diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopRerollPass.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopRerollPass.cpp | 1699 | 
1 files changed, 1699 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp b/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp new file mode 100644 index 000000000000..96e2c2a3ac6b --- /dev/null +++ b/llvm/lib/Transforms/Scalar/LoopRerollPass.cpp @@ -0,0 +1,1699 @@ +//===- LoopReroll.cpp - Loop rerolling pass -------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass implements a simple loop reroller. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstdlib> +#include <iterator> +#include <map> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "loop-reroll" + +STATISTIC(NumRerolledLoops, "Number of rerolled loops"); + +static cl::opt<unsigned> +NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400), +                          cl::Hidden, +                          cl::desc("The maximum number of failures to tolerate" +                                   " during fuzzy matching. (default: 400)")); + +// This loop re-rolling transformation aims to transform loops like this: +// +// int foo(int a); +// void bar(int *x) { +//   for (int i = 0; i < 500; i += 3) { +//     foo(i); +//     foo(i+1); +//     foo(i+2); +//   } +// } +// +// into a loop like this: +// +// void bar(int *x) { +//   for (int i = 0; i < 500; ++i) +//     foo(i); +// } +// +// It does this by looking for loops that, besides the latch code, are composed +// of isomorphic DAGs of instructions, with each DAG rooted at some increment +// to the induction variable, and where each DAG is isomorphic to the DAG +// rooted at the induction variable (excepting the sub-DAGs which root the +// other induction-variable increments). In other words, we're looking for loop +// bodies of the form: +// +// %iv = phi [ (preheader, ...), (body, %iv.next) ] +// f(%iv) +// %iv.1 = add %iv, 1                <-- a root increment +// f(%iv.1) +// %iv.2 = add %iv, 2                <-- a root increment +// f(%iv.2) +// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment +// f(%iv.scale_m_1) +// ... +// %iv.next = add %iv, scale +// %cmp = icmp(%iv, ...) +// br %cmp, header, exit +// +// where each f(i) is a set of instructions that, collectively, are a function +// only of i (and other loop-invariant values). +// +// As a special case, we can also reroll loops like this: +// +// int foo(int); +// void bar(int *x) { +//   for (int i = 0; i < 500; ++i) { +//     x[3*i] = foo(0); +//     x[3*i+1] = foo(0); +//     x[3*i+2] = foo(0); +//   } +// } +// +// into this: +// +// void bar(int *x) { +//   for (int i = 0; i < 1500; ++i) +//     x[i] = foo(0); +// } +// +// in which case, we're looking for inputs like this: +// +// %iv = phi [ (preheader, ...), (body, %iv.next) ] +// %scaled.iv = mul %iv, scale +// f(%scaled.iv) +// %scaled.iv.1 = add %scaled.iv, 1 +// f(%scaled.iv.1) +// %scaled.iv.2 = add %scaled.iv, 2 +// f(%scaled.iv.2) +// %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 +// f(%scaled.iv.scale_m_1) +// ... +// %iv.next = add %iv, 1 +// %cmp = icmp(%iv, ...) +// br %cmp, header, exit + +namespace { + +  enum IterationLimits { +    /// The maximum number of iterations that we'll try and reroll. +    IL_MaxRerollIterations = 32, +    /// The bitvector index used by loop induction variables and other +    /// instructions that belong to all iterations. +    IL_All, +    IL_End +  }; + +  class LoopReroll : public LoopPass { +  public: +    static char ID; // Pass ID, replacement for typeid + +    LoopReroll() : LoopPass(ID) { +      initializeLoopRerollPass(*PassRegistry::getPassRegistry()); +    } + +    bool runOnLoop(Loop *L, LPPassManager &LPM) override; + +    void getAnalysisUsage(AnalysisUsage &AU) const override { +      AU.addRequired<TargetLibraryInfoWrapperPass>(); +      getLoopAnalysisUsage(AU); +    } + +  protected: +    AliasAnalysis *AA; +    LoopInfo *LI; +    ScalarEvolution *SE; +    TargetLibraryInfo *TLI; +    DominatorTree *DT; +    bool PreserveLCSSA; + +    using SmallInstructionVector = SmallVector<Instruction *, 16>; +    using SmallInstructionSet = SmallPtrSet<Instruction *, 16>; + +    // Map between induction variable and its increment +    DenseMap<Instruction *, int64_t> IVToIncMap; + +    // For loop with multiple induction variable, remember the one used only to +    // control the loop. +    Instruction *LoopControlIV; + +    // A chain of isomorphic instructions, identified by a single-use PHI +    // representing a reduction. Only the last value may be used outside the +    // loop. +    struct SimpleLoopReduction { +      SimpleLoopReduction(Instruction *P, Loop *L) : Instructions(1, P) { +        assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); +        add(L); +      } + +      bool valid() const { +        return Valid; +      } + +      Instruction *getPHI() const { +        assert(Valid && "Using invalid reduction"); +        return Instructions.front(); +      } + +      Instruction *getReducedValue() const { +        assert(Valid && "Using invalid reduction"); +        return Instructions.back(); +      } + +      Instruction *get(size_t i) const { +        assert(Valid && "Using invalid reduction"); +        return Instructions[i+1]; +      } + +      Instruction *operator [] (size_t i) const { return get(i); } + +      // The size, ignoring the initial PHI. +      size_t size() const { +        assert(Valid && "Using invalid reduction"); +        return Instructions.size()-1; +      } + +      using iterator = SmallInstructionVector::iterator; +      using const_iterator = SmallInstructionVector::const_iterator; + +      iterator begin() { +        assert(Valid && "Using invalid reduction"); +        return std::next(Instructions.begin()); +      } + +      const_iterator begin() const { +        assert(Valid && "Using invalid reduction"); +        return std::next(Instructions.begin()); +      } + +      iterator end() { return Instructions.end(); } +      const_iterator end() const { return Instructions.end(); } + +    protected: +      bool Valid = false; +      SmallInstructionVector Instructions; + +      void add(Loop *L); +    }; + +    // The set of all reductions, and state tracking of possible reductions +    // during loop instruction processing. +    struct ReductionTracker { +      using SmallReductionVector = SmallVector<SimpleLoopReduction, 16>; + +      // Add a new possible reduction. +      void addSLR(SimpleLoopReduction &SLR) { PossibleReds.push_back(SLR); } + +      // Setup to track possible reductions corresponding to the provided +      // rerolling scale. Only reductions with a number of non-PHI instructions +      // that is divisible by the scale are considered. Three instructions sets +      // are filled in: +      //   - A set of all possible instructions in eligible reductions. +      //   - A set of all PHIs in eligible reductions +      //   - A set of all reduced values (last instructions) in eligible +      //     reductions. +      void restrictToScale(uint64_t Scale, +                           SmallInstructionSet &PossibleRedSet, +                           SmallInstructionSet &PossibleRedPHISet, +                           SmallInstructionSet &PossibleRedLastSet) { +        PossibleRedIdx.clear(); +        