero is a constant number equal to the +  // sizeof in bits of 'Count'. +  unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); +  if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { +    // Explicitly clear the 'undef_on_zero' flag. +    IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); +    NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); +    Builder.Insert(NewI); +    return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); +  } + +  // If the ValueOnZero is not the bitwidth, we can at least make use of the +  // fact that the cttz/ctlz result will not be used if the input is zero, so +  // it's okay to relax it to undef for that case. +  if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) +    II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); + +  return nullptr; +} + +/// Return true if we find and adjust an icmp+select pattern where the compare +/// is with a constant that can be incremented or decremented to match the +/// minimum or maximum idiom. +static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { +  ICmpInst::Predicate Pred = Cmp.getPredicate(); +  Value *CmpLHS = Cmp.getOperand(0); +  Value *CmpRHS = Cmp.getOperand(1); +  Value *TrueVal = Sel.getTrueValue(); +  Value *FalseVal = Sel.getFalseValue(); + +  // We may move or edit the compare, so make sure the select is the only user. +  const APInt *CmpC; +  if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) +    return false; + +  // These transforms only work for selects of integers or vector selects of +  // integer vectors. +  Type *SelTy = Sel.getType(); +  auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); +  if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) +    return false; + +  Constant *AdjustedRHS; +  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) +    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); +  else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) +    AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); +  else +    return false; + +  // X > C ? X : C+1  -->  X < C+1 ? C+1 : X +  // X < C ? X : C-1  -->  X > C-1 ? C-1 : X +  if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || +      (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { +    ; // Nothing to do here. Values match without any sign/zero extension. +  } +  // Types do not match. Instead of calculating this with mixed types, promote +  // all to the larger type. This enables scalar evolution to analyze this +  // expression. +  else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { +    Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); + +    // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X +    // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X +    // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X +    // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X +    if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { +      CmpLHS = TrueVal; +      AdjustedRHS = SextRHS; +    } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && +               SextRHS == TrueVal) { +      CmpLHS = FalseVal; +      AdjustedRHS = SextRHS; +    } else if (Cmp.isUnsigned()) { +      Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); +      // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X +      // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X +      // zext + signed compare cannot be changed: +      //    0xff <s 0x00, but 0x00ff >s 0x0000 +      if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { +        CmpLHS = TrueVal; +        AdjustedRHS = ZextRHS; +      } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && +                 ZextRHS == TrueVal) { +        CmpLHS = FalseVal; +        AdjustedRHS = ZextRHS; +      } else { +        return false; +      } +    } else { +      return false; +    } +  } else { +    return false; +  } + +  Pred = ICmpInst::getSwappedPredicate(Pred); +  CmpRHS = AdjustedRHS; +  std::swap(FalseVal, TrueVal); +  Cmp.setPredicate(Pred); +  Cmp.setOperand(0, CmpLHS); +  Cmp.setOperand(1, CmpRHS); +  Sel.setOperand(1, TrueVal); +  Sel.setOperand(2, FalseVal); +  Sel.swapProfMetadata(); + +  // Move the compare instruction right before the select instruction. Otherwise +  // the sext/zext value may be defined after the compare instruction uses it. +  Cmp.moveBefore(&Sel); + +  return true; +} + +/// If this is an integer min/max (icmp + select) with a constant operand, +/// create the canonical icmp for the min/max operation and canonicalize the +/// constant to the 'false' operand of the select: +/// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 +/// Note: if C1 != C2, this will change the icmp constant to the existing +/// constant operand of the select. +static Instruction * +canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, +                               InstCombiner::BuilderTy &Builder) { +  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) +    return nullptr; + +  // Canonicalize the compare predicate based on whether we have min or max. +  Value *LHS, *RHS; +  SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); +  if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) +    return nullptr; + +  // Is this already canonical? +  ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); +  if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && +      Cmp.getPredicate() == CanonicalPred) +    return nullptr; + +  // Create the canonical compare and plug it into the select. +  Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); + +  // If the select operands did not change, we're done. +  if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) +    return &Sel; + +  // If we are swapping the select operands, swap the metadata too. +  assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && +         "Unexpected results from matchSelectPattern"); +  Sel.swapValues(); +  Sel.swapProfMetadata(); +  return &Sel; +} + +/// There are many select variants for each of ABS/NABS. +/// In matchSelectPattern(), there are different compare constants, compare +/// predicates/operands and select operands. +/// In isKnownNegation(), there are different formats of negated operands. +/// Canonicalize all these variants to 1 pattern. +/// This makes CSE more likely. +static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, +                                        InstCombiner::BuilderTy &Builder) { +  if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) +    return nullptr; + +  // Choose a sign-bit check for the compare (likely simpler for codegen). +  // ABS:  (X <s 0) ? -X : X +  // NABS: (X <s 0) ? X : -X +  Value *LHS, *RHS; +  SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; +  if (SPF != SelectPatternFlavor::SPF_ABS && +      SPF != SelectPatternFlavor::SPF_NABS) +    return nullptr; + +  Value *TVal = Sel.getTrueValue(); +  Value *FVal = Sel.getFalseValue(); +  assert(isKnownNegation(TVal, FVal) && +         "Unexpected result from matchSelectPattern"); + +  // The compare may use the negated abs()/nabs() operand, or it may use +  // negation in non-canonical form such as: sub A, B. +  bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || +                          match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); + +  bool CmpCanonicalized = !CmpUsesNegatedOp && +                          match(Cmp.getOperand(1), m_ZeroInt()) && +                          Cmp.getPredicate() == ICmpInst::ICMP_SLT; +  bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); + +  // Is this already canonical? +  if (CmpCanonicalized && RHSCanonicalized) +    return nullptr; + +  // If RHS is used by other instructions except compare and select, don't +  // canonicalize it to not increase the instruction count. +  if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) +    return nullptr; + +  // Create the canonical compare: icmp slt LHS 0. +  if (!CmpCanonicalized) { +    Cmp.setPredicate(ICmpInst::ICMP_SLT); +    Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); +    if (CmpUsesNegatedOp) +      Cmp.setOperand(0, LHS); +  } + +  // Create the canonical RHS: RHS = sub (0, LHS). +  if (!RHSCanonicalized) { +    assert(RHS->hasOneUse() && "RHS use number is not right"); +    RHS = Builder.CreateNeg(LHS); +    if (TVal == LHS) { +      Sel.setFalseValue(RHS); +      FVal = RHS; +    } else { +      Sel.setTrueValue(RHS); +      TVal = RHS; +    } +  } + +  // If the select operands do not change, we're done. +  if (SPF == SelectPatternFlavor::SPF_NABS) { +    if (TVal == LHS) +      return &Sel; +    assert(FVal == LHS && "Unexpected results from matchSelectPattern"); +  } else { +    if (FVal == LHS) +      return &Sel; +    assert(TVal == LHS && "Unexpected results from matchSelectPattern"); +  } + +  // We are swapping the select operands, so swap the metadata too. +  Sel.swapValues(); +  Sel.swapProfMetadata(); +  return &Sel; +} + +static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp, +                                     const SimplifyQuery &Q) { +  // If this is a binary operator, try to simplify it with the replaced op +  // because we know Op and ReplaceOp are equivalant. +  // For example: V = X + 1, Op = X, ReplaceOp = 42 +  // Simplifies as: add(42, 1) --> 43 +  if (auto *BO = dyn_cast<BinaryOperator>(V)) { +    if (BO->getOperand(0) == Op) +      return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q); +    if (BO->getOperand(1) == Op) +      return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q); +  } + +  return nullptr; +} + +/// If we have a select with an equality comparison, then we know the value in +/// one of the arms of the select. See if substituting this value into an arm +/// and simplifying the result yields the same value as the other arm. +/// +/// To make this transform safe, we must drop poison-generating flags +/// (nsw, etc) if we simplified to a binop because the select may be guarding +/// that poison from propagating. If the existing binop already had no +/// poison-generating flags, then this transform can be done by instsimplify. +/// +/// Consider: +///   %cmp = icmp eq i32 %x, 2147483647 +///   %add = add nsw i32 %x, 1 +///   %sel = select i1 %cmp, i32 -2147483648, i32 %add +/// +/// We can't replace %sel with %add unless we strip away the flags. +/// TODO: Wrapping flags could be preserved in some cases with better analysis. +static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp, +                                         const SimplifyQuery &Q) { +  if (!Cmp.isEquality()) +    return nullptr; + +  // Canonicalize the pattern to ICMP_EQ by swapping the select operands. +  Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); +  if (Cmp.getPredicate() == ICmpInst::ICMP_NE) +    std::swap(TrueVal, FalseVal); + +  // Try each equivalence substitution possibility. +  // We have an 'EQ' comparison, so the select's false value will propagate. +  // Example: +  // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 +  // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43 +  Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); +  if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal || +      simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal || +      simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal || +      simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) { +    if (auto *FalseInst = dyn_cast<Instruction>(FalseVal)) +      FalseInst->dropPoisonGeneratingFlags(); +    return FalseVal; +  } +  return nullptr; +} + +// See if this is a pattern like: +//   %old_cmp1 = icmp slt i32 %x, C2 +//   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high +//   %old_x_offseted = add i32 %x, C1 +//   %old_cmp0 = icmp ult i32 %old_x_offseted, C0 +//   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement +// This can be rewritten as more canonical pattern: +//   %new_cmp1 = icmp slt i32 %x, -C1 +//   %new_cmp2 = icmp sge i32 %x, C0-C1 +//   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x +//   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low +// Iff -C1 s<= C2 s<= C0-C1 +// Also ULT predicate can also be UGT iff C0 != -1 (+invert result) +//      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) +static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, +                                          InstCombiner::BuilderTy &Builder) { +  Value *X = Sel0.getTrueValue(); +  Value *Sel1 = Sel0.getFalseValue(); + +  // First match the condition of the outermost select. +  // Said condition must be one-use. +  if (!Cmp0.hasOneUse()) +    return nullptr; +  Value *Cmp00 = Cmp0.getOperand(0); +  Constant *C0; +  if (!match(Cmp0.getOperand(1), +             m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) +    return nullptr; +  // Canonicalize Cmp0 into the form we expect. +  // FIXME: we shouldn't care about lanes that are 'undef' in the end? +  switch (Cmp0.getPredicate()) { +  case ICmpInst::Predicate::ICMP_ULT: +    break; // Great! +  case ICmpInst::Predicate::ICMP_ULE: +    // We'd have to increment C0 by one, and for that it must not have all-ones +    // element, but then it would have been canonicalized to 'ult' before +    // we get here. So we can't do anything useful with 'ule'. +    return nullptr; +  case ICmpInst::Predicate::ICMP_UGT: +    // We want to canonicalize it to 'ult', so we'll need to increment C0, +    // which again means it must not have any all-ones elements. +    if (!match(C0, +               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, +                                  APInt::getAllOnesValue( +                                      C0->getType()->getScalarSizeInBits())))) +      return nullptr; // Can't do, have all-ones element[s]. +    C0 = AddOne(C0); +    std::swap(X, Sel1); +    break; +  case ICmpInst::Predicate::ICMP_UGE: +    // The only way we'd get this predicate if this `icmp` has extra uses, +    // but then we won't be able to do this fold. +    return nullptr; +  default: +    return nullptr; // Unknown predicate. +  } + +  // Now that we've canonicalized the ICmp, we know the X we expect; +  // the select in other hand should be one-use. +  if (!Sel1->hasOneUse()) +    return nullptr; + +  // We now can finish matching the condition of the outermost select: +  // it should either be the X itself, or an addition of some constant to X. +  Constant *C1; +  if (Cmp00 == X) +    C1 = ConstantInt::getNullValue(Sel0.getType()); +  else if (!match(Cmp00, +                  m_Add(m_Specific(X), +                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) +    return nullptr; + +  Value *Cmp1; +  ICmpInst::Predicate Pred1; +  Constant *C2; +  Value *ReplacementLow, *ReplacementHigh; +  if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), +                            m_Value(ReplacementHigh))) || +      !match(Cmp1, +             m_ICmp(Pred1, m_Specific(X), +                    m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) +    return nullptr; + +  if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) +    return nullptr; // Not enough one-use instructions for the fold. +  // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of +  //        two comparisons we'll need to build. + +  // Canonicalize Cmp1 into the form we expect. +  // FIXME: we shouldn't care about lanes that are 'undef' in the end? +  switch (Pred1) { +  case ICmpInst::Predicate::ICMP_SLT: +    break; +  case ICmpInst::Predicate::ICMP_SLE: +    // We'd have to increment C2 by one, and for that it must not have signed +    // max element, but then it would have been canonicalized to 'slt' before +    // we get here. So we can't do anything useful with 'sle'. +    return nullptr; +  case ICmpInst::Predicate::ICMP_SGT: +    // We want to canonicalize it to 'slt', so we'll need to increment C2, +    // which again means it must not have any signed max elements. +    if (!match(C2, +               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, +                                  APInt::getSignedMaxValue( +                                      C2->getType()->getScalarSizeInBits())))) +      return nullptr; // Can't do, have signed max element[s]. +    C2 = AddOne(C2); +    LLVM_FALLTHROUGH; +  case ICmpInst::Predicate::ICMP_SGE: +    // Also non-canonical, but here we don't need to change C2, +    // so we don't have any restrictions on C2, so we can just handle it. +    std::swap(ReplacementLow, ReplacementHigh); +    break; +  default: +    return nullptr; // Unknown predicate. +  } + +  // The thresholds of this clamp-like pattern. +  auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); +  auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); + +  // The fold has a precondition 1: C2 s>= ThresholdLow +  auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, +                                         ThresholdLowIncl); +  if (!match(Precond1, m_One())) +    return nullptr; +  // The fold has a precondition 2: C2 s<= ThresholdHigh +  auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, +                                         ThresholdHighExcl); +  if (!match(Precond2, m_One())) +    return nullptr; + +  // All good, finally emit the new pattern. +  Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); +  Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); +  Value *MaybeReplacedLow = +      Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); +  Instruction *MaybeReplacedHigh = +      SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); + +  return MaybeReplacedHigh; +} + +// If we have +//  %cmp = icmp [canonical predicate] i32 %x, C0 +//  %r = select i1 %cmp, i32 %y, i32 C1 +// Where C0 != C1 and %x may be different from %y, see if