PossibleRedIter.clear(); +        Reds.clear(); + +        for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) +          if (PossibleReds[i].size() % Scale == 0) { +            PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); +            PossibleRedPHISet.insert(PossibleReds[i].getPHI()); + +            PossibleRedSet.insert(PossibleReds[i].getPHI()); +            PossibleRedIdx[PossibleReds[i].getPHI()] = i; +            for (Instruction *J : PossibleReds[i]) { +              PossibleRedSet.insert(J); +              PossibleRedIdx[J] = i; +            } +          } +      } + +      // The functions below are used while processing the loop instructions. + +      // Are the two instructions both from reductions, and furthermore, from +      // the same reduction? +      bool isPairInSame(Instruction *J1, Instruction *J2) { +        DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); +        if (J1I != PossibleRedIdx.end()) { +          DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); +          if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) +            return true; +        } + +        return false; +      } + +      // The two provided instructions, the first from the base iteration, and +      // the second from iteration i, form a matched pair. If these are part of +      // a reduction, record that fact. +      void recordPair(Instruction *J1, Instruction *J2, unsigned i) { +        if (PossibleRedIdx.count(J1)) { +          assert(PossibleRedIdx.count(J2) && +                 "Recording reduction vs. non-reduction instruction?"); + +          PossibleRedIter[J1] = 0; +          PossibleRedIter[J2] = i; + +          int Idx = PossibleRedIdx[J1]; +          assert(Idx == PossibleRedIdx[J2] && +                 "Recording pair from different reductions?"); +          Reds.insert(Idx); +        } +      } + +      // The functions below can be called after we've finished processing all +      // instructions in the loop, and we know which reductions were selected. + +      bool validateSelected(); +      void replaceSelected(); + +    protected: +      // The vector of all possible reductions (for any scale). +      SmallReductionVector PossibleReds; + +      DenseMap<Instruction *, int> PossibleRedIdx; +      DenseMap<Instruction *, int> PossibleRedIter; +      DenseSet<int> Reds; +    }; + +    // A DAGRootSet models an induction variable being used in a rerollable +    // loop. For example, +    // +    //   x[i*3+0] = y1 +    //   x[i*3+1] = y2 +    //   x[i*3+2] = y3 +    // +    //   Base instruction -> i*3 +    //                    +---+----+ +    //                   /    |     \ +    //               ST[y1]  +1     +2  <-- Roots +    //                        |      | +    //                      ST[y2] ST[y3] +    // +    // There may be multiple DAGRoots, for example: +    // +    //   x[i*2+0] = ...   (1) +    //   x[i*2+1] = ...   (1) +    //   x[i*2+4] = ...   (2) +    //   x[i*2+5] = ...   (2) +    //   x[(i+1234)*2+5678] = ... (3) +    //   x[(i+1234)*2+5679] = ... (3) +    // +    // The loop will be rerolled by adding a new loop induction variable, +    // one for the Base instruction in each DAGRootSet. +    // +    struct DAGRootSet { +      Instruction *BaseInst; +      SmallInstructionVector Roots; + +      // The instructions between IV and BaseInst (but not including BaseInst). +      SmallInstructionSet SubsumedInsts; +    }; + +    // The set of all DAG roots, and state tracking of all roots +    // for a particular induction variable. +    struct DAGRootTracker { +      DAGRootTracker(LoopReroll *Parent, Loop *L, Instruction *IV, +                     ScalarEvolution *SE, AliasAnalysis *AA, +                     TargetLibraryInfo *TLI, DominatorTree *DT, LoopInfo *LI, +                     bool PreserveLCSSA, +                     DenseMap<Instruction *, int64_t> &IncrMap, +                     Instruction *LoopCtrlIV) +          : Parent(Parent), L(L), SE(SE), AA(AA), TLI(TLI), DT(DT), LI(LI), +            PreserveLCSSA(PreserveLCSSA), IV(IV), IVToIncMap(IncrMap), +            LoopControlIV(LoopCtrlIV) {} + +      /// Stage 1: Find all the DAG roots for the induction variable. +      bool findRoots(); + +      /// Stage 2: Validate if the found roots are valid. +      bool validate(ReductionTracker &Reductions); + +      /// Stage 3: Assuming validate() returned true, perform the +      /// replacement. +      /// @param BackedgeTakenCount The backedge-taken count of L. +      void replace(const SCEV *BackedgeTakenCount); + +    protected: +      using UsesTy = MapVector<Instruction *, BitVector>; + +      void findRootsRecursive(Instruction *IVU, +                              SmallInstructionSet SubsumedInsts); +      bool findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts); +      bool collectPossibleRoots(Instruction *Base, +                                std::map<int64_t,Instruction*> &Roots); +      bool validateRootSet(DAGRootSet &DRS); + +      bool collectUsedInstructions(SmallInstructionSet &PossibleRedSet); +      void collectInLoopUserSet(const SmallInstructionVector &Roots, +                                const SmallInstructionSet &Exclude, +                                const SmallInstructionSet &Final, +                                DenseSet<Instruction *> &Users); +      void collectInLoopUserSet(Instruction *Root, +                                const SmallInstructionSet &Exclude, +                                const SmallInstructionSet &Final, +                                DenseSet<Instruction *> &Users); + +      UsesTy::iterator nextInstr(int Val, UsesTy &In, +                                 const SmallInstructionSet &Exclude, +                                 UsesTy::iterator *StartI=nullptr); +      bool isBaseInst(Instruction *I); +      bool isRootInst(Instruction *I); +      bool instrDependsOn(Instruction *I, +                          UsesTy::iterator Start, +                          UsesTy::iterator End); +      void replaceIV(DAGRootSet &DRS, const SCEV *Start, const SCEV *IncrExpr); + +      LoopReroll *Parent; + +      // Members of Parent, replicated here for brevity. +      Loop *L; +      ScalarEvolution *SE; +      AliasAnalysis *AA; +      TargetLibraryInfo *TLI; +      DominatorTree *DT; +      LoopInfo *LI; +      bool PreserveLCSSA; + +      // The loop induction variable. +      Instruction *IV; + +      // Loop step amount. +      int64_t Inc; + +      // Loop reroll count; if Inc == 1, this records the scaling applied +      // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ; +      // If Inc is not 1, Scale = Inc. +      uint64_t Scale; + +      // The roots themselves. +      SmallVector<DAGRootSet,16> RootSets; + +      // All increment instructions for IV. +      SmallInstructionVector LoopIncs; + +      // Map of all instructions in the loop (in order) to the iterations +      // they are used in (or specially, IL_All for instructions +      // used in the loop increment mechanism). +      UsesTy Uses; + +      // Map between induction variable and its increment +      DenseMap<Instruction *, int64_t> &IVToIncMap; + +      Instruction *LoopControlIV; +    }; + +    // Check if it is a compare-like instruction whose user is a branch +    bool isCompareUsedByBranch(Instruction *I) { +      auto *TI = I->getParent()->getTerminator(); +      if (!isa<BranchInst>(TI) || !isa<CmpInst>(I)) +        return false; +      return I->hasOneUse() && TI->getOperand(0) == I; +    }; + +    bool isLoopControlIV(Loop *L, Instruction *IV); +    void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); +    void collectPossibleReductions(Loop *L, +           ReductionTracker &Reductions); +    bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, +                const SCEV *BackedgeTakenCount, ReductionTracker &Reductions); +  }; + +} // end anonymous namespace + +char LoopReroll::ID = 0; + +INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) + +Pass *llvm::createLoopRerollPass() { +  return new LoopReroll; +} + +// Returns true if the provided instruction is used outside the given loop. +// This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in +// non-loop blocks to be outside the loop. +static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { +  for (User *U : I->users()) { +    if (!L->contains(cast<Instruction>(U))) +      return true; +  } +  return false; +} + +// Check if an IV is only used to control the loop. There are two cases: +// 1. It only has one use which is loop increment, and the increment is only +// used by comparison and the PHI (could has sext with nsw in between), and the +// comparison is only used by branch. +// 2. It is used by loop increment and the comparison, the loop increment is +// only used by the PHI, and the comparison is used only by the branch. +bool LoopReroll::isLoopControlIV(Loop *L, Instruction *IV) { +  unsigned IVUses = IV->getNumUses(); +  if (IVUses != 2 && IVUses != 1) +    return false; + +  for (auto *User : IV->users()) { +    int32_t IncOrCmpUses = User->getNumUses(); +    bool IsCompInst = isCompareUsedByBranch(cast<Instruction>(User)); + +    // User can only have one or two uses. +    if (IncOrCmpUses != 2 && IncOrCmpUses != 1) +      return false; + +    // Case 1 +    if (IVUses == 1) { +      // The only user must be the loop increment. +      // The loop increment must have two uses. +      if (IsCompInst || IncOrCmpUses != 2) +        return false; +    } + +    // Case 2 +    if (IVUses == 2 && IncOrCmpUses != 1) +      return false; + +    // The users of the IV must be a binary operation or a comparison +    if (auto *BO = dyn_cast<BinaryOperator>(User)) { +      if (BO->getOpcode() == Instruction::Add) { +        // Loop Increment +        // User of Loop Increment should be either PHI or CMP +        for (auto *UU : User->users()) { +          if (PHINode *PN = dyn_cast<PHINode>(UU)) { +            if (PN != IV) +              return false; +          } +          // Must be a CMP or an ext (of a value with nsw) then CMP +          else { +            Instruction *UUser = dyn_cast<Instruction>(UU); +            // Skip SExt if we are extending an nsw value +            // TODO: Allow ZExt too +            if (BO->hasNoSignedWrap() && UUser && UUser->hasOneUse() && +                isa<SExtInst>(UUser)) +              UUser = dyn_cast<Instruction>(*(UUser->user_begin())); +            if (!isCompareUsedByBranch(UUser)) +              return false; +          } +        } +      } else +        return false; +      // Compare : can only have one use, and must be branch +    } else if (!IsCompInst) +      return false; +  } +  return true; +} + +// Collect the list of loop induction variables with respect to which it might +// be possible to reroll the loop. +void LoopReroll::collectPossibleIVs(Loop *L, +                                    SmallInstructionVector &PossibleIVs) { +  BasicBlock *Header = L->getHeader(); +  for (BasicBlock::iterator I = Header->begin(), +       IE = Header->getFirstInsertionPt(); I != IE; ++I) { +    if (!isa<PHINode>(I)) +      continue; +    if (!I->getType()->isIntegerTy() && !I->getType()->isPointerTy()) +      continue; + +    if (const SCEVAddRecExpr *PHISCEV = +            dyn_cast<SCEVAddRecExpr>(SE->getSCEV(&*I))) { +      if (PHISCEV->getLoop() != L) +        continue; +      if (!PHISCEV->isAffine()) +        continue; +      auto IncSCEV = dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE)); +      if (IncSCEV) { +        IVToIncMap[&*I] = IncSCEV->getValue()->getSExtValue(); +        LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << *PHISCEV +                          << "\n"); + +        if (isLoopControlIV(L, &*I)) { +          assert(!LoopControlIV && "Found two loop control only IV"); +          LoopControlIV = &(*I); +          LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I +                            << " = " << *PHISCEV << "\n"); +        } else +          PossibleIVs.push_back(&*I); +      } +    } +  } +} + +// Add the remainder of the reduction-variable chain to the instruction vector +// (the initial PHINode has already been added). If successful, the object is +// marked as valid. +void LoopReroll::SimpleLoopReduction::add(Loop *L) { +  assert(!Valid && "Cannot add to an already-valid chain"); + +  // The reduction variable must be a chain of single-use instructions +  // (including the PHI), except for the last value (which is used by the PHI +  // and also outside the loop). +  Instruction *C = Instructions.front(); +  if (C->user_empty()) +    return; + +  do { +    C = cast<Instruction>(*C->user_begin()); +    if (C->hasOneUse()) { +      if (!C->isBinaryOp()) +        return; + +      if (!(isa<PHINode>(Instructions.back()) || +            C->isSameOperationAs(Instructions.back()))) +        return; + +      Instructions.push_back(C); +    } +  } while (C->hasOneUse()); + +  if (Instructions.size() < 2 || +      !C->isSameOperationAs(Instructions.back()) || +      C->use_empty()) +    return; + +  // C is now the (potential) last instruction in the reduction chain. +  for (User *U : C->users()) { +    // The only in-loop user can be the initial PHI. +    if (L->contains(cast<Instruction>(U))) +      if (cast<Instruction>(U) != Instructions.front()) +        return; +  } + +  Instructions.push_back(C); +  Valid = true; +} + +// Collect the vector of possible reduction variables. +void LoopReroll::collectPossibleReductions(Loop *L, +  ReductionTracker &Reductions) { +  BasicBlock *Header = L->getHeader(); +  for (BasicBlock::iterator I = Header->begin(), +       IE = Header->getFirstInsertionPt(); I != IE; ++I) { +    if (!isa<PHINode>(I)) +      continue; +    if (!I->getType()->isSingleValueType()) +      continue; + +    SimpleLoopReduction SLR(&*I, L); +    if (!SLR.valid()) +      continue; + +    LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " +                      << SLR.size() << " chained instructions)\n"); +    Reductions.addSLR(SLR); +  } +} + +// Collect the set of all users of the provided root instruction. This set of +// users contains not only the direct users of the root instruction, but also +// all users of those users, and so on. There are two exceptions: +// +//   1. Instructions in the set of excluded instructions are never added to the +//   use set (even if they are users). This is used, for example, to exclude +//   including root increments in the use set of the primary IV. +// +//   2. Instructions in the set of final instructions are added to the use set +//   if they are users, but their users are not added. This is used, for +//   example, to