the constant that we +// will have if we flip the strictness of the predicate (i.e. without changing +// the result) is identical to the C1 in select. If it matches we can change +// original comparison to one with swapped predicate, reuse the constant, +// and swap the hands of select. +static Instruction * +tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, +                                         InstCombiner::BuilderTy &Builder) { +  ICmpInst::Predicate Pred; +  Value *X; +  Constant *C0; +  if (!match(&Cmp, m_OneUse(m_ICmp( +                       Pred, m_Value(X), +                       m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) +    return nullptr; + +  // If comparison predicate is non-relational, we won't be able to do anything. +  if (ICmpInst::isEquality(Pred)) +    return nullptr; + +  // If comparison predicate is non-canonical, then we certainly won't be able +  // to make it canonical; canonicalizeCmpWithConstant() already tried. +  if (!isCanonicalPredicate(Pred)) +    return nullptr; + +  // If the [input] type of comparison and select type are different, lets abort +  // for now. We could try to compare constants with trunc/[zs]ext though. +  if (C0->getType() != Sel.getType()) +    return nullptr; + +  // FIXME: are there any magic icmp predicate+constant pairs we must not touch? + +  Value *SelVal0, *SelVal1; // We do not care which one is from where. +  match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); +  // At least one of these values we are selecting between must be a constant +  // else we'll never succeed. +  if (!match(SelVal0, m_AnyIntegralConstant()) && +      !match(SelVal1, m_AnyIntegralConstant())) +    return nullptr; + +  // Does this constant C match any of the `select` values? +  auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { +    return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); +  }; + +  // If C0 *already* matches true/false value of select, we are done. +  if (MatchesSelectValue(C0)) +    return nullptr; + +  // Check the constant we'd have with flipped-strictness predicate. +  auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, C0); +  if (!FlippedStrictness) +    return nullptr; + +  // If said constant doesn't match either, then there is no hope, +  if (!MatchesSelectValue(FlippedStrictness->second)) +    return nullptr; + +  // It matched! Lets insert the new comparison just before select. +  InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); +  Builder.SetInsertPoint(&Sel); + +  Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. +  Value *NewCmp = Builder.CreateICmp(Pred, X, FlippedStrictness->second, +                                     Cmp.getName() + ".inv"); +  Sel.setCondition(NewCmp); +  Sel.swapValues(); +  Sel.swapProfMetadata(); + +  return &Sel; +} + +/// Visit a SelectInst that has an ICmpInst as its first operand. +Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, +                                                  ICmpInst *ICI) { +  if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ)) +    return replaceInstUsesWith(SI, V); + +  if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) +    return NewSel; + +  if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) +    return NewAbs; + +  if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) +    return NewAbs; + +  if (Instruction *NewSel = +          tryToReuseConstantFromSelectInComparison(SI, *ICI, Builder)) +    return NewSel; + +  bool Changed = adjustMinMax(SI, *ICI); + +  if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) +    return replaceInstUsesWith(SI, V); + +  // NOTE: if we wanted to, this is where to detect integer MIN/MAX +  Value *TrueVal = SI.getTrueValue(); +  Value *FalseVal = SI.getFalseValue(); +  ICmpInst::Predicate Pred = ICI->getPredicate(); +  Value *CmpLHS = ICI->getOperand(0); +  Value *CmpRHS = ICI->getOperand(1); +  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { +    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { +      // Transform (X == C) ? X : Y -> (X == C) ? C : Y +      SI.setOperand(1, CmpRHS); +      Changed = true; +    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { +      // Transform (X != C) ? Y : X -> (X != C) ? Y : C +      SI.setOperand(2, CmpRHS); +      Changed = true; +    } +  } + +  // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring +  // decomposeBitTestICmp() might help. +  { +    unsigned BitWidth = +        DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); +    APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); +    Value *X; +    const APInt *Y, *C; +    bool TrueWhenUnset; +    bool IsBitTest = false; +    if (ICmpInst::isEquality(Pred) && +        match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && +        match(CmpRHS, m_Zero())) { +      IsBitTest = true; +      TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; +    } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { +      X = CmpLHS; +      Y = &MinSignedValue; +      IsBitTest = true; +      TrueWhenUnset = false; +    } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { +      X = CmpLHS; +      Y = &MinSignedValue; +      IsBitTest = true; +      TrueWhenUnset = true; +    } +    if (IsBitTest) { +      Value *V = nullptr; +      // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y +      if (TrueWhenUnset && TrueVal == X && +          match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) +        V = Builder.CreateAnd(X, ~(*Y)); +      // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y +      else if (!TrueWhenUnset && FalseVal == X && +               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) +        V = Builder.CreateAnd(X, ~(*Y)); +      // (X & Y) == 0 ? X ^ Y : X  --> X | Y +      else if (TrueWhenUnset && FalseVal == X && +               match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) +        V = Builder.CreateOr(X, *Y); +      // (X & Y) != 0 ? X : X ^ Y  --> X | Y +      else if (!TrueWhenUnset && TrueVal == X && +               match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) +        V = Builder.CreateOr(X, *Y); + +      if (V) +        return replaceInstUsesWith(SI, V); +    } +  } + +  if (Instruction *V = +          foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) +    return V; + +  if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) +    return V; + +  if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) +    return replaceInstUsesWith(SI, V); + +  if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) +    return replaceInstUsesWith(SI, V); + +  if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) +    return replaceInstUsesWith(SI, V); + +  if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) +    return replaceInstUsesWith(SI, V); + +  if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) +    return replaceInstUsesWith(SI, V); + +  return Changed ? &SI : nullptr; +} + +/// SI is a select whose condition is a PHI node (but the two may be in +/// different blocks). See if the true/false values (V) are live in all of the +/// predecessor blocks of the PHI. For example, cases like this can't be mapped: +/// +///   X = phi [ C1, BB1], [C2, BB2] +///   Y = add +///   Z = select X, Y, 0 +/// +/// because Y is not live in BB1/BB2. +static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, +                                                   const SelectInst &SI) { +  // If the value is a non-instruction value like a constant or argument, it +  // can always be mapped. +  const Instruction *I = dyn_cast<Instruction>(V); +  if (!I) return true; + +  // If V is a PHI node defined in the same block as the condition PHI, we can +  // map the arguments. +  const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); + +  if (const PHINode *VP = dyn_cast<PHINode>(I)) +    if (VP->getParent() == CondPHI->getParent()) +      return true; + +  // Otherwise, if the PHI and select are defined in the same block and if V is +  // defined in a different block, then we can transform it. +  if (SI.getParent() == CondPHI->getParent() && +      I->getParent() != CondPHI->getParent()) +    return true; + +  // Otherwise we have a 'hard' case and we can't tell without doing more +  // detailed dominator based analysis, punt. +  return false; +} + +/// We have an SPF (e.g. a min or max) of an SPF of the form: +///   SPF2(SPF1(A, B), C) +Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, +                                        SelectPatternFlavor SPF1, +                                        Value *A, Value *B, +                                        Instruction &Outer, +                                        SelectPatternFlavor SPF2, Value *C) { +  if (Outer.getType() != Inner->getType()) +    return nullptr; + +  if (C == A || C == B) { +    // MAX(MAX(A, B), B) -> MAX(A, B) +    // MIN(MIN(a, b), a) -> MIN(a, b) +    // TODO: This could be done in instsimplify. +    if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) +      return replaceInstUsesWith(Outer, Inner); + +    // MAX(MIN(a, b), a) -> a +    // MIN(MAX(a, b), a) -> a +    // TODO: This could be done in instsimplify. +    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || +        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || +        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || +        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) +      return replaceInstUsesWith(Outer, C); +  } + +  if (SPF1 == SPF2) { +    const APInt *CB, *CC; +    if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { +      // MIN(MIN(A, 23), 97) -> MIN(A, 23) +      // MAX(MAX(A, 97), 23) -> MAX(A, 97) +      // TODO: This could be done in instsimplify. +      if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || +          (SPF1 == SPF_SMIN && CB->sle(*CC)) || +          (SPF1 == SPF_UMAX && CB->uge(*CC)) || +          (SPF1 == SPF_SMAX && CB->sge(*CC))) +        return replaceInstUsesWith(Outer, Inner); + +      // MIN(MIN(A, 97), 23) -> MIN(A, 23) +      // MAX(MAX(A, 23), 97) -> MAX(A, 97) +      if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || +          (SPF1 == SPF_SMIN && CB->sgt(*CC)) || +          (SPF1 == SPF_UMAX && CB->ult(*CC)) || +          (SPF1 == SPF_SMAX && CB->slt(*CC))) { +        Outer.replaceUsesOfWith(Inner, A); +        return &Outer; +      } +    } +  } + +  // max(max(A, B), min(A, B)) --> max(A, B) +  // min(min(A, B), max(A, B)) --> min(A, B) +  // TODO: This could be done in instsimplify. +  if (SPF1 == SPF2 && +      ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || +       (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || +       (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || +       (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) +    return replaceInstUsesWith(Outer, Inner); + +  // ABS(ABS(X)) -> ABS(X) +  // NABS(NABS(X)) -> NABS(X) +  // TODO: This could be done in instsimplify. +  if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { +    return replaceInstUsesWith(Outer, Inner); +  } + +  // ABS(NABS(X)) -> ABS(X) +  // NABS(ABS(X)) -> NABS(X) +  if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || +      (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { +    SelectInst *SI = cast<SelectInst>(Inner); +    Value *NewSI = +        Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), +                             SI->getTrueValue(), SI->getName(), SI); +    return replaceInstUsesWith(Outer, NewSI); +  } + +  auto IsFreeOrProfitableToInvert = +      [&](Value *V, Value *&NotV, bool &ElidesXor) { +    if (match(V, m_Not(m_Value(NotV)))) { +      // If V has at most 2 uses then we can get rid of the xor operation +      // entirely. +      ElidesXor |= !V->hasNUsesOrMore(3); +      return true; +    } + +    if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { +      NotV = nullptr; +      return true; +    } + +    return false; +  }; + +  Value *NotA, *NotB, *NotC; +  bool ElidesXor = false; + +  // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) +  // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) +  // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) +  // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) +  // +  // This transform is performance neutral if we can elide at least one xor from +  // the set of three operands, since we'll be tacking on an xor at the very +  // end. +  if (SelectPatternResult::isMinOrMax(SPF1) && +      SelectPatternResult::isMinOrMax(SPF2) && +      IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && +      IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && +      IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { +    if (!NotA) +      NotA = Builder.CreateNot(A); +    if (!NotB) +      NotB = Builder.CreateNot(B); +    if (!NotC) +      NotC = Builder.CreateNot(C); + +    Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, +                                   NotB); +    Value *NewOuter = Builder.CreateNot( +        createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); +    return replaceInstUsesWith(Outer, NewOuter); +  } + +  return nullptr; +} + +/// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). +/// This is even legal for FP. +static Instruction *foldAddSubSelect(SelectInst &SI, +                                     InstCombiner::BuilderTy &Builder) { +  Value *CondVal = SI.getCondition(); +  Value *TrueVal = SI.getTrueValue(); +  Value *FalseVal = SI.getFalseValue(); +  auto *TI = dyn_cast<Instruction>(TrueVal); +  auto *FI = dyn_cast<Instruction>(FalseVal); +  if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) +    return nullptr; + +  Instruction *AddOp = nullptr, *SubOp = nullptr; +  if ((TI->getOpcode() == Instruction::Sub && +       FI->getOpcode() == Instruction::Add) || +      (TI->getOpcode() == Instruction::FSub && +       FI->getOpcode() == Instruction::FAdd)) { +    AddOp = FI; +    SubOp = TI; +  } else if ((FI->getOpcode() == Instruction::Sub && +              TI->getOpcode() == Instruction::Add) || +             (FI->getOpcode() == Instruction::FSub && +              TI->getOpcode() == Instruction::FAdd)) { +    AddOp = TI; +    SubOp = FI; +  } + +  if (AddOp) { +    Value *OtherAddOp = nullptr; +    if (SubOp->getOperand(0) == AddOp->getOperand(0)) { +      OtherAddOp = AddOp->getOperand(1); +    } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { +      OtherAddOp = AddOp->getOperand(0); +    } + +    if (OtherAddOp) { +      // So at this point we know we have (Y -> OtherAddOp): +      //        select C, (add X, Y), (sub X, Z) +      Value *NegVal; // Compute -Z +      if (SI.getType()->isFPOrFPVectorTy()) { +        NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); +        if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { +          FastMathFlags Flags = AddOp->getFastMathFlags(); +          Flags &= SubOp->getFastMathFlags(); +          NegInst->setFastMathFlags(Flags); +        } +      } else { +        NegVal = Builder.CreateNeg(SubOp->getOperand(1)); +      } + +      Value *NewTrueOp = OtherAddOp; +      Value *NewFalseOp = NegVal; +      if (AddOp != TI) +        std::swap(NewTrueOp, NewFalseOp); +      Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, +                                           SI.getName() + ".p", &SI); + +      if (SI.getType()->isFPOrFPVectorTy()) { +        Instruction *RI = +            BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); + +        FastMathFlags Flags = AddOp->getFastMathFlags(); +        Flags &= SubOp->getFastMathFlags(); +        RI->setFastMathFlags(Flags); +        return RI; +      } else +        return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); +    } +  } +  return nullptr; +} + +Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { +  Constant *C; +  if (!match(Sel.getTrueValue(), m_Constant(C)) && +      !match(Sel.getFalseValue(), m_Constant(C))) +    return nullptr; + +  Instruction *ExtInst; +  if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && +      !match(Sel.getFalseValue(), m_Instruction(ExtInst))) +    return nullptr; + +  auto ExtOpcode = ExtInst->getOpcode(); +  if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) +    return nullptr; + +  // If we are extending from a boolean type or if we can create a select that +  // has the same size operands as its condition, try to narrow the select. +  Value *X = ExtInst->getOperand(0); +  Type *SmallType = X->getType(); +  Value *Cond = Sel.getCondition(); +  auto *Cmp = dyn_cast<CmpInst>(Cond); +  if (!SmallType->isIntOrIntVectorTy(1) && +      (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) +    return nullptr; + +  // If the constant is the same after truncation to the smaller type and +  // extension to the original type, we can narrow the select. +  Type *SelType = Sel.getType(); +  Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); +  Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); +  if (ExtC == C) { +    Value *TruncCVal = cast<Value>(TruncC); +    if (ExtInst == Sel.getFalseValue()) +      std::swap(X, TruncCVal); + +    // select Cond, (ext X), C --> ext(select Cond, X, C') +    // select Cond, C, (ext X) --> ext(select Cond, C', X) +    Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); +    return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); +  } + +  // If one arm of the select is the extend of the condition, replace that arm +  // with the extension of the appropriate known bool value. +  if (Cond == X) { +    if (ExtInst == Sel.getTrueValue()) { +      // select X, (sext X), C --> select X, -1, C +      // select X, (zext X), C --> select X,  1, C +      Constant *One = ConstantInt::getTrue(SmallType); +      Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); +      return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); +    } else { +      // select X, C, (sext X) --> select X, C, 0 +      // select X, C, (zext X) --> select X, C, 0 +      Constant *Zero = ConstantInt::getNullValue(SelType); +      return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); +    } +  } + +  return nullptr; +} + +/// Try to transform a vector select with a constant condition vector into a +/// shuffle for easier combining with other shuffles and insert/extract. +static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { +  Value *CondVal = SI.getCondition(); +  Constant *CondC; +  if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) +    return nullptr; + +  unsigned NumElts = CondVal->getType()->getVectorNumElements(); +  SmallVector<Constant *, 16> Mask; +  Mask.reserve(NumElts); +  Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); +  for (unsigned i = 0; i != NumElts; ++i) { +    Constant *Elt = CondC->getAggregateElement(i); +    if (!Elt) +      return nullptr; + +    if (Elt->isOneValue()) { +      // If the select condition element is true, choose from the 1st vector. +      Mask.push_back(ConstantInt::get(Int32Ty, i)); +    } else if (Elt->isNullValue()) { +      // If the select condition element is false, choose from the 2nd vector. +      Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); +    } else if (isa<UndefValue>(Elt)) { +      // Undef in a select condition (choose one of the operands) does not mean +      // the same thing as undef in a shuffle mask (any value is acceptable), so +      // give up. +      return nullptr; +    } else { +      // Bail out on a constant expression. +      return nullptr; +    } +  } + +  return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), +                               ConstantVector::get(Mask)); +} + +/// If we have a select of vectors with a scalar condition, try to convert that +/// to a vector select by splatting the condition. A splat may get folded with +/// other operations in IR and having all operands of a select be vector types +/// is likely better for vector codegen. +static Instruction *canonicalizeScalarSelectOfVecs( +    SelectInst &Sel, InstCombiner::BuilderTy &Builder) { +  Type *Ty = Sel.getType(); +  if (!Ty->isVectorTy()) +    return nullptr; + +  // We can replace a single-use extract with constant index. +  Value *Cond = Sel.getCondition(); +  if (!match(Cond, m_OneUse(m_ExtractElement(m_Value(), m_ConstantInt())))) +    return nullptr; + +  // select (extelt V, Index), T, F --> select (splat V, Index), T, F +  // Splatting the extracted condition reduces code (we could directly create a +  // splat shuffle of the source vector to eliminate the intermediate step). +  unsigned NumElts = Ty->getVectorNumElements(); +  Value *SplatCond = Builder.CreateVectorSplat(NumElts, Cond); +  Sel.setCondition(SplatCond); +  return &Sel; +} + +/// Reuse bitcasted operands between a compare and select: +/// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> +/// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) +static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, +                                          InstCombiner::BuilderTy &Builder) { +  Value *Cond = Sel.getCondition(); +  Value *TVal = Sel.getTrueValue(); +  Value *FVal = Sel.getFalseValue(); + +  CmpInst::Predicate Pred; +  Value *A, *B; +  if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) +    return nullptr; + +  // The select condition is a compare instruction. If the select's true/false +  // values are already the same as the compare operands, there's nothing to do. +  if (TVal == A || TVal == B || FVal == A || FVal == B) +    return nullptr; + +  Value *C, *D; +  if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) +    return nullptr; + +  // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) +  Value *TSrc, *FSrc; +  if (!match(TVal, m_BitCast(m_Value(TSrc))) || +      !match(FVal, m_BitCast(m_Value(FSrc)))) +    return nullptr; + +  // If the select true/false values are *different bitcasts* of the same source +  // operands, make the select operands the same as the compare operands and +  // cast the result. This is the canonical select form for min/max. +  Value *NewSel; +  if (TSrc == C && FSrc == D) { +    // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> +    // bitcast (select (cmp A, B), A, B) +    NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); +  } else if (TSrc == D && FSrc == C) { +    // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> +    // bitcast (select (cmp A, B), B, A) +    NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); +  } else { +    return nullptr; +  } +  return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); +} + +/// Try to eliminate select instructions that test the returned flag of cmpxchg +/// instructions. +/// +/// If a select instruction tests the returned flag of a cmpxchg instruction and +/// selects between the returned value of the cmpxchg instruction its compare +/// operand, the result of the select will always be equal to its false value. +/// For example: +/// +///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst +///   %1 = extractvalue { i64, i1 } %0, 1 +///   %2 = extractvalue { i64, i1 } %0, 0 +///   %3 = select i1 %1, i64 %compare, i64 %2 +///   ret i64 %3 +/// +/// The returned value of the cmpxchg instruction (%2) is the original value +/// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 +/// must have been equal to %compare. Thus, the result of the select is always +/// equal to %2, and the code can be simplified to: +/// +///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst +///   %1 = extractvalue { i64, i1 } %0, 0 +///   ret i64 %1 +/// +static Instruction *foldSelectCmpXchg(SelectInst &SI) { +  // A helper that determines if V is an extractvalue instruction whose +  // aggregate operand is a cmpxchg instruction and whose single index is equal +  // to I. If such conditions are true, the helper returns the cmpxchg +  // instruction; otherwise, a nullptr is returned. +  auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { +    auto *Extract = dyn_cast<ExtractValueInst>(V); +    if (!Extract) +      return nullptr; +    if (Extract->getIndices()[0] != I) +      return nullptr; +    return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); +  }; + +  // If the select has a single user, and this user is a select instruction that +  // we can simplify, skip the cmpxchg simplification for now. +  if (SI.hasOneUse()) +    if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) +      if (Select->getCondition() == SI.getCondition()) +        if (Select->getFalseValue() == SI.getTrueValue() || +            Select->getTrueValue() == SI.getFalseValue()) +          return nullptr; + +  // Ensure the select condition is the returned flag of a cmpxchg instruction. +  auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); +  if (!CmpXchg) +    return nullptr; + +  // Check the true value case: The true value of the select is the returned +  // value of the same cmpxchg used by the condition, and the false value is the +  // cmpxchg instruction's compare operand. +  if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) +    if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { +      SI.setTrueValue(SI.getFalseValue()); +      return &SI; +    } + +  // Check the false value case: The false value of the select is the returned +  // value of the same cmpxchg used by the condition, and the true value is the +  // cmpxchg instruction's compare operand. +  if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) +    if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { +      SI.setTrueValue(SI.getFalseValue()); +      return &SI; +    } + +  return nullptr; +} + +static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, +                                       Value *Y, +                                       InstCombiner::BuilderTy &Builder) { +  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); +  bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || +                    SPF == SelectPatternFlavor::SPF_UMAX; +  // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change +  // the constant value check to an assert. +  Value *A; +  const APInt *C1, *C2; +  if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && +      match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { +    // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 +    // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 +    Value *NewMinMax = createMinMax(Builder, SPF, A, +                                    ConstantInt::get(X->getType(), *C2 - *C1)); +    return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, +                                     ConstantInt::get(X->getType(), *C1)); +  } + +  if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && +      match(Y, m_APInt(C2)) && X->hasNUses(2)) { +    bool Overflow; +    APInt Diff = C2->ssub_ov(*C1, Overflow); +    if (!Overflow) { +      // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 +      // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 +      Value *NewMinMax = createMinMax(Builder, SPF, A, +                                      ConstantInt::get(X->getType(), Diff)); +      return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, +                                       ConstantInt::get(X->getType(), *C1)); +    } +  } + +  return nullptr; +} + +/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. +Instruction *InstCombiner::matchSAddSubSat(SelectInst &MinMax1) { +  Type *Ty = MinMax1.getType(); + +  // We are looking for a tree of: +  // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) +  // Where the min and max could be reversed +  Instruction *MinMax2; +  BinaryOperator *AddSub; +  const APInt *MinValue, *MaxValue; +  if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { +    if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) +      return nullptr; +  } else if (match(&MinMax1, +                   m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { +    if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) +      return nullptr; +  } else +    return nullptr; + +  // Check that the constants clamp a saturate, and that the new type would be +  // sensible to convert to. +  if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) +    return nullptr; +  // In what bitwidth can this be treated as saturating arithmetics? +  unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; +  // FIXME: This isn't quite right for vectors, but using the scalar type is a +  // good first approximation for what should be done there. +  if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) +    return nullptr; + +  // Also make sure that the number of uses is as expected. The "3"s are for the +  // the two items of min/max (the compare and the select). +  if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) +    return nullptr; + +  // Create the new type (which can be a vector type) +  Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); +  // Match the two extends from the add/sub +  Value *A, *B; +  if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) +    return nullptr; +  // And check the incoming values are of a type smaller than or equal to the +  // size of the saturation. Otherwise the higher bits can cause different +  // results. +  if (A->getType()->getScalarSizeInBits() > NewBitWidth || +      B->getType()->getScalarSizeInBits() > NewBitWidth) +    return nullptr; + +  Intrinsic::ID IntrinsicID; +  if (AddSub->getOpcode() == Instruction::Add) +    IntrinsicID = Intrinsic::sadd_sat; +  else if (AddSub->getOpcode() == Instruction::Sub) +    IntrinsicID = Intrinsic::ssub_sat; +  else +    return nullptr; + +  // Finally create and return the sat intrinsic, truncated to the new type +  Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); +  Value *AT = Builder.CreateSExt(A, NewTy); +  Value *BT = Builder.CreateSExt(B, NewTy); +  Value *Sat = Builder.CreateCall(F, {AT, BT}); +  return CastInst::Create(Instruction::SExt, Sat, Ty); +} + +/// Reduce a sequence of min/max with a common operand. +static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, +                                        Value *RHS, +                                        InstCombiner::BuilderTy &Builder) { +  assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); +  // TODO: Allow FP min/max with nnan/nsz. +  if (!LHS->getType()->isIntOrIntVectorTy()) +    return nullptr; + +  // Match 3 of the same min/max ops. Example: umin(umin(), umin()). +  Value *A, *B, *C, *D; +  SelectPatternResult L = matchSelectPattern(LHS, A, B); +  SelectPatternResult R = matchSelectPattern(RHS, C, D); +  if (SPF != L.Flavor || L.Flavor != R.Flavor) +    return nullptr; + +  // Look for a common operand. The use checks are different than usual because +  // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by +  // the select. +  Value *MinMaxOp = nullptr; +  Value *ThirdOp = nullptr; +  if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { +    // If the LHS is only used in this chain and the RHS is used outside of it, +    // reuse the RHS min/max because that will eliminate the LHS. +    if (D == A || C == A) { +      // min(min(a, b), min(c, a)) --> min(min(c, a), b) +      // min(min(a, b), min(a, d)) --> min(min(a, d), b) +      MinMaxOp = RHS; +      ThirdOp = B; +    } else if (D == B || C == B) { +      // min(min(a, b), min(c, b)) --> min(min(c, b), a) +      // min(min(a, b), min(b, d)) --> min(min(b, d), a) +      MinMaxOp = RHS; +      ThirdOp = A; +    } +  } else if (!RHS->hasNUsesOrMore(3)) { +    // Reuse the LHS. This will eliminate the RHS. +    if (D == A || D == B) { +      // min(min(a, b), min(c, a)) --> min(min(a, b), c) +      // min(min(a, b), min(c, b)) --> min(min(a, b), c) +      MinMaxOp = LHS; +      ThirdOp = C; +    } else if (C == A || C == B) { +      // min(min(a, b), min(b, d)) --> min(min(a, b), d) +      // min(min(a, b), min(c, b)) --> min(min(a, b), d) +      MinMaxOp = LHS; +      ThirdOp = D; +    } +  } +  if (!MinMaxOp || !ThirdOp) +    return nullptr; + +  CmpInst::Predicate P = getMinMaxPred(SPF); +  Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); +  return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); +} + +/// Try to reduce a rotate pattern that includes a compare and select into a +/// funnel shift intrinsic. Example: +/// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) +///              --> call llvm.fshl.i32(a, a, b) +static Instruction *foldSelectRotate(SelectInst &Sel) { +  // The false value of the select must be a rotate of the true value. +  Value *Or0, *Or1; +  if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) +    return nullptr; + +  Value *TVal = Sel.getTrueValue(); +  Value *SA0, *SA1; +  if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || +      !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) +    return nullptr; + +  auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); +  auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); +  if (ShiftOpcode0 == ShiftOpcode1) +    return nullptr; + +  // We have one of these patterns so far: +  // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) +  // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) +  // This must be a power-of-2 rotate for a bitmasking transform to be valid. +  unsigned Width = Sel.getType()->getScalarSizeInBits(); +  if (!isPowerOf2_32(Width)) +    return nullptr; + +  // Check the shift amounts to see if they are an opposite pair. +  Value *ShAmt; +  if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) +    ShAmt = SA0; +  else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) +    ShAmt = SA1; +  else +    return nullptr; + +  // Finally, see if the select is filtering out a shift-by-zero. +  Value *Cond = Sel.getCondition(); +  ICmpInst::Predicate Pred; +  if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || +      Pred != ICmpInst::ICMP_EQ) +    return nullptr; + +  // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. +  // Convert to funnel shift intrinsic. +  bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || +                (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); +  Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; +  Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); +  return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); +} + +Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { +  Value *CondVal = SI.getCondition(); +  Value *TrueVal = SI.getTrueValue(); +  Value *FalseVal = SI.getFalseValue(); +  Type *SelType = SI.getType(); + +  // FIXME: Remove this workaround when freeze related patches are done. +  // For select with undef operand which feeds into an equality comparison, +  // don't simplify it so loop unswitch can know the equality comparison +  // may have an undef operand. This is a workaround for PR31652 caused by +  // descrepancy about branch on undef between LoopUnswitch and GVN. +  if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { +    if (llvm::any_of(SI.users(), [&](User *U) { +          ICmpInst *CI = dyn_cast<ICmpInst>(U); +          if (CI && CI->isEquality()) +            return true; +          return false; +        })) { +      return nullptr; +    } +  } + +  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, +                                    SQ.getWithInstruction(&SI))) +    return replaceInstUsesWith(SI, V); + +  if (Instruction *I = canonicalizeSelectToShuffle(SI)) +    return I; + +  if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, Builder)) +    return I; + +  // Canonicalize a one-use integer compare with a non-canonical predicate by +  // inverting the predicate and swapping the select operands. This matches a +  // compare canonicalization for conditional branches. +  // TODO: Should we do the same for FP compares? +  CmpInst::Predicate Pred; +  if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && +      !isCanonicalPredicate(Pred)) { +    // Swap true/false values and condition. +    CmpInst *Cond = cast<CmpInst>(CondVal); +    Cond->setPredicate(CmpInst::getInversePredicate(Pred)); +    SI.setOperand(1, FalseVal); +    SI.setOperand(2, TrueVal); +    SI.swapProfMetadata(); +    Worklist.Add(Cond); +    return &SI; +  } + +  if (SelType->isIntOrIntVectorTy(1) && +      TrueVal->getType() == CondVal->getType()) { +    if (match(TrueVal, m_One())) { +      // Change: A = select B, true, C --> A = or B, C +      return BinaryOperator::CreateOr(CondVal, FalseVal); +    } +    if (match(TrueVal, m_Zero())) { +      // Change: A = select B, false, C --> A = and !B, C +      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); +      return BinaryOperator::CreateAnd(NotCond, FalseVal); +    } +    if (match(FalseVal, m_Zero())) { +      // Change: A = select B, C, false --> A = and B, C +      return BinaryOperator::CreateAnd(CondVal, TrueVal); +    } +    if (match(FalseVal, m_One())) { +      // Change: A = select B, C, true --> A = or !B, C +      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); +      return BinaryOperator::CreateOr(NotCond, TrueVal); +    } + +    // select a, a, b  -> a | b +    // select a, b, a  -> a & b +    if (CondVal == TrueVal) +      return BinaryOperator::CreateOr(CondVal, FalseVal); +    if (CondVal == FalseVal) +      return BinaryOperator::CreateAnd(CondVal, TrueVal); + +    // select a, ~a, b -> (~a) & b +    // select a, b, ~a -> (~a) | b +    if (match(TrueVal, m_Not(m_Specific(CondVal)))) +      return BinaryOperator::CreateAnd(TrueVal, FalseVal); +    if (match(FalseVal, m_Not(m_Specific(CondVal)))) +      return BinaryOperator::CreateOr(TrueVal, FalseVal); +  } + +  // Selecting between two integer or vector splat integer constants? +  // +  // Note that we don't handle a scalar select of vectors: +  // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> +  // because that may need 3 instructions to splat the condition value: +  // extend, insertelement, shufflevector. +  if (SelType->isIntOrIntVectorTy() && +      CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { +    // select C, 1, 0 -> zext C to int +    if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) +      return new ZExtInst(CondVal, SelType); + +    // select C, -1, 0 -> sext C to int +    if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) +      return new SExtInst(CondVal, SelType); + +    // select C, 0, 1 -> zext !C to int +    if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { +      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); +      return new ZExtInst(NotCond, SelType); +    } + +    // select C, 0, -1 -> sext !C to int +    if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { +      Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); +      return new SExtInst(NotCond, SelType); +    } +  } + +  // See if we are selecting two values based on a comparison of the two values. +  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { +    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { +      // Canonicalize to use ordered comparisons by swapping the select +      // operands. +      // +      // e.g. +      // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X +      if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { +        FCmpInst::Predicate InvPred = FCI->getInversePredicate(); +        IRBuilder<>::FastMathFlagGuard FMFG(Builder); +        Builder.setFastMathFlags(FCI->getFastMathFlags()); +        Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, +                                            FCI->getName() + ".inv"); + +        return SelectInst::Create(NewCond, FalseVal, TrueVal, +                                  SI.getName() + ".p"); +      } + +      // NOTE: if we wanted to, this is where to detect MIN/MAX +    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ +      // Canonicalize to use ordered comparisons by swapping the select +      // operands. +      // +      // e.g. +      // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y +      if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { +        FCmpInst::Predicate InvPred = FCI->getInversePredicate(); +        IRBuilder<>::FastMathFlagGuard FMFG(Builder); +        Builder.setFastMathFlags(FCI->getFastMathFlags()); +        Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, +                                            FCI->getName() + ".inv"); + +        return SelectInst::Create(NewCond, FalseVal, TrueVal, +                                  SI.getName() + ".p"); +      } + +      // NOTE: if we wanted to, this is where to detect MIN/MAX +    } +  } + +  // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need +  // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We +  // also require nnan because we do not want to unintentionally change the +  // sign of a NaN value. +  // FIXME: These folds should test/propagate FMF from the select, not the +  //        fsub or fneg. +  // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) +  Instruction *FSub; +  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && +      match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && +      match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && +      (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { +    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); +    return replaceInstUsesWith(SI, Fabs); +  } +  // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X) +  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && +      match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && +      match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && +      (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { +    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); +    return replaceInstUsesWith(SI, Fabs); +  } +  // With nnan and nsz: +  // (X <  +/-0.0) ? -X : X --> fabs(X) +  // (X <= +/-0.0) ? -X : X --> fabs(X) +  Instruction *FNeg; +  if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && +      match(TrueVal, m_FNeg(m_Specific(FalseVal))) && +      match(TrueVal, m_Instruction(FNeg)) && +      FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && +      (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || +       Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { +    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); +    return replaceInstUsesWith(SI, Fabs); +  } +  // With nnan and nsz: +  // (X >  +/-0.0) ? X : -X --> fabs(X) +  // (X >= +/-0.0) ? X : -X --> fabs(X) +  if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && +      match(FalseVal, m_FNeg(m_Specific(TrueVal))) && +      match(FalseVal, m_Instruction(FNeg)) && +      FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && +      (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || +       Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { +    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); +    return replaceInstUsesWith(SI, Fabs); +  } + +  // See if we are selecting two values based on a comparison of the two values. +  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) +    if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) +      return Result; + +  if (Instruction *Add = foldAddSubSelect(SI, Builder)) +    return Add; + +  // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) +  auto *TI = dyn_cast<Instruction>(TrueVal); +  auto *FI = dyn_cast<Instruction>(FalseVal); +  if (TI && FI && TI->getOpcode() == FI->getOpcode()) +    if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) +      return IV; + +  if (Instruction *I = foldSelectExtConst(SI)) +    return I; + +  // See if we can fold the select into one of our operands. +  if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { +    if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) +      return FoldI; + +    Value *LHS, *RHS; +    Instruction::CastOps CastOp; +    SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); +    auto SPF = SPR.Flavor; +    if (SPF) { +      Value *LHS2, *RHS2; +      if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) +        if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, +                                          RHS2, SI, SPF, RHS)) +          return R; +      if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) +        if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, +                                          RHS2, SI, SPF, LHS)) +          