prevent a reduction update from forcing all later reduction +//   updates into the use set. +void LoopReroll::DAGRootTracker::collectInLoopUserSet( +  Instruction *Root, const SmallInstructionSet &Exclude, +  const SmallInstructionSet &Final, +  DenseSet<Instruction *> &Users) { +  SmallInstructionVector Queue(1, Root); +  while (!Queue.empty()) { +    Instruction *I = Queue.pop_back_val(); +    if (!Users.insert(I).second) +      continue; + +    if (!Final.count(I)) +      for (Use &U : I->uses()) { +        Instruction *User = cast<Instruction>(U.getUser()); +        if (PHINode *PN = dyn_cast<PHINode>(User)) { +          // Ignore "wrap-around" uses to PHIs of this loop's header. +          if (PN->getIncomingBlock(U) == L->getHeader()) +            continue; +        } + +        if (L->contains(User) && !Exclude.count(User)) { +          Queue.push_back(User); +        } +      } + +    // We also want to collect single-user "feeder" values. +    for (User::op_iterator OI = I->op_begin(), +         OIE = I->op_end(); OI != OIE; ++OI) { +      if (Instruction *Op = dyn_cast<Instruction>(*OI)) +        if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && +            !Final.count(Op)) +          Queue.push_back(Op); +    } +  } +} + +// Collect all of the users of all of the provided root instructions (combined +// into a single set). +void LoopReroll::DAGRootTracker::collectInLoopUserSet( +  const SmallInstructionVector &Roots, +  const SmallInstructionSet &Exclude, +  const SmallInstructionSet &Final, +  DenseSet<Instruction *> &Users) { +  for (Instruction *Root : Roots) +    collectInLoopUserSet(Root, Exclude, Final, Users); +} + +static bool isUnorderedLoadStore(Instruction *I) { +  if (LoadInst *LI = dyn_cast<LoadInst>(I)) +    return LI->isUnordered(); +  if (StoreInst *SI = dyn_cast<StoreInst>(I)) +    return SI->isUnordered(); +  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) +    return !MI->isVolatile(); +  return false; +} + +/// Return true if IVU is a "simple" arithmetic operation. +/// This is used for narrowing the search space for DAGRoots; only arithmetic +/// and GEPs can be part of a DAGRoot. +static bool isSimpleArithmeticOp(User *IVU) { +  if (Instruction *I = dyn_cast<Instruction>(IVU)) { +    switch (I->getOpcode()) { +    default: return false; +    case Instruction::Add: +    case Instruction::Sub: +    case Instruction::Mul: +    case Instruction::Shl: +    case Instruction::AShr: +    case Instruction::LShr: +    case Instruction::GetElementPtr: +    case Instruction::Trunc: +    case Instruction::ZExt: +    case Instruction::SExt: +      return true; +    } +  } +  return false; +} + +static bool isLoopIncrement(User *U, Instruction *IV) { +  BinaryOperator *BO = dyn_cast<BinaryOperator>(U); + +  if ((BO && BO->getOpcode() != Instruction::Add) || +      (!BO && !isa<GetElementPtrInst>(U))) +    return false; + +  for (auto *UU : U->users()) { +    PHINode *PN = dyn_cast<PHINode>(UU); +    if (PN && PN == IV) +      return true; +  } +  return false; +} + +bool LoopReroll::DAGRootTracker:: +collectPossibleRoots(Instruction *Base, std::map<int64_t,Instruction*> &Roots) { +  SmallInstructionVector BaseUsers; + +  for (auto *I : Base->users()) { +    ConstantInt *CI = nullptr; + +    if (isLoopIncrement(I, IV)) { +      LoopIncs.push_back(cast<Instruction>(I)); +      continue; +    } + +    // The root nodes must be either GEPs, ORs or ADDs. +    if (auto *BO = dyn_cast<BinaryOperator>(I)) { +      if (BO->getOpcode() == Instruction::Add || +          BO->getOpcode() == Instruction::Or) +        CI = dyn_cast<ConstantInt>(BO->getOperand(1)); +    } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { +      Value *LastOperand = GEP->getOperand(GEP->getNumOperands()-1); +      CI = dyn_cast<ConstantInt>(LastOperand); +    } + +    if (!CI) { +      if (Instruction *II = dyn_cast<Instruction>(I)) { +        BaseUsers.push_back(II); +        continue; +      } else { +        LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I +                          << "\n"); +        return false; +      } +    } + +    int64_t V = std::abs(CI->getValue().getSExtValue()); +    if (Roots.find(V) != Roots.end()) +      // No duplicates, please. +      return false; + +    Roots[V] = cast<Instruction>(I); +  } + +  // Make sure we have at least two roots. +  if (Roots.empty() || (Roots.size() == 1 && BaseUsers.empty())) +    return false; + +  // If we found non-loop-inc, non-root users of Base, assume they are +  // for the zeroth root index. This is because "add %a, 0" gets optimized +  // away. +  if (BaseUsers.size()) { +    if (Roots.find(0) != Roots.end()) { +      LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n"); +      return false; +    } +    Roots[0] = Base; +  } + +  // Calculate the number of users of the base, or lowest indexed, iteration. +  unsigned NumBaseUses = BaseUsers.size(); +  if (NumBaseUses == 0) +    NumBaseUses = Roots.begin()->second->getNumUses(); + +  // Check that every node has the same number of users. +  for (auto &KV : Roots) { +    if (KV.first == 0) +      continue; +    if (!KV.second->hasNUses(NumBaseUses)) { +      LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: " +                        << "#Base=" << NumBaseUses +                        << ", #Root=" << KV.second->getNumUses() << "\n"); +      return false; +    } +  } + +  return true; +} + +void LoopReroll::DAGRootTracker:: +findRootsRecursive(Instruction *I, SmallInstructionSet SubsumedInsts) { +  // Does the user look like it could be part of a root set? +  // All its users must be simple arithmetic ops. +  if (I->hasNUsesOrMore(IL_MaxRerollIterations + 1)) +    return; + +  if (I != IV && findRootsBase(I, SubsumedInsts)) +    return; + +  SubsumedInsts.insert(I); + +  for (User *V : I->users()) { +    Instruction *I = cast<Instruction>(V); +    if (is_contained(LoopIncs, I)) +      continue; + +    if (!isSimpleArithmeticOp(I)) +      continue; + +    // The recursive call makes a copy of SubsumedInsts. +    findRootsRecursive(I, SubsumedInsts); +  } +} + +bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet &DRS) { +  if (DRS.Roots.empty()) +    return false; + +  // Consider a DAGRootSet with N-1 roots (so N different values including +  //   BaseInst). +  // Define d = Roots[0] - BaseInst, which should be the same as +  //   Roots[I] - Roots[I-1] for all I in [1..N). +  // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the +  //   loop iteration J. +  // +  // Now, For the loop iterations to be consecutive: +  //   D = d * N +  const auto *ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); +  if (!ADR) +    return false; + +  // Check that the first root is evenly spaced. +  unsigned N = DRS.Roots.size() + 1; +  const SCEV *StepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), ADR); +  const SCEV *ScaleSCEV = SE->getConstant(StepSCEV->getType(), N); +  if (ADR->getStepRecurrence(*SE) != SE->getMulExpr(StepSCEV, ScaleSCEV)) +    return false; + +  // Check that the remainling roots are evenly spaced. +  for (unsigned i = 1; i < N - 1; ++i) { +    const SCEV *NewStepSCEV = SE->getMinusSCEV(SE->getSCEV(DRS.Roots[i]), +                                               SE->getSCEV(DRS.Roots[i-1])); +    if (NewStepSCEV != StepSCEV) +      return false; +  } + +  return true; +} + +bool LoopReroll::DAGRootTracker:: +findRootsBase(Instruction *IVU, SmallInstructionSet SubsumedInsts) { +  // The base of a RootSet must be an AddRec, so it can be erased. +  const auto *IVU_ADR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IVU)); +  if (!IVU_ADR || IVU_ADR->getLoop() != L) +    return false; + +  std::map<int64_t, Instruction*> V; +  if (!collectPossibleRoots(IVU, V)) +    return false; + +  // If we didn't get a root for index zero, then IVU must be +  // subsumed. +  if (V.find(0) == V.end()) +    SubsumedInsts.insert(IVU); + +  // Partition the vector into monotonically increasing indexes. +  DAGRootSet DRS; +  DRS.BaseInst = nullptr; + +  SmallVector<DAGRootSet, 16> PotentialRootSets; + +  for (auto &KV : V) { +    if (!DRS.BaseInst) { +      DRS.BaseInst = KV.second; +      DRS.SubsumedInsts = SubsumedInsts; +    } else if (DRS.Roots.empty()) { +      DRS.Roots.push_back(KV.second); +    } else if (V.find(KV.first - 1) != V.end()) { +      DRS.Roots.push_back(KV.second); +    } else { +      // Linear sequence terminated. +      if (!validateRootSet(DRS)) +        return false; + +      // Construct a new DAGRootSet with the next sequence. +      PotentialRootSets.push_back(DRS); +      DRS.BaseInst = KV.second; +      DRS.Roots.clear(); +    } +  } + +  if (!validateRootSet(DRS)) +    return false; + +  PotentialRootSets.push_back(DRS); + +  RootSets.append(PotentialRootSets.begin(), PotentialRootSets.end()); + +  return true; +} + +bool LoopReroll::DAGRootTracker::findRoots() { +  Inc = IVToIncMap[IV]; + +  assert(RootSets.empty() && "Unclean state!"); +  if (std::abs(Inc) == 1) { +    for (auto *IVU : IV->users()) { +      if (isLoopIncrement(IVU, IV)) +        LoopIncs.push_back(cast<Instruction>(IVU)); +    } +    findRootsRecursive(IV, SmallInstructionSet()); +    LoopIncs.push_back(IV); +  } else { +    if (!findRootsBase(IV, SmallInstructionSet())) +      return false; +  } + +  // Ensure all sets have the same size. +  if (RootSets.empty()) { +    LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n"); +    return false; +  } +  for (auto &V : RootSets) { +    if (V.Roots.empty() || V.Roots.size() != RootSets[0].Roots.size()) { +      LLVM_DEBUG( +          dbgs() +          << "LRR: Aborting because not all root sets have the same size\n"); +      return false; +    } +  } + +  Scale = RootSets[0].Roots.size() + 1; + +  if (Scale > IL_MaxRerollIterations) { +    LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. " +                      << "#Found=" << Scale +                      << ", #Max=" << IL_MaxRerollIterations << "\n"); +    return false; +  } + +  LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale +                    << "\n"); + +  return true; +} + +bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet &PossibleRedSet) { +  // Populate the MapVector with all instructions in the block, in order first, +  // so we can iterate over the contents later in perfect order. +  for (auto &I : *L->getHeader()) { +    Uses[&I].resize(IL_End); +  } + +  SmallInstructionSet Exclude; +  for (auto &DRS : RootSets) { +    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); +    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); +    Exclude.insert(DRS.BaseInst); +  } +  Exclude.insert(LoopIncs.begin(), LoopIncs.end()); + +  for (auto &DRS : RootSets) { +    DenseSet<Instruction*> VBase; +    collectInLoopUserSet(DRS.BaseInst, Exclude, PossibleRedSet, VBase); +    for (auto *I : VBase) { +      Uses[I].set(0); +    } + +    unsigned Idx = 1; +    for (auto *Root : DRS.Roots) { +      DenseSet<Instruction*> V; +      collectInLoopUserSet(Root, Exclude, PossibleRedSet, V); + +      // While we're here, check the use sets are the same size. +      if (V.size() != VBase.size()) { +        LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n"); +        return false; +      } + +      for (auto *I : V) { +        Uses[I].set(Idx); +      } +      ++Idx; +    } + +    // Make sure our subsumed instructions are remembered too. +    for (auto *I : DRS.SubsumedInsts) { +      Uses[I].set(IL_All); +    } +  } + +  // Make sure the loop increments are also accounted for. + +  Exclude.clear(); +  for (auto &DRS : RootSets) { +    Exclude.insert(DRS.Roots.begin(), DRS.Roots.end()); +    Exclude.insert(DRS.SubsumedInsts.begin(), DRS.SubsumedInsts.end()); +    Exclude.insert(DRS.BaseInst); +  } + +  DenseSet<Instruction*> V; +  collectInLoopUserSet(LoopIncs, Exclude, PossibleRedSet, V); +  for (auto *I : V) { +    Uses[I].set(IL_All); +  } + +  return true; +} + +/// Get the next instruction in "In" that is a member of set Val. +/// Start searching from StartI, and do not return anything in Exclude. +/// If StartI is not given, start from In.begin(). +LoopReroll::DAGRootTracker::UsesTy::iterator +LoopReroll::DAGRootTracker::nextInstr(int Val, UsesTy &In, +                                      const SmallInstructionSet &Exclude, +                                      UsesTy::iterator *StartI) { +  UsesTy::iterator I = StartI ? *StartI : In.begin(); +  while (I != In.end() && (I->second.test(Val) == 0 || +                           Exclude.count(I->first) != 0)) +    ++I; +  return I; +} + +bool LoopReroll::DAGRootTracker::isBaseInst(Instruction *I) { +  for (auto &DRS : RootSets) { +    if (DRS.BaseInst == I) +      return true; +  } +  return false; +} + +bool LoopReroll::DAGRootTracker::isRootInst(Instruction *I) { +  for (auto &DRS : RootSets) { +    if (is_contained(DRS.Roots, I)) +      return true; +  } +  return false; +} + +/// Return true if instruction I depends on any instruction between +/// Start and End. +bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction *I, +                                                UsesTy::iterator Start, +                                                UsesTy::iterator End) { +  for (auto *U : I->users()) { +    for (auto It = Start; It != End; ++It) +      if (U == It->first) +        return true; +  } +  return false; +} + +static bool isIgnorableInst(const Instruction *I) { +  if (isa<DbgInfoIntrinsic>(I)) +    return true; +  const IntrinsicInst* II = dyn_cast<IntrinsicInst>(I); +  if (!II) +    return false; +  switch (II->getIntrinsicID()) { +    default: +      return false; +    case Intrinsic::annotation: +    case Intrinsic::ptr_annotation: +    case Intrinsic::var_annotation: +    // TODO: the following intrinsics may also be whitelisted: +    //   lifetime_start, lifetime_end, invariant_start, invariant_end +      return true; +  } +  return false; +} + +bool LoopReroll::DAGRootTracker::validate(ReductionTracker &Reductions) { +  // We now need to check for equivalence of the use graph of each root with +  // that of the primary induction variable (excluding the roots). Our goal +  // here is not to solve the full graph isomorphism problem, but rather to +  // catch common cases without a lot of work. As a result, we will assume +  // that the relative order of the instructions in each unrolled iteration +  // is the same (although we will not make an assumption about how the +  // different iterations are intermixed). Note that while the order must be +  // the same, the instructions may not be in the same basic block. + +  // An array of just the possible reductions for this scale factor. When we +  // collect