return R; +      // TODO. +      // ABS(-X) -> ABS(X) +    } + +    if (SelectPatternResult::isMinOrMax(SPF)) { +      // Canonicalize so that +      // - type casts are outside select patterns. +      // - float clamp is transformed to min/max pattern + +      bool IsCastNeeded = LHS->getType() != SelType; +      Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); +      Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); +      if (IsCastNeeded || +          (LHS->getType()->isFPOrFPVectorTy() && +           ((CmpLHS != LHS && CmpLHS != RHS) || +            (CmpRHS != LHS && CmpRHS != RHS)))) { +        CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); + +        Value *Cmp; +        if (CmpInst::isIntPredicate(MinMaxPred)) { +          Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); +        } else { +          IRBuilder<>::FastMathFlagGuard FMFG(Builder); +          auto FMF = +              cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); +          Builder.setFastMathFlags(FMF); +          Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); +        } + +        Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); +        if (!IsCastNeeded) +          return replaceInstUsesWith(SI, NewSI); + +        Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); +        return replaceInstUsesWith(SI, NewCast); +      } + +      // MAX(~a, ~b) -> ~MIN(a, b) +      // MAX(~a, C)  -> ~MIN(a, ~C) +      // MIN(~a, ~b) -> ~MAX(a, b) +      // MIN(~a, C)  -> ~MAX(a, ~C) +      auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { +        Value *A; +        if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && +            !isFreeToInvert(A, A->hasOneUse()) && +            // Passing false to only consider m_Not and constants. +            isFreeToInvert(Y, false)) { +          Value *B = Builder.CreateNot(Y); +          Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), +                                          A, B); +          // Copy the profile metadata. +          if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { +            cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); +            // Swap the metadata if the operands are swapped. +            if (X == SI.getFalseValue() && Y == SI.getTrueValue()) +              cast<SelectInst>(NewMinMax)->swapProfMetadata(); +          } + +          return BinaryOperator::CreateNot(NewMinMax); +        } + +        return nullptr; +      }; + +      if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) +        return I; +      if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) +        return I; + +      if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) +        return I; + +      if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) +        return I; +      if (Instruction *I = matchSAddSubSat(SI)) +        return I; +    } +  } + +  // Canonicalize select of FP values where NaN and -0.0 are not valid as +  // minnum/maxnum intrinsics. +  if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { +    Value *X, *Y; +    if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) +      return replaceInstUsesWith( +          SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); + +    if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) +      return replaceInstUsesWith( +          SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); +  } + +  // See if we can fold the select into a phi node if the condition is a select. +  if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) +    // The true/false values have to be live in the PHI predecessor's blocks. +    if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && +        canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) +      if (Instruction *NV = foldOpIntoPhi(SI, PN)) +        return NV; + +  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { +    if (TrueSI->getCondition()->getType() == CondVal->getType()) { +      // select(C, select(C, a, b), c) -> select(C, a, c) +      if (TrueSI->getCondition() == CondVal) { +        if (SI.getTrueValue() == TrueSI->getTrueValue()) +          return nullptr; +        SI.setOperand(1, TrueSI->getTrueValue()); +        return &SI; +      } +      // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) +      // We choose this as normal form to enable folding on the And and shortening +      // paths for the values (this helps GetUnderlyingObjects() for example). +      if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { +        Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); +        SI.setOperand(0, And); +        SI.setOperand(1, TrueSI->getTrueValue()); +        return &SI; +      } +    } +  } +  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { +    if (FalseSI->getCondition()->getType() == CondVal->getType()) { +      // select(C, a, select(C, b, c)) -> select(C, a, c) +      if (FalseSI->getCondition() == CondVal) { +        if (SI.getFalseValue() == FalseSI->getFalseValue()) +          return nullptr; +        SI.setOperand(2, FalseSI->getFalseValue()); +        return &SI; +      } +      // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) +      if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { +        Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); +        SI.setOperand(0, Or); +        SI.setOperand(2, FalseSI->getFalseValue()); +        return &SI; +      } +    } +  } + +  auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { +    // The select might be preventing a division by 0. +    switch (BO->getOpcode()) { +    default: +      return true; +    case Instruction::SRem: +    case Instruction::URem: +    case Instruction::SDiv: +    case Instruction::UDiv: +      return false; +    } +  }; + +  // Try to simplify a binop sandwiched between 2 selects with the same +  // condition. +  // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) +  BinaryOperator *TrueBO; +  if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && +      canMergeSelectThroughBinop(TrueBO)) { +    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { +      if (TrueBOSI->getCondition() == CondVal) { +        TrueBO->setOperand(0, TrueBOSI->getTrueValue()); +        Worklist.Add(TrueBO); +        return &SI; +      } +    } +    if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { +      if (TrueBOSI->getCondition() == CondVal) { +        TrueBO->setOperand(1, TrueBOSI->getTrueValue()); +        Worklist.Add(TrueBO); +        return &SI; +      } +    } +  } + +  // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) +  BinaryOperator *FalseBO; +  if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && +      canMergeSelectThroughBinop(FalseBO)) { +    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { +      if (FalseBOSI->getCondition() == CondVal) { +        FalseBO->setOperand(0, FalseBOSI->getFalseValue()); +        Worklist.Add(FalseBO); +        return &SI; +      } +    } +    if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { +      if (FalseBOSI->getCondition() == CondVal) { +        FalseBO->setOperand(1, FalseBOSI->getFalseValue()); +        Worklist.Add(FalseBO); +        return &SI; +      } +    } +  } + +  Value *NotCond; +  if (match(CondVal, m_Not(m_Value(NotCond)))) { +    SI.setOperand(0, NotCond); +    SI.setOperand(1, FalseVal); +    SI.setOperand(2, TrueVal); +    SI.swapProfMetadata(); +    return &SI; +  } + +  if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { +    unsigned VWidth = VecTy->getNumElements(); +    APInt UndefElts(VWidth, 0); +    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); +    if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { +      if (V != &SI) +        return replaceInstUsesWith(SI, V); +      return &SI; +    } +  } + +  // If we can compute the condition, there's no need for a select. +  // Like the above fold, we are attempting to reduce compile-time cost by +  // putting this fold here with limitations rather than in InstSimplify. +  // The motivation for this call into value tracking is to take advantage of +  // the assumption cache, so make sure that is populated. +  if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { +    KnownBits Known(1); +    computeKnownBits(CondVal, Known, 0, &SI); +    if (Known.One.isOneValue()) +      return replaceInstUsesWith(SI, TrueVal); +    if (Known.Zero.isOneValue()) +      return replaceInstUsesWith(SI, FalseVal); +  } + +  if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) +    return BitCastSel; + +  // Simplify selects that test the returned flag of cmpxchg instructions. +  if (Instruction *Select = foldSelectCmpXchg(SI)) +    return Select; + +  if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) +    return Select; + +  if (Instruction *Rot = foldSelectRotate(SI)) +    return Rot; + +  return nullptr; +}  | 