the set of all users of some root instructions, these reduction +  // instructions are treated as 'final' (their uses are not considered). +  // This is important because we don't want the root use set to search down +  // the reduction chain. +  SmallInstructionSet PossibleRedSet; +  SmallInstructionSet PossibleRedLastSet; +  SmallInstructionSet PossibleRedPHISet; +  Reductions.restrictToScale(Scale, PossibleRedSet, +                             PossibleRedPHISet, PossibleRedLastSet); + +  // Populate "Uses" with where each instruction is used. +  if (!collectUsedInstructions(PossibleRedSet)) +    return false; + +  // Make sure we mark the reduction PHIs as used in all iterations. +  for (auto *I : PossibleRedPHISet) { +    Uses[I].set(IL_All); +  } + +  // Make sure we mark loop-control-only PHIs as used in all iterations. See +  // comment above LoopReroll::isLoopControlIV for more information. +  BasicBlock *Header = L->getHeader(); +  if (LoopControlIV && LoopControlIV != IV) { +    for (auto *U : LoopControlIV->users()) { +      Instruction *IVUser = dyn_cast<Instruction>(U); +      // IVUser could be loop increment or compare +      Uses[IVUser].set(IL_All); +      for (auto *UU : IVUser->users()) { +        Instruction *UUser = dyn_cast<Instruction>(UU); +        // UUser could be compare, PHI or branch +        Uses[UUser].set(IL_All); +        // Skip SExt +        if (isa<SExtInst>(UUser)) { +          UUser = dyn_cast<Instruction>(*(UUser->user_begin())); +          Uses[UUser].set(IL_All); +        } +        // Is UUser a compare instruction? +        if (UU->hasOneUse()) { +          Instruction *BI = dyn_cast<BranchInst>(*UUser->user_begin()); +          if (BI == cast<BranchInst>(Header->getTerminator())) +            Uses[BI].set(IL_All); +        } +      } +    } +  } + +  // Make sure all instructions in the loop are in one and only one +  // set. +  for (auto &KV : Uses) { +    if (KV.second.count() != 1 && !isIgnorableInst(KV.first)) { +      LLVM_DEBUG( +          dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: " +                 << *KV.first << " (#uses=" << KV.second.count() << ")\n"); +      return false; +    } +  } + +  LLVM_DEBUG(for (auto &KV +                  : Uses) { +    dbgs() << "LRR: " << KV.second.find_first() << "\t" << *KV.first << "\n"; +  }); + +  for (unsigned Iter = 1; Iter < Scale; ++Iter) { +    // In addition to regular aliasing information, we need to look for +    // instructions from later (future) iterations that have side effects +    // preventing us from reordering them past other instructions with side +    // effects. +    bool FutureSideEffects = false; +    AliasSetTracker AST(*AA); +    // The map between instructions in f(%iv.(i+1)) and f(%iv). +    DenseMap<Value *, Value *> BaseMap; + +    // Compare iteration Iter to the base. +    SmallInstructionSet Visited; +    auto BaseIt = nextInstr(0, Uses, Visited); +    auto RootIt = nextInstr(Iter, Uses, Visited); +    auto LastRootIt = Uses.begin(); + +    while (BaseIt != Uses.end() && RootIt != Uses.end()) { +      Instruction *BaseInst = BaseIt->first; +      Instruction *RootInst = RootIt->first; + +      // Skip over the IV or root instructions; only match their users. +      bool Continue = false; +      if (isBaseInst(BaseInst)) { +        Visited.insert(BaseInst); +        BaseIt = nextInstr(0, Uses, Visited); +        Continue = true; +      } +      if (isRootInst(RootInst)) { +        LastRootIt = RootIt; +        Visited.insert(RootInst); +        RootIt = nextInstr(Iter, Uses, Visited); +        Continue = true; +      } +      if (Continue) continue; + +      if (!BaseInst->isSameOperationAs(RootInst)) { +        // Last chance saloon. We don't try and solve the full isomorphism +        // problem, but try and at least catch the case where two instructions +        // *of different types* are round the wrong way. We won't be able to +        // efficiently tell, given two ADD instructions, which way around we +        // should match them, but given an ADD and a SUB, we can at least infer +        // which one is which. +        // +        // This should allow us to deal with a greater subset of the isomorphism +        // problem. It does however change a linear algorithm into a quadratic +        // one, so limit the number of probes we do. +        auto TryIt = RootIt; +        unsigned N = NumToleratedFailedMatches; +        while (TryIt != Uses.end() && +               !BaseInst->isSameOperationAs(TryIt->first) && +               N--) { +          ++TryIt; +          TryIt = nextInstr(Iter, Uses, Visited, &TryIt); +        } + +        if (TryIt == Uses.end() || TryIt == RootIt || +            instrDependsOn(TryIt->first, RootIt, TryIt)) { +          LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " +                            << *BaseInst << " vs. " << *RootInst << "\n"); +          return false; +        } + +        RootIt = TryIt; +        RootInst = TryIt->first; +      } + +      // All instructions between the last root and this root +      // may belong to some other iteration. If they belong to a +      // future iteration, then they're dangerous to alias with. +      // +      // Note that because we allow a limited amount of flexibility in the order +      // that we visit nodes, LastRootIt might be *before* RootIt, in which +      // case we've already checked this set of instructions so we shouldn't +      // do anything. +      for (; LastRootIt < RootIt; ++LastRootIt) { +        Instruction *I = LastRootIt->first; +        if (LastRootIt->second.find_first() < (int)Iter) +          continue; +        if (I->mayWriteToMemory()) +          AST.add(I); +        // Note: This is specifically guarded by a check on isa<PHINode>, +        // which while a valid (somewhat arbitrary) micro-optimization, is +        // needed because otherwise isSafeToSpeculativelyExecute returns +        // false on PHI nodes. +        if (!isa<PHINode>(I) && !isUnorderedLoadStore(I) && +            !isSafeToSpeculativelyExecute(I)) +          // Intervening instructions cause side effects. +          FutureSideEffects = true; +      } + +      // Make sure that this instruction, which is in the use set of this +      // root instruction, does not also belong to the base set or the set of +      // some other root instruction. +      if (RootIt->second.count() > 1) { +        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst +                          << " vs. " << *RootInst << " (prev. case overlap)\n"); +        return false; +      } + +      // Make sure that we don't alias with any instruction in the alias set +      // tracker. If we do, then we depend on a future iteration, and we +      // can't reroll. +      if (RootInst->mayReadFromMemory()) +        for (auto &K : AST) { +          if (K.aliasesUnknownInst(RootInst, *AA)) { +            LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " +                              << *BaseInst << " vs. " << *RootInst +                              << " (depends on future store)\n"); +            return false; +          } +        } + +      // If we've past an instruction from a future iteration that may have +      // side effects, and this instruction might also, then we can't reorder +      // them, and this matching fails. As an exception, we allow the alias +      // set tracker to handle regular (unordered) load/store dependencies. +      if (FutureSideEffects && ((!isUnorderedLoadStore(BaseInst) && +                                 !isSafeToSpeculativelyExecute(BaseInst)) || +                                (!isUnorderedLoadStore(RootInst) && +                                 !isSafeToSpeculativelyExecute(RootInst)))) { +        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst +                          << " vs. " << *RootInst +                          << " (side effects prevent reordering)\n"); +        return false; +      } + +      // For instructions that are part of a reduction, if the operation is +      // associative, then don't bother matching the operands (because we +      // already know that the instructions are isomorphic, and the order +      // within the iteration does not matter). For non-associative reductions, +      // we do need to match the operands, because we need to reject +      // out-of-order instructions within an iteration! +      // For example (assume floating-point addition), we need to reject this: +      //   x += a[i]; x += b[i]; +      //   x += a[i+1]; x += b[i+1]; +      //   x += b[i+2]; x += a[i+2]; +      bool InReduction = Reductions.isPairInSame(BaseInst, RootInst); + +      if (!(InReduction && BaseInst->isAssociative())) { +        bool Swapped = false, SomeOpMatched = false; +        for (unsigned j = 0; j < BaseInst->getNumOperands(); ++j) { +          Value *Op2 = RootInst->getOperand(j); + +          // If this is part of a reduction (and the operation is not +          // associatve), then we match all operands, but not those that are +          // part of the reduction. +          if (InReduction) +            if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) +              if (Reductions.isPairInSame(RootInst, Op2I)) +                continue; + +          DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); +          if (BMI != BaseMap.end()) { +            Op2 = BMI->second; +          } else { +            for (auto &DRS : RootSets) { +              if (DRS.Roots[Iter-1] == (Instruction*) Op2) { +                Op2 = DRS.BaseInst; +                break; +              } +            } +          } + +          if (BaseInst->getOperand(Swapped ? unsigned(!j) : j) != Op2) { +            // If we've not already decided to swap the matched operands, and +            // we've not already matched our first operand (note that we could +            // have skipped matching the first operand because it is part of a +            // reduction above), and the instruction is commutative, then try +            // the swapped match. +            if (!Swapped && BaseInst->isCommutative() && !SomeOpMatched && +                BaseInst->getOperand(!j) == Op2) { +              Swapped = true; +            } else { +              LLVM_DEBUG(dbgs() +                         << "LRR: iteration root match failed at " << *BaseInst +                         << " vs. " << *RootInst << " (operand " << j << ")\n"); +              return false; +            } +          } + +          SomeOpMatched = true; +        } +      } + +      if ((!PossibleRedLastSet.count(BaseInst) && +           hasUsesOutsideLoop(BaseInst, L)) || +          (!PossibleRedLastSet.count(RootInst) && +           hasUsesOutsideLoop(RootInst, L))) { +        LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst +                          << " vs. " << *RootInst << " (uses outside loop)\n"); +        return false; +      } + +      Reductions.recordPair(BaseInst, RootInst, Iter); +      BaseMap.insert(std::make_pair(RootInst, BaseInst)); + +      LastRootIt = RootIt; +      Visited.insert(BaseInst); +      Visited.insert(RootInst); +      BaseIt = nextInstr(0, Uses, Visited); +      RootIt = nextInstr(Iter, Uses, Visited); +    } +    assert(BaseIt == Uses.end() && RootIt == Uses.end() && +           "Mismatched set sizes!"); +  } + +  LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV +                    << "\n"); + +  return true; +} + +void LoopReroll::DAGRootTracker::replace(const SCEV *BackedgeTakenCount) { +  BasicBlock *Header = L->getHeader(); + +  // Compute the start and increment for each BaseInst before we start erasing +  // instructions. +  SmallVector<const SCEV *, 8> StartExprs; +  SmallVector<const SCEV *, 8> IncrExprs; +  for (auto &DRS : RootSets) { +    const SCEVAddRecExpr *IVSCEV = +        cast<SCEVAddRecExpr>(SE->getSCEV(DRS.BaseInst)); +    StartExprs.push_back(IVSCEV->getStart()); +    IncrExprs.push_back(SE->getMinusSCEV(SE->getSCEV(DRS.Roots[0]), IVSCEV)); +  } + +  // Remove instructions associated with non-base iterations. +  for (BasicBlock::reverse_iterator J = Header->rbegin(), JE = Header->rend(); +       J != JE;) { +    unsigned I = Uses[&*J].find_first(); +    if (I > 0 && I < IL_All) { +      LLVM_DEBUG(dbgs() << "LRR: removing: " << *J << "\n"); +      J++->eraseFromParent(); +      continue; +    } + +    ++J; +  } + +  // Rewrite each BaseInst using SCEV. +  for (size_t i = 0, e = RootSets.size(); i != e; ++i) +    // Insert the new induction variable. +    replaceIV(RootSets[i], StartExprs[i], IncrExprs[i]); + +  { // Limit the lifetime of SCEVExpander. +    BranchInst *BI = cast<BranchInst>(Header->getTerminator()); +    const DataLayout &DL = Header->getModule()->getDataLayout(); +    SCEVExpander Expander(*SE, DL, "reroll"); +    auto Zero = SE->getZero(BackedgeTakenCount->getType()); +    auto One = SE->getOne(BackedgeTakenCount->getType()); +    auto NewIVSCEV = SE->getAddRecExpr(Zero, One, L, SCEV::FlagAnyWrap); +    Value *NewIV = +        Expander.expandCodeFor(NewIVSCEV, BackedgeTakenCount->getType(), +                               Header->getFirstNonPHIOrDbg()); +    // FIXME: This arithmetic can overflow. +    auto TripCount = SE->getAddExpr(BackedgeTakenCount, One); +    auto ScaledTripCount = SE->getMulExpr( +        TripCount, SE->getConstant(BackedgeTakenCount->getType(), Scale)); +    auto ScaledBECount = SE->getMinusSCEV(ScaledTripCount, One); +    Value *TakenCount = +        Expander.expandCodeFor(ScaledBECount, BackedgeTakenCount->getType(), +                               Header->getFirstNonPHIOrDbg()); +    Value *Cond = +        new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, TakenCount, "exitcond"); +    BI->setCondition(Cond); + +    if (BI->getSuccessor(1) != Header) +      BI->swapSuccessors(); +  } + +  SimplifyInstructionsInBlock(Header, TLI); +  DeleteDeadPHIs(Header, TLI); +} + +void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet &DRS, +                                           const SCEV *Start, +                                           const SCEV *IncrExpr) { +  BasicBlock *Header = L->getHeader(); +  Instruction *Inst = DRS.BaseInst; + +  const SCEV *NewIVSCEV = +      SE->getAddRecExpr(Start, IncrExpr, L, SCEV::FlagAnyWrap); + +  { // Limit the lifetime of SCEVExpander. +    const DataLayout &DL = Header->getModule()->getDataLayout(); +    SCEVExpander Expander(*SE, DL, "reroll"); +    Value *NewIV = Expander.expandCodeFor(NewIVSCEV, Inst->getType(), +                                          Header->getFirstNonPHIOrDbg()); + +    for (auto &KV : Uses) +      if (KV.second.find_first() == 0) +        KV.first->replaceUsesOfWith(Inst, NewIV); +  } +} + +// Validate the selected reductions. All iterations must have an isomorphic +// part of the reduction chain and, for non-associative reductions, the chain +// entries must appear in order. +bool LoopReroll::ReductionTracker::validateSelected() { +  // For a non-associative reduction, the chain entries must appear in order. +  for (int i : Reds) { +    int PrevIter = 0, BaseCount = 0, Count = 0; +    for (Instruction *J : PossibleReds[i]) { +      // Note that all instructions in the chain must have been found because +      // all instructions in the function must have been assigned to some +      // iteration. +      int Iter = PossibleRedIter[J]; +      if (Iter != PrevIter && Iter != PrevIter + 1 && +          !PossibleReds[i].getReducedValue()->isAssociative()) { +        LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " +                          << J << "\n"); +        return false; +      } + +      if (Iter != PrevIter) { +        if (Count != BaseCount) { +          LLVM_DEBUG(dbgs() +                     << "LRR: Iteration " << PrevIter << " reduction use count " +                     << Count << " is not equal to the base use count " +                     << BaseCount << "\n"); +          return false; +        } + +        Count = 0; +      } + +      ++Count; +      if (Iter == 0) +        ++BaseCount; + +      PrevIter = Iter; +    } +  } + +  return true; +} + +// For all selected reductions, remove all parts except those in the first +// iteration (and the PHI). Replace outside uses of the reduced value with uses +// of the first-iteration reduced value (in other words, reroll the selected +// reductions). +void LoopReroll::ReductionTracker::replaceSelected() { +  // Fixup reductions to refer to the last instruction associated with the +  // first iteration (not the last). +  for (int i : Reds) { +    int j = 0; +    for (int e = PossibleReds[i].size(); j != e; ++j) +      if (PossibleRedIter[PossibleReds[i][j]] != 0) { +        --j; +        break; +      } + +    // Replace users with the new end-of-chain value. +    SmallInstructionVector Users; +    for (User *U : PossibleReds[i].getReducedValue()->users()) { +      Users.push_back(cast<Instruction>(U)); +    } + +    for (Instruction *User : Users) +      User->replaceUsesOfWith(PossibleReds[i].getReducedValue(), +                              PossibleReds[i][j]); +  } +} + +// Reroll the provided loop with respect to the provided induction variable. +// Generally, we're looking for a loop like this: +// +// %iv = phi [ (preheader, ...), (body, %iv.next) ] +// f(%iv) +// %iv.1 = add %iv, 1                <-- a root increment +// f(%iv.1) +// %iv.2 = add %iv, 2                <-- a root increment +// f(%iv.2) +// %iv.scale_m_1 = add %iv, scale-1  <-- a root increment +// f(%iv.scale_m_1) +// ... +// %iv.next = add %iv, scale +// %cmp = icmp(%iv, ...) +// br %cmp, header, exit +// +// Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of +// instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can +// be intermixed with eachother. The restriction imposed by this algorithm is +// that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), +// etc. be the same. +// +// First, we collect the use set of %iv, excluding the other increment roots. +// This gives us f(%iv). Then we iterate over the loop instructions (scale-1) +// times, having collected the use set of f(%iv.(i+1)), during which we: +//   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to +//     the next unmatched instruction in f(%iv.(i+1)). +//   - Ensure that both matched instructions don't have any external users +//     (with the exception of last-in-chain reduction instructions). +//   - Track the (aliasing) write set, and other side effects, of all +//     instructions that belong to future iterations that come before the matched +//     instructions. If the matched instructions read from that write set, then +//     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in +//     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, +//     if any of these future instructions had side effects (could not be +//     speculatively executed), and so do the matched instructions, when we +//     cannot reorder those side-effect-producing instructions, and rerolling +//     fails. +// +// Finally, we make sure that all loop instructions are either loop increment +// roots, belong to simple latch code, parts of validated reductions, part of +// f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions +// have been validated), then we reroll the loop. +bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, +                        const SCEV *BackedgeTakenCount, +                        ReductionTracker &Reductions) { +  DAGRootTracker DAGRoots(this, L, IV, SE, AA, TLI, DT, LI, PreserveLCSSA, +                          IVToIncMap, LoopControlIV); + +  if (!DAGRoots.findRoots()) +    return false; +  LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV +                    << "\n"); + +  if (!DAGRoots.validate(Reductions)) +    return false; +  if (!Reductions.validateSelected()) +    return false; +  // At this point, we've validated the rerolling, and we're committed to +  // making changes! + +  Reductions.replaceSelected(); +  DAGRoots.replace(BackedgeTakenCount); + +  ++NumRerolledLoops; +  return true; +} + +bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { +  if (skipLoop(L)) +    return false; + +  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); +  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( +      *L->getHeader()->getParent()); +  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +  PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); + +  BasicBlock *Header = L->getHeader(); +  LLVM_DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << "] Loop %" +                    << Header->getName() << " (" << L->getNumBlocks() +                    << " block(s))\n"); + +  // For now, we'll handle only single BB loops. +  if (L->getNumBlocks() > 1) +    return false; + +  if (!SE->hasLoopInvariantBackedgeTakenCount(L)) +    return false; + +  const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); +  LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L->getHeader()) << "\n"); +  LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount +               << "\n"); + +  // First, we need to find the induction variable with respect to which we can +  // reroll (there may be several possible options). +  SmallInstructionVector PossibleIVs; +  IVToIncMap.clear(); +  LoopControlIV = nullptr; +  collectPossibleIVs(L, PossibleIVs); + +  if (PossibleIVs.empty()) { +    LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n"); +    return false; +  } + +  ReductionTracker Reductions; +  collectPossibleReductions(L, Reductions); +  bool Changed = false; + +  // For each possible IV, collect the associated possible set of 'root' nodes +  // (i+1, i+2, etc.). +  for (Instruction *PossibleIV : PossibleIVs) +    if (reroll(PossibleIV, L, Header, BackedgeTakenCount, Reductions)) { +      Changed = true; +      break; +    } +  LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L->getHeader()) << "\n"); + +  // Trip count of L has changed so SE must be re-evaluated. +  if (Changed) +    SE->forgetLoop(L); + +  return Changed; +}  | 
